WO2017167303A1 - 信道接入方法、装置、用户设备、基站及计算机存储介质 - Google Patents

信道接入方法、装置、用户设备、基站及计算机存储介质 Download PDF

Info

Publication number
WO2017167303A1
WO2017167303A1 PCT/CN2017/079149 CN2017079149W WO2017167303A1 WO 2017167303 A1 WO2017167303 A1 WO 2017167303A1 CN 2017079149 W CN2017079149 W CN 2017079149W WO 2017167303 A1 WO2017167303 A1 WO 2017167303A1
Authority
WO
WIPO (PCT)
Prior art keywords
cca
duration
unchanged
priority level
starting point
Prior art date
Application number
PCT/CN2017/079149
Other languages
English (en)
French (fr)
Inventor
杨玲
苟伟
赵亚军
彭佛才
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/090,550 priority Critical patent/US20190200386A1/en
Priority to EP17773332.6A priority patent/EP3439414A4/en
Publication of WO2017167303A1 publication Critical patent/WO2017167303A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0875Non-scheduled access, e.g. ALOHA using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of communications, and in particular, to a channel access method, apparatus, user equipment (UE), a base station, and a computer storage medium.
  • UE user equipment
  • unlicensed spectrum has the following characteristics: free/low cost; low entry requirements, low cost; large available bandwidth; resource sharing and so on.
  • the embodiments of the present invention provide a channel access method and device, a UE, a base station, and a computer storage medium, which can effectively solve the problem of low channel access probability on an unlicensed carrier.
  • a channel access method including: determining a priority level of using an unlicensed carrier; and before accessing the unlicensed carrier according to the determined priority level
  • the CCA parameter detected by the Clear Channel Assessment (CCA) is performed, and the channel access processing of the unlicensed carrier is performed.
  • an embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, where the computer executable instructions are used to perform the embodiments of the present invention.
  • Channel access method
  • a channel access apparatus comprising: a determining module configured to determine a priority level of using an unlicensed carrier; and a processing module configured to match the determined priority level And performing CCA parameters for performing CCA detection before accessing the unlicensed carrier, and performing channel access processing of the unlicensed carrier.
  • a UE including: a memory configured to store a channel access executable instruction; a processor configured to perform the channel access executable instruction to determine to use an unlicensed carrier a priority level; performing the non-authorization according to a CCA parameter that performs CCA detection before accessing the unlicensed carrier that matches the determined priority level Channel access processing of the carrier.
  • a base station including: a memory configured to store a channel access executable instruction; a processor configured to perform the channel access executable instruction, determining to use an unlicensed carrier a priority level; performing channel access processing of the unlicensed carrier according to a CCA parameter that performs CCA detection before accessing the unlicensed carrier that matches the determined priority level.
  • the channel access method and apparatus, the UE, the base station, and the computer storage medium provided by the embodiments of the present invention adopt a priority level for determining the use of the unlicensed carrier; and before the access to the unlicensed carrier according to the determined priority level.
  • the CCA parameters of the CCA detection are performed, and channel access processing of the unlicensed carrier is performed. In this way, the problem of low channel access probability on the unlicensed carrier can be effectively solved, thereby improving the success rate of channel access.
  • FIG. 1 is a network architecture diagram of an application scenario of a channel access method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a channel access method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a CCA starting point corresponding to different priority levels according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of arbitrarily selecting a CCA starting point corresponding to different priority levels according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a combination of multiple subframes and single subframe scheduling according to an embodiment of the present invention
  • FIG. 6 is a structural block diagram of a channel access apparatus according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a determining module in a channel access device according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a channel access apparatus according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram 1 of a processing module in a channel access device according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram 2 of a processing module in a channel access device according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram 3 of a processing module in a channel access device according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of a UE according to an embodiment of the present invention.
  • FIG. 13 is a structural block diagram of a base station according to an embodiment of the present invention.
  • the base station and the UE use a priority level for determining the use of the unlicensed carrier in the process of performing data interaction;
  • the priority level matches the CCA parameters for performing CCA detection before accessing the unlicensed carrier, and performs channel access processing for the unlicensed carrier. In this way, the problem of low channel access probability on the unlicensed carrier can be effectively solved, thereby improving the success rate of channel access.
  • FIG. 2 is a flowchart of a channel access method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S201 determining a priority level of using an unlicensed carrier
  • Step S202 Perform channel access processing of the unlicensed carrier according to the CCA parameter that performs CCA detection before accessing the unlicensed carrier that matches the determined priority level.
  • the channel access processing is performed according to the priority level matching the CCA parameters of the CCA detection, and the problem of low channel access probability on the unlicensed carrier is effectively solved, and the channel access success is improved to some extent. rate.
  • the priority level of the unlicensed carrier may also be multiple. For example, if the priority level of the unlicensed carrier is one, the priority level is determined as the priority level; and the priority of the unlicensed carrier is used. In the case where the level is at least two, one of the at least two priority levels is selected as the priority level according to a predetermined principle. For example, when the user equipment device includes a plurality of different priority levels in the physical uplink shared channel (PUSCH) transmission, the user equipment may correspond to the predetermined priority. Listen to the (Listen Before Talk, LBT) mechanism or CCA parameters for channel access.
  • LBT Listen Before Talk
  • Selecting a lower priority level from the at least two priority levels as a priority level for example, when the uplink PUSCH transmission includes multiple different priority levels, performing channel access according to the LBT parameter corresponding to the lowest priority Transmission occupancy;
  • Selecting a higher priority level from the at least two priority levels as a priority level for example, when the uplink PUSCH transmission includes multiple different priority levels, channel access is performed according to the LBT parameter corresponding to the highest priority. Transmission occupancy;
  • a priority level determined by the UE from the at least two priority levels as a priority level for example, the UE selects an LBT priority level or an LBT mechanism, and determines a minimum uplink transmission duration, or a maximum transmission duration, or, a preset The length of transmission, or the number of symbols using LBT;
  • a priority level determined by the base station determines a minimum transmission duration, or a maximum transmission duration, according to the priority of the uplink transmission service or the transmission signal/channel, or, Set the transmission duration, or determine the number of symbols using LBT;
  • the priority level selected from the at least two priority levels is a priority level according to a predetermined adaptive selection rule.
  • a preset priority level from at least two priority levels; for example, uplink P
  • channel access and transmission occupation are performed according to the LBT parameters corresponding to the preset priority.
  • the preset priority may be determined by at least: the base station and the UE agree in advance; the radio resource control (RRC) signaling configuration of the upper layer; and the downlink control information (DCI) of the physical layer. Notify to the UE; the physical layer public DCI is notified to the UE.
  • RRC radio resource control
  • DCI downlink control information
  • the foregoing priority level may include multiple types, for example, at least one of the following: a priority level of the service type, a priority level of the signal type, and a priority level of the channel type.
  • the service type may include at least one of the following: a voice service voice, a video service video, a best effort service, and a background service background;
  • the signal type may include at least one of the following: a sounding reference signal (SRS)
  • SRS sounding reference signal
  • the channel type may include at least one of the following: an uplink grant channel, a downlink grant channel, a physical random access channel (PRACH), and a physical uplink control channel ( Physical Uplink Control Channel (PUCCH), physical uplink shared channel (PUSCH), physical downlink shared channel (PDSCH), physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PUCCH Physical Uplink Control Channel
  • PUSCH physical uplink shared channel
  • PDSCH physical downlink shared channel
  • PDCCH Physical Downlink Control Channel
  • determining the priority level of using the unlicensed carrier may be performed in multiple manners. For example, both the base station and the user equipment may detect the corresponding priority level according to the service, channel or signal, and of course The manner in which the other network element can advertise, for example, the user equipment device can determine the priority level of using the unlicensed carrier in at least one of the following manners: a predefined manner, determining a priority level; and negotiating with the UE by the base station Determining the priority level; determining the priority level by receiving the RRC signaling; determining the priority level by means of the physical layer-specific DCI signaling; determining the priority level by means of the physical layer common DCI signaling.
  • the base station can also determine the use of non-identification in a similar manner as described above. The priority level of the authorized carrier.
  • the CCA parameter is used to perform CCA detection before accessing the unlicensed carrier, and any parameter related to the CCA detection may be considered to belong to the range.
  • the LBT mechanism may include: an LBT access capability level 2 and an LBT access capability level 4.
  • the duration of the transmission may include multiple types, for example, the duration of the uplink transmission may be the duration of the uplink transmission, or may be the duration of the transmission after the downlink data is transmitted in an occupation period, where the duration may be a subframe level, or may be a symbol. Level.
  • the location of the CCA start point may also include a plurality of types, for example, at least one of the following: a start position of each of the N equal-length sub-intervals in the interval in which the CCA is performed, and a randomly selected start point in the predetermined interval within the interval in which the CCA is performed. Position, where N is a positive integer.
  • Different priority levels are related to the CCA starting point in the LBT. For example, different priority levels are related to the CCA starting point in the LBT access capability level 2, and the CCA duration length is unchanged: as the priority level decreases, the LBT access capability The CCA starting point of level 2 is later than the CCA starting point of the previous priority level. Different priority levels are also related to the LBT access capability level 4 mechanism: as the priority level decreases, the CCA starting point of the LBT access capability level 4 is later than the CCA starting point of the previous priority level. Or, as the priority level decreases, the CCA starting point of the LBT access capability level 4 is not fixed, and the contention window size, the number of LBT symbols, the MCOT_U, and the TB size thereof are sequentially increased.
  • the different priority levels and the LBT access capability level 2 are also related to the hybrid mechanism of the LBT access capability level 4: as the priority level is lowered, the LBT access capability level 2 and the LBT access capability level 4 mechanism are sequentially adopted, and The LBT parameters corresponding to each LBT mechanism and the number of LBT symbols, MCOT_U and its TB size are fixed. At least one of the parameters is unchanged, and the other parameters increase or decrease the resulting combination.
  • the value of the parameter of the CCA may be determined according to a specific situation.
  • the CCA duration includes at least one of the following: 16 ⁇ s, 25 ⁇ s, 34 ⁇ s, and 43 ⁇ s; and the transmission duration includes at least one of the following: 0.5 ms, 1 ms, 1.5ms, 2ms, 3ms, 4ms, 5ms, 8ms, 10ms;
  • the number of LBT symbols is: one symbol or two symbols or at least one of the remaining symbols in the last part of the downlink transmission;
  • the transport block TB size includes one of the following : a first resource block, a second resource block, a third resource block, and a fourth resource block;
  • the contention window range includes one of the following: ⁇ 0, 1 ⁇ , ⁇ 1, 2 ⁇ , ⁇ 2, 3 ⁇ , ⁇ 3, 4,5,6,7 ⁇ , ⁇ 7,15 ⁇ , ⁇ 15,31,63 ⁇ , ⁇ 15,31,63,127,255,511,1023 ⁇ ;n includes one of
  • the matching relationship between the priority level and the CCA parameter may include multiple types, wherein the matching relationship between the priority level and the CCA parameter is related to the combination type between the CCA parameters, that is, the CCA parameter. What kind of combination is there, and how much is the matching relationship between the corresponding priority level and the CCA parameter.
  • the various matching relationships given below are just some examples of combinations and are not considered to be all combinations.
  • the matching relationship between the priority level and the CCA parameter may include: the lower the priority level, the later the CCA starting point; the lower the priority level, the later the CCA starting point, and the CCA duration is unchanged; the lower the priority level, the CCA The later the starting point, and the longer the CCA lasts; the lower the priority level, The CCA starting point is unchanged, and the longer the CCA duration is; the lower the priority level, the later the CCA starting point, and the CCA duration is unchanged, the value of the transmission duration is unchanged; the lower the priority level, the later the CCA starting point, and The duration of the CCA is unchanged, and the value of the transmission duration is larger.
  • the CCA duration is constant and the transmission duration is larger; the lower the priority level, the CCA starting point is unchanged, and the longer the CCA duration is, the value of the transmission duration is unchanged; the lower the priority level, the CCA starting point The same, the longer the CCA duration is, the larger the value of the transmission time is.
  • the value of the duration is unchanged, and the number of symbols of the LBT is smaller;
  • the lower the priority level, the later the CCA starting point, the CCA duration is unchanged, the value of the transmission duration is larger, and the number of symbols of the LBT is unchanged; the lower the priority level, the later the CCA starting point, the CCA duration is unchanged, and the transmission is unchanged.
  • the value of the transmission duration is unchanged, the number of symbols of the LBT is unchanged, and the TB size is larger; the lower the priority level, the later the CCA starting point is, the duration of the CCA is unchanged, the value of the transmission duration is unchanged, and the number of symbols of the LBT is not Change, the smaller the TB size; the lower the priority level, the later the CCA starting point, CCA
  • the duration of the transmission is unchanged, the value of the transmission duration is unchanged, the larger the number of symbols of the LBT, the smaller the TB size; the lower the priority level, the later the CCA starting point, the duration of the CCA is unchanged, and the value of the transmission duration is unchanged.
  • the value of the transmission time is unchanged, the smaller the number of symbols of the LBT, the larger the TB size; the lower the priority level, the later the CCA starting point, the duration of the CCA is unchanged, and the value of the transmission duration is unchanged, LBT
  • the duration is constant, the value of the transmission duration is larger, the smaller the number of symbols of the LBT, the larger the TB size; the lower the priority level, the later the CCA starting point, the duration of the CCA is unchanged, and the value of the transmission duration is larger, LBT
  • the longer the duration of the CCA the larger the value of the transmission time is.
  • the larger the number of symbols of the LBT is, the larger the TB size is.
  • the lower the priority level, the lower the CCA starting point Change the longer the CCA lasts Long, the value of the transmission duration is unchanged, the number of symbols of the LBT is unchanged, and the TB size is larger; the lower the priority level, the CCA starting point is unchanged, the longer the CCA duration is, the value of the transmission duration is unchanged, and the symbol of the LBT is unchanged.
  • the number is unchanged, the smaller the TB size is; the lower the priority level is, the CCA starting point is unchanged, the longer the CCA duration is, the value of the transmission duration is unchanged, the larger the number of symbols of the LBT, the smaller the TB size; the higher the priority level Low, the CCA starting point is unchanged, the longer the CCA duration is, the value of the transmission duration is unchanged, the larger the number of symbols of the LBT, the larger the TB size; the lower the priority level, the lower the CCA starting point, and the longer the CCA duration is, The value of the transmission duration does not change. The larger the number of symbols of the LBT, the smaller the TB size.
  • the number of symbols of the LBT is unchanged, and the TB size is larger.
  • the lower the priority level the lower the CCA starting point, and the longer the CCA duration.
  • the larger the value of the transmission time the smaller the number of symbols of the LBT, the smaller the TB size; the lower the priority level, the lower the CCA starting point, the longer the duration of the CCA, the larger the value of the transmission duration, and the number of symbols of the LBT.
  • the longer the CCA duration is, the larger the value of the transmission time is.
  • the larger the number of symbols of the LBT is, the larger the TB size is.
  • the lower the priority level is.
  • the CCA starting point is unchanged, the longer the CCA duration is, the larger the value of the transmission duration is, the larger the number of symbols of the LBT is, the smaller the TB size is; the lower the priority level is, the lower the CCA starting point is, and the longer the CCA duration is, the longer the transmission is.
  • the lower the level, the lower the CCA starting point, the longer the CCA duration, the larger the value of the transmission duration, the smaller the number of symbols of the LBT, the larger the TB size; the lower the priority level, the lower the CCA starting point, and the CCA duration The longer the value of the transmission time is, the more Larger, the smaller the number of symbols of LBT, the smaller the TB size; the lower the priority level, the CCA starting point is unchanged, the CCA duration is unchanged, the value of the transmission duration is larger, the number of symbols of LBT is unchanged, and the TB size is unchanged.
  • the value of the transmission time is larger, the smaller the number of symbols of the LBT, the smaller the TB size.
  • the duration of the CCA is unchanged, and the value of the transmission duration is larger.
  • the smaller the number of symbols of the LBT the smaller the TB size.
  • the lower the priority level the greater the number of HARQ retransmissions.
  • the increase of the CCA duration may be implemented in multiple manners: for example, at least one of the following methods may be implemented: the idle CCA duration duration is unchanged, and m is increased; the idle CCA duration duration is increased, and m is Invariant; the length of the idle CCA duration increases, and m increases.
  • the method before performing the channel access processing of the unlicensed carrier according to the CCA parameter that performs the CCA detection before using the unlicensed carrier that matches the determined priority level, the method further includes: acquiring a subframe position for performing the CCA, Retain at least one of the symbol indexes, and the acquisition method can be more
  • at least one of a subframe position and a reserved symbol index for performing CCA may be acquired by at least one of: acquiring a subframe position for performing CCA, a reserved symbol index by a predefined manner.
  • the DCI signaling configuration mode acquires at least one of a subframe position and a reserved symbol index; passes high layer RRC signaling and physical layer proprietary DCI signaling or public DCI signaling or new DCI signal
  • the obtaining, by the public DCI signaling or the newly designed DCI signaling, at least one of the subframe position and the reserved symbol index includes: using a partial bit indication of the Y reserved bits in the LAA subframe configuration branch in the common DCI signaling. At least one of the following information: a sub-frame position for performing CCA reserved symbols, a CCA position, a CCA vacant symbol index, a CCA interval, a CCA starting point, where Y is a preset number; a new addition is made by using common DCI signaling Some of the bits in the branch or newly designed DCI signaling indicate at least one of the following: a subframe position for performing CCA reserved symbols, a CCA position, a CCA vacant symbol index, a CCA interval, and a CCA start point.
  • the bit of the field that can be reused for the private DCI signaling does not indicate at least one of the following: the subframe position where the CCA reserved symbol is located, the CCA position, the number of CCA vacant symbols, and the CCA interval. , CCA starting point.
  • performing channel access processing of the unlicensed carrier may include: receiving the base station The uplink grant information sent; the CCA detection is performed before the location determined according to the predetermined timing relationship; and the uplink data or the SRS is sent to the base station if the CCA detection is successful.
  • the base station may also be fed back to the base station whether the uplink grant information is successfully received, and whether the CCA detection is successful is returned to the base station.
  • the indication information for indicating whether the user equipment device successfully receives the uplink authorization information may be sent on the authorized carrier or the unlicensed carrier, for example, may include at least one of the following: And transmitting, by the first predetermined location on the authorized carrier, the first indication information, where the first indication information is used to indicate that the user equipment has received the uplink authorization information sent by the base station; after performing the CCA detection, the content of the unauthorized carrier that is successfully contending is used.
  • the second predetermined location transmits the first indication information.
  • the indication information for instructing the user equipment device to perform the CCA detection may also be sent on the authorized carrier or the unlicensed carrier, for example, including at least
  • the second indication information is sent to the third predetermined location on the authorized carrier, where the second indication information is used to indicate that the user equipment performs the execution result information of the CCA detection, where the execution result information includes: performing CCA detection success or performing CCA The detection fails; the second indication information is sent at a fourth predetermined position after performing the CCA detection successfully competing unlicensed carrier usage right.
  • At least one of the first predetermined location, the second predetermined location, the third predetermined location, and the fourth predetermined location is obtained by at least one of the following manners, for example, may be obtained by at least one of: The way in which the device pre-agreed, through the base station-specific DCI signaling or the public DCI signaling or the newly designed DCI signaling configuration, the high-level RRC signaling mode, the CCA successful location implicit indication mode.
