WO2017168770A1 - 燃料電池システム - Google Patents
燃料電池システム Download PDFInfo
- Publication number
- WO2017168770A1 WO2017168770A1 PCT/JP2016/066579 JP2016066579W WO2017168770A1 WO 2017168770 A1 WO2017168770 A1 WO 2017168770A1 JP 2016066579 W JP2016066579 W JP 2016066579W WO 2017168770 A1 WO2017168770 A1 WO 2017168770A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tank
- hot water
- water
- water supply
- storage tank
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a fuel cell system for producing hot water using waste heat of a fuel cell.
- This application claims priority based on Japanese Patent Application No. 2016-064804 for which it applied to Japan on March 29, 2016, and uses the content here.
- Fuel water production using waste heat from fuel cells uses waste heat from power generation and is therefore energy saving and low cost. Therefore, it is preferable to prioritize hot water production using the waste heat of the fuel cell, but there is a problem as to how easily it can be realized. In addition, when hot water produced using waste heat of a fuel cell is sent to a use point, there is a problem as to how to realize it easily.
- the problem to be solved by the present invention is to provide a fuel cell system capable of discharging hot water to a desired location while giving priority to hot water production using waste heat of the fuel cell with a simple configuration.
- the present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is capable of taking out hot water toward a use point and a hot water tank capable of heating stored water by a heating device.
- a circulation path that has a hot water outlet and circulates hot water between the hot water tank and a water supply tank that is installed at a higher position than the hot water tank;
- Hot water storage that is installed at a lower position than the tank and is connected to the water supply tank via a water supply channel, and is connected to the hot water tank via a hot water channel, and the stored water is heated using waste heat of the fuel cell.
- a fuel cell system comprising: a tank, wherein water supply from the water supply tank to the hot water storage tank and water supply from the hot water storage tank to the hot water tank are each made using a water head pressure difference.
- warm water can be quickly taken out from the hot water outlet of the circulation path by circulating the warm water in the circulation path.
- the stored water in the hot water storage tank is heated using the waste heat of the fuel cell, and the hot water in the hot water storage tank can be used as water supply to the hot water tank.
- water supply from the hot water storage tank to the hot water storage tank and water supply from the hot water storage tank to the hot water tank can be easily performed using the water head pressure difference.
- the water supply tank includes a water level controller for maintaining the water level of the stored water at a set water level
- the hot water storage tank is a sealed tank
- the water supply tank and the hot water storage tank When water is supplied from the hot water storage tank to the hot water tank, the same amount of water as that water is supplied from the water supply tank to the hot water storage tank. 1.
- the fuel cell system according to 1.
- the same amount of water can be sent from the water supply tank to the hot water storage tank as water is supplied from the hot water storage tank to the hot water tank using the water head pressure difference. Therefore, it is not necessary to control the water supply from the water supply tank to the hot water storage tank.
- the hot water tank is a sealed tank, and water supply from the water supply tank to the hot water storage tank and water supply from the hot water storage tank to the hot water tank are at least the water supply water, respectively.
- water supply from the water supply tank to the hot water tank and water supply from the hot water tank to the hot water tank are each made use of at least a water head pressure difference generated between the water supply tank and the use point. And can be done automatically.
- the hot water tank is an open-type tank, and the water supply from the water supply tank to the hot water storage tank and the water supply from the hot water storage tank to the hot water tank are the water supply tank, respectively.
- the fuel cell system is formed using a water head pressure difference generated between the hot water tank and the hot water tank.
- water supply from the water supply tank to the hot water storage tank and water supply from the hot water storage tank to the hot water tank are respectively made using the water head pressure difference generated between the water supply tank and the hot water tank. Can be done automatically.
- the invention according to claim 5 is the fuel cell system according to any one of claims 1 to 4, wherein the circulation pump is driven by using electric power generated by the fuel cell. is there.
- the invention according to claim 6 is characterized in that the hot water storage tank is connected to a lower portion of a water supply path from the water supply tank and to an upper portion of the hot water tank to the hot water tank.
- the fuel cell system according to any one of claims 1 to 5.
- temperature stratification is formed in the hot water storage tank, and relatively high temperature water can be preferentially supplied from the upper part of the hot water storage tank to the hot water tank.
- the present invention it is possible to realize a fuel cell system capable of discharging hot water to a desired location with a simple configuration while giving priority to hot water production using waste heat of the fuel cell.
- FIG. 1 is a schematic diagram showing a fuel cell system 1 according to an embodiment of the present invention.
- the fuel cell system 1 of the present embodiment includes a hot water tank 2 that stores hot water, a circulation path 3 that circulates hot water between the hot water tank 2, and a water supply tank 4 that is installed at a higher position than the hot water tank 2.
- a hot water storage tank 5 is provided in the water supply system from the water supply tank 4 to the hot water tank 2 and is installed at a location higher than the hot water tank 2 but lower than the water supply tank 4.
- the hot water tank 2 stores the water supplied from the water supply tank 4 via the hot water storage tank 5.
- the hot water tank 2 is a sealed tank (that is, a tank that is not open to the atmosphere).
- the stored water in the hot water tank 2 can be heated by the heating device 6.
- the warming device 6 is provided in the hot water tank 2 in the present embodiment, it may be provided in the circulation path 3 (for example, between the circulation pump 7 and the hot water extraction unit 8) in some cases.
- the warming device 6 is composed of a steam heater in this embodiment, it may be composed of an electric heater or a burner depending on circumstances. In any case, by controlling the heating device 6 based on the temperature of the stored water in the warm water tank 2 (or the circulating water in the circulation path 3), the stored water in the warm water tank 2 (or in the circulation path 3) Circulating water) temperature can be maintained at the target temperature. In the case where temperature stratification is formed in the hot water tank 2 (the upper part is hotter and the lower part is colder), the heating device 6 can be controlled based on the hot water temperature of a predetermined height of the hot water tank 2.
- the circulation path 3 has a hot water outlet 8 that can take hot water toward the use point, and circulates hot water between the hot water tank 2 and the circulation pump 7.
- the upper part and the lower part of the hot water tank 2 are connected by a circulation path 3, and the circulation path 3 is provided with one or a plurality of hot water outlets 8 in addition to the circulation pump 7.
- the circulation pump 7 When the circulation pump 7 is operated, the stored water in the hot water tank 2 is returned to the hot water tank 2 again via the circulation path 3.
- the circulation path 3 By setting the connection position of the circulation path 3 with respect to the hot water tank 2, the water stored in the hot water tank 2 can be agitated during the operation of the circulation pump 7, and the water temperature can be made uniform or stored in the hot water tank 2. Water agitation can be suppressed to form a temperature stratification.
