WO2017168625A1 - 水改質効果判定装置 - Google Patents

水改質効果判定装置 Download PDF

Info

Publication number
WO2017168625A1
WO2017168625A1 PCT/JP2016/060352 JP2016060352W WO2017168625A1 WO 2017168625 A1 WO2017168625 A1 WO 2017168625A1 JP 2016060352 W JP2016060352 W JP 2016060352W WO 2017168625 A1 WO2017168625 A1 WO 2017168625A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
measuring device
reforming
water reforming
frequency
Prior art date
Application number
PCT/JP2016/060352
Other languages
English (en)
French (fr)
Inventor
惠保 田尻
石川 光男
神谷 信行
Original Assignee
都市拡業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 都市拡業株式会社 filed Critical 都市拡業株式会社
Priority to US15/313,234 priority Critical patent/US10175189B2/en
Priority to PCT/JP2016/060352 priority patent/WO2017168625A1/ja
Priority to EP16791289.8A priority patent/EP3249395A4/en
Priority to JP2016543206A priority patent/JP6532038B2/ja
Priority to SG11201609660SA priority patent/SG11201609660SA/en
Priority to TW105132513A priority patent/TW201733913A/zh
Publication of WO2017168625A1 publication Critical patent/WO2017168625A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/228Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/005Systems or processes based on supernatural or anthroposophic principles, cosmic or terrestrial radiation, geomancy or rhabdomancy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/14Treatment of water in water supply networks, e.g. to prevent bacterial growth