  • the first predetermined position, the second predetermined position, the third predetermined position, and the fourth predetermined position may each include a plurality of types, for example, the first predetermined position, the second predetermined position, and the third
  • the predetermined position and the fourth predetermined position may each include at least one of: a predefined position; a position determined by a predetermined timing relationship n+k, where n is a subframe index of the DCI, and k is an integer greater than or equal to 1. Or k is an integer greater than or equal to 4; the first uplink subframe; the first uplink subframe in the uplink transmission burst; the subframe with the same scheduling resource location corresponding to the unlicensed carrier on the authorized carrier; after the CCA success time The first subframe.
  • the first indication information or the second indication information is sent in at least one of the following symbol positions: a predetermined symbol, a first symbol, a last symbol, a third symbol in the first half slot, and a fifth one in the first half slot. Symbol, the third symbol in the second half of the slot, the fifth symbol in the second half of the slot, the fourth symbol in the first half of the slot, and the fourth symbol in the second half of the slot, where the first symbol is sent
  • the symbol position of the indication information is different from the symbol position at which the second indication information is transmitted.
  • an optional implementation manner for solving the above problem is also provided in the embodiment of the present invention.
  • the problem in the LAA is first analyzed:
  • Question 1 According to different service types, specify the corresponding rules between the specific service type priority level and the LBT mechanism or related detail parameters. If the priority of the DL service type is directly used for the uplink, the LBT is limited to the limited symbol, the scheduling mechanism, and the transmission duration. The downlink priority level and parameter configuration are used to cause uplink access. The channel opportunities are small, the allocated scheduling resources and the UL grant signaling indicate waste, resulting in poor uplink system performance. Therefore, Question 1 needs to be resolved.
  • Problem 3 For a hybrid scenario of uplink multi-subframe scheduling and single-subframe scheduling, at least one of a flexible or suitable CCA mechanism and subframe structure indication signaling needs to be designed to reduce the loss of the CCA performed by the UE and improve the uplink resource utilization. .
  • Question 4 Identify whether the UE side misses the UL grant or the CCA is affected by the channel being occupied Blocking, or the failure of uplink data. If the problem 4 is not solved, the base station may incorrectly indicate that the signaling of the LBT contention window is increased, thereby increasing the difficulty of accessing the channel on the UE side, and affecting multiple UE scheduling policies of the base station in the time-frequency domain, thereby possibly causing HARQ. Interference (buffer).
  • a priority configuration method and apparatus on an unlicensed carrier are provided.
  • the method and the device in a certain extent, have high channel access opportunities for services or channels with more requirements, thereby reducing the waste of uplink resources and authorization indication information allocated by the base station to the UE.
  • the loss of the UE performing CCA is also reduced.
  • the following optional implementation manners generally include the following contents: (1) establishing different priorities and LBT mechanisms, and corresponding to at least one of parameters related to LBT, LBT starting point, uplink transmission duration, LBT symbol number, and TB size; Based on the relationship between the different priorities and parameters established in the first step, the UL grant or the SRS is configured to be a higher optional level, and the transmission duration can be a symbol level. (3) Design a multiplexing rule when the P ⁇ SCH transmission contains multiple different priorities. (4) Designing a signaling indicating the location of the CCA based on the hybrid scenario of multi-subframe scheduling and single subframe scheduling. (5) Provide a CCA failure indication process.
  • the respective alternative embodiments are separately described below.
  • the LBT access capability level 2 mechanism when the LBT access capability level 2 mechanism is adopted for the uplink channel access in the unlicensed carrier, the correspondence between the specific parameter configuration in the LBT access capability level 2 and at least one of the different service types and signal types.
  • the first part introduces the parameter composition in the LBT access capability level 2 mechanism, and the time domain structure of the parameters.
  • LBT access capability level 2 also known as one-shot LBT, refers to detecting channels from busy to idle. When the duration of the channel idleness is at least the length of the CCA duration, it is considered that the right to use the unlicensed carrier is obtained, or the LBT is successfully executed.
  • the CCA duration length may be composed of an idle CCA duration length and m sense CCA duration lengths.
  • the specific CCA duration time domain structure may be one of the following: idle CCA duration+m*sense CCA duration; or m*sense CCA duration+idle CCA duration; or, m1*sense CCA duration+idle CCA duration+m2*sense CCA duration.
  • Idle CCA duration refers to the length of time during which CCA detection is not performed, or during this period of time, the transmission device receives related information or receives and transmits conversion functions, and does not perform channel sensing or channel busy detection.
  • Sense CCA duration means that the transmission device needs to perform channel idle detection during this time.
  • the duration of the sense CCA duration may be composed of the length of time A and the length of the actual detection time B.
  • the time domain structure of the sense CCA duration can be one of the following: A+B; or, B+A.
  • the idle CCA duration length is fixed or variable, optionally, configured to be 16 ⁇ s, and m is an integer greater than or equal to 0. Alternatively, m is 0, 1, 2.
  • the sense CCA duration is 9 ⁇ s in length, A is 5 ⁇ s, and B is 4 ⁇ s, or A is 4 ⁇ s, and B is 5 ⁇ s.
  • the definition of the CCA starting point from the perspective of uplink multi-user multiplexing, starting from the subframe boundary according to the PUSCH start time, or starting from the symbol boundary, or starting from the slot boundary, and starting from the sub-frame boundary Start, or the symbol boundary transmitted from the PUSCH, or the slot boundary transmitted from the PUSCH is the end point of the CCA detection, and the time when the continuous CCA duration length ends is the start point of the CCA.
  • the starting point of the CCA may be set at the start time of the CCA execution region, or may be the starting point of the CCA at any time or a specific time in the CCA execution region, or the end of the downlink transmission + Gap
  • the time is taken as the starting point of the CCA, or the end of the downlink transmission is used as the starting point of the CCA.
  • the specific time is the starting point of each segment divided by the length of the CCA duration in the CCA interval.
  • the number of consecutively transmitted subframes refers to the number of subframes in which the UE is continuously scheduled.
  • the CCA duration duration, the idle CCA duration, the perceived CCA duration, the CCA start point, the CCA endpoint, the single subframe scheduling, and the number of consecutively transmitted subframes (also referred to as consecutively scheduled subframes)
  • the uplink transmission burst length, the TB size, the LBT region length (or the number of symbols), and the number of HARQ retransmissions may also be included.
  • the service type There are two types of priority levels: one is the service type; the other is the channel or signal type. Among them: business types include: Voice, Video, Best effort, and Background.
  • the signal and its signal type include at least one of the following: UL grant, SRS, PRACH, PUCCH, and PUSCH, and the priority between these signals and their signals may be determined according to different needs and scenarios.
  • Case 1 The priority level is only related to the CCA start point and the CCA duration length in the LBT access capability level 2. The details are shown in Table 1:
  • the first preset value, the second preset value, the third preset value, and the fourth preset value in Table 1 may be the same value, or may be sequentially increased values. That is, the latter performs a CCA starting point later than the former starting CCA.
  • the starting point of the CCA may be a symbol boundary, or a subframe boundary, or a starting boundary of the CCA detecting area, or a certain starting interval of the medium interval segment of the CCA detecting area. boundary.
  • the CCA starting points corresponding to different priority levels are different, the CCA of the previous priority decreases as the priority level decreases. The starting point is earlier than the CCA starting point of the latter priority.
  • the different CCA starting points corresponding to different priorities may be the starting positions of different equally spaced segments in the CCA detecting area, or random or arbitrary positions in different equally spaced segments in the CCA detecting area.
  • the CCA duration corresponds to a fixed value of at least 16 ⁇ s, for example, one of 16 ⁇ s, 25 ⁇ s, 34 ⁇ s, 43 ⁇ s, and the like.
  • FIG. 3 is a schematic diagram of a CCA starting point corresponding to different priority levels according to an embodiment of the present invention, that is, a schematic diagram of a CCA starting point corresponding to a CCA detecting area occupying one symbol and having different priorities, as shown in FIG. 3 . as shown in Table 3.
  • FIG. 4 is a schematic diagram of arbitrarily selecting a CCA starting point corresponding to different priority levels according to an embodiment of the present invention, that is, a CCA detecting area occupying one symbol and a CCA starting point corresponding to different priorities, as shown in FIG. 4 . Shown. As shown in Table 4.
  • grade CCA starting point CCA duration 1 (highest) Symbol boundary, as shown in Figure 2, A1 25 ⁇ s/34 ⁇ s/43 ⁇ s 2 (second highest) As shown in Figure 2, A2 25 ⁇ s/34 ⁇ s/43 ⁇ s 3 As shown in Figure 2, A3 25 ⁇ s/34 ⁇ s/43 ⁇ s 4 (lowest) As shown in Figure 2, A4 25 ⁇ s/34 ⁇ s/43 ⁇ s
  • the CCA starting point does not change and the CCA duration length increases. As shown in Table 5.
  • the CCA starting point of the previous priority is earlier than the CCA starting point of the latter priority, and the CCA duration is increased. As shown in Table 6.
  • the idle CCA duration is fixed or variable and can be configured for 4 ⁇ s, or 5 ⁇ s, or 7 ⁇ s, or 9 ⁇ s, or 16 ⁇ s, or 25 ⁇ s.
  • m is an integer greater than or equal to 0. Alternatively, m is 0, 1, 2, 3, 4, 5. m can be a fixed value or it can be variable.
  • the sense CCA duration is 9 ⁇ s in length, which can be composed of A and B. For example, A is 5 ⁇ s and B is 4 ⁇ s, or A is 4 ⁇ s, and B is 5 ⁇ s.
  • the CCA duration parameter in the above table can be replaced with idle CCA duration and m, that is, the CCA duration is dynamically adjusted or determined by changing the idle CCA duration or m value. For example, take Table 6 as an example, as shown in Table 7.
  • the CCA duration parameter can be replaced with idle CCA duration and m, that is, the CCA duration is dynamically adjusted or determined by changing the idle CCA duration or m value.
  • the priority level is related to the CCA start point or CCA duration length or MCOT_U in the LBT access capability level 2.
  • MCOT_U can refer to the time of separate uplink transmission
  • the length of the interval or, may be the length of time after the base station transmits the downlink data within one occupation period of the base station.
  • the length of time may be at the sub-frame level, or it may be at the symbol level.
  • the CCA starting point does not change, the CCA duration duration increases, and the MCOT_U duration increases. As shown in Table 8.
  • the CCA starting point of the previous priority is earlier than the CCA starting point of the latter priority, the CCA duration is fixed, and the MCOT_U duration is increased. As shown in Table 9.
  • the CCA starting point may be set to not limit the starting point of the CCA detection, in addition to FIGS. 3 and 4. Similar to the LBT mechanism of DRS, the starting point of CCA is not limited.
  • the priority level 1 or 2 in the table may be used for the CCA parameter performed by the base station to transmit the UL grant, and the transmission duration may also be less than 1 ms. Alternatively, it can also be used for SRS independent transmission.
  • the CCA starting point can be pushed back in turn, and the CCA duration duration does not change and MCOT_U does not change; or, as the priority level decreases, the CCA starting point can be pushed back in turn, MCOT_U
  • the values increase in sequence, and the CCA duration duration does not change; or, as the priority level decreases, the CCA start point can be pushed back in turn, and the CCA duration duration increases, and the MCOT_U value increases in turn.
  • the increase in the CCA duration may be divided into: the length of the CCA duration is unchanged, and m is increased; or, the duration of the idle CCA duration is increased, and m is unchanged; or, the duration of the idle CCA duration is increased. And m increases;
  • parameter configurations in the LBT access capability level 2 in different priorities may be arbitrarily combined without conflicting with each other.
  • the parameter configuration of its LBT access capability level 2 (the configuration in the table below is for In this case, the CCA starting point is unchanged, the idle CCA duration is unchanged, m is increased, and MCOT_U is increased.
  • the preset CCA starting point in Table 10 may be that the base station notifies the UE through physical layer signaling or higher layer signaling; or the base station and the UE agree in advance.
  • the physical layer signaling includes: a UE-specific DCI, or a public DCI.
  • the high layer signaling may be configured to the UE through RRC signaling.
  • C1, C2, C3, and C4 in the table may be values less than 1 ms (for example, one or more symbol durations), or may be values that satisfy the uplink maximum transmission duration specified in the regulation, for example, 4 ms, or Is the maximum value of the remaining time of transmitting downlink data during the base station occupation period.
  • C1 can be 0.25ms
  • C2 is 0.5ms
  • C3 is 0.75ms
  • C4 is 1ms
  • C1 can be 0.5ms and C2 is 1ms.
  • C3 is 2ms
  • C4 is 3ms or 4ms, or DL occupancy period length - the maximum value of DL transmission duration; according to the current protocol, the maximum DL occupancy period is as shown in Table 11 below:
  • Case 3 Priority Level and CCA Start Point, CCA in LBT Access Ability Level 2 Duration length, MCOT_U and number of LBT symbols.
  • the MCOT_U may be the length of time for the uplink transmission alone, or may be the length of time after the base station transmits the downlink data within one occupation period of the base station. The length of time may be at the sub-frame level, or it may be at the symbol level.
  • the CCA starting point does not change
  • the CCA duration duration increases
  • the MCOT_U duration increases
  • the number of LBT symbols does not change. As shown in Table 12.
  • the CCA starting point does not change
  • the CCA duration duration increases
  • the MCOT_U duration increases
  • the number of LBT symbols changes. As shown in Table 13.
  • the CCA starting point does not change
  • the CCA duration duration does not change
  • the MCOT_U duration increases
  • the number of LBT symbols changes. As shown in Table 14.
  • the CCA starting point of the previous priority is earlier than the CCA starting point of the latter priority
  • the CCA duration duration is unchanged
  • the MCOT_U duration is increased
  • the number of LBT symbols is changed.
  • the CCA starting point may be set to not limit the starting point of the CCA detection, in addition to FIGS. 3 and 4. Similar to the LBT mechanism of DRS, the starting point of CCA is not limited.
  • the priority level 1 or 2 in the table may be used for the CCA parameter performed by the base station to transmit the UL grant, and the transmission duration may also be less than 1 ms. Alternatively, it can also be used for SRS independent transmission.
  • the CCA start point can be pushed back in turn, and the CCA duration duration does not change and the MCOT_U does not change, and the number of LBT symbols does not change; or, as the priority level decreases, the CCA can be correspondingly The starting point is pushed back in turn, and the CCA duration duration is unchanged and MCOT_U is unchanged, and the number of LBT symbols is increased; or, as the priority level is lowered, the CCA starting point can be pushed back in turn, and the CCA duration duration is unchanged and MCOT_U is unchanged.
  • the number of LBT symbols is decreased; or, as the priority level is lowered, the CCA starting point may be pushed back in turn, the MCOT_U value is sequentially increased, and the CCA duration duration is unchanged, and the number of LBT symbols is unchanged; or, with priority
  • the level reduction can be pushed back in response to the CCA starting point, the MCOT_U value increases in turn, and the CCA duration duration does not change, and the number of LBT symbols increases; or, as the priority level decreases, the CCA starting point can be pushed back in turn, MCOT_U
  • the value increases in turn, and the CCA duration duration does not change, and the number of LBT symbols decreases; or, as the priority level decreases, the CCA starting point can be pushed back in turn, and CCA duration Length increases, and MCOT_U
  • the value increases in sequence, and the number of LBT symbols does not change; or, as the priority level decreases, the CCA starting point can be pushed back in turn, and the CCA duration
  • the CCA starting point does not change, the CCA duration duration increases, and the MCOT_U value does not change, and the number of LBT symbols decreases; or As the priority level decreases, the CCA starting point does not change, the CCA duration duration increases, and the MCOT_U value increases, and the number of LBT symbols does not change; or, as the priority level decreases, the CCA starting point does not change, and the CCA duration increases.
  • the number of LBT symbols increases; or, as the priority level decreases, the CCA starting point does not change, the CCA duration duration increases, and the MCOT_U value increases, and the number of LBT symbols decreases; or, The priority level is lowered, the CCA starting point is unchanged, the CCA duration is unchanged, and the MCOT_U value is increased, and the number of LBT symbols is unchanged; or, as the priority level is lowered, the CCA starting point is unchanged, and the CCA duration is unchanged. And MCOT_ The U value increases and the number of LBT symbols increases.
  • the CCA starting point does not change, the CCA duration duration does not change, and the MCOT_U value increases, and the number of LBT symbols decreases; wherein, the CCA duration duration increases. It can be further divided into: idle CCA duration duration is unchanged, and m is increased; or, idle CCA duration duration is increased, and m is unchanged; or, idle CCA duration duration is increased, and m is increased; Case 4: Priority Wait The level is related to the CCA starting point, the CCA duration length, the MCOT_U, the number of LBT symbols, and the TB size in the LBT access capability level 2.
  • the MCOT_U may be the length of time for the uplink transmission alone, or may be the length of time after the base station transmits the downlink data within one occupation period of the base station.
  • the length of time may be at the sub-frame level, or it may be at the symbol level.
  • the TB size is a pointer to a certain priority level. Once the channel is preempted, only the corresponding TB size can be used.
  • the CCA starting point does not change
  • the CCA duration duration increases
  • the MCOT_U duration increases
  • the number of LBT symbols does not change
  • the TB size increases.
  • the first resource block size in Table 17 is less than or equal to or less than the second resource block size is less than or equal to the third resource block size being less than or equal to the fourth resource block size. Or, the four resource block sizes are reduced in turn.
  • the CCA starting point does not change
  • the CCA duration duration does not change
  • the MCOT_U duration increases
  • the number of LBT symbols changes
  • the TB size changes. As shown in Table 18.
  • the CCA starting point of the previous priority is earlier than the CCA starting point of the latter priority
  • the CCA duration duration is unchanged
  • the MCOT_U duration is increased
  • the number of LBT symbols is changed
  • the TB size is changed.
  • the CCA starting point may be set to not limit the starting point of the CCA detection, in addition to FIGS. 3 and 4. Similar to the LBT mechanism of DRS, the starting point of CCA is not limited.
  • the priority level 1 or 2 in the table may be used for the CCA parameter performed by the base station to transmit the UL grant, and the transmission duration may also be less than 1 ms. Alternatively, it can also be used for SRS independent transmission.
  • the CCA starting point can be pushed back in turn, and the CCA duration duration is unchanged and MCOT_U is unchanged, the number of LBT symbols is unchanged, or the TB size/information size is unchanged; or, The lowering of the priority level may be pushed back in response to the CCA starting point, and the CCA duration duration is unchanged and the MCOT_U is unchanged, the number of LBT symbols is unchanged, or the TB size/information size is increased; or, as the priority level is lowered, Can be pushed back in response to the CCA starting point, and the CCA duration duration is unchanged and MCOT_U is unchanged, the number of LBT symbols is unchanged, or The TB size/information size is reduced; or, as the priority level is lowered, the CCA starting point can be pushed back in turn, and the CCA duration duration is unchanged and MCOT_U is unchanged, the number of LBT symbols is increased, or the TB size/information size is not Or; as the priority level decreases, the CCA starting point
  • the CCA duration duration is unchanged and the MCOT_U is unchanged, the number of LBT symbols is decreased, or the TB size/information size is increased; or, as the priority level is lowered, the CCA starting point can be pushed back in turn,
  • the CCA duration duration is unchanged and the MCOT_U is unchanged, the number of LBT symbols is decreased, or the TB size/information size is reduced; or, as the priority level is lowered, the CCA starting point can be pushed back in turn, and the MCOT_U value is sequentially increased, and
  • the CCA duration does not change, the number of LBT symbols does not change, or the TB size/information size does not change; or, as the priority level decreases, the CCA starting point can be pushed back in turn, and the MCOT_U value increases in turn, and the CCA duration does not increase.
  • the TB size/information size does not change; or, as the priority level decreases, the CCA starting point can be pushed back in turn, the MCOT_U value increases in turn, and the CCA duration duration does not change, and the number of LBT symbols increases.
  • the TB size/information size increases; or, as the priority level decreases, the CCA starting point can be pushed back in turn, and the MCOT_U value increases in turn, and CCA The duration of the duration is unchanged, the number of LBT symbols is increased, or the TB size/information size is decreased.
  • the priority level is lowered, the CCA starting point can be pushed back in turn, and the MCOT_U value is sequentially increased, and the CCA duration duration is unchanged.
  • the CCA starting point can be pushed back in turn, and the CCA duration duration increases, and the MCOT_U value increases in turn, the number of LBT symbols does not change, or the TB size/ The size of the information does not change; or, as the priority level decreases, the CCA starting point can be pushed back in turn, and the CCA duration duration increases, and the MCOT_U value increases in turn, the number of LBT symbols does not change, or the TB size/letter The size of the information increases; or, as the priority level decreases, the CCA starting point can be pushed back in turn, and the CCA duration duration increases, and the MCOT_U value increases sequentially, the number of LBT symbols does not change, or the TB size/information size decreases.
  • the CCA starting point can be pushed back in turn, and the CCA duration duration increases, and the MCOT_U value increases sequentially, the number of LBT symbols increases, or the TB size/information size does not change;