- the circulation pump 7 typically continuously operates during operation of the fuel cell system 1.
- the stored water in the hot water tank 2 can be discharged from the hot water outlet 8 of the circulation path 3 to various points of use via appropriate piping as required. That is, when the hot water outlet of the use point is opened, the hot water can be discharged from the hot water outlet to the outside.
- the use point is not particularly limited. For example, in the case of a fuel cell system for home use, it is assumed to be a currant, a shower or a bathtub. In the case of a commercial fuel cell system, various hot water use devices (for example, hot water use in a kitchen) ).
- the water supply tank 4 stores water supply to the hot water storage tank 5 and thus to the hot water tank 2.
- the water supply tank 4 is an open type tank (that is, a tank opened to the atmosphere). Normal temperature water (typically city water) can be supplied to the water supply tank 4, and the water supply tank 4 is maintained at a set water level by controlling the water supply to the water supply tank 4.
- the water supply tank 4 includes a water level controller 9, and the water level controller 9 maintains the set water level in the water supply tank 4.
- the water level controller 9 is not particularly limited, in this embodiment, it is a constant water level valve (a water supply valve that operates the main valve by a ball tap type sub valve).
- the hot water storage tank 5 stores the water supplied from the water supply tank 4 (and the water to be supplied to the hot water tank 2).
- the hot water storage tank 5 is a sealed tank (that is, a tank that is not open to the atmosphere). The stored water in the hot water storage tank 5 is heated using the waste heat of the fuel cell 10 and can be supplied to the hot water tank 2.
- the fuel cell 10 causes a steam reforming reaction of raw fuel (city gas mainly composed of methane gas from the gas pipe 11 in the illustrated example) and water (steam) in a reformer (not shown).
- a reformer Is a device that generates hydrogen by generating hydrogen, and chemically reacting the hydrogen and oxygen in the air in a cell stack (not shown).
- the generated electricity is converted into an alternating current by an inverter and supplied to various electric devices.
- heat is generated during power generation, so the stored water in the hot water storage tank 5 is heated using the heat.
- the type of the fuel cell 10 is not particularly limited. In this embodiment, a solid oxide form (SOFC) is used, but for example, a solid polymer form (PEFC) may be used.
- SOFC solid oxide form
- PEFC solid polymer form
- the stored water is heated using the waste heat of the fuel cell 10.
- the stored water in the hot water storage tank 5 is heated using the off-gas waste heat of the fuel cell 10. That is, off-gas (exhaust gas) is discharged from the cell stack and the reformer during power generation in the fuel cell 10, but the stored water in the hot water storage tank 5 is heated using the off-gas waste heat.
- the waste heat from the cell stack is recovered and the stored water in the hot water storage tank 5 is heated.
- the off-gas heat exchanger 12 on the fuel cell 10 side and the stored water heating heat exchanger on the hot water tank 5 side are used. 13 is connected to the circulating fluid circuit 14.
- the circulating fluid circuit 14 circulates the circulating fluid (for example, water) between the off-gas heat exchanger 12 and the stored water heating heat exchanger 13. Specifically, the circulating fluid from the stored water heating heat exchanger 13 is supplied to the off-gas heat exchanger 12 via the feed path 14a, and the circulating fluid after passing through the off-gas heat exchanger 12 passes through the return path 14b. To the stored water heating heat exchanger 13.
- the circulating fluid can be circulated in the circulating fluid circuit 14 by operating the circulating fluid pump 15 provided in the feed passage 14a (or the return passage 14b). During operation of the fuel cell 10 (that is, during power generation), the circulating fluid pump 15 continues to operate.
- the circulating fluid is heated using the waste heat of the fuel cell 10.
- heat exchange is performed without mixing the off gas and the circulating fluid, thereby cooling the off gas and heating the circulating fluid.
- the stored water in the hot water storage tank 5 is heated using the circulating liquid from the off-gas heat exchanger 12.
- heat is exchanged without mixing the stored water and the circulating fluid, so that the stored water is heated and the circulating fluid is cooled.
- the stored water heating heat exchanger 13 is installed in the hot water storage tank 5 and the circulating fluid and the stored water are indirectly heat exchanged. However, in some cases, the stored water heating heat exchanger 13 is installed. Omitted, the stored water itself in the hot water storage tank 5 may be circulated with the off-gas heat exchanger 12. That is, the stored water in the hot water storage tank 5 is supplied to the off-gas heat exchanger 12 via the feed path 14a, is heated using the off-gas waste heat in the off-gas heat exchanger 12, and is stored via the return path 14b. Circulation returning to the tank 5 may be repeated.
- a radiator 16 in the feed path 14a.
- a radiator 16 and a circulating fluid pump 15 are sequentially provided in the feed path 14 a from the stored water heating heat exchanger 13 toward the off-gas heat exchanger 12.
- the cooling fan 17 of the radiator 16 By operating the cooling fan 17 of the radiator 16 when desired, the circulating fluid supplied to the off-gas heat exchanger 12 can be air-cooled. This is to realize so-called water self-sustainability in the fuel cell 10.
- the radiator 16 is provided, and the circulating fluid temperature supplied to the off-gas heat exchanger 12 is maintained below the first target temperature.
- a first temperature sensor 18 is provided in the feed path 14a on the outlet side of the radiator 16, and the motor of the cooling fan 17 is maintained so as to maintain the detected temperature at a first target temperature (for example, 40 ° C.). Is controlled by an inverter.
- the return path 14b is provided with a flow rate adjusting valve 19 in this embodiment.
- the opening degree of the flow rate adjusting valve 19 By adjusting the opening degree of the flow rate adjusting valve 19, the circulating flow rate in the circulating fluid circuit 14 can be adjusted.
- the return path 14b is provided with a second temperature sensor 20 on the outlet side of the off-gas heat exchanger 12, and the flow rate is adjusted so as to maintain the detected temperature at the second target temperature (for example, 60 to 75 ° C.).
- the opening degree of the valve 19 is adjusted.
- the circulating fluid temperature supplied to the stored water heating heat exchanger 13 can be maintained at a predetermined temperature, and the stored water in the hot water storage tank 5 can be heated to a desired temperature.
- the means for adjusting the circulating flow rate of the circulating fluid circuit 14 is not limited to the flow rate adjusting valve 19, and for example, the circulating fluid pump 15 may be controlled by an inverter.
- the hot water storage tank 5 is connected to the hot water tank 4 and the hot water channel 22 while being connected to the hot water tank 4 and the hot water channel 22.