Definitions

  • the present invention relates to a water reforming effect determination device, and more particularly, to a water reforming effect determination device that can easily and quickly determine that water has been reformed by a water reforming device.
  • the water reformer is generally installed in the piping of large-scale facilities such as factories and buildings.
  • the pipe where the water reformer is installed In order to investigate the water reforming effect of the water reformer using the pipe where the water reformer is installed, temporarily stop the operation of the equipment equipped with these pipes and drain the water inside the pipe. After that, it is necessary to observe the inner surface of the pipe. Stopping the operation of the equipment is often difficult in practice, and a great deal of labor is required to drain the water inside the piping. Is difficult to verify in a pipe in which a water reformer is installed.
  • Patent Document 1 There is a water reforming effect determination device proposed as a device that can confirm in a short time that water has been reformed by the water reforming device (Patent Document 1).
  • This water reforming effect judging device is “to confirm the antirust effect, it is not necessary to observe for a long period of several months to several years. Have excellent performance.
  • the inner wall surface of the iron pipe for tap water distribution that comes into contact with water, for example, tap water, rusts over time.
  • the inner wall surface of the iron pipe has a part that easily rusts (anode part) and a part that hardly rusts (cathode part) due to various factors, and a potential difference is generated between the anode part and the cathode part. Due to this potential difference, a corrosion current flows between the anode part and the cathode part as a corrosion reaction. Due to this corrosion current, cations in tap water move to the cathode site and anions move to the anode site, and side reactions occur as these ions move.
  • a calcium carbonate-based film is formed on the iron surface at the cathode site, and a film containing silica-based material as a main component and red rust is formed at the anode site.
  • the coating formed on the cathode part and the anode part obstructs the movement of oxygen and various ions necessary for the corrosion reaction, so that the corrosion rate on the inner wall surface of the iron pipe is somewhat reduced. However, although the corrosion rate is reduced, the coating is partially formed, so that the corrosion reaction still continues and the corrosion proceeds.
  • the inventors of the present invention have clarified that the property of the calcium carbonate film produced by the corrosion reaction at the cathode site is changed by water reforming by a water reforming apparatus such as “The Bio Water”.
  • calcium carbonate in a calcium carbonate film formed from unmodified water before reforming by a water reformer is an aragonite-type acicular crystal, and the film is rough and has low electrical resistance.
  • the inventors of the present application have revealed that calcium carbonate in the calcium carbonate coating formed by the modified water is a granular calcite crystal, and the coating is dense and has high electrical resistance.
  • the invention described in Patent Document 1 is to determine the reforming effect by inserting electrodes into unreformed water such as tap water and reformed water and measuring the resistance value between the electrodes.
  • the water reforming effect determination apparatus described in Patent Document 1 has an excellent performance that “can confirm the antirust effect in a short period of about several days”.
  • conductivity meters electrical conductivity meters
  • judge the degree of contamination in wastewater from sewage treatment plants and factories using the conductivity obtained by measuring the conductivity meter judge the degree of contamination in wastewater from sewage treatment plants and factories using the conductivity obtained by measuring the conductivity meter, and the degree of contamination of rainwater PH and conductivity are effective as indicators to indicate that the degree of contamination of rainwater is monitored with a conductivity meter, and the conductivity of food is measured with a conductivity meter as a measure of salt concentration in food.
  • the salinity concentration is calculated from the conductivity, and that the conductivity measured by a conductivity meter is adopted as an index of the purity of water when producing ultrapure water. According to the description on such a homepage, the conductivity meter has been used exclusively as a conductivity measuring instrument.
  • the problem to be solved by the present invention is that the reforming effect such as the rust prevention property of the reformed water that has been reformed using the water reforming apparatus has been improved in a short time without spending several days. And it is providing the water reforming effect determination apparatus which can be measured simply.
  • Means for solving the problems are as follows: (1) A first measuring device that measures the capacity of a capacitor between a pair of electrodes immersed in water supplied to the water reformer by the AC electrode method, and a capacity of the reformed water reformed by the water reformer. A second measuring device that measures by the AC electrode method, and a capacitor capacity X for the water that is output from the first measuring device when the AC frequency is 100 Hz or less, and an AC frequency that is the same as the AC frequency in the first measuring device. And a calculator for calculating a ratio (Y / X) of the reformed water output from the second measuring device with respect to the capacitor capacity Y. Yes, (2) The water reforming effect determination device according to (1), wherein the AC frequency is 0.1 to 100 Hz.
  • the computing unit has a cell constant in each of the first measuring device and the second measuring device, a high frequency of 10 kHz or more, and an AC frequency of 100 Hz or less, and electrodes of the first measuring device and the second measuring device, respectively. And a correction means for correcting the capacitor capacity ratio (Y / X) based on the capacitor capacity output from the first measuring device and the second measuring device output when applied to the capacitor.
  • the computing unit is installed at a position remote from the installation position of the water reformer, and measurement data is transmitted from the first measuring device and the second measuring device to the computing device by wire or wirelessly.
  • the water reforming effect determination device according to any one of (1) to (3), (5) The method according to any one of (1) to (4), further including a determination unit that determines that there is a reforming effect when a ratio value output from the computing unit exceeds a set threshold value.
  • Water reforming effect judging device (6) The water reforming according to any one of (1) to (5), further including a warning unit that issues a warning when a ratio value output from the computing unit is equal to or less than a set threshold value.
  • the determination means and the warning means are located remotely from the installation position of the water reformer, and the determination means and the computing unit are coupled by wire or wirelessly.
  • the water reforming apparatus is an apparatus for bringing water into contact with a hybrid ceramic that radiates far infrared rays having a wavelength of 4.4 ⁇ m or more and 15.4 ⁇ m or less with an integral emissivity of 92% or more. It is a water reforming effect judging device given in any 1 paragraph to 7).
  • the AC frequency is 100 Hz or less, preferably 1 Hz or more and 100 Hz or less, from the respective capacitor capacities of the unreformed water and the reformed water measured by the first measuring device and the second measuring device.
  • the ratio (Y / X) of the capacitor capacity (X) of one measuring instrument and the capacitor capacity (Y) of the second measuring instrument can be obtained by an arithmetic unit, and the effect of water reforming can be instantaneously determined from the ratio. it can.
  • the frequency is 100 Hz or less.
  • the water reforming effect determination can accurately determine the reforming effect even if the cell constants in the first measuring device and the second measuring device change.
  • the computing unit or the determination means for processing the data output from the computing unit is installed in a location remote from the installation positions of the first measuring device and the second measuring device, and the first measuring device is placed. If the data output from the second measuring device or the calculation data output from the computing device can be transmitted to the judging means by wire or wirelessly, a plurality of, especially a large number of places installed Data output from the first measuring device and the second measuring device can be centrally managed in one place.
  • the data measured by the water reforming effect judging devices arranged in Japan or around the world are centrally managed in a control room in one place, and the water reforming effect judging device arranged in each place is incorporated.
  • the degree of water reforming in the water reformer system can be determined in one control room.
  • the first measuring device and the second measuring device are installed in various remote locations, and the first and second measuring devices are installed in many remote locations.
  • the data output from the 1 and 2 measuring instruments can be centrally managed in one place, and the water reforming effect due to the difference in area and water quality can be evaluated and managed centrally. Thus, accurate maintenance of the water reformer can be performed.
  • FIG. 1 is an explanatory diagram showing a combination of a water reforming effect determination device and a water reforming device according to the present invention.
  • FIG. 2 is a schematic diagram showing another example of the water reforming effect determination apparatus of the present invention.
  • What is important in this invention is to determine the effect of water reforming by measuring the capacitance of the capacitor rather than measuring the conductivity of each of the water before water reforming and the water reformed after water reforming. It is.
  • the water reforming effect determination device 1 includes a first measuring device 2, a second measuring device 3, and an arithmetic unit 4, and further includes a determination means 5 in a preferred mode.
  • the water reforming effect determination device 1 is a device that determines the reforming effect by the water reforming device 6, for example.
  • Examples of the water reforming device 6 include a device having a hybrid ceramic disposed in a water flow passage.
  • the hybrid ceramic is a ceramic that radiates 4.4 to 15.4 ⁇ m of far infrared rays with an integral emissivity of 92% or more.