  • the CCA start point can be pushed back in turn, and the CCA duration duration increases, and the MCOT_U value increases sequentially, the number of LBT symbols increases, or the TB size/information size increases; or,
  • the lowering of the priority level may be pushed back in response to the CCA starting point, and the CCA duration duration is increased, and the MCOT_U value is sequentially increased, the number of LBT symbols is increased, or the TB size/information size is decreased; or, along with the priority level
  • the reduction can be pushed back in response to the CCA starting point, and the CCA duration duration is increased, and the MCOT_U value is sequentially increased, the number of LBT symbols is decreased, or the TB size/information size is unchanged; or, along
  • the increase in the CCA duration may be divided into: the length of the CCA duration is unchanged, and m is increased; or, the duration of the idle CCA duration is increased, and m is unchanged; or, the duration of the idle CCA duration is increased. And m increases;
  • the CCA duration duration increases, and the MCOT_U value does not change, the number of LBT symbols does not change, or the TB size/information size decreases; or, as the priority level decreases, the CCA starting point does not change, the CCA duration duration increases, and MCOT_U
  • the value does not change, the number of LBT symbols increases, or the TB size/information size does not change; or, as the priority level decreases, the CCA starting point does not change, the CCA duration duration increases, and the MCOT_U value does not change, and the LBT symbol number increases.
  • the MCOT_U value does not change, the number of LBT symbols decreases, or TB is large. Small/information size is reduced; or, as the priority level decreases, the CCA starting point does not change, the CCA duration duration increases, and the MCOT_U value increases, the number of LBT symbols does not change, or the TB size/information size does not change; As the priority level decreases, the CCA starting point does not change, the CCA duration duration increases, and the MCOT_U value increases, the number of LBT symbols does not change, or the TB size/information size increases; or, as the priority level decreases The CCA start point is unchanged, the CCA duration duration is increased, and the MCOT_U value is increased, the number of LBT symbols is unchanged, or the TB size/information size is decreased; or, as the priority level is lowered, the CCA starting point is unchanged, CCA duration The duration increases, and the MCOT_U value increases, the number of LBT symbols increases, or the TB size/information size does not change; or
  • the number of LBT symbols increases, or the TB size/information size increases; or, as the priority level decreases, the CCA starting point does not change, the CCA duration duration increases, and the MCOT_U value increases, and the number of LBT symbols increases.
  • TB size / information size reduction Or, as the priority level decreases, the CCA starting point does not change, the CCA duration duration increases, and the MCOT_U value increases, the number of LBT symbols decreases, or the TB size/information size does not change; or, along with the priority level Decrease, the CCA starting point does not change, the CCA duration duration increases, and the MCOT_U value increases, the number of LBT symbols decreases, or the TB size/information size increases; or, as the priority level decreases, the CCA starting point does not change, The CCA duration duration increases, and the MCOT_U value increases, the number of LBT symbols decreases, or the TB size/information size decreases; or, as the priority level decreases, the CCA starting point does not change, the CCA duration duration does not change, and MCOT_U The value increases, the number of LBT symbols does not change, or the TB size/information size does not change; or, as the priority level decreases, the CCA starting point does not change, the CCA
  • the CCA duration duration can be further divided into: idle CCA duration duration is unchanged, and m is increased; or, idle CCA duration duration is increased, and m is unchanged; or, idle CCA duration Is increased, and m is increased;
  • the priority level is related to at least one of the CCA start point, the CCA duration length, the MCOT_U, the LBT symbol number, the TB size, and the number of HARQ retransmissions in the LBT access capability level 2.
  • the MCOT_U may be the length of time for the uplink transmission alone, or may be the length of time after the base station transmits the downlink data within one occupation period of the base station. The length of time may be at the sub-frame level, or it may be at the symbol level.
  • the TB size is a pointer to a certain priority level. Once the channel is preempted, only the corresponding TB size can be used.
  • the number of HARQ retransmissions may decrease or decrease as the priority level decreases, and the number of HARQ retransmissions may increase or decrease.
  • the priority levels in this embodiment may correspond to UL grant, SRS, PRACH, PUCCH, and PUSCH in sequence, and the channels or signals may be in the same priority level according to requirements, or may be in different priority levels. You can also identify the business types Voice, Video, Best effort, and Background in turn.
  • LBT related parameters corresponding to different priority levels can be deleted according to requirements. That is, the priority level can be related to at least one of the following: CCA starting point, CCA duration length, MCOT_U, LBT symbol number, TB size, HARQ The number of retransmissions.
  • the priority levels of the UL grant, the SRS, the PRACH, the PUCCH, and the PUSCH included in the column to which the priority belongs may be combined or adjusted according to different scenarios and requirements.
  • the UL grant is configured to configure the LBT access capability level 2 parameter of the highest access opportunity.
  • the LBT access capability level 4 mechanism when the LBT access capability level 4 mechanism is adopted for the uplink channel access in the unlicensed carrier, the correspondence between the specific parameter configuration in the LBT access capability level 4 and the different service types or signal types.
  • the priority level is related to at least one of the CCA start point, the maximum contention window, the minimum contention window, the n length, and its MCOT_U in the LBT access capability level 4.
  • the corresponding CCA starting point does not change, and the maximum contention window, minimum contention window, n length, and MCOT_U change. As shown in Table 20 and Table 21.
  • the priority level is related to the CCA start point, the maximum contention window, the minimum contention window, the n length, the MCOT_U, and the number of LBT symbols in the LBT access capability level 4.
  • the CCA starting point is fixed, the maximum contention window, the minimum contention window, the n length, the MCOT_U change, and the number of LBT symbols.
  • the CCA starting point column can also be deleted from the above table. That is, you can not limit the CCA starting point.
  • the priority level is related to the CCA start point, the maximum contention window, the minimum contention window, the n length, the MCOT_U, the number of LBT symbols, and the TB size/information size thereof in the LBT access capability level 4.
  • the CCA starting point is fixed, the maximum contention window, the minimum contention window, the n length, the MCOT_U change, the number of LBT symbols, and the TB size change.
  • the first resource block size is less than or equal to or less than the second resource block size is less than or equal to the third resource block size being less than or equal to the fourth resource block size.
  • the four resource block sizes are reduced in turn. It may be a predefined, or high-level configuration, or the base station and the UE agree in advance, or the physical layer-specific DCI or public DCI determination.
  • the priority level is related to the CCA start point, the maximum contention window, the minimum contention window, the n length, the MCOT_U, the number of LBT symbols, the TB size/information size, and the number of HARQ retransmissions in the LBT access capability level 4.
  • the LBT mechanisms adopted by different priorities are different, and the parameters involved in the mechanism are also different.
  • the CCA duration duration in the first embodiment, the idle CCA duration length and the m value will be replaced by the maximum and minimum contention windows in the LBT access capability level 4 and the n value in the defer period.
  • the other parameters are the same as in the first embodiment, for example, the CCA starting point, the number of LBT symbols, the MCOT_U (the number of subframes transmitted in the uplink, or the number of subframes occupied by one uplink transmission, or the number of symbols) and the TB size.
  • the defer period is composed of a fixed duration + n*slot, the slot is 9 ⁇ s, and n is an integer greater than or equal to 0.
  • n is 0, 1, 2, 3, 4.
  • the uplink transmission it is desirable to transmit the UL grant as soon as possible, so that the base station performs the CCA or LBT mechanism when transmitting the UL grant. Need to use the highest priority corresponding parameters Set. Or, in order to obtain the uplink channel state information, the SRS signal needs to be sent, so the SRS signal needs to be sent with a higher priority, so that the CCA or LBT mechanism or parameter configuration performed by transmitting the SRS signal should correspond to the higher priority LBT parameter. .
  • the LBT parameters and related parameters corresponding to different priorities may be determined by: pre-defined, or high-level configuration, or the base station and the UE agree in advance, or the physical layer-specific DCI or the public DCI determination.
  • the LBT mechanism adopted by the uplink or downlink is the access capability level 4, and the priority relationship between signals or channels is: UL grant>SRS>SRS+PUSCH>PRACH. According to the above priority relationship, the corresponding LBT related parameters are as shown in Table 28:
  • the priority levels in this embodiment may correspond to UL grant, SRS, PRACH, PUCCH, and PUSCH in sequence, and the channels or signals may be in the same priority level according to requirements, or may be in different priority levels. You can also identify the business types Voice, Video, Best effort, and Background in turn.
  • LBT related parameters corresponding to different priority levels can be deleted according to requirements. That is, the priority level may be related to at least one of the following: CCA starting point, maximum contention window, minimum contention window, n, MCOT_U, number of LBT symbols, TB size, number of HARQ retransmissions.
  • the CCA starting point may decrease as the priority lowers the CCA starting point corresponding to the previous priority than the CCA starting point of the latter priority level. Or, without limiting the CCA starting point, or , fixed CCA starting point.
  • the parameters of the CCA start point, the maximum contention window, the minimum contention window, n, the MCOT_U, the number of LBT symbols, the TB size, and the number of HARQ retransmissions are increased or decreased by mutual combination. It is also the scope of protection of the present invention.
  • the LBT access capability level 2 and the LBT access capability level 4 hybrid mechanism are used for the uplink channel access in the unlicensed carrier
  • the specific parameter configuration and the different service types or signal types in different LBT systems or systems are used. Correspondence.
  • the LBT access capability level 2 and the LBT access capability level 4 hybrid mechanism described in the third embodiment may simply combine the conditions in the first embodiment and the second embodiment to determine the different priorities using the LBT access capability level 2. At least one of the LBT access capability levels 4. E.g:
  • the first preset value, the second preset value, the third preset value, and the fourth preset value in the table 29 may be the same value, or may be sequentially increased values, and the LBTCat2 and the LBTCat4 respectively Indicates LBT access capability level 2 and LBT access capability level 4. That is, the latter performs a CCA starting point later than the former starting CCA.
  • the starting point of the CCA may be a symbol boundary, or a subframe boundary, or a starting boundary of the CCA detecting area, or a certain starting interval of the medium interval segment of the CCA detecting area. boundary.
  • the different CCA starting points corresponding to different priorities may be the starting positions of different equally spaced segments in the CCA detecting area, or random or arbitrary positions in different equally spaced segments in the CCA detecting area.
  • the CCA starting point may be unchanged, or the CCA starting point of the previous priority may be earlier than the CCA starting point of the latter priority, or the CCA starting point may not be limited, or the CCA starting point may be fixed.
  • the priority of different signals or channels can be seen. If the UL grant has the highest priority, the LBT mechanism executed when the UL grant is sent should adopt the LBT access capability level 2 and the idle CCA duration is 16 ⁇ s, and the perceived CCA detection time is 9 ⁇ s. That is to say, when the base station detects that the channel continuous idle time is at least 25 ⁇ s when transmitting the UL grant, it is considered that the use of the unlicensed carrier is obtained and the UL grant is directly transmitted.
  • the CCA starting point for performing the UL grant may be unrestricted, or may be limited to a fixed time point, or a certain symbol boundary, or a subframe boundary, or a slot boundary.
  • the priority levels in this embodiment may correspond to UL grant, SRS, PRACH, PUCCH, and PUSCH in sequence, and the channels or signals may be in the same priority level according to requirements, or may be in different priority levels. You can also identify the business types Voice, Video, Best effort, and Background in turn.
  • LBT related parameters corresponding to different priority levels can be deleted according to requirements. That is, the priority level can be related to at least one of the following: CCA starting point, CCA duration length, MCOT_U, number of LBT symbols, TB size, number of HARQ retransmissions.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform the channel access method according to the embodiment of the present invention.
  • a multiplexing rule is provided when the uplink PUSCH transmission includes multiple different priorities.
  • the channel access is performed according to the LBT parameter or the transmission duration of the PUSCH priority level. transmission. Specifically, as shown in Table 30:
  • the parameter items corresponding to each level in Table 10 may be at least one of the columns in Table 10, or may be combined with each other in each column.
  • the priority levels in Table 29 can also be business types: Voice, Video, Best effort, and Background.
  • the column corresponding to the corresponding LBT mechanism only represents one LBT mechanism, such as: LBT access capability level 2, or LBT access capability level 4.
  • the starting point of the CCA in the table may be the boundary of the symbol, or the boundary of the subframe, or the starting boundary of the CCA detection area, or the starting boundary of the medium interval segment of the CCA detection area, or the CCA detection area Machine or any position.
  • the CCA detection area may be notified to the UE by the base station through the physical layer-specific DCI signaling or the common DCI signaling, or the base station and the UE agree in advance, or the high-level configuration.
  • Rule 2 When the uplink PUSCH transmission includes multiple different priority levels, channel access and transmission occupation are performed according to the LBT parameter corresponding to the highest priority. The principle is the same as rule 1, which is not illustrated here.
  • Rule 3 When the uplink PUSCH transmission includes multiple different priority levels, channel access and transmission occupation are performed according to the LBT parameters corresponding to the preset priority.
  • the principle is the same as rule 1, which is not illustrated here.
  • the preset priority may be determined by one of the following: the base station and the UE agree in advance; or, the high-layer RRC signaling configuration; or the physical layer-specific DCI is notified to the UE; or the physical layer public DCI is notified to the UE.
  • the UE selects an LBT priority level or LBT mechanism, determines the uplink transmission duration, determines the number of symbols using the LBT, the number of HARQ retransmissions, and the TB size.
  • the UE includes three priority levels in the PUSCH transmission, Video, Best effort, and Background, and the UE selects which of the three priority levels is used as the final adopted or executed priority level, thereby selecting according to the selection.
  • the priority level determines the uplink transmission duration, and the LBT parameter value at the time of contention access, and the number of LBT symbols, the number of HARQ retransmissions, and the TB size.
  • the base station determines a minimum transmission duration, or a maximum transmission duration, or a preset transmission duration according to the priority of the uplink transmission service and the transmission signal/channel, and determines the number of symbols using the LBT.
  • the user equipment may perform channel access according to the LBT parameter value of the contention access corresponding to the transmission duration indicated by the base station, or select an LBT parameter or a parameter value by itself.
  • Rule 6 Adaptive priority level selection. For example, it is assumed that the LBT mechanism or parameter corresponding to the first lowest priority performs channel access, and the transmission duration is 2 ms, and the traffic of the lowest priority is small, and only after less than 1 ms is transmitted, the transmission is completed. Other priorities of the transmission The service or signal/signal type and the service to be started to transmit in the current subframe. At this time, the channel can be performed according to the higher or highest, or still according to the lowest priority, or according to the predetermined priority LBT mechanism or parameter. The access is transmitted within the corresponding transmission duration.
  • the UE may send the occupation signal, or notify the base station or the same cell or the same Used by other UEs in the operator.
  • the transmission device When the transmission duration or the traffic volume is greater than the transmission duration corresponding to the priority, the transmission device immediately competes for the unlicensed carrier according to the LBT mechanism or the LBT parameter corresponding to the highest priority at the end of the maximum duration corresponding to the priority, or Perform the most simplified LBT (eg, LBT access capability level 2 and CCA duration is 16 ⁇ s or 25 ⁇ s, or DRS LBT access capability level 2, or enhanced LBT access capability level 2, whose CCA detection starting point is Not fixed, or randomly selected).
  • the transmission device immediately executes the LBT mechanism after the corresponding maximum transmission duration ends, or executes the LBT mechanism immediately after the interval of the gap.
  • the gap duration is not less than a preset value, wherein the preset value may be 9 ⁇ s or 16 ⁇ s.
  • the uplink transmission duration in the present invention can be understood as two layers: one layer means that the base station occupation time is not considered, and only the user equipment transmission time length is considered; the other layer means that the transmission time of the user equipment is dependent on the length of time occupied by the base station.
  • the duration of the downlink transmission Assuming that the base station occupancy period is 8 ms and the downlink transmission duration is 2 ms, the maximum transmission duration available for uplink is 6 ms.
  • an indication signaling or notification signaling is provided for notifying the user equipment which symbol in the null subframe, and the vacant The number of symbols for channel access.
  • the advantage of this approach is to save the power consumption of the UE to perform CCA.
  • the base station and the UE perform the CCA for the UE that is competing or preparing to compete according to the last symbol in the uplink subframe, or the first symbol.
  • the uplink resource is wasted to a certain extent, and in the case of multi-subframe scheduling, the occupied channel of the continuously scheduled UE is stolen by other nodes at the vacant resource, because the transmission is interrupted.
  • the transmitting UE can perform a one-shot LBT with a CCA duration of 25 ⁇ s at the vacant symbol position, or transmit a reserved signal or an occupied signal only on a specific RE.
  • the reserved signal or occupied signal may be an SRS.
  • Manner 2 The base station dynamically indicates which uplink subframe, which symbol in the subframe is vacant, and at least one of the number of vacant symbols, and the UE used for contention performs CCA.
  • the method for indicating at least one of the uplink subframe position, the symbol position of the subframe, and the number of vacant symbols is as follows:
  • Method 1 The upper layer RRC configures a specific location in the uplink subframe.
  • the consecutively scheduled subframes are not vacant symbols, and are used by other UEs to perform CCA.
  • the first one of the first subframes in the contiguous contiguous subframe is configured to have one or more symbols in the subframe before the subframe.
  • one or more symbols are started in a subframe in which a plurality of UEs are vacantly scheduled.
  • Method 2 The base station uses physical layer-specific DCI signaling, or common DCI signaling, or designs a new DCI to notify the UE of the number of symbols and locations that are vacant.
  • the physical layer-specific DCI may indicate, at which symbol positions in the scheduling subframe, the UE does not transmit the PUSCH. For example, one DC subframe is indicated in the DCI, and the vacant symbol position or number is also indicated in the DCI, or implicitly indicates the last symbol position in the vacant scheduling subframe, or the first symbol position.
  • one DCI may indicate multiple scheduling subframe positions, and the number of vacant symbols or vacancies indicated in the DCI is located in the first scheduling subframe, or implicitly indicates the last symbol position in the odd scheduling subframe position, Or, the first symbol position is empty Or, indicating that the first symbol position in the subframe in which the multiple UEs are scheduled or the last symbol of the previous subframe in the subframe in which the multiple UEs are scheduled is vacant, or when there are UEs in the plurality of scheduling UEs that perform LBT failure
  • the UE that successfully performs the LBT needs to vacate one symbol for the competing UE to perform CCA at the end of the first subframe of continuous transmission or at the beginning of the second subframe.
  • an IE item or field that is useless in the LAA in the format format 0 or 4 for example, a Frequency hopping flag (1 bit) and a Carrier indicator (3 bit), can be used to assign a new number of bits to the unused field.
  • the meanings are as follows: 1. The CCA location is not configured; 2. The specific location of each subframe is reserved for CCA; 3.
  • the last symbol in the continuous scheduling subframe is reserved for CCA; the location of the CCA One or more symbols at the end of a subframe before a single or consecutive multiple scheduling subframes, one or more symbols at the end of a single or consecutive multiple scheduling subframes, one or more of a single or consecutive multiple scheduling subframes Symbols.
  • the specific location may be defined in advance, or the base station and the UE achieve a predetermined good.
  • the LAA subframe branch can be configured in format 1C.
  • x bits are used to indicate LAA subframe configuration
  • y bits are used for reservation. Among them, part of the y bits can be used to perform the uplink subframe index, the symbol position and the number of symbols.
  • An uplink subframe index wherein the subframe index of the vacant symbol may be notified to the UE by occupying s bits, or may notify both the vacant subframe index and the vacant symbol position and the number of symbols. You can also only notify one of all the options after 2).
  • the subframe index in the vacant continuous scheduling subframe is the last symbol in the even subframe
  • the subframe index in the vacant continuous scheduling subframe is the last two symbols in the even subframe
  • the subframe index in the vacant continuous scheduling subframe is the first symbol in the even subframe
  • the subframe index in the vacant continuous scheduling subframe is the first two symbols in the even subframe
  • the subframe index in the vacant continuous scheduling subframe is the last symbol in the odd subframe
  • the subframe index in the vacant continuous scheduling subframe is the last two symbols in the odd subframe
  • the subframe index in the vacant continuous scheduling subframe is the first symbol in the odd subframe
  • the subframe index in the vacant continuous scheduling subframe is the first two symbols in the odd subframe