- the stored water in the hot water storage tank 5 is heated using the waste heat of the fuel cell 10 as described above, but at that time, the hot water storage tank 5 has a temperature stratification (the upper part is hotter and the lower part is lower). Is formed. Therefore, in order not to disturb this temperature stratification, the hot water storage tank 5 is connected to the water supply passage 21 from the water supply tank 4 at the lower portion and the hot water passage 22 to the hot water tank 2 at the upper portion as shown in the figure. It is preferable to be connected.
- the water supply channel 21 and the hot water channel 22 may be connected by a bypass channel 23 as desired.
- the water supply passage 21 is provided with a water supply valve 24 downstream from the branch portion with the bypass passage 23, while the hot water passage 22 has a hot water valve 25 upstream from the junction with the bypass passage 23. Is provided.
- a bypass valve 26 is provided in the bypass passage 23.
- the water supply valve 24, the hot water valve 25, and the bypass valve 26 are manual valves in this embodiment. Normally, the bypass valve 26 is closed, and the water supply valve 24 and the hot water valve 25 are kept open. Accordingly, the water in the water supply tank 4 is supplied to the hot water storage tank 5 through the water supply passage 21 without passing through the bypass passage 23, and the water in the hot water storage tank 5 is supplied to the hot water tank 2 through the hot water passage 22. Is done.
- the bypass valve 26 can be opened while the water supply valve 24 and the hot water valve 25 are closed.
- the water in the water supply tank 4 is supplied to the hot water tank 2 through the bypass 23 without passing through the hot water storage tank 5.
- the bypass valve 26 may be opened while the water supply valve 24 and the hot water valve 25 are closed.
- the hot water tank 2 can be directly supplied with water from the water supply tank 4 and can also produce hot water with the heating device 6 in the hot water tank 2. .
- the hot water storage tank 5 is installed above the hot water tank 2, and the water supply tank 4 is installed above the hot water storage tank 5. That is, the hot water tank 2, the hot water storage tank 5, and the water supply tank 4 are provided in this order from the bottom to the top.
- the fuel cell system 1 is installed in a building having two or more floors as indicated by a two-dot chain line
- the hot water tank 2 is installed on a floor below the hot water storage tank 5
- the water supply tank 4 is It is installed on the floor above the hot water storage tank 5.
- the hot water storage tank 5 is installed on the first floor
- the hot water tank 2 is installed on the basement floor
- the water supply tank 4 is installed on the rooftop.
- the operation (operation) of the fuel cell system 1 of the present embodiment will be described.
- the water supply from the water supply tank 4 to the hot water storage tank 5 and the water supply from the hot water storage tank 5 to the hot water tank 2 are performed using the water head pressure difference. Specifically, it is as follows.
- the hot water tank 2 and the hot water storage tank 5 are sealed tanks, while the water supply tank 4 is an open tank.
- a hot water storage tank 5 is installed above the hot water tank 2, and a water supply tank 4 is installed above the hot water storage tank 5.
- the water supply tank 4, the hot water storage tank 5 and the hot water tank 2 are always in communication with each other via a water supply path 21 and a hot water path 22. Therefore, when the water supply from the water supply tank 4 fills the water supply path 21, hot water storage tank 5, hot water path 22, hot water tank 2 and circulation path 3 and opens the hot water outlet of the use point, it automatically goes to the hot water outlet due to the water head pressure difference. Hot water is taken out.
- an amount of water corresponding to the amount of the hot water is sequentially sent from the water supply tank 4 downward using the water head pressure.
- the same amount of water is fed from the water supply tank 4 to the hot water storage tank 5 as water is supplied from the hot water storage tank 5 to the hot water tank 2 when the hot water is discharged at the use point.
- the hot water outlet 8 is provided in the circulation path 3, and the circulation pump 7 is provided in the circulation path 3. Therefore, when hot water is discharged at the use point through the hot water outlet 8 during the operation of the circulation pump 7, the discharge pressure of the circulation pump 7 contributes in addition to the above-described water head pressure difference.
- the circulation pump 7 when the circulation pump 7 is disposed at a position higher than the hot water outlet 8 (and eventually the use point), the operating energy of the circulation pump 7 can be reduced by the amount of use of the above-mentioned water head pressure difference. it can.
- the water supply from the water supply tank 4 to the hot water storage tank 5 and the water supply from the hot water storage tank 5 to the hot water tank 2 are generated at least between the water supply tank 4 and the use point. This is done using the water head pressure difference.
- the waste heat of the fuel cell 10 heats the stored water in the hot water storage tank 5 via the circulating fluid circuit 14 as the fuel cell 10 is operated. At that time, the stored water in the hot water storage tank 5 is heated with a predetermined temperature (for example, 70 ° C.) as a target value.
- the warm water is used for water supply to the warm water tank 2. Therefore, compared with the case where warm water is produced from the beginning in the warm water tank 2 by the warming device 6, the water supply to the warm water tank 2 is preheated using the waste heat of the fuel cell 10, thereby reducing energy consumption. Hot water can be manufactured at a low cost.
- the stored water in the hot water tank 2 is maintained at the target temperature by the heating device 6.
- This heating target temperature may be the same as the heating target temperature in the hot water storage tank 5 or may be higher than the heating target temperature in the hot water storage tank 5.
- the circulation pump 7 is preferably driven by using the electric power generated by the fuel cell 10. This applies not only to the circulating pump 7 but also to the circulating fluid pump 15 and the like.
- the heating device 6 provided in the hot water tank 2 is configured by an electric heater, the electric heater may be driven using electric power generated by the fuel cell 10.
- the fuel cell system 1 of the present invention is not limited to the configuration (including control) of the above embodiment, and can be changed as appropriate.
- a warm water tank 2 capable of warming the stored water by the warming device 6, and a circulation path 3 having a warm water extraction part 8 capable of circulating the warm water in the warm water tank 2 and taking out the warm water toward the use point
- a hot water tank 4 installed at a higher location than the hot water tank 2
- a hot water storage tank 5 which is higher than the hot water tank 2 but lower than the hot water tank 4.
- the hot water tank 2 is constituted by a sealed tank, but may be constituted by an open tank depending on circumstances.
- water supply from the hot water storage tank 5 to the hot water tank 2 may be controlled so that the water level in the hot water tank 2 is maintained at the set water level.
- the hot water tank 2 may be provided with a ball tap type constant water level valve.
- a water supply control valve may be provided in the hot water passage 22 on the downstream side of the junction with the bypass passage 23 and the opening and closing of the water supply control valve may be controlled based on the water level in the hot water tank 2.
- water supply from the hot water tank 5 to the hot water tank 2 is Each is done using the water head pressure.
- water can be automatically supplied from the water supply tank 4 to the hot water tank 2 via the hot water storage tank 5 using the water head pressure difference generated between the water supply tank 4 and the hot water tank 2.