  • a supply pipe 7 for supplying water, for example, tap water, to the water reforming device 6 is coupled to the upstream side of the water reforming device 6.
  • a discharge pipe 8 for discharging quality water is connected.
  • the first measuring device 2 is installed at an appropriate position on the supply pipe 7.
  • the 1st measuring device 2 has the structure which can measure the capacitor
  • this 1st measuring device 2 can measure a capacitor
  • the 1st measuring device 2 by an alternating current 2 electrode method has a pair of electrode immersed in the water which is a to-be-measured object. An alternating current having a predetermined frequency is applied to the pair of electrodes.
  • the frequency of the alternating current applied to the electrode is varied by a command from the outside such as a control device (not shown).
  • the frequency of the applied alternating current in the first measuring instrument 2 is determined to an arbitrary frequency within a range from 1 Hz to 200 Hz, and can be switched to another frequency within the range.
  • the first measuring instrument 2 can use a commercially available LCR meter, and can measure a capacitor capacity generated between a pair of electrodes with the commercially available LCR meter.
  • Detected data output from the first measuring device 2 is input to the computing unit.
  • the second measuring device 3 can adopt the same structure as the first measuring device 2.
  • the second measuring device 3 may be the same device as the first measuring device 2.
  • Detection data output from the second measuring device 3 is input to the computing unit.
  • the computing unit 4 calculates the capacitance of the capacitor between the pair of electrodes in the first measuring device 2, that is, untreated water, from the data output from the first measuring device 2 and the data output from the second measuring device 3.
  • the capacitor capacity ratio (Y / X) is calculated from the capacitor capacity (X) and the capacitor capacity between the pair of electrodes in the second measuring instrument 3, that is, the capacitor capacity (Y) of the treated water.
  • the determination unit 5 compares the capacitor capacity ratio (Y / X) output from the computing unit 4 with a set threshold value, and when the determined value is larger than the set threshold value, the water reforming device 6 has a reforming effect. If it is less than the set threshold value, it is determined that there is no reforming effect by the water reforming device 6.
  • the set threshold value is usually an arbitrary value exceeding 1 but can be set to an appropriate numerical value exceeding 1 such as 1.1, 1.2, 1.3 in some cases. And that this setting threshold value is substantially 1 means that the water supplied to the water reformer is not reformed by the water reformer.
  • the threshold value is substantially 1 means that errors may be included in the data output from the first measuring device and the second measuring device by the measuring device, the electrode, and the like. "The ratio (Y / X) based on the output data is not exactly an integer 1, but it means that the output value from the first measuring device and the output value from the second measuring device can be regarded as the same. To do.
  • This calculator can be equipped with a correction means.
  • the pair of electrodes in the first measuring device 2 are immersed in the water in the supply pipe 7 in the water reforming device 6 for a long time, and the pair of electrodes in the second measuring device 3 are similarly discharged in the water reforming device 6. If the electrode 8 is immersed in the water for a long time, the electrode surface is contaminated, and the output data of the first measuring device 2 and the second measuring device 3 changes. The reason why the output data of the first measuring device 2 and the second measuring device 3 change with the passage of time is that the cell constant based on the contamination changes with the passage of time.
  • the capacitor capacity ratio (Y / X) that changes as the cell constant changes with time can be corrected as follows.
  • the capacitor capacity ratio (Y / X) is corrected by measuring the capacitor capacity of water supplied to the water reformer by the first measuring device 2 and the second meter 3 and water discharged from the water reformer. It is preferably performed each time, and in some cases, correction may be performed intermittently, for example, once in three measurements or once in five measurements.
  • the capacitor capacity value (Y / X) can be corrected by applying a high-frequency current of 10 kHz or more to each of the electrodes of the first measuring device 2 and the second measuring device 3 at the time of correction.
  • a high-frequency current of 10 kHz or more to each of the electrodes of the first measuring device 2 and the second measuring device 3 at the time of correction.
  • the measurement value alternating current applied to each of the first measuring unit 2 and second measuring device 3 is output from the first measuring device 2 when it is a low frequency for example 100Hz and X 100, 100Hz is applied
  • the applied frequency is 10 kHz or more, for example, an arbitrary frequency from 10 kHz to 100 kHz is applied to the first measuring device 2.
  • the measurement value outputted from the vessel 2 to X 10 a measurement value output from the second measuring device 3 that applying the same high-frequency alternating current and the applied frequency to the first measurement unit 2 and Y 10.
  • C1 X 100 / X 10
  • C2 Y 100 / Y 10 for water discharged from the water reformer
  • the presence / absence of the reforming effect is determined based on the calculation result of C1 / C2 when the value exceeds 1, and when the value is substantially 1, it is determined that there is no reforming effect.
  • the correction means has a calculation function for performing the correction, and corrects the calculation in the calculator. Even if the sensitivity of the electrodes in the first measuring device 2 and the second measuring device 3 changes with time, the determination means 5 can accurately determine the capacitor capacity ratio (Y / X).
  • the first measuring device 2 and the second measuring device 3 can be installed in a place where the effect of water reforming needs to be judged, while the judging means 5 Is not limited to the place where the effect of water reforming needs to be determined, but may be installed in a place remote from the first measuring device 2 and the second measuring device 3, and the calculator 4 and the determining means 5 are Both may be installed at a location remote from the first measuring device 2 and the second measuring device 3.
  • Data output from the computing unit 4 may be transmitted to the determination unit 5 by wire or wirelessly, and data output from the first measuring device 2 and the second measuring device 3 may also be transmitted to the computing unit 4 by wire or wirelessly. May be transmitted.
  • the water reforming effect determination device includes the first measuring device 2 and the second measuring device 2 installed in a plurality of places, regions, or facilities where it is necessary to confirm water reforming.
  • the data output from each of the first measuring device 2 and the second measuring device 3 is set as a set of data to the central control monitoring means 9 in one central control monitoring room. A large number of sets of data may be monitored by the central control monitoring means 9.
  • the central control monitoring means 9 at one location is used for water reforming installed at each location.
  • the effect of the water reforming in the apparatus 6 can be monitored, and the AC frequency applied to the electrodes in the first measuring device 2 and the second measuring device 3 installed in various places can be controlled.
  • the central control monitoring means 9 is a display means such as a liquid crystal display screen or a large screen, a computer for controlling various devices, a control means for controlling the AC frequency applied to the electrodes in the first measuring instrument 2 and the second measuring instrument 3, etc. It can comprise.
  • the detection data output from the first measuring instrument 2 and the second measuring instrument 3 associated with the water reformer 6 installed in each place is stored.
  • the computing unit 4 to be input, the judging means 5 for judging the effect of water reforming based on the capacitor capacity ratio (Y / X) computed by the computing unit 4, and the alarm device installed as necessary are integrated. May be.
  • This alarm device generates an alarm, for example, a warning sound when the reformed water that should have been reformed by the water reformer is not reformed, especially when the capacitor capacity ratio (Y / X) is 1 or less. It is a means for emitting a warning light, turning on a warning lamp, or displaying a warning display displayed on the screen.
  • a central control monitoring means 9 even if the water reforming device 6 installed at a site requiring water reforming such as a place, region, facility or the like where water reforming is required is remote, The presence or absence of reforming of the water reforming device 6 in the ground can be determined at one place, and the applied AC frequency in the first measuring device 2 and the second measuring device 3 in the remote ground is changed. Can do.
  • the first measuring device 2 is installed in the supply pipe 7 and the second measuring device 3 is installed in the discharge pipe 8 in the water reformer 6 interposed in the pipe through which water flows.
  • the first measuring device may be installed in a collection container such as a beaker or a bucket that is branched from the supply pipe 7 and connected, or a collection container that is branched and connected from the discharge pipe 8 such as a beaker or a bucket. It may be installed in.
  • the Bio Water (registered trademark)” manufactured by Urban Expansion Co., Ltd. was installed as a water reforming device in the middle of the water circulation pipe.
  • An LCR meter (NF circuit design block, circuit element measuring instrument ZM2372) is attached to the supply pipe 7 in the water reformer as the first measuring instrument 2, and the LCR meter is attached to the discharge pipe 8 as the second measuring instrument 3. (Same as above) was attached.
  • the sensor in the LCR meter was a busy number type general-purpose electric conductivity cell (immersion type) 9382-10 manufactured by HORIBA, Ltd.
  • tap water was circulated through the supply pipe 7, the water reformer 6, and the discharge pipe 8.
  • Capacitor capacity and second measurement output from the LCR meter which is the first measuring instrument 2, after a predetermined time has elapsed while the supply of tap water is started and the applied frequency in the LCR meter is set to the values shown in Table 1
  • Table 1 shows the capacitor capacity output from the LCR meter, which is the vessel 3.
  • Table 1 shows the capacitor capacity ratio (Y / X).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