  • the scheduled uplink subframe position is determined according to the n+k timing relationship, and one or two symbols of the end in each subframe or one subframe are vacant.
  • the scheduled uplink subframe position is determined according to the n+k timing relationship, and one or two symbols starting in each subframe or one subframe are vacant.
  • n is a subframe in which the DCI is transmitted. Furthermore, in addition to the IE field of the subframe index in which the vacant symbol is added in the DCI, an IE field indicating the number of vacant symbols can be added, and an IE field of the position of the vacant symbol in the subframe, the LBT mechanism, once vacant The symbol position performs an LBT failure, and one or two symbols at the end of the sub-frame or next sub-frame in which the LBT failure is performed or one or two symbols at the beginning are vacant.
  • format 1C can be used to add an if else branch to the format to indicate the uplink subframe index, symbol position, and number of symbols. That is, using part or all of the total x+y bits in format 1C to indicate the uplink subframe index, symbol position, number of symbols, LBT mechanism, SRS symbol position, number of CCA symbols used for SRS, CCA for PUSCH and scheduling thereof information.
  • the above IE fields may represent their meanings independently of the occupied bits, or may be combined with each other to occupy a specific bit to indicate a specific meaning.
  • the resource block indication is represented by the u-bit; the scheduling resource block information can be configured as an option. When there is scheduling information, the option can be configured. When the PUSCH is not scheduled, the IE item such as the corresponding resource indication may not be configured.
  • the IE items used in the existing DCI to indicate resource allocation and scheduling can be directly copied.
  • the modulation and coding scheme is represented by o bits; it can also be a matchable item.
  • the principle is the same as above.
  • the LBT mechanism is represented by q bits; the LBT mechanism includes: one-shot LBT, the CCA duration is at least 25 ⁇ s, for example, 25 ⁇ s, 34 ⁇ s; the LBT access capability level is 4, and the maximum contention window can be from the set ⁇ 1, 2, 3, 4, Choose 5,6,7,8,9,10,11,12,15,31, etc.
  • the SRS symbol position is represented by r bits. Indicates whether the SRS symbol is the last symbol in the subframe specified in the existing protocol, or whether the SRS symbol position is modified to be the first symbol in the subframe, or the second symbol, or the second-to-last symbol, or DMRS The symbol position, or the last symbol in the first half of the time slot, or the first symbol in the second half of the time slot.
  • bits in the DCI can be used to formulate corresponding IEs or fields according to our requirements, for example: indication: scheduling subframes, number of scheduling subframes, time domain pattern of scheduling subframes, cluster size of scheduling subframes, scheduler The number of clusters of the frame, the cluster interval, the CCA position, the number of CCA symbols, the scheduling sub-frame position corresponding to various combinations of the CCA interval and the starting point of the CCA, and the CCA position.
  • the remaining bits can be used to indicate content such as resource allocation, SRS request field, TPC for scheduling PUSCH, and the like. If there are remaining bits, it is used for reservation.
  • UE1 is continuously scheduled for 4 subframes, and the CCA time domain pattern of UE1 is the last symbol of one subframe before the scheduling subframe, and the interval is 3 subframes, that is, the scheduled third subframe.
  • the last symbol is to be vacant or silent for the scheduled UE2 in the next subframe to perform CCA, and the last symbol of the last scheduled subframe is also vacant for UE3 in the next subframe to perform CCA. If the CCA execution location is not a sub-frame before the sub-frame When the last symbol in the frame is used, the same applies to the CCA position for other cases.
  • Method 3 The upper layer and the physical layer jointly indicate the number of symbols and locations of the UE that are vacant.
  • the uplink CCA time domain pattern is actually configured by the upper layer, and the time domain location corresponding to the CCA pattern is triggered by the physical layer proprietary DCI or the public DCI or the new DCI.
  • the CCA symbol position is enabled, the user equipment needs to vacate the corresponding CCA symbol position in the subframe, and the UE for contention performs CCA.
  • the CCA time domain pattern of the upper layer configuration may be separated by each subframe.
  • the CCA time domain is based on symbols.
  • each last symbol in the upper layer configuration uplink subframe is the location of the CCA, and whether the last symbol corresponding to the PUSCH in each subframe is to be destroyed is determined by the physical layer-specific DCI or the public DCI dynamic indication.
  • the method and principle are the same as those of the example of Fig. 4 or the embodiment.
  • FIG. 5 is a schematic diagram of a combination of multiple subframes and single subframe scheduling according to an embodiment of the present invention, as shown in FIG. 5.
  • UE1 is continuously scheduled in subframe #n+1, subframe #n+2, subframe #n+3, and subframe #n+4.
  • UE2 is also continuously scheduled on the same subframe as UE1.
  • UE1 and UE2 perform CCA on the last symbol of a subframe before subframe #n+1 or on the first symbol in subframe #n+1, and adopt LBT access capability level 4, the maximum competition.
  • the window is no larger than 7. If UE1 performs LBT success and UE2 fails to perform LBT, UE1 vacates the last symbol or the first symbol in vacant subframe #n+2 for transmission in subframe #n+1 for UE2 to perform CCA.
  • the LBT mechanism adopted by UE2 may be the original access capability level 4, the maximum contention window is not greater than 7, or a one-shot LBT with a CCA duration of 25 ⁇ s may be used, or an LBT mechanism similar to DRS may be adopted. Access capability level 4 can also be used, and the maximum contention window is no more than three. That is, the original LBT mechanism can be used, or a smaller competition window than the original LBT mechanism, or an LBT mechanism that accesses the channel more quickly than the original LBT mechanism can be used.
  • the UE1 does not vacate the corresponding symbol, the UE2 is blocked from performing CCA and performing transmission. Therefore, the UE1 corresponds to the above.
  • the vacant symbol position can perform a one-shot LBT with a CCA duration of 25 ⁇ s, or only send a reserved signal or occupy signal on a specific RE.
  • the reserved signal or occupied signal may be an SRS.
  • UE1 is continuously scheduled in subframe #n+1, subframe #n+2, subframe #n+3, and subframe #n+4.
  • UE2 is continuously scheduled in subframe #n+1, subframe #n+2, and UE3 is scheduled in subframe #n+3, and subframe #n+4.
  • the LBT access capability level is 4, and the maximum competition window is not greater than 7.
  • UE1 and UE2 do not leave symbols in consecutive transmission intermediate subframes.
  • UE2 Since UE2 continuously transmits 2 subframes, no transmission is performed on subframe #n+3, and subframe #n+4. At this time, if UE1 is normally transmitted in the remaining subframes #n+3 and subframe #n+4, no vacant symbols are used for other competing UEs to perform CCA, and at this time, channel access and uplink transmission of UE3 are blocked. Therefore, UE1 needs to leave the last symbol of the previous subframe of subframe #n+3, or the first symbol of the null subframe #n+3 is used for UE3 to perform CCA.
  • the UE1 may perform a one-shot LBT with a CCA duration of 25 ⁇ s at the above-mentioned corresponding vacant symbol position, or send a reserved signal or an occupation signal only on a specific RE.
  • UE3 can perform LBT access capability level 4, and the maximum contention window is not greater than 7.
  • the number of symbols and the location for notifying the user equipment to be used for the CCA may be in accordance with the methods in the first and second modes in this embodiment.
  • the above methods can be used in combination without conflicting with each other.
  • a process for identifying or distinguishing between a missed UL grant, a CCA failure, and an uplink data transmission failure is mainly provided.
  • Step 1 The base station sends an uplink grant UL grant to the user equipment device through the downlink control channel.
  • Step 2 After receiving the uplink grant UL grant, the user equipment device follows a specific timing. Relationship, CCA detection before timing relationship.
  • the specific timing relationship is: n+k, where n represents a subframe in which the base station transmits DCI, and k is an integer greater than or equal to 4.
  • the user equipment determines the scheduled subframe according to the n+k timing relationship.
  • the user equipment may perform uplink CCA detection after receiving the UL grant from the base station or before scheduling the subframe.
  • the user equipment may send an indication information to the first specific location on the authorized carrier, to notify the user that the device has received the UL grant information sent by the base station.
  • an indication information may be sent on the second specific location on the unlicensed carrier, to notify the user that the device has received the UL grant information sent by the base station.
  • the premise that the indication information is sent on the unlicensed carrier is that the right to use the CCA to the unlicensed carrier must be performed.
  • the CCA may be before, or after receiving the UL grant.
  • the first specific location may be a location agreed by the base station and the UE in advance, or the base station notifies the location of the UE by using a proprietary DCI or a public DCI.
  • the location may be a subframe location, or a symbol location in a subframe, or an indication symbol location.
  • the second specific location may be a specific symbol in the first subframe position after receiving the UL grant, or a symbol before the uplink transmission starts after the downlink transmission ends, or the first subframe after the LBT success time, or LBT The first symbol after success, or the first symbol or specific symbol in the first subframe after the LBT success time, or the Ack/Nack position in the scheduling subframe.
  • the information sent at the Ack/Nack symbol position is used to indicate whether the UL grant is successfully received.
  • the discriminating method can also multiplex the method of Ack/Nack.
  • the indication information or signal may be SR, or Preamble, or SRS, or DMRS.
  • Step 3 If the user equipment performs CCA success before the timing relationship, the uplink data or SRS may be sent.
  • an indication signal or sequence can also be transmitted at a third specific location in the uplink PUSCH transmission.
  • the UE is continuously scheduled for multiple subframes, and the third specific location may be Is that the UE continuously schedules the first subframe of the multiple subframes, or the first or second even subframe, or the first or second odd subframe, or one subframe position indicated by the base station . And if the UE is a single subframe scheduling, the third specific location is the scheduling subframe position.
  • the symbol position of the indication signal or sequence sent in the foregoing third specific location may be previously agreed by the base station and the UE, or the base station may notify the UE by using a proprietary DCI or a public DCI or a new DCI, or a high-layer RRC configuration. Or, implicitly, as long as the LBT succeeds, corresponding to the first symbol in the scheduling subframe, or the last symbol, or the third and fifth symbols in the first half slot or the third and the third in the second half slot Five symbols (ACK/NACK symbol position), or the fourth symbol position in the first half slot or the fourth symbol position (DMRS symbol position) in the second half slot.
  • the indication sequence or signal used to indicate the success or failure of the CCA may be in the first symbol in the scheduling subframe, or the last symbol, or in the third and fifth symbols or the second half slot in the first half slot.
  • the third and fifth symbols (ACK/NACK symbol positions), or the fourth symbol position in the first half slot or the fourth symbol position (DMRS symbol position) in the second half slot are transmitted.
  • the indication sequence or signal may be sent on the authorized carrier on the same subframe as the unscheduled carrier corresponding to the scheduling resource location.
  • the indication sequence or signal may be sent on a corresponding symbol position in the corresponding scheduling subframe on the authorized carrier or the unlicensed carrier. Used to indicate that the user equipment has successfully performed CCA. This information can also distinguish the difference between CCA failure and data transmission failure.
  • the indication information or signal may be SR, or Preamble, or SRS, or DMRS.
  • the indicated signal or sequence can be sent at a specific location of the authorized carrier.
  • the base station and the UE implement a location on the predetermined authorized carrier or the unlicensed carrier to transmit the indication signal or sequence.
  • Step 4 After receiving the indication information or data sent by the user equipment, or after receiving the signal on the specific area, the base station does not perform data decoding, but directly detects the channel on the authorized carrier or the unlicensed carrier. Whether the energy meets certain threshold requirements and thus determines Whether to decode the data, or to decode the indication message; or, the base station does not decode the data first, but directly decodes the indication signal or sequence sent by the specific location to determine whether the CCA is successful, and thus decodes the received data, to some extent, this method The complexity of the base station side is reduced, and energy consumption is saved.
  • the base station decodes the indication information before decoding the received information, and the decoded indication information indicates that the CCA fails to be executed, and the base station does not need to decode the data information, thereby reducing the power consumption and the detection complexity of the base station side to some extent. If the CCA is successfully executed, the base station performs decoding of the received data.
  • the indication information or signals involved in the foregoing steps may be mapped to the frequency domain of the corresponding symbol in the order of the respective time domains, or in reverse order, or in a random order, so that the decoding is performed in the corresponding order or in reverse order.
  • the decoding may be performed in a random order to obtain the meaning of the respective indications in the respective locations. For example, if the corresponding location in Step 2 receives the indication information or signal, and the decoding succeeds, the user equipment may have successfully received the UL grant. If the corresponding location receives the indication information or signal in step 3, and the decoding succeeds, the user equipment may be considered to perform CCA success or failure.
  • Whether the UL grant is missed, whether the CCA is successful, and whether the data transmission is successful is distinguished by transmitting an execution indication at different predetermined locations.
  • the different predetermined locations are shared by the base station and the UE, or are notified by the base station to the UE.
  • a channel access device is also provided, which is used to implement the foregoing embodiments and optional implementations, and details are not described herein.
  • the term "module” may implement a combination of software or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a structural block diagram of a channel access apparatus according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes: a determining module 61 and a processing module 62, which will be described below.
  • a determining module 61 configured to determine a priority level of using an unlicensed carrier; the processing module 62 is coupled to the determining module 61, configured to perform CCA detection according to the determined priority level for accessing the unlicensed carrier
  • the CCA parameter performs channel access processing on an unlicensed carrier.
  • FIG. 7 is a block diagram showing an optional structure of the determining module 61 in the channel access apparatus according to the embodiment of the present invention. As shown in FIG. 7, the determining module 61 includes: a first determining unit 71 and a second determining unit 72, This determination module 61 is described.
  • the first determining unit 71 is configured to determine that the priority level is a priority level when the priority level of the unlicensed carrier is one, and the second determining unit 72 is configured to use the priority level of the unlicensed carrier. In the case of at least two, one of the at least two priority levels is selected as the priority level according to a predetermined principle.
  • the determining module 61 is further configured to determine, by using at least one of the following manners, a priority level of using an unlicensed carrier: a predefined manner, determining a priority level; and determining a priority by using a manner in which the base station negotiates with the UE.
  • the priority level is determined by receiving the RRC signaling manner; the priority level is determined by means of the physical layer-specific DCI signaling; and the priority level is determined by the physical layer common DCI signaling manner.
  • FIG. 8 is a block diagram showing an optional structure of a channel access apparatus according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes: an acquisition module 81, which is provided below, in addition to all the structures shown in FIG. The acquisition module 81 is described.
  • the obtaining module 81 is connected to the foregoing determining module 61 and the processing module 62, before performing CCF parameters of the CCA detection before using the unlicensed carrier matched with the determined priority level, before performing channel access processing on the unlicensed carrier, Acquiring at least one of a subframe position and a reserved symbol index for performing CCA by acquiring at least one of a subframe position for performing CCA and a reserved symbol index in a predefined manner; Obtaining at least one of a subframe position and a reserved symbol index for performing CCA in a manner that the base station and the UE pre-arrange at least one of a subframe position and a reserved symbol index; and configuring a reservation in the transmission subframe by using high-layer RRC signaling a method of obtaining, at least one of a subframe position and a reserved symbol index for performing CCA; and configuring a downlink transmission end position by using high-layer RRC signaling to obtain a subframe position for performing CCA and a reserved symbol index at least One of
  • the acquiring module 81 is further configured to obtain at least one of a subframe position and a reserved symbol index by using the common DCI signaling or the newly designed DCI signaling, including: configuring the branch in the LAA subframe in the common DCI signaling.
  • the partial bits of the Y reserved bits indicate at least one of the following: a subframe position for performing the CCA reserved symbol, a CCA position, a CCA vacant symbol index, a CCA interval, a CCA start point, where Y is a preset
  • the number of bits in all the bits in the newly added branch or newly designed DCI signaling in the common DCI signaling indicates at least one of the following information: the subframe position for performing the CCA reserved symbol, the CCA position, the CCA vacant Symbol index, CCA interval, CCA starting point.
  • FIG. 9 is a block diagram of an optional structure of a processing module 62 in a channel access apparatus according to an embodiment of the present invention.
  • the processing module 62 includes: a receiving unit 91, a detecting unit 92, and a first sending unit 93.
  • the processing module 62 will be described below.
  • the receiving unit 91 is configured to receive uplink grant information sent by the base station, and the detecting unit 92 is connected to the receiving unit 91, configured to perform CCA detection before the location determined according to the predetermined timing relationship; the first sending unit 93 is connected to the foregoing The detecting unit 92 is configured to send uplink data or SRS to the base station if the CCA detection is successful.
  • FIG. 10 is a block diagram 2 of an optional structure of a processing module 62 in a channel access apparatus according to an embodiment of the present invention.
  • the processing module 62 includes all the structures shown in FIG. At least one of the following is included: a second transmitting unit 94, a third transmitting unit 95, and the processing module 62 is described below.
  • the second sending unit 94 is configured to send the first indication information on the first predetermined location on the authorized carrier, where the first indication information is used to indicate that the user equipment has received the uplink authorization information sent by the base station, and the third sending unit 95 uses The first indication information is sent at a second predetermined location after performing the CCA detection successful use of the unlicensed carrier.
  • FIG. 11 is a block diagram 3 of an optional structure of a processing module 62 in a channel access apparatus according to an embodiment of the present invention.
  • the processing module 62 includes all the structures shown in FIG. 9 or FIG. 10 (in the figure). In the example of FIG. 9 , at least one of the following is further included: a fourth transmitting unit 101 and a fifth transmitting unit 102.
  • the processing module 62 will be described below.
  • the fourth sending unit 101 is configured to send the second indication information on the third predetermined location on the authorized carrier, where the second indication information is used to indicate that the user equipment performs the execution result information of the CCA detection, where the execution result information includes: performing The CCA detection succeeds or the CCA detection fails.
  • the fifth sending unit 102 is configured to send the second indication information in a fourth predetermined position after the CCA detects that the unlicensed carrier usage right is successfully contending.
  • FIG. 12 is a structural block diagram of a UE according to an embodiment of the present invention. As shown in FIG. 12, the UE 110 includes:
  • the memory 1101 is configured to store a channel access executable instruction
  • the processor 1102 is configured to execute a channel access executable instruction stored by the memory 1101, determine a priority level of using an unlicensed carrier, and select, according to the determined priority level, the access to the unauthorized
  • the CCA parameters of the CCA detection are performed before the carrier, and the channel access processing of the unlicensed carrier is performed.
  • the processor 1102 is further configured to: if the priority level of the unlicensed carrier is one, determine that the priority level is the priority level; In the case where the carrier has a priority level of at least two, according to a predetermined principle, One of the at least two priority levels is selected as the priority level.
  • FIG. 13 is a structural block diagram of a base station according to an embodiment of the present invention. As shown in FIG. 13, the base station 120 includes:
  • the memory 1201 is configured to store a channel access executable instruction
  • the processor 1202 is configured to execute a channel access executable instruction stored by the memory 1201, determine a priority level of using an unlicensed carrier, and select, according to the determined priority level, the access to the unauthorized
  • the CCA parameters of the CCA detection are performed before the carrier, and the channel access processing of the unlicensed carrier is performed.
  • the processor 1202 is further configured to: if the priority level of the unlicensed carrier is one, determine that the priority level is the priority level; In the case where the carrier has a priority level of at least two, one of the at least two priority levels is selected as the priority level according to a predetermined principle.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a computer storage medium.
  • the above computer storage medium may be configured to store program code for performing the following steps: the steps in the first embodiment.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any particular The combination of hardware and software.
  • the embodiment of the present invention adopts a priority level for determining an unlicensed carrier, and performs channel access processing for an unlicensed carrier according to a CCA parameter that performs CCA detection before accessing the unlicensed carrier that matches the determined priority level. In this way, the problem of low channel access probability on the unlicensed carrier can be effectively solved, thereby improving the success rate of channel access.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信道接入方法、装置、用户设备、基站及计算机存储介质。所述方法包括:确定使用非授权载波的优先级等级(S201);根据与所确定的优先级等级匹配的用于接入非授权载波前执行空闲信道评估(CCA)检测的CCA参数,进行非授权载波的信道接入处理(S202)。通过应用本发明,可以解决在利用非授权载波进行信道接入时信道接入概率较低的问题。