- the hot water tank 2 is an open tank, if the use point is located below the surface of the hot water tank 2, the hot water from the hot water tank 2 to the use point can be discharged between the hot water tank 2 and the use point. This can be done by utilizing the hydraulic head pressure difference generated between them.
- the circulation pump 7 is provided in the circulation path 3 to the hot water outlet 8, the hot water is smoothly discharged by the discharge pressure.
- the hot water storage tank 5 is a sealed tank, but may be an open tank depending on circumstances. In that case, the water supply from the water supply tank 4 to the hot water storage tank 5 may be controlled so that the water level in the hot water storage tank 5 is maintained at the set water level in the same manner as when the hot water tank 2 is an open type tank.
- the hot water storage tank 5 is an open-type tank, water supply from the water supply tank 4 to the hot water storage tank 5 is performed using a water head pressure generated between the water supply tank 4 and the hot water storage tank 5.
- the hot water tank 2 is an open type tank
- water supply from the hot water storage tank 5 to the hot water tank 2 is performed using a head pressure difference between the hot water storage tank 5 and the hot water tank 2, and the hot water tank 2 is a sealed tank.
- the water head pressure between the hot water storage tank 5 and the use point is used.
Landscapes
- Fuel Cell (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
温水タンク(2)内の貯留水は、加温装置(6)により加温される。循環路(3)は、ユースポイントに向けて温水を取り出し可能な温水取出部(8)を有し、循環ポンプ(7)により温水タンク(2)との間で温水を循環させる。給水タンク(4)は、温水タンク(2)より高所に設置される。貯湯タンク(5)は、温水タンク(2)より高所であるが給水タンク(4)より低所に設置され、給水タンク(4)と給水路(21)を介して接続される一方、温水タンク(2)と温水路(22)を介して接続され、燃料電池(10)の廃熱を用いて貯留水が加温される。給水タンク(4)から貯湯タンク(5)への給水と、貯湯タンク(5)から温水タンク(2)への給水とは、それぞれ水頭圧差を利用してなされる。
Description
本発明は、燃料電池の廃熱を用いて温水を製造する燃料電池システムに関するものである。本願は、2016年3月29日に日本に出願された特願2016-064804号に基づき優先権を主張し、その内容をここに援用する。
従来、温水タンク内の貯留水を、たとえば蒸気ヒータのような加温装置により加温しておき、その温水をユースポイントに取り出し可能なシステムが知られている。一方、下記特許文献1に開示されるように、燃料電池(6)の廃熱を用いて温水を製造することも知られている。この特許文献1に記載の発明では、貯湯タンク(50)内の貯留水が、熱交換器(32,46,71)に循環されて燃料電池のオフガスにより加温されると共に、温水供給管(62)により外部に出湯可能とされる([0005]、[0008]、[0020]-[0022])。
燃料電池の廃熱を用いた温水製造は、発電時の廃熱を利用するので省エネルギで低コストである。従って、燃料電池の廃熱を用いた温水製造を優先できれば好適であるが、それをいかに簡易に実現するかについて課題がある。また、燃料電池の廃熱を用いて製造した温水をユースポイントまで送水する際、それをいかに簡易に実現するかについて課題がある。
そこで、本発明が解決しようとする課題は、簡易な構成で、燃料電池の廃熱を用いた温水製造を優先しつつ、所望箇所へ出湯可能な燃料電池システムを提供することにある。
本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、加温装置により貯留水を加温可能な温水タンクと、ユースポイントに向けて温水を取り出し可能な温水取出部を有し、循環ポンプにより前記温水タンクとの間で温水を循環させる循環路と、前記温水タンクより高所に設置される給水タンクと、前記温水タンクより高所であるが前記給水タンクより低所に設置され、前記給水タンクと給水路を介して接続される一方、前記温水タンクと温水路を介して接続され、燃料電池の廃熱を用いて貯留水が加温される貯湯タンクとを備え、前記給水タンクから前記貯湯タンクへの給水と、前記貯湯タンクから前記温水タンクへの給水とは、それぞれ水頭圧差を利用してなされることを特徴とする燃料電池システムである。
請求項1に記載の発明によれば、循環路に温水を循環させておくことで、循環路の温水取出部から温水を迅速に取り出すことができる。また、貯湯タンク内の貯留水を燃料電池の廃熱を用いて加温しておき、その貯湯タンク内の温水を温水タンクへの給水として利用することができる。これにより、温水タンクの側において、一から加温装置によって加温する必要がない。しかも、給水タンクから貯湯タンクへの給水と、貯湯タンクから温水タンクへの給水とを、それぞれ水頭圧差を利用して容易に実施することができる。
請求項2に記載の発明は、前記給水タンクは、貯留水の水位を設定水位に維持するための水位制御器を備え、前記貯湯タンクは、密閉型タンクであり、前記給水タンクと前記貯湯タンクとを常時連通しておくことで、前記貯湯タンクから前記温水タンクへの給水に伴い、その給水と同量の水が、前記給水タンクから前記貯湯タンクへ送水されることを特徴とする請求項1に記載の燃料電池システムである。