水の改質を短時間で判定することのできる水改質効果判定装置を提供する。 水改質装置に供給する水に浸漬した一対の電極間のコンデンサ容量を交流電極法により測定する第1測定器と、水改質装置から排出された水に浸漬した一対の電極間のコンデンサ容量を交流電極法により測定する第2測定器と、交流周波数が100Hz以下であるときの前記第1測定器から出力される前記水についてのコンデンサ容量Xと前記第1測定器における交流周波数と同じ交流周波数であるときの前記第2測定器から出力される前記改質水についてのコンデンサ容量Yとの比(Y/X)を算出する演算器とを備えることを特徴とする水改質効果判定装置。

Description

水改質効果判定装置
 本発明は水改質効果判定装置に関し、更に詳しくは、水改質装置によって水が改質されたことを、短時間でかつ簡便に判定することのできる水改質効果判定装置に関する。
 一般に、金属を水に長時間浸漬させると、金属の表面が腐食する。金属の腐食は、金属表面の一部がアノードとカソードとに局部的に分極することによって引き起こされる。アノードとカソードとの間に微量の電流が流れることにより、アノードにおいて酸化反応が起こり、カソードにおいて還元反応が起こる。アノードにおける酸化反応によって金属の表面が酸化されることにより、金属の腐食が進行する。
 従来、水を改質する装置として、遠赤外線を放射するセラミックスによって水を改質することのできる各種の水改質装置が知られている。この水改質装置の一例として、都市拡業株式会社から市販されている「ザ・バイオウォーター」(登録商標)という名称の装置が挙げられる(非特許文献1参照)。この水改質装置によって処理された水は、様々な効果を有することが報告されており、特に、赤錆劣化対策に有効であることが注目されている。具体的には、水改質装置によって改質処理された水は、水改質装置によって改質処理されていない水に比べて、金属を腐食させにくくする。言い換えると、水改質装置で水を改質処理することによって、水の防錆性が高められる。例えば、水改質装置を配管の途中に設け、水改質装置によって処理された処理水を配管内部に通水することによって、配管内表面における金属の腐食が進行することを抑制することができる。
 水に浸漬された金属の表面を観察、分析等することによって金属の腐食の進行を評価するには、通常、金属を水に浸漬させた後、数ヶ月~数年程度の時間が必要である。同様に、従来、水改質装置を配管の途中に設けることによって、配管内表面の金属の腐食が抑えられるという効果を検証するにも、水改質装置を設けた後、数ヶ月~数年程度の時間が必要である。よって、水改質装置を配管の途中に設けた後、短時間の間に、水の防錆性が高まったことを判定することができないという問題がある。
 また、通常、水改質装置は、工場・ビル等の大規模な施設の配管に設置されることが一般的である。水改質装置による水の改質効果を、水改質装置が設置された配管を用いて調べるには、これらの配管を備えた設備の運転を一時的に停止し、配管内部の水を抜いた後に、配管の内表面を観察等する必要がある。設備の運転を停止することは現実的に難しいことが多く、配管内部の水抜きを行うには多大な労力が必要なので、水改質装置を設けたことによって水の防錆性が高まったことを、水改質装置が設置された配管において検証することは困難である。
 このように水改質装置によって水が改質されたことを短時間で確認することのできる装置として提案された水改質効果判定装置がある(特許文献1)。この水改質効果判定装置は、「防錆効果を確認するのに、数ヶ月~数年程度の長期間にわたって経過観察をする必要がなく、数日程度の短期間で防錆効果の確認をすることのできる」優れた性能を有する。
 特許文献1に記載された水改質効果判定装置に関連して水改質の技術的意義について以下に説明する。
 水、例えば水道水に接触する水道水配水用の鉄管の内壁面が長時間の経過とともに錆を生じる。鉄管の内壁面には、様々の要因により錆び易い個所(アノード部位)と錆び難い個所(カソード部位)とがあり、アノード部位とカソード部位との間に電位差が生じる。この電位差により、腐食反応としてアノード部位とカソード部位との間で腐食電流が流れる。この腐食電流によって、水道水中の陽イオンがカソード部位へ、また陰イオンはアノード部位に移動し、これらのイオンの移動に伴って副反応が生じる。副反応として例えば、カソード部位における鉄表面では炭酸カルシウム系の被膜が形成され、アノード部位では赤錆を主成分とするとともにシリカ系物質を含有する被膜が形成される。前記カソード部位及びアノード部位に形成された被膜は腐食反応に必要な酸素及び各種イオンの移動を妨害することになり、よって鉄管内壁面における腐食速度が多少低下する。しかしながら、腐食速度が低下するものの前記被膜が部分的に形成されているので、依然として腐食反応が継続し、腐食が進行する。
 カソード部位における腐食反応で生成する炭酸カルシウムの皮膜の性質が、「ザ・バイオウォーター」などの水改質装置による水改質によって変化することが、本願発明者らの研究により明らかになった。
 例えば、水改質装置による改質以前の未改質水により形成される炭酸カルシウム被膜における炭酸カルシウムはアラゴナイト型の針状結晶であり、被膜は粗くて電気抵抗が小さいが、水改質装置により改質された改質水により形成される炭酸カルシウム被膜における炭酸カルシウムは粒状のカルサイト結晶であり、被膜が緻密で電気抵抗が大きいことが、本願発明者らにより明らかにされた。
 前記水改質装置による水改質効果によって改質された改質水に接触する鉄配管の内表面では、炭酸カルシウムの結晶構造が変化することによりカソード部位への酸素供給が妨げられることになり、炭酸カルシウム被膜が緻密になる。その結果、緻密な炭酸カルシウム被膜の形成によって、腐食反応に必要な酸素の移動が阻害されるとともに炭酸カルシウム被膜の電気抵抗が大きくなるので鉄管の内表面における鉄の腐食速度が小さくなる。
 この腐食速度の低下はアノード部位における酸化鉄すなわち赤錆の皮膜の成長をも遅くさせるとともに赤錆の皮膜自体が緻密になる。
 その結果、赤錆部の鉄表面への酸素供給が減少して赤錆が黒錆に変化する。すなわち、ウスタイト(FeO)が長寿命になり、赤錆(Fe)と反応してマグネタイト化し、時間の経過とともに鉄表面側から緻密な黒錆層が形成され、鉄がイオン化する反応が妨げられることになる。
 特許文献1に記載された発明は、未改質水例えば水道水及び改質水それぞれに電極を挿入して電極間の抵抗値を測定することにより改質効果の判定をするものであった。特許文献1に記載された水改質効果判定装置は、「数日程度の短期間で防錆効果の確認をすることのできる」優れた性能を有する。
 しかしながら、改質水の防錆効果をさらに短期間で判定することのできる水改質効果判定装置の実現が、要望されている。
 なお、市場では、導電率計(電気導電率計)が市販されている。市販の導電率計を製造販売する企業が開設するホームページで、下水処理場や工場の排水における汚れの程度を、導電率計で測定して得られる導電率で、判断すること、雨水の汚染度合いを示す指標としてpHと導電率とが有効であり、雨水の汚染の程度を導電率計でモニタリングすること、食品中の塩分濃度測定として、導電率計により食品の導電率を測定し、得られた導電率から塩分濃度を算出すること、超純水を製造する際に水の純度の指標として導電率計で計測される導電率が採用されていること、などが紹介されている。このようなホームページの記載からすると、導電率計は、導電率の測定用計器として専ら用いられていた。
"製品の紹介"、[online]、都市拡業株式会社、[平成26年4月21日検索]、インターネット<URL: http://www.biowater.co.jp/product/feature.html> WO 2015/181859
 本発明が解決しようとする課題は、水改質装置を用いて改質された改質水の防錆性などの改質効果が向上したことを、数日の時間をかけずに短時間でかつ簡便に測定することのできる水改質効果判定装置を提供することである。
 前記課題を解決するための手段は、
(1) 水改質装置に供給する水に浸漬した一対の電極間のコンデンサ容量を交流電極法により測定する第1測定器と、水改質装置で改質された改質水のコンデンサ容量を交流電極法により測定する第2測定器と、交流周波数が100Hz以下であるときの前記第1測定器から出力される前記水についてのコンデンサ容量Xと前記第1測定器における交流周波数と同じ交流周波数であるときの前記第2測定器から出力される前記改質水についてのコンデンサ容量Yとの比(Y/X)を算出する演算器とを備えることを特徴とする水改質効果判定装置であり、