Description

信道接入方法、装置、用户设备、基站及计算机存储介质
相关申请的交叉引用
本申请基于申请号为201610203748.0、申请日为2016年04月01日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,具体而言,涉及一种信道接入方法、装置、用户设备(User Equipment,UE)、基站及计算机存储介质。
背景技术
随着数据业务的快速增长,授权频谱的载波上承受的数据传输压力也越来越大。因此,通过非授权频谱的载波来分担授权载波中的数据流量成为后续长期演进(Long Term Evolution,LTE)发展的一个重要的演进方向。其中:非授权频谱具有如下特征:免费/低费用;准入要求低,成本低;可用带宽大;资源共享等等。
LTE系统的版本13(Rel-13)于2014年9月开始立项研究。其中,一种重要的研究议题就是LTE系统使用非授权频谱或载波工作。所述使用非授权频谱或载波工作相关技术将使得LTE系统能够使用目前存在的非授权频谱的载波,很大程度上得以提升LTE系统的潜在频谱资源,使得LTE系统能够获得更低的频谱成本。在历经授权协助接入(Licensed Assisted Access,LAA)的研究项目(Study item,SI)和工作项目(Work item,WI)阶段后,于2015年11月结束Rel-13LAA下行的标准化工作,并在随后的无线接入网第70次(RAN#70)全会上针对LAA增强议题达成共识,其目 的在于研究并支持帧结构类型3下的LAA上行行为。在版本14(Rel-14)版本中,于2016年2月启动对于LAA上行的标准化研究工作。其中,一个重要的议题就是上行信道接入技术。通过本次会议所述上行信道接入技术仅确立了上行可采用的LBT机制。但仅采用所述已确立的LBT机制的基础上会出现信道接入的概率较低的问题。
因此,在相关技术中,需要解决在非授权载波上存在的信道接入概率较低的问题。
发明内容
本发明实施例提供一种信道接入方法、装置、UE、基站及计算机存储介质,能够有效解决在非授权载波上进行信道接入概率低的问题。
根据本发明实施例的一个方面,提供一种种信道接入方法,包括:确定使用非授权载波的优先级等级;根据与确定的所述优先级等级匹配的用于接入所述非授权载波前执行空闲信道评估(Clear Channel Assessment,CCA)检测的CCA参数,进行所述非授权载波的信道接入处理。
根据本发明实施例的又一方面,本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述信道接入方法。
根据本发明实施例的另一方面,提供一种信道接入装置,包括:确定模块,配置为确定使用非授权载波的优先级等级;处理模块,配置为根据与确定的所述优先级等级匹配的用于接入所述非授权载波前执行CCA检测的CCA参数,进行所述非授权载波的信道接入处理。
根据本发明实施例的另一方面,提供一种UE,包括:存储器,配置为存储信道接入可执行指令;处理器,配置为执行所述信道接入可执行指令,确定使用非授权载波的优先级等级;根据与确定的所述优先级等级匹配的用于接入所述非授权载波前执行CCA检测的CCA参数,进行所述非授权 载波的信道接入处理。
根据本发明实施例的又一方面,提供一种基站,包括:存储器,配置为存储信道接入可执行指令;处理器,配置为执行所述信道接入可执行指令,确定使用非授权载波的优先级等级;根据与确定的所述优先级等级匹配的用于接入所述非授权载波前执行CCA检测的CCA参数,进行所述非授权载波的信道接入处理。
本发明实施例所提供的信道接入方法、装置、UE、基站及计算机存储介质,采用确定使用非授权载波的优先级等级;根据与确定的优先级等级匹配的用于接入非授权载波前执行CCA检测的CCA参数,进行非授权载波的信道接入处理。如此,能够有效解决在非授权载波上进行信道接入概率低的问题,进而提高信道接入的成功率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例信道接入方法的应用场景网络架构图;
图2是根据本发明实施例的信道接入方法的流程图;
图3是根据本发明实施例的不同优先级等级对应的CCA起点示意图;
图4是根据本发明实施例的不同优先级等级对应的CCA起点,在对应的区间内任意选择的示意图;
图5是根据本发明实施例的一个多子帧和单子帧调度结合的示意图;
图6是根据本发明实施例的一种信道接入装置的结构框图;
图7是根据本发明实施例的信道接入装置中确定模块的结构框图;
图8是根据本发明实施例的一种信道接入装置的结构框图;
图9是根据本发明实施例的信道接入装置中处理模块的结构框图一;
图10是根据本发明实施例的信道接入装置中处理模块的结构框图二;
图11是根据本发明实施例的信道接入装置中处理模块的结构框图三;
图12是根据本发明实施例的UE的结构框图;
图13是根据本发明实施例的基站的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本发明实施例中,如图1所示,在LTE网络环境下,为了提供数据业务质量,基站和UE在进行数据交互的过程中,采用确定使用非授权载波的优先级等级;根据与确定的优先级等级匹配的用于接入非授权载波前执行CCA检测的CCA参数,进行非授权载波的信道接入处理。如此,能够有效解决在非授权载波上进行信道接入概率低的问题,进而提高信道接入的成功率。
在本发明实施例中,提供一种信道接入方法,图2是根据本发明实施例的信道接入方法的流程图,如图2所示,该流程包括如下步骤:
步骤S201,确定使用非授权载波的优先级等级;
步骤S202,根据与确定的优先级等级匹配的用于接入非授权载波前执行CCA检测的CCA参数,进行非授权载波的信道接入处理。
通过上述步骤,依据优先级等级匹配进行CCA检测的CCA参数的方式,进行信道接入处理,有效解决在非授权载波上进行信道接入概率低的问题,在一定程度上提高信道接入的成功率。
其中,由于使用非授权载波的优先级等级可以为多个,因此,确定使 用非授权载波的优先级等级的方式也可以多种,例如,在使用非授权载波的优先级等级为一个的情况下,确定该优先级等级为优先级等级;在使用非授权载波的优先级等级为至少两个的情况下,根据预定原则,从至少两个优先级等级中选择一个优先级等级为优先级等级。例如,对于用户设备上行的信道接入而言,用户设备设备在进行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输中包含多个不同的优先级等级时,可以按照预定优先级对应的先听后说(Listen Before Talk,LBT)机制或CCA参数进行信道接入。
对应于上述预定原则也可以包括多种,例如,可以包括以下至少之一:
从至少两个优先级等级中选择较低的优先级等级为优先级等级;例如,上行进行PUSCH传输中包含多个不同的优先级等级时,按照最低优先级对应的LBT参数进行信道接入和传输占用;
从至少两个优先级等级中选择较高的优先级等级为优先级等级;例如,上行进行PUSCH传输中包含多个不同的优先级等级时,按照最高优先级对应的LBT参数进行信道接入和传输占用;
从至少两个优先级等级中选择UE确定的优先级等级为优先级等级;例如,UE选择一个LBT优先级等级或LBT机制,并确定最小上行传输时长,或者,最大传输时长,或者,预设传输时长,或确定采用LBT的符号数;
从至少两个优先级等级中选择基站确定的优先级等级为优先级等级;例如,基站根据上行传输业务或传输信号/信道的优先级确定一个最小传输时长,或者,最大传输时长,或者,预设传输时长,或确定采用LBT的符号数;
依据预定自适应选择规则,从至少两个优先级等级中选择的优先级等级为优先级等级。
从至少两个优先级等级中选择预设的优先级等级;例如,上行进行P ΜSCH传输中包含多个不同的优先级等级时,按照预设的优先级对应的LBT参数进行信道接入和传输占用。其中,预设的优先级可以通过以下方式至少确定:基站和UE事先约定好;高层无线资源控制(Radio Resource Control,RRC)信令配置;物理层专有下行控制信息(Downlink Control Information,DCI)通知给UE;物理层公共DCI通知给UE。
其中,上述优先级等级可以包括多种类型,例如,可以包括以下至少之一:业务类型的优先级等级,信号类型的优先级等级,信道类型的优先级等级。其中,该业务类型可以包括以下至少之一:语音业务Voice,视频业务Video,最大努力服务业务Best effort,背景业务Background;该信号类型可以包括以下至少之一:探测参考信号(Sounding Reference Signal,SRS),发现参考信号(Distributed Resource Signal,DRS);该信道类型可以包括以下至少之一:上行授权信道,下行授权信道,物理随机接入信道(Physical Random Access Channel,PRACH),物理上行控制信道(Physical Uplink Control Channel,PUCCH),物理上行共享信道(Physical Uplink Shared Channel,PUSCH),物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
在一实施例中,确定使用非授权载波的优先级等级可以采用多种方式,例如,基站与用户设备设备均可以依据自身对业务,信道或者信号进行检测判断出对应的优先级等级,当然也可以通过其它网元告之的方式,例如,用户设备设备可以通过以下方式至少之一,确定使用非授权载波的优先级等级:预定义的方式,确定优先级等级;通过基站与UE协商的方式,确定优先级等级;通过接收RRC信令的方式,确定优先级等级;通过物理层专有DCI信令的方式,确定优先级等级;通过物理层公共DCI信令的方式,确定优先级等级。对应地,基站也可以通过上述类似的方式,确定使用非 授权载波的优先级等级。
需要说明的是,上述CCA参数是用于接入非授权载波前执行CCA检测的,只要是涉及到CCA检测的参数均可以认为属于该范围,例如,该CCA参数可以包括以下至少之一:LBT机制,CCA起点,CCA持续时长,传输时长,LBT符号数,传输块(Transport Block,TB)大小,混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的重传次数,最大竞争窗、最小竞争窗,以及系数n,其中,延迟期=预定固定时长+n*slot,所述slot为时隙长度。
其中,该LBT机制可以包括:LBT接入能力等级2,LBT接入能力等级4。该传输时长可以包括多种,例如,可以是单独上行传输时长,也可以是在一个占用期内传输完下行数据后的剩余时长,其中,时长可以是子帧级别的,或者,也可以是符号级别的。该CCA起点的位置也可以包括多种,例如,可以包括以下至少之一:执行CCA的区间内N个等长子区间中每个子区间的起点位置、执行CCA的区间内预定区间中随机选择的起点位置,其中,N为正整数。不同优先级等级与LBT中的CCA起点有关,例如,不同优先级等级与LBT接入能力等级2中的CCA起点有关,且CCA duration长度不变:随着优先级等级的降低,LBT接入能力等级2的CCA起点依次比前一个优先级等级的CCA起点晚。不同优先级等级与LBT接入能力等级4机制也有关:随着优先级等级的降低,LBT接入能力等级4的CCA起点依次比前一个优先级等级的CCA起点晚。或者,随着优先级等级的降低,LBT接入能力等级4的CCA起点不固定,竞争窗大小、LBT符号数、MCOT_U及其TB大小依次增大。不同优先级等级与LBT接入能力等级2还和LBT接入能力等级4的混合机制有关:随着优先级等级的降低,依次采用LBT接入能力等级2和LBT接入能力等级4机制,且各LBT机制对应的LBT参数和以及LBT符号数、MCOT_U及其TB大小,固定 参数至少之一不变,其他参数增大或减少所得组合。
对于一个具体的LBT机制来说,例如,对于LBT接入能力等级2来说,包括CCA持续时长。该CCA持续时长可以包括:CCA闲置持续时长(Idle CCA duration时长)、CCA侦听持续时长(sense CCA duration时长),其中,CCA持续时长的时域结构可以包括多种,例如,可以包括以下至少之一:CCA持续时长=CCA闲置持续时长+m*CCA侦听持续时长;CCA持续时长=m*CCA侦听持续时长+CCA闲置持续时长;CCA持续时长=m1*CCA侦听持续时长+CCA闲置持续时长+m2*CCA侦听持续时长;其中,m,m1,m2为预设参数。需要说明的是,上述Idle CCA duration的时长可以固定不变,也可以是可变的。可选地,上述CCA的参数的取值可以依据具体情况而定,例如,CCA持续时长包括以下至少之一:16μs,25μs,34μs,43μs;传输时长包括以下至少之一:0.5ms,1ms,1.5ms,2ms,3ms,4ms,5ms,8ms,10ms;LBT符号数为:一个符号或者两个符号或下行传输后末尾部分子帧中剩余符号中至少之一;传输块TB大小包括以下之一:第一资源块,第二资源块,第三资源块,第四资源块;竞争窗范围包括以下之一:{0,1},{1,2},{2,3},{3,4,5,6,7},{7,15},{15,31,63},{15,31,63,127,255,511,1023};n包括以下之一:0,1,2,3,4,5,6,7。
需要指出的是,优先级等级与CCA参数之间的匹配关系可以包括多种,其中,优先级等级与CCA参数之间的匹配关系的多少与CCA参数之间的组合种类有关,即CCA参数之间相互组合的种类有多少,对应的优先级等级与CCA参数之间的匹配关系就有多少。下面给出的各种匹配关系只是一些组合的举例,并不能认为是全部组合。
优先级等级与CCA参数之间的匹配关系可以包括:优先级等级越低,CCA起点越晚;优先级等级越低,CCA起点越晚,且CCA持续时长不变;优先级等级越低,CCA起点越晚,且CCA持续时长越长;优先级等级越低, CCA起点不变,且CCA持续时长越长;优先级等级越低,CCA起点越晚,且CCA持续时长不变,传输时长的取值不变;优先级等级越低,CCA起点越晚,且CCA持续时长不变,传输时长的取值越大;优先级等级越低,CCA起点越晚,且CCA持续时长越长、传输时长的取值越大;优先级等级越低,CCA起点不变,且CCA持续时长不变、传输时长的取值越大;优先级等级越低,CCA起点不变,且CCA持续时长越长、传输时长的取值不变;优先级等级越低,CCA起点不变,且CCA持续时长越长、传输时长的取值越大;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数不变;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数越大;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数越小;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数不变;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数越大;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数越小;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数不变;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数越大;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数越小;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数不变;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数越大;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数越小;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越大,LBT的符号数不变;优先级等级越低,CCA起点不变,CCA持续时长 越长,传输时长的取值越大,LBT的符号数越大;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越大,LBT的符号数越小;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数不变;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数越大;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数越小;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数不变,TB大小不变;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数不变,TB大小越大;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数不变,TB大小越小;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数越大,TB大小不变;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数越大,TB大小越大;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数越大,TB大小越小;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数越小,TB大小不变;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数越小,TB大小越大;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值不变,LBT的符号数越小,TB大小越小;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数不变,TB大小不变;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数不变,TB大小越大;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数不变,TB大小越小;优先级等级越低,CCA起点越晚, CCA持续时长不变,传输时长的取值越大,LBT的符号数越大,TB大小不变;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数越大,TB大小越大;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数越大,TB大小越小;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数越小,TB大小不变;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数越小,TB大小越大;优先级等级越低,CCA起点越晚,CCA持续时长不变,传输时长的取值越大,LBT的符号数越小,TB大小越小;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数不变,TB大小不变;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数不变,TB大小越大;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数不变,TB大小越小;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数越大,TB大小不变;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数越大,TB大小越大;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数越大,TB大小越小;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数越小,TB大小不变;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数越小,TB大小越大;优先级等级越低,CCA起点越晚,CCA持续时长越长,传输时长的取值越大,LBT的符号数越小,TB大小越小;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数不变,TB大小不变;优先级等级越低,CCA起点不变,CCA持续时长越 长,传输时长的取值不变,LBT的符号数不变,TB大小越大;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数不变,TB大小越小;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数越大,TB大小不变;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数越大,TB大小越大;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数越大,TB大小越小;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数越小,TB大小不变;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数越小,TB大小越大;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值不变,LBT的符号数越小,TB大小越小;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越大,LBT的符号数不变,TB大小不变;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越大,LBT的符号数不变,TB大小越大;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越大,LBT的符号数不变,TB大小越小;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越大,LBT的符号数越大,TB大小不变;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越大,LBT的符号数越大,TB大小越大;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越大,LBT的符号数越大,TB大小越小;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越大,LBT的符号数越小,TB大小不变;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越大,LBT的符号数越小,TB大小越大;优先级等级越低,CCA起点不变,CCA持续时长越长,传输时长的取值越 大,LBT的符号数越小,TB大小越小;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数不变,TB大小不变;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数不变,TB大小越大;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数不变,TB大小越小;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数越大,TB大小不变;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数越大,TB大小越大;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数越大,TB大小越小;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数越小,TB大小不变;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数越小,TB大小越大;优先级等级越低,CCA起点不变,CCA持续时长不变,传输时长的取值越大,LBT的符号数越小,TB大小越小;优先级等级越低,HARQ重传次数越大;优先级等级越低,HARQ重传次数越小;优先级等级越低,最大竞争窗越大;优先级等级越低,最小竞争窗越大;或者,优先级等级越低,最大竞争窗越大,最小竞争窗越大。
需要说明的是,上述CCA duration时长增加可以通过多种方式实现:例如,可以通过以下方式至少之一来实现:idle CCA duration时长不变,而m增大;idle CCA duration时长增大,且m不变;idle CCA duration时长增大,且m增大。
可选地,在根据与确定的优先级等级匹配的使用非授权载波前执行CCA检测的CCA参数,进行非授权载波的信道接入处理之前,还包括:获取用于执行CCA的子帧位置、预留符号索引至少之一,获取的方式可以多 种,例如,可以通过以下方式至少之一,获取用于执行CCA的子帧位置、预留符号索引至少之一:通过预定义的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;通过基站与UE事先约定子帧位置、预留符号索引至少之一的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;通过高层RRC信令配置传输子帧中的预定位置的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;通过高层RRC信令配置下行传输结束位置的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;通过高层RRC信令配置的CCA时域图样的方式,获取子帧位置、预留符号索引至少之一;通过物理层专有DCI信令或者公共DCI信令或者新设计的DCI信令配置的方式,获取子帧位置、预留符号索引至少之一;通过高层RRC信令和物理层专有DCI信令或者公共DCI信令或者新设计的DCI信令联合配置的方式,获取子帧位置、预留符号索引至少之一。
其中,通过公共DCI信令或者新设计的DCI信令获取子帧位置、预留符号索引至少之一包括:利用公共DCI信令中LAA子帧配置分支中的Y个预留比特的部分比特指示以下信息至少之一:用于执行CCA预留符号所在子帧位置,CCA位置,CCA空置的符号索引,CCA的间隔,CCA起点,其中,Y为预设数量;利用公共DCI信令中新增加分支或者新设计的DCI信令中全部比特中的部分比特指示以下信息至少之一:用于执行CCA预留符号所在子帧位置,CCA位置,CCA空置的符号索引,CCA的间隔,CCA起点。
对于专有DCI信令可以复用专有DCI信令不用的字段的比特指示以下信息至少之一:用于执行CCA预留符号所在子帧位置,CCA位置,CCA空置的符号数目,CCA的间隔,CCA起点。
可选地,根据与确定的优先级等级匹配的使用非授权载波前执行CCA检测的CCA参数,进行非授权载波的信道接入处理可以包括:接收基站发 送的上行授权信息;在按照预定的定时关系确定的位置之前执行CCA检测;在执行CCA检测成功的情况下,向基站发送上行数据或SRS。在接收基站发送的上行授权信息之后,或者在按照预定的定时关系确定的位置之前执行CCA检测之后,还可以向基站反馈是否成功接收到上述上行授权信息,以及向基站反馈执行CCA检测是否成功。
例如,在接收到基站发送的上行授权之后,还可以在授权载波上或者非授权载波上发送用于指示用户设备设备是否成功接收到上行授权信息的指示信息,例如,可以包括以下至少之一:在授权载波上的第一预定位置发送第一指示信息,其中,第一指示信息用于指示用户设备已接收基站发送的上行授权信息;在执行CCA检测成功竞争到的非授权载波的使用权后的第二预定位置发送第一指示信息。
又例如,在按照预定的定时关系确定的位置之前执行CCA检测之后,也可以在授权载波上或者非授权载波上发送用于指示用户设备设备执行CCA检测的指示信息,例如,还包括以至少之一:在授权载波上的第三预定位置发送第二指示信息,其中,第二指示信息用于指示用户设备执行CCA检测的执行结果信息,其中,执行结果信息包括:执行CCA检测成功或者执行CCA检测失败;在执行CCA检测成功竞争到的非授权载波使用权后的第四预定位置发送第二指示信息。
其中,第一预定位置,第二预定位置,第三预定位置,第四预定位置中的至少之一,通过以下方式至少之一获取,例如,可以通过以下方式至少之一获取:通过基站与用户设备事先约定的方式,通过基站专有DCI信令或者公共DCI信令或者新设计的DCI信令配置的方式,高层RRC信令的方式,CCA成功位置隐含指示方式。
可选地,上述第一预定位置、第二预定位置、第三预定位置、第四预定位置均可以包括多种,例如,上述第一预定位置、第二预定位置、第三 预定位置、第四预定位置均可以包括以下至少之一:预定义的位置;通过预定定时关系n+k的方式确定的位置,其中,n为DCI的子帧索引,k为大于等于1的整数,或者k为大于等于4的整数;第一个上行子帧;上行传输burst中第一上行子帧;在授权载波上与非授权载波对应的调度资源位置相同的子帧;CCA成功时刻后的第一个子帧。
其中,第一指示信息或第二指示信息在以下符号位置至少之一发送:预定符号,第一个符号,最后一个符号,前半时隙中的第三个符号,前半时隙中的第五个符号,后半时隙中的第三个符号,后半时隙中的第五个符号,前半时隙中的第四个符号,后半时隙中的第四个符号,其中,发送第一指示信息的符号位置与发送第二指示信息的符号位置不同。
结合上述实施例以及问题的具体场景,在本发明本实施例中还提供了解决上述问题的可选实施方式,为解决相关技术中的问题,首先分析LAA中的问题:
问题1:根据不同的业务类型,指定具体的业务类型优先级等级与LBT机制或相关细节参数之间的对应规则。若直接将DL不同业务类型对应的优先级照搬用于上行,则根据上行执行LBT在有限的符号内、调度机制、传输时长等限制,明显采用下行的优先级等级及参数配置会造成上行接入信道机会少,分配的调度资源和UL grant信令指示浪费,从而导致上行系统性能很差。因此,问题1需要被解决。
问题2:UL多个优先级等级复用传输时,需要考虑详细的复用原则。基于问题1,当多个不同优先级业务同时传输时,需要制定一套复用原则。
问题3:针对上行多子帧调度和单子帧调度混合场景,需要设计灵活的或合适的CCA机制、子帧结构指示信令至少之一,以降低UE执行CCA的损耗,以及提高上行资源利用率。
问题4:识别UE侧错失UL grant、还是因信道被占而造成的CCA受 阻、又或是上行数据失败这情况。问题4若不解决,将会导致基站误指示增加LBT竞争窗的信令而导致UE侧接入信道的难度增大,以及影响基站在时频域上的多个UE调度策略,从而可能导致HARQ干扰(buffer)。
基于上述问题及分析,上述问题若不能很好的得到解决,将一定程度上影响高优先级的业务或信道接入的概率,以及导致分配给UE的上行资源以及上行授权指示信息浪费,从而影响整个上行系统的性能。鉴于此,在本发明实施例中提供了一种非授权载波上的优先级配置方法和装置。通过该方法及装置,在一定程度上为具有更要需求的业务或信道以高的信道接入机会,从而降低了基站配置给UE的上行资源和授权指示信息浪费。此外,同时也降低了UE执行CCA的损耗。
基于上述各个问题所考虑的方面不同,在以下可选实施例中分别对应说明。以下可选实施方式大致包括以下内容:(1)建立不同优先级与LBT机制,以及对应LBT中所涉及参数、LBT起点,上行传输时长,LBT符号数,TB大小的关系至少之一;(2)基于1中建立的不同优先级与参数的关系,配置UL grant或SRS为较高的可选级,且传输时长可以为符号级别的。(3)设计PΜSCH传输中包含多个不同优先级时的复用规则。(4)基于多子帧调度和单子帧调度混合场景,设计指示CCA位置的信令。(5)提供一个CCA失败指示流程。下面对各个可选实施例分别说明。
可选实施例一
本实施例中,针对非授权载波中上行信道接入采用LBT接入能力等级2机制时,LBT接入能力等级2中具体参数配置与不同业务类型、信号类型至少之一间的对应关系。
第一部分内容:介绍LBT接入能力等级2机制中的参数组成,及参数的时域结构。
LBT接入能力等级2也称为one-shot LBT,是指检测信道从忙到闲, 且连续检测信道空闲的时长至少为CCA duration长度时,认为获取到非授权载波的使用权,或者,称为执行LBT成功。