請求項2に記載の発明によれば、水頭圧差を用いて、貯湯タンクから温水タンクへの給水に伴い、その給水と同量の水を給水タンクから貯湯タンクへ送水することができる。従って、給水タンクから貯湯タンクへの給水を制御する必要がない。
請求項3に記載の発明は、前記温水タンクは、密閉型タンクであり、前記給水タンクから前記貯湯タンクへの給水と、前記貯湯タンクから前記温水タンクへの給水とは、それぞれ少なくとも、前記給水タンクと前記ユースポイントとの間に発生する水頭圧差を利用してなされることを特徴とする請求項2に記載の燃料電池システムである。
請求項3に記載の発明によれば、給水タンクから貯湯タンクへの給水と、貯湯タンクから温水タンクへの給水とを、それぞれ少なくとも、給水タンクとユースポイントとの間に発生する水頭圧差を利用して、自動的に行うことができる。
請求項4に記載の発明は、前記温水タンクは、開放型タンクであり、前記給水タンクから前記貯湯タンクへの給水と、前記貯湯タンクから前記温水タンクへの給水とは、それぞれ前記給水タンクと前記温水タンクとの間に発生する水頭圧差を利用してなされることを特徴とする請求項2に記載の燃料電池システムである。
請求項4に記載の発明によれば、給水タンクから貯湯タンクへの給水と、貯湯タンクから温水タンクへの給水とを、それぞれ給水タンクと温水タンクとの間に発生する水頭圧差を利用して、自動的に行うことができる。
請求項5に記載の発明は、前記循環ポンプは、前記燃料電池により発電された電力を使って駆動されることを特徴とする請求項1~4のいずれか1項に記載の燃料電池システムである。
請求項5に記載の発明によれば、燃料電池により発電された電力を用いて、循環ポンプを低コストに運転することができる。
さらに、請求項6に記載の発明は、前記貯湯タンクには、下部に、前記給水タンクからの給水路が接続され、上部に、前記温水タンクへの温水路が接続されていることを特徴とする請求項1~5のいずれか1項に記載の燃料電池システムである。
請求項6に記載の発明によれば、貯湯タンク内に温度成層を形成して、貯湯タンクの上部から比較的高温の水を優先して、温水タンクへ供給することができる。
本発明によれば、簡易な構成で、燃料電池の廃熱を用いた温水製造を優先しつつ、所望箇所へ出湯可能な燃料電池システムを実現することができる。
以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の燃料電池システム1を示す概略図である。
図1は、本発明の一実施例の燃料電池システム1を示す概略図である。
本実施例の燃料電池システム1は、温水を貯留する温水タンク2と、この温水タンク2との間で温水を循環させる循環路3と、温水タンク2より高所に設置される給水タンク4と、この給水タンク4から温水タンク2への給水系統に設けられ、温水タンク2より高所であるが給水タンク4より低所に設置される貯湯タンク5とを備える。
温水タンク2は、給水タンク4から貯湯タンク5を介して給水された水を貯留する。温水タンク2は、本実施例では、密閉型タンク(つまり大気開放されないタンク)とされる。
温水タンク2内の貯留水は、加温装置6により加温可能とされる。加温装置6は、本実施例では温水タンク2に設けられるが、場合により循環路3(たとえば循環ポンプ7と温水取出部8との間)に設けられてもよい。加温装置6は、本実施例では蒸気ヒータから構成されるが、場合により電気ヒータまたはバーナなどから構成されてもよい。いずれにしても、温水タンク2内の貯留水(または循環路3内の循環水)の温度に基づき加温装置6を制御することで、温水タンク2内の貯留水(または循環路3内の循環水)の温度を目標温度に維持することができる。なお、温水タンク2内に温度成層(上部ほど高温で下部ほど低温の状態)を形成する場合、温水タンク2の所定高さの温水温度に基づき加温装置6を制御することができる。
循環路3は、ユースポイントに向けて温水を取り出し可能な温水取出部8を有し、循環ポンプ7により温水タンク2との間で温水を循環させる。図示例では、温水タンク2の上部と下部とが循環路3で接続されており、その循環路3には循環ポンプ7の他、一または複数の温水取出部8が設けられている。
循環ポンプ7を作動させると、温水タンク2内の貯留水は、循環路3を介して、再び温水タンク2へ戻される。温水タンク2に対する循環路3の接続位置の設定により、循環ポンプ7の作動中、温水タンク2内の貯留水を撹拌して水温の均一化を図ることができ、あるいは、温水タンク2内の貯留水の撹拌を抑制して温度成層の形成を図ることができる。なお、循環ポンプ7は、燃料電池システム1の作動中、典型的には、常時運転を継続する。
温水タンク2内の貯留水は、循環路3の温水取出部8から、所望により適宜の配管を介して、各種のユースポイントへ出湯可能とされる。すなわち、ユースポイントの出湯口が開けられると、その出湯口から外部へ出湯することができる。ユースポイントは、特に問わないが、たとえば、家庭用の燃料電池システムの場合、カラン、シャワーまたは浴槽などとされ、業務用の燃料電池システムの場合、各種温水利用機器(例えば、厨房での温水利用)とされる。
給水タンク4は、貯湯タンク5ひいては温水タンク2への給水を貯留する。給水タンク4は、本実施例では、開放型タンク(つまり大気開放されたタンク)とされる。給水タンク4には常温水(典型的には市水)が供給可能とされ、給水タンク4への給水を制御することで、給水タンク4内は設定水位に維持される。具体的には、給水タンク4は水位制御器9を備え、この水位制御器9により、給水タンク4内は設定水位に維持される。水位制御器9は、特に問わないが、本実施例では、定水位弁(ボールタップ式の副弁により主弁を作動させる給水弁)とされる。
貯湯タンク5は、給水タンク4からの給水(そして温水タンク2への給水となる水)を貯留する。貯湯タンク5は、本実施例では、密閉型タンク(つまり大気開放されないタンク)とされる。貯湯タンク5内の貯留水は、燃料電池10の廃熱を用いて加温されると共に、温水タンク2へ供給可能とされる。
燃料電池10は、周知のとおり、原燃料(図示例ではガス管11からのメタンガスを主成分とする都市ガス)と水(水蒸気)とを改質器(図示省略)において水蒸気改質反応させることにより水素を生成し、その水素と空気中の酸素とをセルスタック(図示省略)において化学反応させて発電する装置である。発電した電気は、インバータで交流電流に変換され、各種の電気機器へ供給される。また、燃料電池10では、発電時に熱を生じるので、その熱を用いて、貯湯タンク5内の貯留水が加温される。なお、燃料電池10の種類は、特に問わない。本実施例では、固体酸化物形(SOFC)が用いられるが、たとえば固体高分子形(PEFC)などを用いてもよい。
前述したとおり、貯湯タンク5は、燃料電池10の廃熱を用いて貯留水が加温される。典型的には、燃料電池10のオフガス廃熱を用いて、貯湯タンク5内の貯留水が加温される。つまり、燃料電池10における発電時、セルスタックや改質器からはオフガス(排ガス)が排出されるが、そのオフガス廃熱を用いて、貯湯タンク5内の貯留水を加温する。あるいは、これに代えてまたはこれに加えて、セルスタックの冷却器において、セルスタックからの廃熱を回収して、貯湯タンク5内の貯留水を加温する。
燃料電池10のオフガス廃熱で貯湯タンク5内の貯留水を加温するために、本実施例では、燃料電池10側のオフガス熱交換器12と、貯湯タンク5側の貯留水加温熱交換器13とが、循環液回路14で接続されている。循環液回路14は、オフガス熱交換器12と貯留水加温熱交換器13との間で、循環液(たとえば水)を循環させる。具体的には、貯留水加温熱交換器13からの循環液は、送り路14aを介してオフガス熱交換器12へ供給され、オフガス熱交換器12を通過後の循環液は、戻し路14bを介して貯留水加温熱交換器13へ戻される。送り路14a(または戻し路14b)に設けた循環液ポンプ15を作動させることで、循環液回路14内に循環液を循環させることができる。燃料電池10の運転中(つまり発電中)、循環液ポンプ15は作動を継続する。