(2) 前記交流周波数が0.1~100Hzである前記(1)に記載の水改質効果判定装置であり、
(3) 前記演算器が、前記第1測定器及び前記第2測定器それぞれにおけるセル定数を、10kHz以上の高周波数及び100Hz以下の交流周波数を前記第1測定器及び第2測定器それぞれの電極に印加したときに出力される第1測定器及び第2測定器から出力されるコンデンサ容量に基づいてコンデンサ容量比(Y/X)を補正する補正手段を有していることを特徴とする前記(1)又は(2)に記載の水改質効果判定装置であり、
(4) 前記演算器が前記水改質装置の設置位置に対して遠隔の位置に設置され、前記第1測定器及び第2測定器から前記演算器に有線又は無線により測定データが送信される前記(1)から(3)までのいずれか一項に記載の水改質効果判定装置であり、
(5) 前記演算器から出力される比の値が設定閾値を超えるときに改質効果ありと判定する判定手段を備えてなる前記(1)から(4)までのいずれか一項に記載の水改質効果判定装置であり、
(6) 前記演算器から出力される比の値が設定閾値以下であるときに警報を発する警報手段を備えてなる前記(1)から(5)までのいずれか一項に記載の水改質効果判定装置であり、
(7) 前記判定手段及び警告手段が前記水改質装置の設置位置に対して遠隔の設置位置にあり、前記判定手段と前記演算器とが有線又は無線により結合されてなる前記(6)に記載の水改質効果判定装置であり、
(8) 前記水改質装置が、4.4μm以上15.4μm以下の波長の遠赤外線を92%以上の積分放射率で放射するハイブリッドセラミックに水を接触させる装置である前記(1)から(7)までのいずれか一項に記載の水改質効果判定装置である。
 この発明によると、交流周波数が100Hz以下、好ましくは1Hz以上100Hz以下の周波数で第1測定器及び第2測定器により測定された未改質水である水及び改質水それぞれのコンデンサ容量から第1測定器のコンデンサ容量(X)と第2測定器のコンデンサ容量(Y)との比(Y/X)を演算器で求め、その比から水の改質の効果を瞬時に判定することができる。
 交流電極法たとえば交流二電極法による導電率の測定においては、高精度に導電率を得るには周波数を大きくする必要があるという一般的な技術常識とは異なり、この発明においては、100Hz以下の低周波交流を印加することにより、未改質水に対する改質水における改質の程度を、短時間のうちに容易に判定することができる。
 この発明によると、演算器が補正手段を有しているので、第1測定器及び第2測定器におけるセル定数が変化しても正確に改質効果を判定することのできる水改質効果判定装置を提供することができる。
 さらに、この発明によると、演算器あるいは演算器から出力されるデータを処理する判定手段を、第1測定器及び第2測定器の設置位置から遠隔の地に設置して置き、第1測定器及び第2測定器から出力されるデータ、あるいは演算器から出力される演算データを有線又は無線により判断手段に送信することができるようにしておくと、複数の、特に多数の場所に設置した第1測定器及び第2測定器から出力されるデータを一カ所で集中管理することができる。
 そうすると、たとえば日本全国あるいは世界各国に配置された水改質効果判定装置により測定されたデータを一か所にある制御室で一元管理し、各所に配置された水改質効果判定装置の組み込まれた水改質装置系における水改質の程度を一つの制御室で判定することができる。
 また、この発明に係る水改質効果判定装置によると、様々の遠隔の地に第1測定器及び第2測定器を設置しておくことにより複数の、多くの遠隔の地に設置された第1測定器及び第2測定器から出力されるデータを一か所で集中的に管理することができることになり、地域や水質の違いによる水改質効果を一元的に評価し、また管理することができ、水改質装置の的確なメンテナンスを行うことができるようになる。
図1は、この発明に係る水改質効果判定装置と水改質装置との組み合わせを示す説明図である。 図2は、本発明の水改質効果判定装置の他の例を示す模式図である。
 この発明において重要なことは、水改質前の水及び水改質後における改質水それぞれの導電率を測定するのではなく、コンデンサ容量を測定することにより水改質の効果を判定することである。
 導電率測定ではなくコンデンサ容量によって水改質の効果を判定する理由は、以下の通りである。
 水道水をこの水改質装置例えばハイブリッドセラミックで処理することにより、「制菌力」、「抗酸化力」、「洗浄力」、「環境浄化力」、「改質持続力」、及び「防食力」など多くの効果が得られている。これらの効果が得られる原因を探査すべく、溶液の導電率やコンデンサ容量について検討した結果、低周波側で水改質処理の有無でコンデンサ容量に差が生じ、ある一定の周波数以上になると水改質前の水と水改質後における水に関してコンデンサ容量に変化のないことが判明した。
 この発明の水改質効果判定装置の一例が、図1に示される。図1に示されるように、水改質効果判定装置1は、第1測定器2、第2測定器3、演算器4を備え、好適な態様においては、さらに判定手段5を備えている。
 この水改質効果判定装置1は、たとえば水改質装置6による改質効果を判定する装置である。前記水改質装置6としては、水流通路内に配設されたハイブリッドセラミックを有する装置を挙げることができ、例えば、都市拡業株式会社製の「ザ・バイオウォーター(登録商標)」を使用することができる。前記ハイブリッドセラミックは、4.4~15.4μmの遠赤外線を92%以上の積分放射率で放射するセラミックであり、水道水をこのハイブリッドセラミックで処理することにより、「制菌力」、「抗酸化力」、「洗浄力」、「環境浄化力」、「改質持続力」、及び「防食力」のうちの少なくとも1つ以上の水の改質効果が達成される(非引用文献1参照)。
 この水改質装置6は、この水改質装置6に水例えば水道水を供給する供給配管7が水改質装置6の上流側に結合され、この水改質装置6の下流側には改質水を排出する排出配管8が結合されている。
 前記第1測定器2は、供給配管7の適宜の位置に設置される。第1測定器2は、水改質装置6に供給される水例えば水道水のコンデンサ容量を交流電極法例えば交流二電極法又は交流四電極法によって測定することができる構造を有する。通常、この第1測定器2は、交流電極法、例えば交流二電極法及び交流四電極法によってコンデンサ容量を測定することができる。交流二電極法による第1測定器2は、被測定物である水に浸漬される一対の電極を有する。この一対の電極に、所定周波数の交流電流が印加される。電極に印加される交流電流の周波数は、図示しない制御装置などの外部からの指令によって可変される。第1測定器2における印加交流電流の周波数は、1Hz~200Hzまでの範囲内の任意の周波数に決定され、またその範囲内で別の周波数に切り替えることができる。
 この第1測定器2は、市販のLCRメータを用いることができ、この市販のLCRメータで一対の電極間に生じるコンデンサ容量を測定することが、できる。
 この第1測定器2から出力される検出データが演算器に入力される。
 前記第2測定器3は、前記第1測定器2と同じ構造を採用することができる。また、この第2測定器3は前記第1測定器2と同じ装置であってもよい。第2測定器3から出力される検出データが演算器に入力される。
 演算器4は、前記第1測定器2から出力されるデータと前記第2測定器3から出力されるデータとから、第1測定器2における一対の電極間におけるコンデンサ容量、すなわち未処理水のコンデンサ容量(X)と前記第2測定器3における一対の電極間におけるコンデンサ容量、すなわち処理水のコンデンサ容量(Y)とからコンデンサ容量比(Y/X)を演算する。
 判定手段5は、前記演算器4から出力されるコンデンサ容量比(Y/X)を設定閾値と比較してその設定閾値よりも大きい場合には前記水改質装置6による改質効果があると判定し、設定閾値以下である場合には前記水改質装置6による改質効果がないと判定する。
 前記設定閾値は、通常の場合、1を超える任意の値であるが、場合によっては1.1、1.2、1.3のような1を超える適宜の数値に設定することができる。そして、この設定閾値が実質的に1であるとは、水改質装置に供給される水が水改質装置により改質されていないことを意味する。ここで「閾値が実質的1である」とは、測定器及び電極等によって第1測定器及び第2測定器から出力されるデータに誤差が含まれることがあるので、そのような誤差を考慮して「出力データに基づく比(Y/X)が正確に整数の1ではないが第1測定器からの出力値と第2測定器からの出力値とが同じとみなして差支えない場合を意味する。