其中,CCA duration长度可由idle CCA duration长度和m个sense CCA duration长度组成。具体CCA duration时域结构可以采用下述之一:idle CCA duration+m*sense CCA duration;或者,m*sense CCA duration+idle CCA duration;或者,m1*sense CCA duration+idle CCA duration+m2*sense CCA duration。idle CCA duration是指不执行CCA检测的时间长度,或者,在这段时间内用于传输设备接收相关信息或接收和发送转换等功能,不进行信道感知或信道忙闲检测。sense CCA duration是指传输设备在这个时间内需要进行信道空闲检测。其中,sense CCA duration时长又可以由时间长度A和实际检测时间长度B组成。sense CCA duration时长的时域结构可以采用下述之一:A+B;或者,B+A。
可选地,idle CCA duration长度为固定或是可变的,可选地,配置为16μs,m为大于等于0的整数,可选地,m为0,1,2。sense CCA duration长度为9μs,A为5μs,而B为4μs,或者,A为4μs,而B为5μs。
CCA起点的定义:从上行多用户复用角度,根据PUSCH开始时刻是从子帧边界开始,或者,从符号边界开始,或者,从时隙边界开始,而定义CCA的起点依次为从子帧边界开始,或者,从PUSCH开始传输的符号边界,或者,从PUSCH开始传输的时隙边界为CCA检测的终点,往前持续CCA duration长度结束的时刻为CCA的起点。而从提高接入信道概率的角度考虑,CCA的起点可以设置在CCA执行区域的开始时刻,或者,在CCA执行区域内任意时间或特定的时间作为CCA的起点,或者,下行传输结束时刻+Gap时刻作为CCA的起点,或者,下行传输结束时刻作为CCA的起点。其中,特定的时间为CCA区间内,按照CCA duration时长划分的每个小段的起点。
连续传输的子帧数目是指UE被连续调度的子帧数目。
除了上述与LBT接入能力等级2相关的参数CCA duration时长,空闲CCA duration时长,感知CCA duration时长,CCA起点,CCA终点,单子帧调度,连续传输子帧数目(也称为连续调度的子帧数目)以外,还可以包括上行传输burst长度,TB大小,LBT区域长度(或称为符号数),HARQ重传次数。
优先级等级包括两类:一类是业务类型;另一类是信道或信号类型。其中:业务类型包括:Voice、Video、Best effort和Background。信号及其信号类型包括以下至少之一:UL grant、SRS、PRACH、PUCCH和PUSCH,这些信号及其信号之间的优先级可以根据不同需求和场景而定。
下面将详细介绍不同的优先级对应不同的LBT接入能力等级2参数集合。
情况1:优先级等级仅与LBT接入能力等级2中的CCA起点和CCA duration长度有关。具体如表1所示:
表1
等级 CC起点 CCA duration
1(最高) 第一预设值 固定值
2(次高) 第二预设值 固定值
3 第三预设值 固定值
4(最低) 第四预设值 固定值
表1中的第一预设值、第二预设值、第三预设值和第四预设值可以是相同的值,也可以是依次增大的值。也就是,后者执行CCA的起点比前者执行CCA的起点晚。其中,不同优先级等级对应的CCA起点相同时,CCA的起点可以是符号边界,或者,子帧边界,或者,CCA检测区域的起始边界,或者,CCA检测区域中等间隔小段的某个起始边界。而对于不同优先级等级对应的CCA起点不同时,随着优先级等级降低,前一优先级的CCA 起点比后一优先级的CCA起点早。且不同优先级对应的不同CCA起点可以CCA检测区域内不同等间隔小段的起始位置,或者,CCA检测区域内不同等间隔小段内的随机或任意位置。CCA duration对应的固定值至少为16μs,例如,16μs,25μs,34μs,43μs等中之一。
例如:不同优先级等级,对应的CCA起点不变,CCA duration时长不变。如表2所示。
表2
Figure PCTCN2017079149-appb-000001
例如:随着优先级等级降低,前一优先级的CCA起点比后一优先级的CCA起点早(CCA的位置固定),CCA duration时长不变。图3是根据本发明实施例的不同优先级等级对应的CCA起点示意图,即假定CCA检测区域占用一个符号,且不同优先级对应的CCA起点示意图,如图3所示。如表3所示。
表3
等级 CCA起点 CCA duration
1(最高) 符号边界,如图1中A1 25μs/34μs/43μs
2(次高) 如图1中A2 25μs/34μs/43μs
3 如图1中A3 25μs/34μs/43μs
4(最低) 如图1中A4 25μs/34μs/43μs
例如:随着优先级等级降低,前一优先级的CCA起点比后一优先级的CCA起点早(CCA起点位置不固定),CCA duration时长不变。图4是根据本发明实施例的不同优先级等级对应的CCA起点,在对应的区间内任意选择的示意图,即假定CCA检测区域占用一个符号,且不同优先级对应的CCA起点示意图,如图4所示。如表4所示。
表4
等级 CCA起点 CCA duration
1(最高) 符号边界,如图2中A1 25μs/34μs/43μs
2(次高) 如图2中A2 25μs/34μs/43μs
3 如图2中A3 25μs/34μs/43μs
4(最低) 如图2中A4 25μs/34μs/43μs
例如:随着优先级等级降低,CCA起点不变,CCA duration时长增大。如表5所示。
表5
Figure PCTCN2017079149-appb-000002
例如:随着优先级等级降低,前一优先级的CCA起点比后一优先级的CCA起点早,CCA duration时长增大。如表6所示。
表6
等级 CCA起点 CCA duration
1(最高) 符号边界,如图1中A1 16μs
2(次高) 如图1中A2 25μs
3 如图1中A3 34μs
4(最低) 如图1中A4 43μs
对于情况1中的,CCA duration参数可以由idle CCA duration和m按照一定关系确定。即,CCA duration=idle CCA duration+m*sense CCA duration。idle CCA duration长度为固定或是可变的,可配置为为4μs,或者,5μs,或者,7μs,或者,9μs,或者,16μs,或者,25μs。,m为大于等于0的整数,可选地,m为0,1,2,3,4,5。m可以为一个固定值,也可以是可变的。sense CCA duration长度为9μs,即可由A和B组成,例如,A为5μs,而B为4μs,或者,A为4μs,而B为5μs。上述表格中CCA duration参数可以用idle CCA duration和m替换,即通过改变idle CCA duration或m值动态调整或确定CCA duration。例如,以表6为例说明,详见表7。
表7
Figure PCTCN2017079149-appb-000003
对于情况1中的各个表格中CCA duration参数都可以用idle CCA duration和m替换,即通过改变idle CCA duration或m值动态调整或确定CCA duration。
情况2:优先级等级与LBT接入能力等级2中的CCA起点或CCA duration长度或MCOT_U有关。其中:MCOT_U可以指单独上行传输的时 间长度;或者,也可以是在基站的一个占用期内,基站传完下行数据剩余的时间长度。其中,时间长度可以是子帧级别的,或者,也可以是符号级别的。
例如,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,MCOT_U时长增大。如表8所示。
表8
等级 CCA起点 CCA duration MCOT_U
1(最高) 第一预设值 16μs 0.5ms
2(次高) 第一预设值 25μs 1ms
3 第一预设值 34μs 1.5ms或2ms
4(最低) 第一预设值 43μs 2ms或4ms
例如,随着优先级等级的降低,前一优先级的CCA起点比后一优先级的CCA起点早,CCA duration固定不变,MCOT_U时长增大。如表9所示。
表9
Figure PCTCN2017079149-appb-000004
此外,CCA起点除了图3和图4中之外,也可以设置为不限制CCA检测的起点。类似于DRS的LBT机制,不限制CCA的起点。对于表中的优先等级1或2可以用于基站发送UL grant所执行的CCA参数,且传输时长也可以小于1ms。或者,也可以用于SRS独立传输情况。
对于情况2,本实施例中仅给出经典的例子。其他,随着优先级等级的 降低,以CCA起点、CCA duration长度及MCOT_U各参数通过增大或降低相互组合的情况,也是本发明所保护的范围。
对于情况2,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大。其中,该种情况中,CCA duration时长增加又可以分为:idle CCA duration时长不变,而m增大;或者,idle CCA duration时长增大,且m不变;或者,idle CCA duration时长增大,且m增大;
另一方面,对于情况2,随着优先级等级的降低,CCA起点不变,但改变CCA duration时长或MCOT_U值。具体为:随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大;其中,CCA duration时长增加又可以分为:idle CCA duration时长不变,而m增大;或者,idle CCA duration时长增大,且m不变;或者,idle CCA duration时长增大,且m增大;
情况2中的各种情况,在相互不冲突的情况下,可以任意组合不同优先级中的LBT接入能力等级2中的参数配置。
例如:对于不同的业务类型(下表中的优先级1)或信道或信号(下表中的优先级2)来说,其LBT接入能力等级2的参数配置(下表中配置是针对于该情况:CCA起点不变,idle CCA duration不变,m增大,且MCOT_U增大情况)下表10:
表10
Figure PCTCN2017079149-appb-000005
表10中的预设CCA起点可以是基站通过物理层信令或是高层信令通知给UE的;或者,基站和UE事先约定好的。其中,物理层信令包括:UE专有DCI,或者,公共DCI。高层信令可以是通过RRC信令配置给UE。表中的C1、C2、C3和C4可以是小于1ms的值(例如:为一个或多个符号时长),或者,也可以是满足管制中规定的上行最大传输时长的值,例如,4ms,或者,是基站占用期内传输完下行数据剩余时间的最大值,比如,C1可以为0.25ms,C2为0.5ms,C3为0.75ms,C4为1ms;或者,C1可以为0.5ms,C2为1ms,C3为2ms,C4为3ms或4ms,或者,DL占用期长度-DL传输时长的最大值;根据现在协议规定,DL最大占用期长度如下表11所示:
表11
Figure PCTCN2017079149-appb-000006
情况3:优先级等级与LBT接入能力等级2中的CCA起点、CCA  duration长度、MCOT_U及LBT符号数有关。其中:MCOT_U可以指单独上行传输的时间长度;或者,也可以是在基站的一个占用期内,基站传完下行数据剩余的时间长度。其中,时间长度可以是子帧级别的,或者,也可以是符号级别的。
例如,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,MCOT_U时长增大,LBT符号数不变。如表12所示。
表12
Figure PCTCN2017079149-appb-000007
例如,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,MCOT_U时长增大,LBT符号数变化。如表13所示。
表13
Figure PCTCN2017079149-appb-000008
例如,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,MCOT_U时长增大,LBT符号数变化。如表14所示。
表14
Figure PCTCN2017079149-appb-000009
例如,随着优先级等级的降低,前一优先级的CCA起点比后一优先级的CCA起点早,CCA duration时长不变,MCOT_U时长增大,LBT符号数变化。如表15所示。
表15
Figure PCTCN2017079149-appb-000010
此外,CCA起点除了图3和图4中之外,也可以设置为不限制CCA检测的起点。类似于DRS的LBT机制,不限制CCA的起点。对于表中的优先等级1或2可以用于基站发送UL grant所执行的CCA参数,且传输时长也可以小于1ms。或者,也可以用于SRS独立传输情况。
对于情况3,本实施例中仅给出经典的例子。其他,随着优先级等级的降低,以CCA起点、CCA duration长度、MCOT_U及LBT符号数各参数通过增大或降低相互组合的情况,也是本发明所保护的范围。
以表15为例,来说明CCA duration可以由idle CCA duration和m替换。如表16所示。
表16
Figure PCTCN2017079149-appb-000011
对于情况3,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数减小;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数减小;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U 值依次增大,LBT符号数不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数减少;其中,该种情况中,CCA duration时长增加又可以分为:idle CCA duration时长不变,而m增大;或者,idle CCA duration时长增大,且m不变;或者,idle CCA duration时长增大,且m增大;
另一方面,对于情况3,随着优先级等级的降低,CCA起点不变,但改变CCA duration时长、MCOT_U值及LBT符号数目。具体为:随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数增大;随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数减小;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数减小;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数减小;其中,CCA duration时长增加又可以分为:idle CCA duration时长不变,而m增大;或者,idle CCA duration时长增大,且m不变;或者,idle CCA duration时长增大,且m增大;情况4:优先级等 级与LBT接入能力等级2中的CCA起点、CCA duration长度、MCOT_U、LBT符号数及TB大小有关。其中:MCOT_U可以指单独上行传输的时间长度;或者,也可以是在基站的一个占用期内,基站传完下行数据剩余的时间长度。其中,时间长度可以是子帧级别的,或者,也可以是符号级别的。TB大小是指针对某个优先级等级,一旦抢占到信道,仅可以使用对应的TB大小。
例如,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,MCOT_U时长增大,LBT符号数不变,TB大小增大。如表17所示。
表17
Figure PCTCN2017079149-appb-000012
表17中的第一资源块大小小于或小于等于第二资源块大小小于或小于等于第三资源块大小小于或小于等于第四资源块大小。或者,这四个资源块大小依次降低。
例如,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,MCOT_U时长增大,LBT符号数变化,TB大小变化。如表18所示。
表18
Figure PCTCN2017079149-appb-000013
Figure PCTCN2017079149-appb-000014
例如,随着优先级等级的降低,前一优先级的CCA起点比后一优先级的CCA起点早,CCA duration时长不变,MCOT_U时长增大,LBT符号数变化,TB大小变化。如表19所示。
表19
Figure PCTCN2017079149-appb-000015
此外,CCA起点除了图3和图4中之外,也可以设置为不限制CCA检测的起点。类似于DRS的LBT机制,不限制CCA的起点。对于表中的优先等级1或2可以用于基站发送UL grant所执行的CCA参数,且传输时长也可以小于1ms。或者,也可以用于SRS独立传输情况。
对于情况4,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数不变,或TB大小/信息大小不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数不变,或TB大小/信息大小增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数不变,或 TB大小/信息大小减小;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数增大,或TB大小/信息大小不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数增大,或TB大小/信息大小增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数增大,或TB大小/信息大小减小;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数减小,或TB大小/信息大小不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数减小,或TB大小/信息大小增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长不变和MCOT_U不变,LBT符号数减小,或TB大小/信息大小变小;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数不变,或TB大小/信息大小不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数不变,或TB大小/信息大小增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数不变,或TB大小/信息大小减小;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数增大,或TB大小/信息大小不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数增大,或TB大小/信息大小增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA  duration时长不变,LBT符号数增大,或TB大小/信息大小减小;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数减小,或TB大小/信息大小不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数减小,或TB大小/信息大小增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,MCOT_U值依次增大,且CCA duration时长不变,LBT符号数减小,或TB大小/信息大小减小;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数不变,或TB大小/信息大小不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数不变,或TB大小/信息大小增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数不变,或TB大小/信息大小减小;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数增大,或TB大小/信息大小不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数增大,或TB大小/信息大小增大;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数增大,或TB大小/信息大小减小;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数减少,或TB大小/信息大小不变;或者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数减少,或TB大小/信息大小增大;或 者,随着优先级等级的降低,可以对应CCA起点依次推后,且CCA duration时长增大,且MCOT_U值依次增大,LBT符号数减少,或TB大小/信息大小减小;
其中,该种情况中,CCA duration时长增加又可以分为:idle CCA duration时长不变,而m增大;或者,idle CCA duration时长增大,且m不变;或者,idle CCA duration时长增大,且m增大;
另一方面,对于情况4,随着优先级等级的降低,CCA起点不变,但改变CCA duration时长或MCOT_U值、或LBT符号数目、或TB大小/信息大小。具体为:随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数不变,或TB大小/信息大小不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数不变,或TB大小/信息大小增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数不变,或TB大小/信息大小减小;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数增大,或TB大小/信息大小不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数增大,或TB大小/信息大小增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数增大,或TB大小/信息大小减小;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数减小,或TB大小/信息大小不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数减小,或TB大小/信息大小增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值不变,LBT符号数减小,或TB大 小/信息大小减小;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数不变,或TB大小/信息大小不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数不变,或TB大小/信息大小增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数不变,或TB大小/信息大小减小;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数增大,或TB大小/信息大小不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数增大,或TB大小/信息大小增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数增大,或TB大小/信息大小减小;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数减小,或TB大小/信息大小不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数减小,或TB大小/信息大小增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长增大,且MCOT_U值增大,LBT符号数减小,或TB大小/信息大小减小;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数不变,或TB大小/信息大小不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数不变,或TB大小/信息大小增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数不变,或TB大小/信息大小减小;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数增大,或TB大小/信息大小不变;或 者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数增大,或TB大小/信息大小增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数增大,或TB大小/信息大小减小;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数减小,或TB大小/信息大小不变;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数减小,或TB大小/信息大小增大;或者,随着优先级等级的降低,CCA起点不变,CCA duration时长不变,且MCOT_U值增大,LBT符号数减小,或TB大小/信息大小减小;其中,CCA duration时长增加又可以分为:idle CCA duration时长不变,而m增大;或者,idle CCA duration时长增大,且m不变;或者,idle CCA duration时长增大,且m增大;
情况5:优先级等级与LBT接入能力等级2中的CCA起点、CCA duration长度、MCOT_U、LBT符号数、TB大小及其HARQ重传次数至少之一有关。其中:MCOT_U可以指单独上行传输的时间长度;或者,也可以是在基站的一个占用期内,基站传完下行数据剩余的时间长度。其中,时间长度可以是子帧级别的,或者,也可以是符号级别的。TB大小是指针对某个优先级等级,一旦抢占到信道,仅可以使用对应的TB大小。HARQ重传次数可以随着优先级等级的降低,HARQ重传次数可以增大或降低。
本实施例中的优先级等级可以依次对应UL grant、SRS、PRACH、PUCCH和PUSCH,且这几个信道或信号可以根据需求处于同一个优先级等级内,或者,彼此位于不同优先级等级。也可以依次标识业务类型Voice、Video、Best effort和Background。此外,不同优先级等级对应的LBT相关参数可以根据需求进行删减。也就是优先级等级可以与以下至少之一有关:CCA起点、CCA duration长度、MCOT_U、LBT符号数、TB大小、HARQ 重传次数。
其中:优先级所属的列中包含的UL grant、SRS、PRACH、PUCCH和PUSCH的优先级等级根据不同场景和需求可以相互组合或调整其优先级等级。上述各种情况下,假定当前UL grant具有较高的优先级,则发送UL grant配置最高接入机会的LBT接入能力等级2参数。
本实施例中仅给出经典的例子。其他,随着优先级等级的降低,以CCA起点、CCA duration、idle CCA duration时长、m、MCOT_U、LBT符号数、TB大小及HARQ重传次数各参数通过增大或降低相互组合的情况,也是本发明所保护的范围。
可选实施例二
本实施例中,针对非授权载波中上行信道接入采用LBT接入能力等级4机制时,LBT接入能力等级4中具体参数配置与不同业务类型或信号类型间的对应关系。
下面将详细介绍不同的优先级对应不同的LBT接入能力等级2参数集合。
情况1:优先级等级与LBT接入能力等级4中的CCA起点、最大竞争窗、最小竞争窗、n长度及其MCOT_U至少之一有关。
例如:随着优先级等级的降低,对应的CCA起点不变,最大竞争窗、最小竞争窗、n长度、MCOT_U变化。如表20所示和表21所示。
表20
Figure PCTCN2017079149-appb-000016
Figure PCTCN2017079149-appb-000017
表21
Figure PCTCN2017079149-appb-000018
表22
Figure PCTCN2017079149-appb-000019
情况2:优先级等级与LBT接入能力等级4中的CCA起点、最大竞争窗、最小竞争窗、n长度、MCOT_U及其LBT符号数有关。
下面就给出几个典型的例子,如下表23~25,CCA起点固定不变,最大竞争窗、最小竞争窗、n长度、MCOT_U变化及其LBT符号数变化。
表23
Figure PCTCN2017079149-appb-000020
Figure PCTCN2017079149-appb-000021
表24
Figure PCTCN2017079149-appb-000022
表25
Figure PCTCN2017079149-appb-000023
Figure PCTCN2017079149-appb-000024
上述表格中也可以删除CCA起点这列。即可以不限制CCA起点。
表26
Figure PCTCN2017079149-appb-000025
情况3:优先级等级与LBT接入能力等级4中的CCA起点、最大竞争窗、最小竞争窗、n长度、MCOT_U、LBT符号数及其TB大小/信息大小有关。
下面就给出几个典型的例子,如下表27,CCA起点固定不变,最大竞争窗、最小竞争窗、n长度、MCOT_U变化、LBT符号数及其TB大小变化。
表27
Figure PCTCN2017079149-appb-000026
Figure PCTCN2017079149-appb-000027
第一资源块大小小于或小于等于第二资源块大小小于或小于等于第三资源块大小小于或小于等于第四资源块大小。或者,这四个资源块大小依次降低。其可以是预定义,或者,高层配置,或者,基站和UE事先约定,或者,物理层专有DCI或公共DCI确定。
情况4:优先级等级与LBT接入能力等级4中的CCA起点、最大竞争窗、最小竞争窗、n长度、MCOT_U、LBT符号数、TB大小/信息大小及其HARQ重传次数有关。
即与实施例一中不同之处,不同优先级采用的LBT机制不同,且机制中涉及的参数也不同。而对于LBT接入能力等级4机制,实施例一中的CCA duration时长,idle CCA duration长度和m值将会被LBT接入能力等级4中的最大和最小竞争窗以及defer period中的n值替换,其他参数与实施例一中相同,比如,CCA起点,LBT符号数,MCOT_U(上行传输的子帧数,或者,一次上行传输占用的的子帧数目,或者,符号数目)和TB大小。其中,defer period是有固定的时长+n*slot组成,slot为9μs,n为大于等于0的整数。可选地,n为0,1,2,3,4.
与下行不同优先级的不同之处,引入了新的参数,以及上行特有的特征,比如,为了上行传输,希望尽快的发送UL grant,从而,基站在发送UL grant时所执行的CCA或LBT机制需要采用最高优先级对应的参数配 置。或者,为了获取上行信道状态信息,需要发送SRS信号,因此SRS信号的发送需要具备较高的优先级,从而发送SRS信号所执行的CCA或LBT机制或参数配置应该对应较高优先级的LBT参数。
不同优先级对应的LBT参数及相关参数可以通过以下方式确定:预定义,或者,高层配置,或者,基站和UE事先约定,或者,物理层专有DCI或公共DCI确定。
假定上行或下行采用的LBT机制为接入能力等级4,且信号或信道之间的优先级关系为:UL grant>SRS>SRS+PUSCH>PRACH。则根据上述优先级关系,对应的LBT相关参数如下表28:
表28
Figure PCTCN2017079149-appb-000028