オフガス熱交換器12では、燃料電池10の廃熱を用いて、循環液が加温される。本実施例では、オフガスと循環液とを混ぜることなく熱交換して、オフガスの冷却を図ると共に循環液を加温する。
貯留水加温熱交換器13では、オフガス熱交換器12からの循環液を用いて、貯湯タンク5内の貯留水が加温される。本実施例では、貯留水と循環液とを混ぜることなく熱交換して、貯留水の加温を図ると共に循環液の冷却を図る。
なお、本実施例では、貯湯タンク5内に貯留水加温熱交換器13を設置して、循環液と貯留水とを間接熱交換したが、場合により、貯留水加温熱交換器13の設置を省略して、貯湯タンク5内の貯留水自体をオフガス熱交換器12との間で循環させてもよい。つまり、貯湯タンク5内の貯留水を、送り路14aを介してオフガス熱交換器12に供給して、オフガス熱交換器12においてオフガス廃熱を用いて加温し、戻し路14bを介して貯湯タンク5へ戻す循環を繰り返してもよい。
ところで、送り路14aには、ラジエータ16を設けておくのが好ましい。図示例では、送り路14aには、貯留水加温熱交換器13からオフガス熱交換器12へ向けて、ラジエータ16と循環液ポンプ15とが順に設けられる。所望時にラジエータ16の冷却ファン17を作動させることで、オフガス熱交換器12へ供給する循環液を空冷することができる。これは、燃料電池10において、いわゆる水自立を実現するためである。
つまり、オフガス熱交換器12においてオフガスを露点温度以下に冷却して、オフガス中の水分を凝縮させ、その凝縮水を前記改質器へ再供給(つまり水自立)するには、循環液の温度が高まり過ぎるのを防止する必要がある。そこで、本実施例では、ラジエータ16を設けて、オフガス熱交換器12へ供給する循環液温度を第一目標温度以下に維持する。具体的には、送り路14aには、ラジエータ16の出口側に第一温度センサ18が設けられ、その検出温度を第一目標温度(たとえば40℃)に維持するように、冷却ファン17のモータがインバータ制御される。
一方、戻し路14bには、本実施例では、流量調整弁19が設けられている。流量調整弁19の開度を調整することで、循環液回路14内の循環流量を調整することができる。ここでは、戻し路14bには、オフガス熱交換器12の出口側に第二温度センサ20が設けられ、その検出温度を第二目標温度(たとえば60~75℃)に維持するように、流量調整弁19の開度が調整される。これにより、貯留水加温熱交換器13へ供給する循環液温度を所定温度に維持して、貯湯タンク5内の貯留水を所望温度に加温することができる。なお、循環液回路14の循環流量を調整する手段は、流量調整弁19に限らず、たとえば循環液ポンプ15をインバータ制御するなどしてもよい。
貯湯タンク5は、給水タンク4と給水路21を介して接続される一方、温水タンク2と温水路22を介して接続される。貯湯タンク5内の貯留水は、前述したとおり、燃料電池10の廃熱を用いて加温されるが、その際、貯湯タンク5内には温度成層(上部ほど高温で下部ほど低温の状態)が形成される。従って、この温度成層を乱さないために、貯湯タンク5には、図示例のように、下部に、給水タンク4からの給水路21が接続され、上部に、温水タンク2への温水路22が接続されるのが好ましい。
また、給水路21と温水路22とは、所望によりバイパス路23で接続されてもよい。この場合、給水タンク4からの水を、貯湯タンク5を介して温水タンク2へ供給するか、貯湯タンク5を介さずにバイパス路23を介して温水タンク2へ供給するかを切替可能に構成される。そのために、図示例では、給水路21には、バイパス路23との分岐部より下流に給水弁24が設けられる一方、温水路22には、バイパス路23との合流部より上流に温水弁25が設けられる。さらに、バイパス路23には、バイパス弁26が設けられる。
給水弁24、温水弁25およびバイパス弁26は、本実施例では手動弁である。そして、通常、バイパス弁26が閉じられ、給水弁24および温水弁25が開かれた状態に維持される。従って、給水タンク4内の水は、バイパス路23を介することなく、給水路21を介して貯湯タンク5へ供給され、貯湯タンク5内の水が、温水路22を介して温水タンク2へ供給される。
一方、所望時には、バイパス弁26を開ける一方、給水弁24および温水弁25を閉じた状態とすることができる。この場合、給水タンク4内の水は、貯湯タンク5を介することなく、バイパス路23を介して温水タンク2へ供給される。たとえば、貯湯タンク5や循環液回路14などをメンテナンスする際、バイパス弁26を開ける一方、給水弁24および温水弁25を閉じた状態としておけばよい。その場合、温水タンク2には給水タンク4から直接に給水可能であると共に、温水タンク2において加温装置6にて温水を製造可能であるから、ユースポイントへの湯切れを防止することができる。
前述したとおり、貯湯タンク5は、温水タンク2より上方に設置され、給水タンク4は、貯湯タンク5よりも上方に設置される。つまり、下方から上方へ向けて、温水タンク2、貯湯タンク5および給水タンク4が順に設けられる。図示例では、燃料電池システム1は、二点鎖線で示されるように、実質的に二階建て以上の建物に設置され、温水タンク2は貯湯タンク5より下の階に設置され、給水タンク4は貯湯タンク5よりも上の階に設置される。たとえば、貯湯タンク5が1階に設置され、温水タンク2が地階に設置され、給水タンク4が屋上に設置される。
次に、本実施例の燃料電池システム1の作用(運転)について、説明する。
本実施例の燃料電池システム1では、給水タンク4から貯湯タンク5への給水と、貯湯タンク5から温水タンク2への給水とは、それぞれ水頭圧差を利用してなされる。具体的には、次のとおりである。
本実施例の燃料電池システム1では、給水タンク4から貯湯タンク5への給水と、貯湯タンク5から温水タンク2への給水とは、それぞれ水頭圧差を利用してなされる。具体的には、次のとおりである。
前提として、本実施例では、前述したとおり、温水タンク2および貯湯タンク5は、密閉型タンクである一方、給水タンク4は、開放型タンクである。また、温水タンク2より上方に貯湯タンク5が設置され、貯湯タンク5より上方に給水タンク4が設置されている。そして、給水タンク4、貯湯タンク5および温水タンク2は、給水路21と温水路22とを介して、常時連通されている。従って、給水タンク4からの給水は、給水路21、貯湯タンク5、温水路22、温水タンク2および循環路3を満たし、ユースポイントの出湯口を開くと、水頭圧差により出湯口へ自動的に出湯される。しかも、その出湯分と対応した量の水が、給水タンク4から順次下方へ、水頭圧を利用して送水されることになる。言い換えれば、ユースポイントにおける出湯時、貯湯タンク5から温水タンク2への給水に伴い、その給水と同量の水が、給水タンク4から貯湯タンク5へ送水されることになる。