 この演算器は、補正手段を備えることができる。
 第1測定器2における一対の電極を水改質装置6における供給配管7内の水に長時間にわたって浸漬し、また同様に第2測定器3における一対の電極を水改質装置6における排出配管8内の水に長時間にわたって浸漬していると電極表面に汚れが生じて、第1測定器2及び第2測定器3の出力データに変化が生じる。このように時間の経過とともに第1測定器2及び第2測定器3の出力データに変化が生じるのは、前記汚れ等に基づくセル定数が時間経過によって変化するためである。
 このようにセル定数が時間経過によって変化することにより変化するコンデンサ容量比(Y/X)を次のようにして補正することができる。
 このコンデンサ容量比(Y/X)の補正は、第1測定器2及び第2測定器3によって水改質装置に供給される水および水改質装置から排出される水それぞれのコンデンサ容量を測定する度に、行われるのが好ましく、場合によっては例えば3回の測定の内の1回、あるいは5回の測定の内の1回というように間欠的に補正を行ってもよい。
 コンデンサ容量値(Y/X)の補正は、補正時に、第1測定器2の電極及び第2測定器3の電極それぞれに10kHz以上の高周波電流を印加することにより行うことができる。この発明者らによる水改質装置の水改質に関する研究によると、水改質装置に供給する水に浸漬された第1測定器2の電極に印加する交流電流が10kHz以上であるときに第1測定器2から出力されるコンデンサ容量値Xと、測定に供される水が水改質装置に供給されてから排出される水(改質処理をされた水)に浸漬された第2測定器3の電極に印加する交流電流が10kHz以上であるときに第2測定器3から出力されるコンデンサ容量値Yとのコンデンサ容量比(Y/X)が実質的に1になってしまうとの現象が観察された。この現象によると、第1測定器2におけるセル定数及び第2測定器3におけるセル定数が何等かの原因により変化する場合には、第1測定器2及び第2測定器3からの出力により演算されるコンデンサ容量比(Y/X)が1になるように、前記比の値に対する補正を加えるのがよい。
 具体的には、第1測定器2及び第2測定器3それぞれに印加する交流電流が低周波数例えば100Hzであるときに第1測定器2から出力される測定値をX100とし、100Hzが印加されるときに第2測定器3から出力される測定値をY100とし、次いで印加周波数を10kHz以上、例えば10kHz~100kHz迄の任意の周波数を第1測定器2に印加したときに第1測定器2から出力される測定値をX10にし、第1測定器2に印加された周波数と同じ高周波の交流電流を印加した第2測定器3から出力される測定値をY10とする。
 そして補正は、以下のように演算される。
 水改質装置に供給する水につき、C1=X100/X10
 水改質装置から排出された水につき、C2=Y100/Y10
 改質効果の有無は、C1/C2の演算結果により、値が1を超えるときには改質効果があると判定し、値が実質的に1であるときには改質効果がないと判定する。
 補正手段は、前記補正を行う演算機能を有し、前記演算器における演算の補正を行う。第1測定器2及び第2測定器3における電極の感度が経時的に変化しても前記判定手段5により、コンデンサ容量比(Y/X)を正確に判定することができる。
 この発明に係る水改質効果判定装置においては、第1測定器2及び第2測定器3は、水改質の効果を判定する必要のある場所に設置することができ、一方、判定手段5は水改質の効果を判定する必要ある場所に限らず、前記第1測定器2及び第2測定器3から遠隔の地に設置されていてもよく、また、演算器4及び判定手段5がともに前記第1測定器2及び第2測定器3から遠隔の地に設置されていてもよい。演算器4から出力されるデータは有線により、又は無線によって判定手段5に伝送されてもよく、第1測定器2及び第2測定器3から出力されるデータも有線又は無線により演算器4に伝送されてもよい。
 また、図2に示されるように、水改質効果判定装置は、水の改質を確認する必要のある複数の場所、地域、あるいは設備内それぞれに設置された第1測定器2及び第2測定器3を一組みとし、一つの中央制御監視室にある中央制御監視手段9に、一組の第1測定器2及び第2測定器3それぞれから出力されるデータを一組のデータとして、多数の一組みのデータを中央制御監視手段9でモニターすることができるようにしてもよい。
 各所に設置された一組の第1測定器2及び第2測定器3から出力されて来るデータに基づいて、一か所にある中央制御監視手段9は、各地各所に設置された水改質装置6における水改質の効果を監視し、各所に設置された第1測定器2及び第2測定器3における電極に印加する交流周波数の制御をおこなうことができる。
 中央制御監視手段9は、たとえば液晶表示画面、大スクリーンなどの表示手段、各種装置を制御するコンピュータ、第1測定器2及び第2測定器3における電極に印加する交流周波数を制御する制御手段等を備えて構成することができる。
 また、中央制御監視手段9の設置される中央制御監視室には、各所に設置された水改質装置6に関連付けられた第1測定器2及び第2測定器3から出力される検出データを入力する演算器4、この演算器4で演算されたコンデンサ容量比(Y/X)を基礎にして水改質の効果を判定する判定手段5及び必要に応じて設置される警報装置を集約してもよい。この警報装置は、水改質装置によって改質されたはずの改質水が改質されていない場合、特に前記コンデンサ容量比(Y/X)が1以下であるときに、警報例えば警告音を発し、又は警告灯を点灯させ、又は画面上に表示される警告表示等を表示する手段である。
 このような中央制御監視手段9によると、水改質の必要のある場所、地域、設備等の水改質必要部位に設置した水改質装置6が遠隔地であっても、そのような遠隔地にある水改質装置6の改質の有無を一か所で判定することができ、また、遠隔の地にある第1測定器2及び第2測定器3における印加交流周波数を変更することができる。
 以上の例においては、水が流通する配管に介装された水改質装置6における供給配管7に第1測定器2を設置し、排出配管8に第2測定器3を設置しているが、第1測定器は前記供給配管7から分岐して接続された採取容器たとえばビーカー、バケツ等に設置されていてもよく、また排出配管8から分岐して接続された採取容器たとえばビーカー、バケツ等に設置されていてもよい。
 <実験例>
 以下にこの水改質効果判定装置を使用して実際に水改質効果を判定した例を示す。
 図1に示されるように、水の流通する配管の途中に水改質装置として都市拡業株式会社製の「ザ・バイオウォーター(登録商標)」を設置した。この水改質装置における供給配管7に第1測定器2としてLCRメータ(株式会社エヌエフ回路設計ブロック、回路素子測定器ZM2372)を取り付け、また、排出配管8に第2測定器3として前記LCRメータ(同上)を取り付けた。LCRメータにおけるセンサは株式会社堀場製作所製の忙数位型汎用電気伝導率セル(浸漬型)9382-10であった。
 第1回目の実験として、水道水を前記供給配管7、水改質装置6及び排出配管8に流通させた。
 水道水の供給を開始し、しかも前記LCRメータにおける印加周波数を表1に示す値にしつつ、所定時間が経過してから第1測定器2であるLCRメータから出力されるコンデンサ容量及び第2測定器3であるLCRメータから出力されるコンデンサ容量を表1に示した。
 表1にコンデンサ容量比(Y/X)を示した。
Figure JPOXMLDOC01-appb-T000001
 再現性を確かめるために、第1の実験が終了してから、1週間が経過してから、第2の実験として前記第1の実験と同じ内容を繰り返した。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示される結果から、1~200Hzの低周波数においてコンデンサ容量比が1を超えているので、水改質装置により水道水を改質する効果があったと判定することができ、しかも再現性が良好である。
 このLCRメータを利用することにより、水改質装置による改質の効果が、瞬時に確認されることができた。
1     水改質効果判定装置
2     第1測定器
3     第2測定器
4     演算器
5     判定手段
5-1~5-4  判定手段
6     水改質装置
7     供給配管
8     排出配管
9     中央監視制御手段