本实施例中的优先级等级可以依次对应UL grant、SRS、PRACH、PUCCH和PUSCH,且这几个信道或信号可以根据需求处于同一个优先级等级内,或者,彼此位于不同优先级等级。也可以依次标识业务类型Voice、Video、Best effort和Background。此外,不同优先级等级对应的LBT相关参数可以根据需求进行删减。也就是优先级等级可以与以下至少之一有关:CCA起点、最大竞争窗、最小竞争窗、n、MCOT_U、LBT符号数、TB大小、HARQ重传次数。此外,CCA起点可以随着优先级降低对应前一优先级的CCA起点比后一优先级的CCA起点早。或者,不限制CCA起点,或 者,固定CCA起点。
本实施例中仅给出经典的例子。其他,随着优先级等级的降低,以CCA起点、最大竞争窗、最小竞争窗、n、MCOT_U、LBT符号数、TB大小及其HARQ重传次数各参数通过增大或降低相互组合的情况,也是本发明所保护的范围。
可选实施例三
本实施例中,针对非授权载波中上行信道接入采用LBT接入能力等级2和LBT接入能力等级4混合机制时,不同LBT制式或各制式下具体参数配置与不同业务类型或信号类型间的对应关系。
实施例三中描述的LBT接入能力等级2和LBT接入能力等级4混合机制可以简单是将实施例一和实施例二中情况相互组合而确定不同优先级采用的是LBT接入能力等级2、LBT接入能力等级4至少之一。例如:
假定信号或信道之间的优先级关系为:UL grant>SRS>SRS+PΜSCH>PRACH。其事先定义好不同优先级和LBT机制或LBT参数之间的关系如表29所示:
表29
Figure PCTCN2017079149-appb-000029
Figure PCTCN2017079149-appb-000030
所述表29中的第一预设值、第二预设值、第三预设值和第四预设值可以是相同的值,也可以是依次增大的值,所述LBTCat2和LBTCat4分别表示LBT接入能力等级2和LBT接入能力等级4。也就是,后者执行CCA的起点比前者执行CCA的起点晚。其中,不同优先级等级对应的CCA起点相同时,CCA的起点可以是符号边界,或者,子帧边界,或者,CCA检测区域的起始边界,或者,CCA检测区域中等间隔小段的某个起始边界。而对于不同优先级等级对应的CCA起点不同时,随着优先级等级降低,前一优先级的CCA起点比后一优先级的CCA起点早。且不同优先级对应的不同CCA起点可以CCA检测区域内不同等间隔小段的起始位置,或者,CCA检测区域内不同等间隔小段内的随机或任意位置。
随着不同优先级的降低,CCA起点可以不变,也可以前一优先级的CCA起点比后一优先级的CCA起点早,或者,不限制CCA起点,或者,固定CCA起点。
不同信号或信道的优先级可以看到,UL grant具有最高优先级,则在发送UL grant时执行的LBT机制应该采用LBT接入能力等级2且idle CCA duration为16μs,感知CCA检测时间为9μs,则也就是说,当基站在发送UL grant时只要检测到信道连续空闲时间至少为25μs则认为获取到非授权载波的使用而直接发送UL grant。其中,发送UL grant所执行的CCA起点可以是不限制,也可以限制在某一固定的时刻点,或者,某个符号边界,或者,子帧边界,或者,时隙边界。
本实施例中的优先级等级可以依次对应UL grant、SRS、PRACH、PUCCH和PUSCH,且这几个信道或信号可以根据需求处于同一个优先级等级内,或者,彼此位于不同优先级等级。也可以依次标识业务类型Voice、Video、Best effort和Background。此外,不同优先级等级对应的LBT相关参数可以根据需求进行删减。也就是优先级等级可以与以下至少之一有关: CCA起点、CCA duration长度、MCOT_U、LBT符号数、TB大小、HARQ重传次数。
本实施例中仅给出经典的例子。其他,随着优先级等级的降低,以CCA起点、CCA duration、idle CCA duration时长、m、最大竞争窗、最小竞争窗、n、MCOT_U、LBT符号数、TB大小及其HARQ重传次数各参数通过增大或降低相互组合的情况,也是本发明所保护的范围。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述信道接入方法。
可选实施例四
本实施例中,主要提供一种上行进行PUSCH传输中包含多个不同优先级时的复用规则。
规则1:上行进行PUSCH传输中包含多个不同的优先级等级时,按照最低优先级对应的LBT参数进行信道接入和传输占用。
例如,当SRS的优先级等级为1(最高),而PUSCH传输的优先级等级为3时,SRS和PUSCH同传时则要按照PUSCH的优先级等级的LBT参数或传输时长进行信道接入和传输。具体如表30:
表30
Figure PCTCN2017079149-appb-000031
Figure PCTCN2017079149-appb-000032
由表29可以看到,SRS和PUSCH同传时,CCA的起点需要在配置的LBT符号位置的符号边界开始执行,上行传输时长占用1.5ms,最大竞争窗的为2,最小竞争窗为1,defer period时长为16μs,LBT所占用的符号数1。
其中,表10中每个等级对应的参数项可以是表10中各列中至少之一,或,各列的中相互组合。
此外,表29中的优先级等级也可以是业务类型:Voice、Video、Best effort和Background。以及,对应的LBT机制对应的列中仅表示一种LBT机制,如:LBT接入能力等级2,或者,LBT接入能力等级4。表格中CCA的起点可以是符号的边界,或者,子帧边界,或者,CCA检测区域的起始边界,或者,CCA检测区域中等间隔小段的起始边界,或者,CCA检测区域内随 机或任意位置。其中,CCA检测区域可以通过物理层专有DCI信令或公共DCI信令由基站通知给UE,或者,基站和UE事先约定好,或者,高层配置。
规则2:上行进行PUSCH传输中包含多个不同的优先级等级时,按照最高优先级对应的LBT参数进行信道接入和传输占用。原理同规则1,这里不在举例说明。
规则3:上行进行PUSCH传输中包含多个不同的优先级等级时,按照预设的优先级对应的LBT参数进行信道接入和传输占用。原理同规则1,这里不在举例说明。其中,预设的优先级可以由以下之一确定:基站和UE事先约定好;或者,高层RRC信令配置;或者,物理层专有DCI通知给UE;或者,物理层公共DCI通知给UE。
规则4:在多个优先级等级中,由UE选择一个LBT优先级等级或LBT机制,并确定上行传输时长,确定采用LBT的符号数,HARQ重传次数及TB大小。例如,UE在PUSCH传输中包含了三个优先级等级,Video、Best effort和Background,由UE选择三个优先级等级中哪个优先级等级作为最终的采用或执行的优先级等级,从而按照选定的优先级等级确定上行传输时长,以及竞争接入时的LBT参数值,和LBT符号数,HARQ重传次数及TB大小。
规则5:基站根据上行传输业务、传输信号/信道的优先级确定一个最小传输时长,或者,最大传输时长,或者,预设传输时长,及其确定采用LBT的符号数。其中,用户设备可以按照基站指示的传输时长对应的竞争接入的LBT参数值进行信道接入,或者,自己选择LBT参数或参数值。
规则6:自适应的优先级等级选择。例如,假定第一次最低优先级对应的LBT机制或参数进行信道接入,且传输时长为2ms,而最低优先级的业务量有很小仅传输了不到1ms就传完了,此时,还在传输的其他优先级的 业务或信号/信号类型以及准备开始在当前子帧传输的业务,此时可以按照较高,或最高,或是,依然按照最低优先级,或者,按照预定的优先级的LBT机制或参数进行信道接入和进行对应传输时长内进行传输。
上述规则中,当传输设备按照优先级对应的LBT参数竞争到非授权载波时,其传输的时长不足该优先级对应的传输时长时,UE可以发送占用信号,或者,通知基站或同小区或同运营商中的其他UE使用。而当其传输时长或业务量大于该优先级对应的传输时长时,该传输设备在该优先级对应的最大时长结束时刻立刻按照最高优先级对应的LBT机制或LBT参数竞争非授权载波,或者,执行最简化的LBT(如,LBT接入能力等级2且CCA duration为16μs或25μs,或者,DRS的LBT接入能力等级2,或者,增强性的LBT接入能力等级2,其CCA检测起点是不固定,或是随机选择的)。这里可选地,传输设备在对应的最大传输时长结束后立马执行LBT机制,或者,间隔gap时长后立刻执行LBT机制。其中,可选地,gap时长不小于一个预设值,其中,预设值可以是9μs,或者,16μs。
本发明中的上行传输时长可以理解为两层意思:一层意思是不考虑基站占用时长,仅仅从用户设备传输时长考虑;另一层意思是基于基站占用的时长,用户设备的传输时长是依赖于下行传输的时长的。假定基站占用期为8ms,下行传输时长为2ms,则上行可用的最大传输时长就为6ms。
可选实施例五
本实施例中,针对非授权载波上的单子帧调度或多子帧调度场景下,提供一种指示信令或通知信令,用于通知用户设备设备空置子帧中的哪个符号,以及空置的符号数目,便于正在竞争的UE执行CCA进行信道接入。这种方式的好处在于节省UE执行CCA的功耗。
配置UE执行CCA的位置和符号数目,可以通过以下方式:
方式一:每个上行子帧都空置特定用于CCA的符号数目和CCA位置。
例如,基站和UE按照事先约定的,上行子帧中最后一个符号,或,第一个符号,用于正在或准备竞争的UE执行CCA。这种方式一定程度上会造成上行资源浪费,以及对于多子帧调度情况下,导致连续被调度UE的已占信道在空置的资源处被其他节点抢走,由于传输被中断。为了防止正在传输的节点丢失信道的使用权,则正在传输的UE在空置的符号位置可以执行一个CCA时长为25μs的one-shot LBT,或者,仅在特定RE上发送预留信号或占用信号。预留信号或占用信号可以是SRS。
方式二:基站动态的指示哪个上行子帧、该子帧中哪个符号空置、空置的符号数目至少之一,用于竞争的UE执行CCA。
其中指示上行子帧位置、该子帧中空置的符号位置、空置的符号数目至少之一的方法如下:
方法1:高层RRC配置上行子帧中的特定位置。
即高层RRC配置连续调度的子帧中仅调度一个UE时,则连续调度的子帧中间不空置符号,用于其他UE执行CCA。或者,
高层RRC配置连续调度的子帧中特定子帧上调度了多个UE时,则空置连续调度子帧中首个调度有多个UE的子帧之前一子帧中末尾的一个或多个符号,或者,空置调度有多个UE的子帧中开始一个或多个符号。
方法2:基站通过物理层专有DCI信令,或者,公共DCI信令,或者,设计新的DCI用于通知UE空置的符号数目以及位置。
其中,物理层专有DCI可以指示UE在调度子帧中哪些符号位置上不传输PUSCH。例如,该DCI中指示一个调度子帧,且DCI中也指示了空置的符号位置或数目,或者,隐含指示空置调度子帧中最后一个符号位置,或者,第一个符号位置。例如,一个DCI可以指示多个调度子帧位置,且DCI中指示了空置符号或空置的数目位于第几个调度子帧,或者,隐含指示在奇数调度子帧位置中的最后一个符号位置,或者,第一个符号位置空 置,或者,指示调度多个UE的子帧中第一个符号位置或调度多个UE的子帧之前一子帧的末尾一个符号空置,或者,当多个调度UE中有UE执行LBT失败时,成功执行LBT的UE需要在连续传输的第一个子帧末尾或者第二个子帧开始空置一个符号用于竞争的UE执行CCA。
又如,对于物理层专有DCI可以采用format格式0或4中LAA中无用的IE项或字段,例如:Frequency hopping flag(1bit),Carrier indicator(3bit),可以赋予不用的字段的比特数新的含义:1、不配置CCA位置;2、每个子帧的特定位置预留用于CCA;3、根据调度的资源数,配置连续调度子帧中的末尾符号预留用于CCA;CCA的位置可以在单个或连续多个调度子帧之前一子帧的末尾一个或多个符号,单个或连续多个调度子帧末尾一个或多个符号,单个或连续多个调度子帧的前一个或多个符号。其中,特定的位置可以是事先定义好的,或者,基站和UE实现预定好的。
对于公共DCI,可以利用format 1C中配置LAA子帧分支。如:x比特用于指示LAA子帧配置,y比特用于预留。其中,可以利用y比特中部分比特用于执行上行子帧索引,符号位置及其符号数目。
例如,利用y比特中的m比特用于表示:
上行子帧索引;其中,空置符号的子帧索引可以占用s比特通知给UE,也可以既通知空置的子帧索引,又通知空置的符号位置和符号数。还可以仅通知2)之后的所有选项之一。
不空置调度子帧中的符号;
在连续调度的多个子帧之间不空置符号;
空置调度子帧中末尾的一个符号;
空置调度子帧中末尾的二个符号;
空置连续调度子帧中每个子帧中的末尾一个符号;
空置连续调度子帧中每个子帧中的末尾二个符号;
空置调度子帧中开始的一个符号;
空置调度子帧中开始的二个符号;
空置连续调度子帧中每个子帧中的开始一个符号;
空置连续调度子帧中每个子帧中的开始二个符号;
空置连续调度子帧中子帧索引为偶数子帧中的末尾一个符号;
空置连续调度子帧中子帧索引为偶数子帧中的末尾二个符号;
空置连续调度子帧中子帧索引为偶数子帧中的开始一个符号;
空置连续调度子帧中子帧索引为偶数子帧中的开始二个符号;
空置连续调度子帧中子帧索引为奇数子帧中的末尾一个符号;
空置连续调度子帧中子帧索引为奇数子帧中的末尾二个符号;
空置连续调度子帧中子帧索引为奇数子帧中的开始一个符号;
空置连续调度子帧中子帧索引为奇数子帧中的开始二个符号;
空置连续调度子帧中特定子帧中的末尾一个符号;
空置连续调度子帧中特定子帧中的末尾二个符号;
空置连续调度子帧中特定子帧中的开始一个符号;
空置连续调度子帧中特定子帧中的开始二个符号;
根据n+k定时关系确定被调度的上行子帧位置,且空置每个子帧或一个子帧中末端的一个或二个符号。
根据n+k定时关系确定被调度的上行子帧位置,且空置每个子帧或一个子帧中开始的一个或二个符号。
其中,k为大于等于4的值。n为发送DCI的子帧。此外,除了在DCI中增加空置符号的子帧索引的IE域,还可以增加指示空置符号数目的IE域,以及,空置的符号在子帧中的位置的IE域,LBT机制,一旦在空置的符号位置执行LBT失败,且在空置执行LBT失败所在子帧或下个子帧中的末尾一个或二个符号或者开始的一个或二个符号。
若y个比特没有用完,则剩余的比特用于预留。
对于公共DCI,可以利用format 1C,在该格式中增加一个if else分支,用于指示上行子帧索引,符号位置,符号数目。即利用format 1C中总x+y比特中的部分或全部指示上行子帧索引,符号位置,符号数目,LBT机制,SRS符号位置,用于SRS的CCA符号数,用于PUSCH的CCA及其调度信息。上述的IE字段可以独立各自占用比特表示其含义,也可以相互组合占用特定比特表示特定的含义。
例如:
采用u比特表示资源块指示;其调度资源块信息可以配置为可选项,有调度信息时,可配置该选项,没有调度PUSCH时,可以不配置对应的资源指示等IE项。现有DCI中用于指示资源分配和调度相关的IE项可以直接照搬过来。
采用o比特表示调制和编码计划;也可以为可配项。原理同上。
采用3bit表示用于执行CCA而空置符号位置情况:
“000”表示子帧中不空置符号;
“001”表示空置子帧中末尾一个符号;子帧可以当前调度子帧的前一子帧的末尾一个符号,也可以是当前调度子帧的末尾一个符号。下面几个选项中中表示中出现的子帧可以理解为上述含义。
“001“表示空置子帧中末尾二个符号;
“010”表示空置子帧中开始一个符号;
“011”表示空置子帧中开始二个符号;
“100”表示空置连续调度子帧中子帧索引为偶数子帧中的末尾一个符号;
“101”表示空置连续调度子帧中子帧索引为偶数子帧中的开始一个符号;
“110”表示空置连续调度子帧中子帧索引为奇数子帧中的末尾一个符号;
“101”表示空置连续调度子帧中子帧索引为奇数子帧中的开始一个符号;
“111”表示空置首个多个UE被调度在同一个子帧的子帧之前一子帧的末尾一个符号,或者,空置首个多个UE被调度在同一个子帧的子帧的开始一个符号。
采用q比特表示LBT机制;LBT机制包括:one-shot LBT,CCA时长至少为25μs,例如是25μs,34μs;LBT接入能力等级4,最大竞争窗可以从集合{1,2,3,4,5,6,7,8,9,10,11,12,15,31,等}中选择。
采用r比特表示SRS符号位置。表示SRS符号是现有协议中规定的子帧中最后一个符号,还是,修改SRS符号位置为子帧中第一个符号,或者,第二个符号,或者,倒数第二个符号,或者,DMRS的符号位置,或者,前半时隙中的最后一个符号,或者,后半时隙中的第一个符号。
此外,该DCI中的比特可以根据我们的需求来制定对应的IE或字段,例如:指示:调度子帧,调度子帧数目,调度子帧的时域图样,调度子帧的簇大小,调度子帧的簇个数,簇间隔,CCA位置,CCA符号数,CCA的间隔及其CCA的起点的各种组合对应的调度子帧位置以及CCA位置。而剩余的比特可用于指示资源分配等内容、SRS request字段及其调度PUSCH的TPC等。若还有剩余比特,则用于预留。
如图3所示,根据公共DCI指定UE1被连续调度4个子帧,UE1的CCA时域图样为调度子帧之前一个子帧的末尾一个符号,间隔3个子帧即被调度的第三个子帧的末尾一个符号要空置或静默用于下个子帧中被调度的UE2执行CCA,以及最后一个调度子帧的末尾一个符号也用空置用于下个子帧中的UE3执行CCA。假如CCA执行位置不是调度子帧之前一个子 帧中的末尾一个符号时,其方式也同样适用于CCA位置为其他情况的。
方法3:高层和物理层联合指示UE空置的符号数目以及位置。
对于方法3,实际上就是高层配置上行CCA时域图样,而通过物理层专有DCI或者公共DCI或新的DCI来触发CCA图样对应的时域位置使能。使能的CCA符号位置,用户设备需要空置该子帧中对应的CCA符号位置,用于竞争的UE执行CCA。高层配置的CCA时域图样可以是以每个子帧为间隔。CCA时域是以符号为基本单位。
同样,假定高层配置上行子帧中的每个最后一个符号为CCA的位置,具体是否要打掉对应每个子帧中PUSCH的最后一个符号,是由物理层专有DCI或公共DCI动态指示确定。其方法和原理同图4的例子,或本实施例中的方式。
图5是根据本发明实施例的一个多子帧和单子帧调度结合的示意图,如图5所示。
例如,UE1被连续调度在子帧#n+1,子帧#n+2,子帧#n+3,和子帧#n+4。而UE2也被连续调度在与UE1相同的子帧上。此时,UE1和UE2在子帧#n+1之前一子帧的最后一个符号上或在子帧#n+1中第一个符号上执行CCA,且采用LBT接入能力等级4,最大竞争窗不大于7。若UE1执行LBT成功,而UE2执行LBT失败,则UE1在子帧#n+1中传输时空置最后一符号或空置子帧#n+2中的第一个符号用于UE2执行CCA。此时,UE2采用的LBT机制可以是原来的接入能力等级4,最大竞争窗不大于7,也可以是采用一个CCA时长为25μs的one-shot LBT,,也可以采用类似DRS的LBT机制,也可以采用接入能力等级4,且最大竞争窗不大于3。即可以采用原来的LBT机制,或者,采用比原来LBT机制更小的竞争窗,或者,采用比原来LBT机制更加快速接入信道的LBT机制。此时,UE1若不空置上述对应的符号,则会阻塞UE2执行CCA和进行传输,因此,UE1在上述对应 空置的符号位置,可以执行一个CCA时长为25μs的one-shot LBT,或者,仅在特定RE上发送预留信号或占用信号。预留信号或占用信号可以是SRS。
例如,UE1被连续调度在子帧#n+1,子帧#n+2,子帧#n+3,和子帧#n+4。UE2被连续调度在子帧#n+1,子帧#n+2,UE3被调度在子帧#n+3,和子帧#n+4。此时,当UE1和UE2都在子帧子帧#n+1之前一子帧的末尾一个符号或多个符号,或者,子帧#n+1开始的一个或多个符号内执行LBT成功,其中,LBT接入能力等级4,最大竞争窗不大于7。UE1和UE2在连续传输中间子帧不空置符号。因为UE2连续传输2个子帧,因此在子帧#n+3,和子帧#n+4上不进行传输。此时,若UE1在剩余的子帧#n+3,和子帧#n+4正常传输,不空置符号用于其他竞争的UE进行CCA,此时,会阻塞UE3的信道接入以及上行传输,因此,UE1需要空置子帧#n+3之前一子帧的末尾一个符号,或者,空置子帧#n+3中第一个符号用于UE3执行CCA。其中,UE1为了防止在空置符号位置丢失信道,则UE1在上述对应空置的符号位置,可以执行一个CCA时长为25μs的one-shot LBT,或者,仅在特定RE上发送预留信号或占用信号。此时,UE3可以执行LBT接入能力等级4,最大竞争窗不大于7。
上述实施例中举例的多子帧调度场景下,通知用户设备空置用于CCA的符号数目以及位置可以按照本实施例中的方式一和二中的方法。上述方法在不相互冲突的前提下可以组合使用。
可选实施例六
本实施例中,主要提供一种识别或区别错失UL grant、CCA失败和上行数据传输失败这三者的流程。
步骤1:基站通过下行控制信道为用户设备设备发送上行授权UL grant。
步骤2:用户设备设备在收到上行授权UL grant之后,按照特定的定时 关系,在定时关系之前进行CCA检测。
其中,特定的定时关系为:n+k,n表示基站发送DCI的子帧,k为大于等于4的整数。用户设备根据n+k定时关系确定调度的子帧。用户设备可以在收到基站发送UL grant之后或者,在调度子帧之前进行上行CCA检测。
可选地,用户设备设备在收到基站的UL grant之后,可以在授权载波上第一特定位置发送一个指示信息,用于通知用户设备已经收到基站发送的UL grant信息。
或者,可以在非授权载波上第二特定位置发送一个指示信息,用于通知用户设备已经收到基站发送的UL grant信息。在非授权载波上发送指示信息的前提是必须执行CCA竞争到非授权载波的使用权。该CCA可以在收到UL grant之前,或者,之后。
第一特定位置可以是基站和UE事先约定的位置,或者,基站通过专有DCI或公共DCI通知UE的位置。该位置可以为子帧位置,或者,子帧中指示符号位置,或者,指示符号位置。
第二特定位置可以是收到UL grant后第一个子帧位置中特定符号,或者,下行传输结束后上行开始传输之前的符号,或者,LBT成功时刻后的第一个子帧,或者,LBT成功后第一个符号,或者,LBT成功时刻后第一个子帧中的第一个符号或特定符号,或者,调度子帧中Ack/Nack位置发送。此时,Ack/Nack符号位置上发送的信息用于指示UL grant是否接收成功。其判别方法也可以复用Ack/Nack的方法。指示信息或信号可以是SR,或者,Preamble,或者,SRS,或者,DMRS。
步骤3:若用户设备设备在定时关系之前执行CCA成功,则可以发送上行数据或SRS。同时也可以在上行PUSCH传输中的第三特定位置发送指示信号或序列。其中,所该UE被连续调度多个子帧,则第三特定位置可以 是该UE连续调度多个子帧中第一个子帧,或者,第一个或第二个偶数子帧,或者,第一个或第二个奇数子帧,或者,基站指示的一个子帧位置。而若该UE是单子帧调度,则第三特定位置该调度子帧位置。其中,指示信号或序列在上述第三特定位置中发送的符号位置,可以是基站和UE事先约定,或者,基站通过专有DCI或公共DCI或新的DCI通知给UE,或者,高层RRC配置,或者,隐含只要LBT成功,则对应在调度子帧中第一个符号,或,最后一个符号,或,前半时隙中第三和第五个符号或后半时隙中的第三和第五个符号(ACK/NACK符号位置),或,前半时隙中的第4个符号位置或后半时隙中的第4个符号位置(DMRS符号位置)。即用于指示CCA成功或失败的指示序列或信号可以在调度子帧中的第一个符号,或,最后一个符号,或,前半时隙中第三和第五个符号或后半时隙中的第三和第五个符号(ACK/NACK符号位置),或,前半时隙中的第4个符号位置或后半时隙中的第4个符号位置(DMRS符号位置)发送。若CCA执行失败时,指示序列或信号可以在授权载波上与非授权载波对应调度资源位置相同的子帧上发送。可选地,若CCA执行成功,指示序列或信号可以在授权载波或非授权载波上对应调度子帧中对应符号位置上发送。用于指示用户设备已经执行CCA成功了。该信息也可以区别CCA失败和数据传输失败两者的区别。
指示信息或信号可以是SR,或者,Preamble,或者,SRS,或者,DMRS。
而当用户设备设备在定时关系之前执行CCA失败,则可以在授权载波的特定位置上发送指示的信号或序列。其中,基站和UE实现预定好授权载波或非授权载波上发送指示信号或序列的位置。
步骤4:当基站在接收到用户设备发送的指示信息或数据之后,或者,基站在特定的区域上接收信号之后,先不进行数据解码,而直接检测下授权载波或非授权载波上信道上的能量是否满足特定的门限要求,从而确定 是否解码数据,或者,解码指示消息;或者,基站先不解码数据,而直接解码特定位置发送的指示信号或序列,来确定CCA是否成功,进而在解码接收到的数据,一定程度上这种方法降低了基站侧的复杂度,节省了能耗。
或者,基站在解码接收到的信息之前,先解码指示信息,解码得到的指示信息表示CCA执行失败,则基站即可不用解码数据信息,一定程度上降低了基站侧的功耗和检测复杂度。若指示CCA执行成功,则基站在进行接收数据的解码。
其中,上述步骤中涉及到的指示信息或信号在各自的时域为上可以按照顺序,或者,倒序,或者,随机顺序映射到对应符号的频域上,从而解码的时候按照对应的顺序或倒序或者随机顺序进行解码,从而在各自位置解码得到各自指示的含义,例如,步骤2中对应位置收到指示信息或信号,并解码成功,则可以获取用户设备已经成功收到UL grant。而在步骤3中对应的位置收到指示信息或信号,并解码成功,则可认为用户设备执行CCA成功或失败。通过在不同的预定位置上发送执行指示来区别UL grant是否错失,CCA是否成功,和数据传输是否成功这三者。其中,上述不同的预定位置对于基站和UE都是共享的,或者,是基站通知给UE的。
在本实施例中还提供了一种信道接入装置装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
实施例二
图6是根据本发明实施例的一种信道接入装置的结构框图,如图6所示,该装置包括:确定模块61和处理模块62,下面对该装置进行说明。
确定模块61,用于确定使用非授权载波的优先级等级;处理模块62,连接至上述确定模块61,用于根据与确定的优先级等级匹配的用于接入非授权载波前执行CCA检测的CCA参数,进行非授权载波的信道接入处理。
图7是根据本发明实施例的信道接入装置中确定模块61的可选结构框图,如图7所示,该确定模块61包括:第一确定单元71和第二确定单元72,下面对该确定模块61进行说明。
第一确定单元71,用于在使用非授权载波的优先级等级为一个的情况下,确定该优先级等级为优先级等级;第二确定单元72,用于在使用非授权载波的优先级等级为至少两个的情况下,根据预定原则,从至少两个优先级等级中选择一个优先级等级为优先级等级。
可选地,该确定模块61,还用于通过以下方式至少之一,确定使用非授权载波的优先级等级:预定义的方式,确定优先级等级;通过基站与UE协商的方式,确定优先级等级;通过接收RRC信令的方式,确定优先级等级;通过物理层专有DCI信令的方式,确定优先级等级;通过物理层公共DCI信令的方式,确定优先级等级。
图8是根据本发明实施例的一种信道接入装置的可选结构框图,如图8所示,该装置除包括图6所示的所有结构外,还包括:获取模块81,下面对该获取模块81进行说明。
获取模块81,连接至上述确定模块61和处理模块62,用于在根据与确定的优先级等级匹配的使用非授权载波前执行CCA检测的CCA参数,进行非授权载波的信道接入处理之前,通过以下方式至少之一,获取用于执行CCA的子帧位置、预留符号索引至少之一:通过预定义的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;通过基站与UE事先约定子帧位置、预留符号索引至少之一的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;通过高层RRC信令配置传输子帧中的预定 位置的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;通过高层RRC信令配置下行传输结束位置的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;通过高层RRC信令配置的CCA时域图样的方式,获取子帧位置、预留符号索引至少之一;通过物理层专有DCI信令或者公共DCI信令或者新设计的DCI信令配置的方式,获取子帧位置、预留符号索引至少之一;通过高层RRC信令和物理层专有DCI信令或者公共DCI信令或者新设计的DCI信令联合配置的方式,获取子帧位置、预留符号索引至少之一。
可选地,该获取模块81,还用于通过公共DCI信令或者新设计的DCI信令获取子帧位置、预留符号索引至少之一包括:利用公共DCI信令中LAA子帧配置分支中的Y个预留比特的部分比特指示以下信息至少之一:用于执行CCA预留符号所在子帧位置,CCA位置,CCA空置的符号索引,CCA的间隔,CCA起点,其中,Y为预设数量;利用公共DCI信令中新增加分支或者新设计的DCI信令中全部比特中的部分比特指示以下信息至少之一:用于执行CCA预留符号所在子帧位置,CCA位置,CCA空置的符号索引,CCA的间隔,CCA起点。
图9是根据本发明实施例的信道接入装置中处理模块62的可选结构框图一,如图9所示,该处理模块62包括:接收单元91、检测单元92和第一发送单元93,下面对该处理模块62进行说明。
接收单元91,用于接收基站发送的上行授权信息;检测单元92,连接至上述接收单元91,用于在按照预定的定时关系确定的位置之前执行CCA检测;第一发送单元93,连接至上述检测单元92,用于在执行CCA检测成功的情况下,向基站发送上行数据或SRS。
图10是根据本发明实施例的信道接入装置中处理模块62的可选结构框图二,如图10所示,该处理模块62除包括图9所示的所有结构外,还 包括以下至少之一:第二发送单元94,第三发送单元95,下面对该处理模块62进行说明。
第二发送单元94,用于在授权载波上的第一预定位置发送第一指示信息,其中,第一指示信息用于指示用户设备已接收基站发送的上行授权信息;第三发送单元95,用于在执行CCA检测成功竞争到的非授权载波的使用权后的第二预定位置发送第一指示信息。
图11是根据本发明实施例的信道接入装置中处理模块62的可选结构框图三,如图11所示,该处理模块62除包括图9或图10所示的所有结构外(图中是以图9为例),还包括以下至少之一:第四发送单元101,第五发送单元102,下面对该处理模块62进行说明。
第四发送单元101,用于在授权载波上的第三预定位置发送第二指示信息,其中,第二指示信息用于指示用户设备执行CCA检测的执行结果信息,其中,执行结果信息包括:执行CCA检测成功或者执行CCA检测失败;第五发送单元102,用于在执行CCA检测成功竞争到的非授权载波使用权后的第四预定位置发送第二指示信息。
图12是根据本发明实施例的UE的结构框图,如图12所示,该UE110包括:
存储器1101,配置为存储信道接入可执行指令;
处理器1102,配置为执行所述存储器1101所存储的信道接入可执行指令,确定使用非授权载波的优先级等级;根据与确定的所述优先级等级匹配的用于接入所述非授权载波前执行CCA检测的CCA参数,进行所述非授权载波的信道接入处理。
在一实施例中,所述处理器1102,还配置为在使用所述非授权载波的优先级等级为一个的情况下,确定该优先级等级为所述优先级等级;在使用所述非授权载波的优先级等级为至少两个的情况下,根据预定原则,从 所述至少两个优先级等级中选择一个优先级等级为所述优先级等级。
图13是根据本发明实施例的基站的结构框图,如图13所示,该基站120包括:
存储器1201,配置为存储信道接入可执行指令;
处理器1202,配置为执行所述存储器1201所存储的信道接入可执行指令,确定使用非授权载波的优先级等级;根据与确定的所述优先级等级匹配的用于接入所述非授权载波前执行CCA检测的CCA参数,进行所述非授权载波的信道接入处理。
在一实施例中,所述处理器1202,还配置为在使用所述非授权载波的优先级等级为一个的情况下,确定该优先级等级为所述优先级等级;在使用所述非授权载波的优先级等级为至少两个的情况下,根据预定原则,从所述至少两个优先级等级中选择一个优先级等级为所述优先级等级。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种计算机存储介质。可选地,在本实施例中,上述计算机存储介质可以被设置为存储用于执行以下步骤的程序代码:实施例一中的步骤。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特 定的硬件和软件结合。
以上所述仅为本发明的可选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例采用确定使用非授权载波的优先级等级;根据与确定的优先级等级匹配的用于接入非授权载波前执行CCA检测的CCA参数,进行非授权载波的信道接入处理。如此,能够有效解决在非授权载波上进行信道接入概率低的问题,进而提高信道接入的成功率。