ところで、本実施例の場合、温水取出部8は循環路3に設けられ、その循環路3には循環ポンプ7が設けられている。従って、循環ポンプ7の作動中、温水取出部8を介してユースポイントにて出湯する場合、上述した水頭圧差に加えて、循環ポンプ7の吐出圧も寄与することになる。特に、図示例のように、循環ポンプ7が温水取出部8(ひいてはユースポイント)よりも上方位置に配置される場合、上述した水頭圧差を用いる分、循環ポンプ7の作動エネルギを軽減することができる。いずれにしても、本実施例では、給水タンク4から貯湯タンク5への給水と、貯湯タンク5から温水タンク2への給水とは、それぞれ少なくとも、給水タンク4とユースポイントとの間に発生する水頭圧差を利用してなされる。
以上のような給排水とは別に、燃料電池10の運転に伴い、燃料電池10の廃熱が循環液回路14を介して、貯湯タンク5内の貯留水を加温する。その際、所定温度(たとえば70℃)を目標値として、貯湯タンク5内の貯留水は加温される。そして、その温水が、温水タンク2への給水に用いられる。従って、温水タンク2において一から加温装置6で温水を製造する場合と比較して、燃料電池10の廃熱を用いて温水タンク2への給水を予熱しておくことで、省エネルギで低コストに温水を製造することができる。
また、温水タンク2内の貯留水は、加温装置6により目標温度に維持される。この加温目標温度は、貯湯タンク5内の加温目標温度と同一でもよいし、貯湯タンク5内の加温目標温度よりも高温であってもよい。
ところで、循環ポンプ7は、燃料電池10により発電された電力を使って駆動されるのが好ましい。このことは、循環ポンプ7に限らず、循環液ポンプ15などについても同様である。さらに、温水タンク2に設けた加温装置6が電気ヒータから構成される場合、その電気ヒータは、燃料電池10により発電された電力を使って駆動されてもよい。いずれにしても、商用電源に代えて、安価な都市ガスを使って燃料電池10により発電された電力を用いることで、低コストに運転することができる。また、商用電源から新たに配線するよりも、各種ポンプなどに比較的近い場所から、容易に給電することも可能となる。
本発明の燃料電池システム1は、前記実施例の構成(制御を含む)に限らず、適宜変更可能である。特に、加温装置6により貯留水を加温可能な温水タンク2と、この温水タンク2内の温水を循環させると共にユースポイントに向けて温水を取り出し可能な温水取出部8を有する循環路3と、温水タンク2より高所に設置される給水タンク4と、温水タンク2より高所であるが給水タンク4より低所に設置される貯湯タンク5とを備え、貯湯タンク5は、給水タンク4と温水タンク2とに接続されると共に燃料電池10の廃熱を用いて貯留水が加温され、給水タンク4から貯湯タンク5への給水と、貯湯タンク5から温水タンク2への給水とがそれぞれ水頭圧差を利用してなされるのであれば、その他の構成は適宜に変更可能である。
たとえば、前記実施例では、温水タンク2は、密閉型タンクにより構成されたが、場合により、開放型タンクにより構成されてもよい。その場合、温水タンク2内の水位を設定水位に維持するように、貯湯タンク5から温水タンク2への給水を制御すればよい。たとえば、給水タンク4の場合と同様に、温水タンク2にもボールタップ式の定水位弁を設ければよい。あるいは、バイパス路23との合流部よりも下流側の温水路22に、給水制御弁を設けて、温水タンク2内の水位に基づき給水制御弁の開閉を制御すればよい。
温水タンク2が開放型タンクである場合、ユースポイントでの出湯に伴う温水タンク2への給水時、給水タンク4から貯湯タンク5への給水と、貯湯タンク5から温水タンク2への給水とは、それぞれ水頭圧を利用してなされる。つまり、給水タンク4と温水タンク2との間に発生する水頭圧差を利用して、給水タンク4から貯湯タンク5を介して温水タンク2へ、自動的に給水することができる。
なお、温水タンク2が開放型タンクの場合でも、温水タンク2の水面よりもユースポイントが下方に配置されていれば、温水タンク2からユースポイントへの出湯を、温水タンク2とユースポイントとの間に発生する水頭圧差を利用して行うことができる。もちろん、温水取出部8への循環路3に循環ポンプ7が設けられている場合、その吐出圧によっても出湯は円滑になされる。
また、前記実施例では、貯湯タンク5は、密閉型タンクとされたが、場合により開放型タンクとされてもよい。その場合、温水タンク2を開放型タンクとする場合と同様にして、貯湯タンク5内の水位を設定水位に維持するように、給水タンク4から貯湯タンク5への給水を制御すればよい。貯湯タンク5が開放型タンクの場合、給水タンク4から貯湯タンク5への給水は、給水タンク4と貯湯タンク5との間に発生する水頭圧を用いてなされる。また、貯湯タンク5から温水タンク2への給水は、温水タンク2が開放型タンクの場合には、貯湯タンク5と温水タンク2との水頭圧差を用いてなされ、温水タンク2が密閉型タンクの場合には、貯湯タンク5とユースポイントとの間の水頭圧を用いてなされる。
1 燃料電池システム
2 温水タンク
3 循環路
4 給水タンク
5 貯湯タンク
6 加温装置
7 循環ポンプ
8 温水取出部
9 水位制御器
10 燃料電池
11 ガス管
12 オフガス熱交換器
13 貯留水加温熱交換器
14 循環液回路(14a:送り路、14b:戻し路)
15 循環液ポンプ
16 ラジエータ
17 冷却ファン
18 第一温度センサ
19 流量調整弁
20 第二温度センサ
21 給水路
22 温水路
23 バイパス路
24 給水弁
25 温水弁
26 バイパス弁
2 温水タンク
3 循環路
4 給水タンク
5 貯湯タンク
6 加温装置
7 循環ポンプ
8 温水取出部
9 水位制御器
10 燃料電池
11 ガス管
12 オフガス熱交換器
13 貯留水加温熱交換器
14 循環液回路(14a:送り路、14b:戻し路)
15 循環液ポンプ
16 ラジエータ
17 冷却ファン
18 第一温度センサ
19 流量調整弁
20 第二温度センサ
21 給水路
22 温水路
23 バイパス路
24 給水弁
25 温水弁
26 バイパス弁
Claims (6)
- 加温装置により貯留水を加温可能な温水タンクと、
ユースポイントに向けて温水を取り出し可能な温水取出部を有し、循環ポンプにより前記温水タンクとの間で温水を循環させる循環路と、
前記温水タンクより高所に設置される給水タンクと、
前記温水タンクより高所であるが前記給水タンクより低所に設置され、前記給水タンクと給水路を介して接続される一方、前記温水タンクと温水路を介して接続され、燃料電池の廃熱を用いて貯留水が加温される貯湯タンクとを備え、
前記給水タンクから前記貯湯タンクへの給水と、前記貯湯タンクから前記温水タンクへの給水とは、それぞれ水頭圧差を利用してなされる
ことを特徴とする燃料電池システム。 - 前記給水タンクは、貯留水の水位を設定水位に維持するための水位制御器を備え、
前記貯湯タンクは、密閉型タンクであり、
前記給水タンクと前記貯湯タンクとを常時連通しておくことで、前記貯湯タンクから前記温水タンクへの給水に伴い、その給水と同量の水が、前記給水タンクから前記貯湯タンクへ送水される
ことを特徴とする請求項1に記載の燃料電池システム。 - 前記温水タンクは、密閉型タンクであり、
前記給水タンクから前記貯湯タンクへの給水と、前記貯湯タンクから前記温水タンクへの給水とは、それぞれ少なくとも、前記給水タンクと前記ユースポイントとの間に発生する水頭圧差を利用してなされる
ことを特徴とする請求項2に記載の燃料電池システム。 - 前記温水タンクは、開放型タンクであり、
前記給水タンクから前記貯湯タンクへの給水と、前記貯湯タンクから前記温水タンクへの給水とは、それぞれ前記給水タンクと前記温水タンクとの間に発生する水頭圧差を利用してなされる
ことを特徴とする請求項2に記載の燃料電池システム。 - 前記循環ポンプは、前記燃料電池により発電された電力を使って駆動される
ことを特徴とする請求項1~4のいずれか1項に記載の燃料電池システム。 - 前記貯湯タンクには、下部に、前記給水タンクからの給水路が接続され、上部に、前記温水タンクへの温水路が接続されている
ことを特徴とする請求項1~5のいずれか1項に記載の燃料電池システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-064804 | 2016-03-29 | ||
JP2016064804A JP2017182940A (ja) | 2016-03-29 | 2016-03-29 | 燃料電池システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017168770A1 true WO2017168770A1 (ja) | 2017-10-05 |
Family
ID=59962791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066579 WO2017168770A1 (ja) | 2016-03-29 | 2016-06-03 | 燃料電池システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017182940A (ja) |
WO (1) | WO2017168770A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010040479A (ja) * | 2008-08-08 | 2010-02-18 | Panasonic Corp | 燃料電池システム |
JP2011023168A (ja) * | 2009-07-14 | 2011-02-03 | Honda Motor Co Ltd | 燃料電池システム |
JP2011106693A (ja) * | 2009-11-13 | 2011-06-02 | Miura Co Ltd | ボイラ給水システム |
JP2012063044A (ja) * | 2010-09-14 | 2012-03-29 | Osaka Gas Co Ltd | 排熱回収システム |
JP2014191949A (ja) * | 2013-03-27 | 2014-10-06 | Noritz Corp | コージェネレーション装置 |
JP2015210047A (ja) * | 2014-04-28 | 2015-11-24 | パーパス株式会社 | 熱源装置、熱源制御プログラムおよび燃料電池コージェネレーションシステム |
JP5866079B1 (ja) * | 2014-11-12 | 2016-02-17 | 株式会社東芝 | 電力供給システム |
-
2016
- 2016-03-29 JP JP2016064804A patent/JP2017182940A/ja active Pending
- 2016-06-03 WO PCT/JP2016/066579 patent/WO2017168770A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010040479A (ja) * | 2008-08-08 | 2010-02-18 | Panasonic Corp | 燃料電池システム |
JP2011023168A (ja) * | 2009-07-14 | 2011-02-03 | Honda Motor Co Ltd | 燃料電池システム |
JP2011106693A (ja) * | 2009-11-13 | 2011-06-02 | Miura Co Ltd | ボイラ給水システム |
JP2012063044A (ja) * | 2010-09-14 | 2012-03-29 | Osaka Gas Co Ltd | 排熱回収システム |
JP2014191949A (ja) * | 2013-03-27 | 2014-10-06 | Noritz Corp | コージェネレーション装置 |
JP2015210047A (ja) * | 2014-04-28 | 2015-11-24 | パーパス株式会社 | 熱源装置、熱源制御プログラムおよび燃料電池コージェネレーションシステム |
JP5866079B1 (ja) * | 2014-11-12 | 2016-02-17 | 株式会社東芝 | 電力供給システム |
Also Published As
Publication number | Publication date |
---|---|
JP2017182940A (ja) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9118053B2 (en) | Fuel cell system and method for performing maintenance on fuel cell system | |
CN101828292A (zh) | 燃料电池系统的热回收设备 | |
JP6868830B2 (ja) | コージェネレーションシステム及びその運転方法 | |
JP6323599B2 (ja) | 燃料電池システム | |
KR101078964B1 (ko) | 연료전지 시스템 | |
JP4716352B2 (ja) | 貯湯式の給湯熱源装置 | |
JP2018006016A (ja) | 燃料電池システム | |
EP2706603A1 (en) | Fuel cell system and method for operating same | |
WO2017168770A1 (ja) | 燃料電池システム | |
JP2018006018A (ja) | 燃料電池システム | |
JP2007052981A (ja) | 燃料電池発電システム及びその運転方法 | |
JP5305689B2 (ja) | 燃料電池装置 | |
JP2018006017A (ja) | 燃料電池システム | |
KR20070024026A (ko) | 연료전지의 난방/온수 제어 장치 및 그 방법 | |
KR101534543B1 (ko) | 연료전지 안정화와 열 이용을 위한 시스템 | |
JP6168427B1 (ja) | 燃料電池システム | |
WO2019008686A1 (ja) | 燃料電池システム | |
JP7264718B2 (ja) | 燃料電池システム | |
JP5509671B2 (ja) | 燃料電池コージェネレーションシステム | |
JP2018014233A (ja) | 燃料電池システム | |
JP2002216819A (ja) | 固体高分子形燃料電池発電装置 | |
JP2023075434A (ja) | 貯湯システム | |
JP5501750B2 (ja) | 燃料電池システム | |
KR101060283B1 (ko) | 연료 전지 시스템 및 연료 전지 시스템의 구동 방법 | |
JP6238099B1 (ja) | 燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16896987 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16896987 Country of ref document: EP Kind code of ref document: A1 |