Claims (8)

  1.  水改質装置に供給する水に浸漬した一対の電極間のコンデンサ容量を交流電極法により測定する第1測定器と、水改質装置から排出された水に浸漬した一対の電極間のコンデンサ容量を交流電極法により測定する第2測定器と、交流周波数が100Hz以下であるときの前記第1測定器から出力される前記水についてのコンデンサ容量Xと前記第1測定器における交流周波数と同じ交流周波数であるときの前記第2測定器から出力される前記改質水についてのコンデンサ容量Yとの比(Y/X)を算出する演算器とを備えることを特徴とする水改質効果判定装置。
  2.  前記交流周波数が0.1~100Hzである前記請求項1に記載の水改質効果判定装置。
  3.  前記演算器が、前記第1測定器及び前記第2測定器それぞれにおけるセル定数を、10kHz以上の高周波数及び100Hz以下の交流周波数を前記第1測定器及び第2測定器それぞれの電極に印加したときに出力される第1測定器及び第2測定器から出力されるコンデンサ容量に基づいてコンデンサ容量比(Y/X)を補正する補正手段を有していることを特徴とする前記請求項1又は2に記載の水改質効果判定装置。
  4.  前記演算器が前記水改質装置の設置位置に対して遠隔の位置に設置され、前記第1測定器及び第2測定器から前記演算器に有線又は無線により測定データが送信される前記請求項1から請求項3までのいずれか一項に記載の水改質効果判定装置。
  5.  前記演算器から出力される比の値が設定閾値を超えるときに改質効果ありと判定する判定手段を備えてなる前記請求項1から請求項4までのいずれか一項に記載の水改質効果判定装置。
  6.  前記演算器から出力される比の値が設定閾値以下であるときに警報を発する警報手段を備えてなる前記請求項1から5までのいずれか一項に記載の水改質効果判定装置。
  7.  前記判定手段及び警告手段が前記水改質装置の設置位置に対して遠隔の設置位置にあり、前記判定手段及び警告手段と前記演算器とが有線又は無線により結合されてなる前記請求項6に記載の水改質効果判定装置。
  8.  前記水改質装置が、4.4μm以上15.4μm以下の波長の遠赤外線を92%以上の積分放射率で放射するハイブリッドセラミックに水を接触させる装置である請求項1から請求項7までのいずれか一項に記載の水改質効果判定装置。
PCT/JP2016/060352 2016-03-30 2016-03-30 水改質効果判定装置 WO2017168625A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/313,234 US10175189B2 (en) 2016-03-30 2016-03-30 Determination device for determining an improvement in water quality
PCT/JP2016/060352 WO2017168625A1 (ja) 2016-03-30 2016-03-30 水改質効果判定装置
EP16791289.8A EP3249395A4 (en) 2016-03-30 2016-03-30 Water reforming effect determination device
JP2016543206A JP6532038B2 (ja) 2016-03-30 2016-03-30 水改質効果判定装置
SG11201609660SA SG11201609660SA (en) 2016-03-30 2016-03-30 Determination device for determining an improvement in water quality
TW105132513A TW201733913A (zh) 2016-03-30 2016-10-07 水改質效果判定裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060352 WO2017168625A1 (ja) 2016-03-30 2016-03-30 水改質効果判定装置

Publications (1)

Publication Number Publication Date
WO2017168625A1 true WO2017168625A1 (ja) 2017-10-05

Family

ID=59962852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060352 WO2017168625A1 (ja) 2016-03-30 2016-03-30 水改質効果判定装置

Country Status (6)