Claims (40)

  1. 一种信道接入方法,包括:
    确定使用非授权载波的优先级等级;
    根据与确定的所述优先级等级匹配的用于接入所述非授权载波前执行空闲信道评估CCA检测的CCA参数,进行所述非授权载波的信道接入处理。
  2. 根据权利要求1所述的方法,其中,所述确定使用非授权载波的优先级等级包括:
    在使用所述非授权载波的优先级等级为一个的情况下,确定该优先级等级为所述优先级等级;
    在使用所述非授权载波的优先级等级为至少两个的情况下,根据预定原则,从所述至少两个优先级等级中选择一个优先级等级为所述优先级等级。
  3. 根据权利要求2所述的方法,其中,所述预定原则包括以下至少之一:
    从所述至少两个优先级等级中选择较低的优先级等级为所述优先级等级;
    从所述至少两个优先级等级中选择较高的优先级等级为所述优先级等级;
    从所述至少两个优先级等级中选择用户设备UE确定的优先级等级为所述优先级等级;
    从所述至少两个优先级等级中选择基站确定的优先级等级为所述优先级等级;
    依据预定自适应选择规则,从所述至少两个优先级等级中选择的优先 级等级为所述优先级等级。
  4. 根据权利要求1所述的方法,其中,所述优先级等级包括以下至少之一:
    业务类型的优先级等级,信号类型的优先级等级,信道类型的优先级等级。
  5. 根据权利要求4所述的方法,其中,
    所述业务类型包括以下至少之一:语音业务,视频业务,最大努力服务业务,背景业务;或者,
    所述信号类型包括以下至少之一:探测参考信号SRS,发现参考信号DRS;或者,
    所述信道类型包括以下至少之一:上行授权信道,下行授权信道,物理随机接入信道PRACH,物理上行控制信道PUCCH,物理上行共享信道PUSCH,物理下行共享信道PDSCH,物理下行控制信道PDCCH。
  6. 根据权利要求1所述的方法,其中,通过以下方式至少之一,确定使用所述非授权载波的所述优先级等级:
    预定义的方式,确定所述优先级等级;
    通过基站与UE协商的方式,确定所述优先级等级;
    通过接收无线资源控制RRC信令的方式,确定所述优先级等级;
    通过物理层专有下行控制信息DCI信令的方式,确定所述优先级等级;
    通过物理层公共下行控制信息DCI信令的方式,确定所述优先级等级。
  7. 根据权利要求1所述的方法,其中,所述CCA参数包括以下至少之一:
    先听后说LBT机制,CCA起点,CCA持续时长,传输时长,LBT符号数,传输块TB大小,混合自动重传请求HARQ的重传次数,最大竞争窗、最小竞争窗,以及系数n,其中,延迟期=预定固定时长+n*slot,slot 为时隙长度。
  8. 根据权利要求7所述的方法,其中,所述LBT机制包括:LBT接入能力等级2,LBT接入能力等级4。
  9. 根据权利要求7所述的方法,其中,所述传输时长包括:单独上行传输时长,或者,在一个占用期内传输完下行数据后的剩余时长。
  10. 根据权利要求7所述的方法,其中,所述CCA起点的位置包括以下至少之一:执行CCA的区间内N个等长子区间中每个子区间的起点位置、执行CCA的区间内预定区间中随机选择的起点位置,N为正整数。
  11. 根据权利要求7所述的方法,其中,所述CCA持续时长包括:CCA闲置持续时长、CCA侦听持续时长,所述CCA持续时长的时域结构包括以下至少之一:
    所述CCA持续时长=CCA闲置持续时长+m*CCA侦听持续时长;
    所述CCA持续时长=m*CCA侦听持续时长+CCA闲置持续时长;
    所述CCA持续时长=m1*CCA侦听持续时长+CCA闲置持续时长+m2*CCA侦听持续时长;
    其中,所述m,所述m1,所述m2为预设参数。
  12. 根据权利要求7所述的方法,其中,
    所述CCA持续时长包括以下至少之一:16μs,25μs,34μs,43μs;
    所述传输时长包括以下至少之一:0.5ms,1ms,1.5ms,2ms,3ms,4ms,5ms,8ms,10ms;
    所述LBT符号数为:一个符号或者两个符号或下行传输后末尾部分子帧中剩余符号中至少之一;
    所述TB大小包括以下之一:第一资源块,第二资源块,第三资源块,第四资源块;
    竞争窗范围包括以下之一:{0,1},{1,2},{2,3},{3,4,5,6,7},{7,15},{15,31,63},{15,31,63,127,255,511,1023};
    所述n包括以下之一:0,1,2,3,4,5,6,7。
  13. 根据权利要求1所述的方法,其中,所述优先级等级与所述CCA参数之间的关系包括以下之一:
    所述优先级等级越低,所述CCA起点越晚;
    所述优先级等级越低,所述CCA起点越晚,且所述CCA持续时长不变;
    所述优先级等级越低,所述CCA起点越晚,且所述CCA持续时长越长;
    所述优先级等级越低,所述CCA起点不变,且所述CCA持续时长越长;
    所述优先级等级越低,所述CCA起点越晚,且所述CCA持续时长不变,所述传输时长的取值不变;
    所述优先级等级越低,所述CCA起点越晚,且所述CCA持续时长不变,所述传输时长的取值越大;
    所述优先级等级越低,所述CCA起点越晚,且所述CCA持续时长越长、所述传输时长的取值越大;
    所述优先级等级越低,所述CCA起点不变,且所述CCA持续时长不变、所述传输时长的取值越大;
    所述优先级等级越低,所述CCA起点不变,且所述CCA持续时长越长、所述传输时长的取值不变;
    所述优先级等级越低,所述CCA起点不变,且所述CCA持续时长越长、所述传输时长的取值越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变, 所述传输时长的取值不变,所述LBT的符号数不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值不变,所述LBT的符号数越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值不变,所述LBT的符号数越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值不变,所述LBT的符号数不变,所述TB大小不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值不变,所述LBT的符号数不变,所述TB大小越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值不变,所述LBT的符号数不变,所述TB大小越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值不变,所述LBT的符号数越大,所述TB大小不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值不变,所述LBT的符号数越大,所述TB大小越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值不变,所述LBT的符号数越大,所述TB大小越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值不变,所述LBT的符号数越小,所述TB大小不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变, 所述传输时长的取值不变,所述LBT的符号数越小,所述TB大小越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值不变,所述LBT的符号数越小,所述TB大小越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小越小;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小不变;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小越大;
    所述优先级等级越低,所述CCA起点越晚,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数不变,所述TB大小不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数不变,所述TB大小越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数不变,所述TB大小越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数越大,所述TB大小不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数越大,所述TB大小越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长, 所述传输时长的取值不变,所述LBT的符号数越大,所述TB大小越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数越小,所述TB大小不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数越小,所述TB大小越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值不变,所述LBT的符号数越小,所述TB大小越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长越长,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数不变,所述TB大小越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越大,所述TB大小越小;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小不变;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小越大;
    所述优先级等级越低,所述CCA起点不变,所述CCA持续时长不变,所述传输时长的取值越大,所述LBT的符号数越小,所述TB大小越小;
    所述优先级等级越低,所述HARQ重传次数越大;
    所述优先级等级越低,所述HARQ重传次数越小;
    所述优先级等级越低,所述最大竞争窗越大;
    所述优先级等级越低,所述最小竞争窗越大;或者,
    所述优先级等级越低,所述最大竞争窗越大,所述最小竞争窗越大。
  14. 根据权利要求1所述的方法,其中,进行所述非授权载波的信道接入处理之前,还包括:
    通过以下方式至少之一,获取用于执行CCA的子帧位置、预留符号索引至少之一:
    通过预定义的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;
    通过基站与UE事先约定子帧位置、预留符号索引至少之一的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;
    通过高层RRC信令配置传输子帧中的预定位置的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;
    通过高层RRC信令配置下行传输结束位置的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;
    通过高层RRC信令配置的CCA时域图样的方式,获取子帧位置、预留符号索引至少之一;
    通过物理层专有DCI信令或者公共DCI信令或者新设计的DCI信令配置的方式,获取子帧位置、预留符号索引至少之一;
    通过高层RRC信令和物理层专有DCI信令或者公共DCI信令或者新设计的DCI信令联合配置的方式,获取子帧位置、预留符号索引至少之一。
  15. 根据权利要求14所述的方法,其中,通过所述公共DCI信令或者新设计的DCI信令获取所述子帧位置、预留符号索引至少之一包括:
    利用所述公共DCI信令中授权辅助接入LAA子帧配置分支中的Y个预留比特的部分比特指示以下信息至少之一:所述用于执行CCA预留符号所在子帧位置,所述CCA位置,所述CCA空置的符号索引,所述CCA的间隔,所述CCA起点;或者,
    利用所述公共DCI信令中新增加分支或者新设计的DCI信令中全部比特中的部分比特指示以下信息至少之一:所述用于执行CCA预留符号所在子帧位置,所述CCA位置,所述CCA空置的符号索引,所述CCA的间隔, 所述CCA起点;
    其中,所述Y为预设数量。
  16. 根据权利要求14所述的方法,其中,复用所述专有DCI信令不用的字段的比特指示以下信息至少之一:所述用于执行CCA预留符号所在子帧位置,所述CCA位置,所述CCA空置的符号数目,所述CCA的间隔,所述CCA起点。
  17. 根据权利要求1所述的方法,其中,所述根据与确定的所述优先级等级匹配的使用所述非授权载波前执行空闲信道评估CCA检测的CCA参数,进行所述非授权载波的信道接入处理包括:
    接收基站发送的上行授权信息;
    在按照预定的定时关系确定的位置之前执行CCA检测;
    在执行所述CCA检测成功的情况下,向基站发送上行数据,探测参考信号SRS中至少之一。
  18. 根据权利要求17所述的方法,其中,在接收到所述基站发送的上行授权之后,还包括以下至少之一:
    在授权载波上的第一预定位置发送第一指示信息;
    在执行CCA检测成功竞争到的非授权载波的使用权后的第二预定位置发送所述第一指示信息。
    其中,所述第一指示信息用于指示用户设备已接收所述基站发送的上行授权信息。
  19. 根据权利要求17或18所述的方法,其中,在按照预定的定时关系确定的位置之前执行CCA检测之后,还包括以至少之一:
    在授权载波上的第三预定位置发送第二指示信息;
    在执行CCA检测成功竞争到的非授权载波使用权后的第四预定位置发送所述第二指示信息;
    其中,所述第二指示信息用于指示用户设备执行所述CCA检测的执行结果信息,其中,所述执行结果信息包括:执行CCA检测成功或者执行CCA检测失败。
  20. 根据权利要求18或19所述的方法,其中,所述第一预定位置,所述第二预定位置,所述第三预定位置,所述第四预定位置中的至少之一,通过以下方式至少之一获取:
    通过基站与用户设备事先约定的方式,通过基站专有DCI信令或者公共DCI信令或者新设计的DCI信令配置的方式,高层RRC信令的方式,CCA成功位置隐含指示方式。
  21. 根据权利要求18或19所述的方法,其中,所述第一预定位置,所述第二预定位置,所述第三预定位置,所述第四预定位置中的至少之一包括以下至少之一:
    预定义的位置;
    通过预定定时关系n+k的方式确定的位置,其中,n为下行控制信息DCI的子帧索引,k为大于或等于1的整数,或者k为大于或等于4的整数;
    第一个上行子帧;
    上行传输突发burst中第一上行子帧;
    在授权载波上与非授权载波对应的调度资源位置相同的子帧;
    CCA成功时刻后的第一个子帧。
  22. 根据权利要求18或19所述的方法,其中,所述第一指示信息、所述第二指示信息至少之一在以下符号位置至少之一发送:
    预定符号,第一个符号,最后一个符号,前半时隙中的第三个符号,前半时隙中的第五个符号,后半时隙中的第三个符号,后半时隙中的第五个符号,前半时隙中的第四个符号,后半时隙中的第四个符号,其中,发送所述第一指示信息的符号位置与发送所述第二指示信息的符号位置不 同。
  23. 根据权利要求7所述的方法,其中,所述CCA的起点,包括以下之一:
    从PUSCH的子帧边界开始,或者,从PUSCH开始传输的符号边界,或者,从PUSCH开始传输的时隙边界为CCA检测的终点,往前持续CCA duration长度结束的时刻为CCA的起点;或者,
    在CCA执行区域的开始时刻,或者,在CCA执行区域内任意时间或特定的时间作为CCA的起点,或者,符号/时隙/子帧的边界开始+Gap时刻作为CCA的起点,或者,下行传输结束时刻+Gap时刻作为CCA的起点,或者,下行传输结束时刻作为CCA的起点。
  24. 根据权利要求10或23所述的方法,其中,所述CCA起点由以下之一方式确定:
    基站通过物理层信令通知给UE;
    通过高层信令通知给UE;
    基站和UE事先约定好的;
    其中,所述物理层信令包括:UE专有DCI,或公共DCI;所述高层信令通过RRC信令配置给UE。
  25. 根据权利要求1或7所述的方法,其中,所述CCA的位置和占用的符号数目,通过以下至少之一方式确定:
    方式一:每个上行子帧都空置特定用于CCA的符号数目、CCA位置至少之一;
    方式二:基站指示上行子帧、该子帧中对应的符号空置、空置的符号数目至少之一。
  26. 根据权利要求25所述的方法,其中,包括以下至少之一:
    所述在每个上行子帧上空置特定的CCA位置;
    所述CCA的符号数目,包括以下之一:
    空置上行子帧中的第一个符号,或者,最后一个符号,或者,空置对应符号上的特定的RE。
  27. 根据权利要求25所述的方法,其中,所述基站指示上行子帧、该子帧中对应的符号空置、空置的符号数目至少之一的方式,包括以下至少之一:
    通过高层RRC信令指示;
    通过物理层专有DCI信令,或者,公共DCI信令,或者,设计新的DCI指示UE在调度子帧中对应的符号位置上不传输PUSCH。
  28. 一种信道接入装置,包括:
    确定模块,配置为确定使用非授权载波的优先级等级;
    处理模块,配置为根据与确定的所述优先级等级匹配的用于接入所述非授权载波前执行空闲信道评估CCA检测的CCA参数,进行所述非授权载波的信道接入处理。
  29. 根据权利要求28所述的装置,其中,所述确定模块包括:
    第一确定单元,配置为在使用所述非授权载波的优先级等级为一个的情况下,确定该优先级等级为所述优先级等级;
    第二确定单元,配置为在使用所述非授权载波的优先级等级为至少两个的情况下,根据预定原则,从所述至少两个优先级等级中选择一个优先级等级为所述优先级等级。
  30. 根据权利要求28所述的装置,其中,所述确定模块,还配置为通过以下方式至少之一,确定使用所述非授权载波的所述优先级等级:
    预定义的方式,确定所述优先级等级;
    通过基站与UE协商的方式,确定所述优先级等级;
    通过接收无线资源控制RRC信令的方式,确定所述优先级等级;
    通过物理层专有下行控制信息DCI信令的方式,确定所述优先级等级;
    通过物理层公共下行控制信息DCI信令的方式,确定所述优先级等级。
  31. 根据权利要求28所述的装置,其中,所述装置还包括:
    获取模块,配置为在根据与确定的所述优先级等级匹配的使用所述非授权载波前执行空闲信道评估CCA检测的CCA参数,进行所述非授权载波的信道接入处理之前,通过以下方式至少之一,获取用于执行CCA的子帧位置、预留符号索引至少之一:
    通过预定义的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;
    通过基站与UE事先约定子帧位置、预留符号索引至少之一的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;
    通过高层RRC信令配置传输子帧中的预定位置的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;
    通过高层RRC信令配置下行传输结束位置的方式,获取用于执行CCA的子帧位置、预留符号索引至少之一;
    通过高层RRC信令配置的CCA时域图样的方式,获取子帧位置、预留符号索引至少之一;
    通过物理层专有DCI信令或者公共DCI信令或者新设计的DCI信令配置的方式,获取子帧位置、预留符号索引至少之一;
    通过高层RRC信令和物理层专有DCI信令或者公共DCI信令或者新设计的DCI信令联合配置的方式,获取子帧位置、预留符号索引至少之一。
  32. 根据权利要求31所述的装置,其中,所述获取模块,还配置为通过所述公共DCI信令或者新设计的DCI信令获取所述子帧位置、预留符号索引至少之一包括:
    利用所述公共DCI信令中授权辅助接入LAA子帧配置分支中的Y个 预留比特的部分比特指示以下信息至少之一:所述用于执行CCA预留符号所在子帧位置,所述CCA位置,所述CCA空置的符号索引,所述CCA的间隔,所述CCA起点;
    利用所述公共DCI信令中新增加分支或者新设计的DCI信令中全部比特中的部分比特指示以下信息至少之一:所述用于执行CCA预留符号所在子帧位置,所述CCA位置,所述CCA空置的符号索引,所述CCA的间隔,所述CCA起点;
    其中,所述Y为预设数量。
  33. 根据权利要求28所述的装置,其中,所述处理模块包括:
    接收单元,配置为接收基站发送的上行授权信息;
    检测单元,配置为在按照预定的定时关系确定的位置之前执行CCA检测;
    第一发送单元,配置为在执行所述CCA检测成功的情况下,向基站发送上行数据或探测参考信号SRS。
  34. 根据权利要求33所述的装置,其中,所述装置还包括以下至少之一:
    第二发送单元,配置为在授权载波上的第一预定位置发送第一指示信息,其中,所述第一指示信息用于指示用户设备已接收所述基站发送的上行授权信息;
    第三发送单元,配置为在执行CCA检测成功竞争到的非授权载波的使用权后的第二预定位置发送所述第一指示信息。
  35. 根据权利要求33或34所述的装置,其中,所述处理模块还包括以至少之一:
    第四发送单元,配置为在授权载波上的第三预定位置发送第二指示信息,其中,所述第二指示信息用于指示用户设备执行所述CCA检测的执行 结果信息,其中,所述执行结果信息包括:执行CCA检测成功或者执行CCA检测失败;
    第五发送单元,配置为在执行CCA检测成功竞争到的非授权载波使用权后的第四预定位置发送所述第二指示信息。
  36. 一种用户设备UE,所述UE包括:
    存储器,配置为存储信道接入可执行指令;
    处理器,配置为执行所述信道接入可执行指令,确定使用非授权载波的优先级等级;根据与确定的所述优先级等级匹配的用于接入所述非授权载波前执行空闲信道评估CCA检测的CCA参数,进行所述非授权载波的信道接入处理。
  37. 根据权利要求36所述的UE,其中,
    所述处理器,还配置为在使用所述非授权载波的优先级等级为一个的情况下,确定该优先级等级为所述优先级等级;在使用所述非授权载波的优先级等级为至少两个的情况下,根据预定原则,从所述至少两个优先级等级中选择一个优先级等级为所述优先级等级。
  38. 一种基站,所述基站包括:
    存储器,配置为存储信道接入可执行指令;
    处理器,配置为执行所述信道接入可执行指令,确定使用非授权载波的优先级等级;根据与确定的所述优先级等级匹配的用于接入所述非授权载波前执行空闲信道评估CCA检测的CCA参数,进行所述非授权载波的信道接入处理。
  39. 根据权利要求38所述的基站,其中,
    所述处理器,还配置为在使用所述非授权载波的优先级等级为一个的情况下,确定该优先级等级为所述优先级等级;在使用所述非授权载波的优先级等级为至少两个的情况下,根据预定原则,从所述至少两个优先级 等级中选择一个优先级等级为所述优先级等级。
  40. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至27任一项所述信道接入方法。
PCT/CN2017/079149 2016-04-01 2017-03-31 信道接入方法、装置、用户设备、基站及计算机存储介质 WO2017167303A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/090,550 US20190200386A1 (en) 2016-04-01 2017-03-31 Channel access method and device, user equipment, base station, and computer storage medium
EP17773332.6A EP3439414A4 (en) 2016-04-01 2017-03-31 CHANNEL ACCESS PROCESS AND DEVICE, USER DEVICE, BASE STATION AND COMPUTER STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610203748.0 2016-04-01
CN201610203748.0A CN107295696B (zh) 2016-04-01 2016-04-01 信道接入方法、装置、ue及基站

Publications (1)

Publication Number Publication Date
WO2017167303A1 true WO2017167303A1 (zh) 2017-10-05

Family

ID=59963552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079149 WO2017167303A1 (zh) 2016-04-01 2017-03-31 信道接入方法、装置、用户设备、基站及计算机存储介质

Country Status (4)

Country Link
US (1) US20190200386A1 (zh)
EP (1) EP3439414A4 (zh)
CN (1) CN107295696B (zh)
WO (1) WO2017167303A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220150969A1 (en) * 2018-08-09 2022-05-12 Ofinno, Llc Listen Before Talk Procedure and Bandwidth Part Switching
EP3857936A4 (en) * 2018-09-26 2022-06-22 Telefonaktiebolaget LM Ericsson (publ) METHOD, TERMINAL AND BASE STATION FOR CHANNEL ESTIMATION IN AN UNLICENSED SPECTRUM

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107071915B (zh) * 2015-01-29 2021-02-02 中兴通讯股份有限公司 一种数据传输方法、数据传输站点及接收端
US11368981B2 (en) * 2016-04-14 2022-06-21 Apple Inc. Low latency physical random access channel design
US11071142B2 (en) 2016-05-04 2021-07-20 Huawei Technologies Co., Ltd. Uplink transmission method based on licensed-assisted access LAA system, and apparatus
US10904826B2 (en) * 2016-09-15 2021-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for autonomous device selection of transmission resources
US11304222B2 (en) * 2017-11-17 2022-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for uplink scheduling
CN116506087A (zh) * 2018-01-19 2023-07-28 华为技术有限公司 用于管理非授权频段的信道占用时长的方法和设备
KR102598542B1 (ko) * 2018-03-08 2023-11-06 삼성전자주식회사 반송파 집성을 위한 반송파 조합 송신 방법 및 이를 위한 전자 장치
CN111316587A (zh) * 2018-03-28 2020-06-19 华为技术有限公司 一种混合自动重传请求方法、网络设备及终端
CN110351874B (zh) * 2018-04-03 2021-07-23 北京紫光展锐通信技术有限公司 通知信道占用时间的方法、装置、基站及用户设备
KR20210028699A (ko) * 2018-08-10 2021-03-12 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 업링크 채널들에 대한 시간 리소스들
CN110913492B (zh) * 2018-09-14 2021-03-19 中国信息通信研究院 一种非授权频段上行共享信道调度方法、移动终端和网络设备
CN110972105B (zh) * 2018-09-28 2023-02-17 北京紫光展锐通信技术有限公司 通信方法、通信装置及用户设备
CN109417800B (zh) * 2018-09-29 2023-05-26 北京小米移动软件有限公司 传输信息的方法、装置、基站及终端
WO2020076211A1 (en) * 2018-10-09 2020-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced channel occupancy sharing mechanism for random access and pucch in unlicensed spectrum
CN111629447B (zh) * 2019-02-28 2022-09-27 中国移动通信有限公司研究院 一种配置方法、信道接入方法、网络设备及终端
SG11202110221UA (en) * 2019-03-20 2021-10-28 Beijing Xiaomi Mobile Software Co Ltd Method, device and apparatus for determining channel detection mechanism, and storage medium
KR20220007036A (ko) 2019-05-09 2022-01-18 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 리소스 구성 방법, 장치, 컴퓨터 디바이스 및 저장 매체
KR20220042048A (ko) 2019-07-31 2022-04-04 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 정보 전송 방법, 전자 기기 및 저장 매체
US11758580B2 (en) * 2019-08-14 2023-09-12 Qualcomm Incorporated Channel access procedures for an unlicensed radio frequency spectrum band
US11576211B2 (en) * 2019-12-19 2023-02-07 Qualcomm Incorporated Autonomous sidelink over unlicensed band
US20230171807A1 (en) * 2020-05-27 2023-06-01 Qualcomm Incorporated Multiple starting points in relation to a channel occupancy time (cot) for sidelink communication
US11611991B2 (en) * 2020-09-02 2023-03-21 Qualcomm Incorporated Frequency resource reservation for sidelink communication
EP4316140A1 (en) * 2021-03-22 2024-02-07 Sony Group Corporation Adaptive uplink transmission in an unlicensed radio spectrum
WO2022266791A1 (en) * 2021-06-21 2022-12-29 Qualcomm Incorporated Priority-based access for channel occupancy time

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188711A (zh) * 2011-12-31 2013-07-03 中兴通讯股份有限公司 一种优化频谱资源使用的方法及终端
CN103517456A (zh) * 2012-06-14 2014-01-15 网件公司 双频段lte小蜂窝
CN105517181A (zh) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 非授权载波的载波资源处理方法、装置及传输节点
CN106162898A (zh) * 2015-05-15 2016-11-23 中兴通讯股份有限公司 非授权载波处理的方法及装置
CN106452701A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 一种非授权多载波先听后说lbt执行方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531512B2 (en) * 2013-11-25 2016-12-27 Qualcomm Incorporated Techniques for downlink coordinated multi-point (CoMP) communications using unlicensed radio frequency spectrum band
US9867055B2 (en) * 2014-04-30 2018-01-09 Qualcomm Incorporated Techniques for coordinating communications over an unlicensed radio frequency spectrum band
US9516640B2 (en) * 2014-08-01 2016-12-06 Cisco Technology, Inc. System and method for a media access control scheduler for a long term evolution unlicensed network environment
CN105101446B (zh) * 2015-06-30 2017-12-15 宇龙计算机通信科技(深圳)有限公司 一种用于非授权频段的冲突避免方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188711A (zh) * 2011-12-31 2013-07-03 中兴通讯股份有限公司 一种优化频谱资源使用的方法及终端
CN103517456A (zh) * 2012-06-14 2014-01-15 网件公司 双频段lte小蜂窝
CN105517181A (zh) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 非授权载波的载波资源处理方法、装置及传输节点
CN106162898A (zh) * 2015-05-15 2016-11-23 中兴通讯股份有限公司 非授权载波处理的方法及装置
CN106452701A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 一种非授权多载波先听后说lbt执行方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439414A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220150969A1 (en) * 2018-08-09 2022-05-12 Ofinno, Llc Listen Before Talk Procedure and Bandwidth Part Switching
US11638301B2 (en) * 2018-08-09 2023-04-25 Ofinno, Llc Listen before talk procedure and bandwidth part switching
US11930531B2 (en) 2018-08-09 2024-03-12 Ofinno, Llc Consecutive listen-before-talk procedures based on bandwidth part switching
EP3857936A4 (en) * 2018-09-26 2022-06-22 Telefonaktiebolaget LM Ericsson (publ) METHOD, TERMINAL AND BASE STATION FOR CHANNEL ESTIMATION IN AN UNLICENSED SPECTRUM
US11490422B2 (en) 2018-09-26 2022-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Methods, terminal device and base station for channel sensing in unlicensed spectrum

Also Published As

Publication number Publication date
EP3439414A1 (en) 2019-02-06
CN107295696A (zh) 2017-10-24
CN107295696B (zh) 2023-05-30
US20190200386A1 (en) 2019-06-27
EP3439414A4 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
WO2017167303A1 (zh) 信道接入方法、装置、用户设备、基站及计算机存储介质
US11889317B2 (en) Apparatus and method for reception and transmission of control channels
US11956679B2 (en) Sensing and resource selection based on priorities for sidelink transmissions
US10999782B2 (en) Method and apparatus for transmitting and receiving resource allocation information in a wireless communication system
US11678299B2 (en) Method and user equipment for multi-carrier data transmission
WO2017167304A1 (zh) 探测参考信号发送、接收方法、设备、系统及存储介质
CN106453182B (zh) 前导发送方法和装置
WO2017125009A1 (zh) 一种探测参考信号的发送方法和装置
WO2017117991A1 (zh) 资源配置方法、装置和基站
WO2016112721A1 (zh) 非授权资源使用方法、系统、基站、ue及计算机存储介质
CN110351764B (zh) 一种信息传输方法、装置、基站及计算机可读存储介质
WO2017167271A1 (zh) 下行信息发送、接收方法及装置
WO2017041601A1 (zh) 一种物理下行控制信道传输方法及装置
WO2013023541A1 (zh) 一种下行控制信息传输方法及装置
US11425756B2 (en) Data transmission method and apparatus
WO2017020684A1 (zh) 竞争资源确定方法及装置
US11412538B2 (en) User device, network node and methods thereof
WO2017132964A1 (zh) 一种上行数据传输方法及相关设备
WO2016138841A1 (zh) 数据传输的方法、反馈信息传输方法及相关设备
KR20190017588A (ko) 비면허대역에서 상향링크 자발적 전송을 위한 채널엑세스, 데이터 자원 설정 방법, 및 재전송을 위한 장치 및 시스템
KR20180039501A (ko) 비면허대역에서 상향링크 캐리어 채널엑세스 및 데이터 전송 방법, 장치 및 시스템
WO2020125289A1 (zh) 占有时隙的确定方法及装置、存储介质、用户终端
WO2021204055A1 (zh) 上行数据传输方法、终端及可读存储介质
CN117676886A (zh) 通信方法及装置
WO2019028744A1 (zh) 资源分配方法、网络设备及终端设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773332

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773332

Country of ref document: EP

Effective date: 20181102

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773332

Country of ref document: EP

Kind code of ref document: A1