Country Link
US (1) US10175189B2 (ja)
EP (1) EP3249395A4 (ja)
JP (1) JP6532038B2 (ja)
SG (1) SG11201609660SA (ja)
TW (1) TW201733913A (ja)
WO (1) WO2017168625A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108020644A (zh) * 2018-01-02 2018-05-11 潘远新 水产品养殖水质监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878461A (en) * 1969-08-04 1975-04-15 Sofrance Sa Apparatus for measurement of the amount of impurity in a fluid
JPS6412253A (en) * 1987-07-06 1989-01-17 Toshiba Corp Acid concentration measuring apparatus
JPH056362U (ja) * 1991-07-08 1993-01-29 東陶機器株式会社 水道管内部監視装置
JPH07260725A (ja) * 1994-03-22 1995-10-13 Japan Organo Co Ltd 有機体炭素測定装置、及び同装置を組込んだ超純水製造装置
JP2003279524A (ja) * 2002-03-27 2003-10-02 Yunirekku:Kk 絶縁性流動体の計測装置、純度制御装置、混合度制御装置
JP2014215073A (ja) * 2013-04-23 2014-11-17 株式会社デンソー 燃料性状センサ及びその故障検出方法
WO2015181859A1 (ja) 2014-05-30 2015-12-03 都市拡業株式会社 改質水防錆効果判定装置及び改質水防錆効果判定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758277B2 (ja) 1986-06-30 1995-06-21 株式会社土屋製作所 防錆剤を含有する液体の防食性検出装置
JPS6453146A (en) * 1987-01-09 1989-03-01 Hitachi Ltd Method and instrument for measuring electrical conductivity of solution and water quality control method
US5450358A (en) * 1991-09-30 1995-09-12 Mckesson Corporation Method and system for monitoring the quality of a water purification apparatus
US5234601A (en) * 1992-09-28 1993-08-10 Autotrol Corporation Apparatus and method for controlling regeneration of a water treatment system
US5435170A (en) * 1993-12-30 1995-07-25 Voelker; Paul J. Method and apparatus for fluid quality sensing
EP1439388A1 (fr) * 2003-01-20 2004-07-21 Ecole Polytechnique Fédérale de Lausanne (EPFL) Dispositif de mesure de la qualité et/ou de la dégradation d'un fluide; notamment d'une huile alimentaire
JP2005321275A (ja) 2004-05-07 2005-11-17 Shiga Mec Co Ltd 防錆効果検査センサ
US20110278168A1 (en) * 2008-05-09 2011-11-17 Commonwealth Scientific And Industrial Research Organisation Composite material for use in a sensing electrode for measuring water quality
CN102012248B (zh) 2010-12-20 2012-05-23 扬州汽车传感器工程技术研究所 电容式水位传感器
JP5818907B2 (ja) * 2011-11-02 2015-11-18 三菱電機株式会社 設備機器及び給湯暖房システム
CN104122376B (zh) 2014-06-30 2016-05-25 南京领先环保技术股份有限公司 一种多参数水质分析仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878461A (en) * 1969-08-04 1975-04-15 Sofrance Sa Apparatus for measurement of the amount of impurity in a fluid
JPS6412253A (en) * 1987-07-06 1989-01-17 Toshiba Corp Acid concentration measuring apparatus
JPH056362U (ja) * 1991-07-08 1993-01-29 東陶機器株式会社 水道管内部監視装置
JPH07260725A (ja) * 1994-03-22 1995-10-13 Japan Organo Co Ltd 有機体炭素測定装置、及び同装置を組込んだ超純水製造装置
JP2003279524A (ja) * 2002-03-27 2003-10-02 Yunirekku:Kk 絶縁性流動体の計測装置、純度制御装置、混合度制御装置
JP2014215073A (ja) * 2013-04-23 2014-11-17 株式会社デンソー 燃料性状センサ及びその故障検出方法
WO2015181859A1 (ja) 2014-05-30 2015-12-03 都市拡業株式会社 改質水防錆効果判定装置及び改質水防錆効果判定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Introduction of the Products", 21 April 2014, TOSHIKOGYO CO, LTD
See also references of EP3249395A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108020644A (zh) * 2018-01-02 2018-05-11 潘远新 水产品养殖水质监测系统

Also Published As

Publication number Publication date
JPWO2017168625A1 (ja) 2018-12-27
EP3249395A4 (en) 2018-08-22
JP6532038B2 (ja) 2019-06-19
US20180172614A1 (en) 2018-06-21
US10175189B2 (en) 2019-01-08
SG11201609660SA (en) 2017-11-29
TW201733913A (zh) 2017-10-01
EP3249395A1 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
Zhang et al. Early period corrosion and scaling characteristics of ductile iron pipe for ground water supply with sodium hypochlorite disinfection
US10718734B2 (en) Method for determining antirust effect of treated water
Frateur et al. Free chlorine consumption induced by cast iron corrosion in drinking water distribution systems
Lytle et al. Impact of water quality on chlorine demand of corroding copper
Ali et al. A case study on the relationship between conductivity and dissolved solids to evaluate the potential for reuse of reclaimed industrial wastewater
Choudhury et al. Corrosion management in power plant cooling systems using tertiary-treated municipal wastewater as makeup water
Ng et al. A new scenario of lead contamination in potable water distribution systems: Galvanic corrosion between lead and stainless steel
Latva et al. Studies on the magnetic water treatment in new pilot scale drinking water system and in old existing real-life water system
Rodolfo Jr et al. Influence of buffer capacity, chlorine residual, and flow rate on corrosion of mild steel and copper
US20150235545A1 (en) Self contained, automatic water quality monitoring and treatment system
Wang et al. Effect of connection methods on lead release from galvanic corrosion
Hoseinzadeh et al. Evaluation of corrosion and scaling potential of a water treatment plant
Alipour et al. Evaluation of corrosion and scaling tendency indices in a drinking water distribution system: a case study of Bandar Abbas city, Iran
WO2015075835A1 (ja) 水処理設備の制御方法及び制御プログラム並びに水処理システム
Lagos et al. Aging of copper pipes by drinking water
WO2017168625A1 (ja) 水改質効果判定装置
Castaneda et al. External corrosion of pipelines in soil
Bischoff et al. Choosing the most appropriate technique for wastewater disinfection–parallel investigation of four disinfection systems with different preceding treatment processes
Miller Investigation of lead solubility and orthophosphate addition in high pH low DIC water
JP2009139119A (ja) Cod自動計測器およびそれを用いたcodの測定方法
Ansari et al. Evaluation of gypsum (CaSO4· 2H2O) scale formation and its inhibition by different antiscalants by static and dynamic test
Szuster-Janiaczyk et al. The effect of the mixing of water from different sources in the water supply system on tap water quality–a full-scale technical investigation case study
Gouws et al. Design and cost analysis of an automation system for swimming pools in South Africa
EP1739421A1 (en) Electrochemical analyser for the selective measurement of chlorites in water
Nurani Zulkifli et al. Analysis of bacterial contaminant in Pasir Gudang, Johor tap water supply–Varies pH value observation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016543206

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016791289

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016791289

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11201609660S

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 15313234

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE