WO2017020684A1 - 竞争资源确定方法及装置 - Google Patents

竞争资源确定方法及装置 Download PDF

Info

Publication number
WO2017020684A1
WO2017020684A1 PCT/CN2016/089694 CN2016089694W WO2017020684A1 WO 2017020684 A1 WO2017020684 A1 WO 2017020684A1 CN 2016089694 W CN2016089694 W CN 2016089694W WO 2017020684 A1 WO2017020684 A1 WO 2017020684A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
cca
resource
location
scheduling
Prior art date
Application number
PCT/CN2016/089694
Other languages
English (en)
French (fr)
Inventor
李新彩
苟伟
赵亚军
杨玲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017020684A1 publication Critical patent/WO2017020684A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present invention relate to, but are not limited to, the field of communications, and in particular, to a method and an apparatus for determining a competitive resource.
  • LTE Long-Term Evolution
  • LTE faces many problems when it uses unlicensed carriers.
  • LBT also known as Clear Channel Assessment (CCA)
  • CCA Clear Channel Assessment
  • LTE operates for uplink data during unlicensed operation
  • UE User Equipment
  • CCA detection mechanism the UE needs to perform CCA detection on the entire system bandwidth before transmitting the uplink data, and the carrier resource can be used after detecting that the full bandwidth channel is idle, which greatly reduces the UE access. Probability or a large delay in device access.
  • the unlicensed frequency band may have the following problem: in the case that the user performs the LBT out of synchronization, the first user who successfully competes immediately after the end of the CCA, if immediately Sending data will cause other UEs to fail to perform full-bandwidth CCA detection on the channel, resulting in wasted resources allocated to other UEs.
  • the CCA detection in the related art affects the access performance of the device and is easy to cause waste of the scheduling resources of the device. Currently, there is no specific solution.
  • the embodiments of the present invention provide a method and a device for determining a contention of a device, so as to at least solve the problem that the CCA detection affects the access performance of the device in the related art, and the device scheduling resource is easily wasted.
  • a method for determining a contention resource includes:
  • the device determines or adjusts a frequency domain location or a frequency domain range of the CSA of the resource-competed idle channel according to the preset parameter and the predefined rule, where the frequency domain location or the frequency domain range belongs to a part of the system bandwidth on the unlicensed carrier.
  • the preset parameter includes at least one of the following:
  • the frequency domain location of the CCA further includes at least one of the following:
  • the lowest frequency domain location the highest frequency domain location, the offset frequency domain value, and the virtual bandwidth.
  • the determining or adjusting the frequency domain location of the CCA includes at least one of the following:
  • Each time the frequency domain location of the CCA is a predefined virtual bandwidth, and is adjusted within the system bandwidth according to the manner of rotation or frequency hopping in sequence;
  • the frequency domain position of the CCA is continuously adjusted within the system bandwidth
  • the frequency domain location of the CCA is a frequency band whose interference determined according to the channel quality measurement is less than a predefined threshold.
  • the device determines a frequency domain location of a CCA that competes for resources in a frame-based device (FBE), including:
  • the frequency domain location of the CCA is centered on the center of the scheduled frequency domain resource, and the frequency domain range is m virtual bandwidths or n subbands covering the scheduled frequency domain resources, and m and n are positive integers;
  • the frequency domain location of the current CCA of the device is the same as the last time, and the resource location of the current scheduling is not present.
  • the frequency domain position of the current CCA is slid on the basis of the position of the last CCA frequency domain until the frequency domain resource of the current scheduling is covered;
  • the frequency domain location or frequency domain range of the CCA is determined based on the results of the first N times of CCA, and N is a positive integer.
  • the device determines resource competition in a load-based device (LBE)
  • the frequency domain locations of the CCA include:
  • the frequency domain location for the initial CCA includes one of the following: full bandwidth, scheduled resource location, subband to which the scheduling resource belongs, predefined virtual bandwidth location to which the scheduling resource belongs, and one or more virtual centers centered on the scheduled resource. bandwidth;
  • the frequency domain position of each CCA in the extended CCA is adjusted according to a pre-defined rule based on the initial CCA or the first N times of CCA results, and N is a positive integer.
  • the value of the virtual bandwidth includes at least one of the following:
  • the device other than the device overwrites the minimum system bandwidth value of the scheduled frequency domain resource by a semi-static or dynamically configured value of higher layer or physical signaling.
  • the adjusting the frequency domain location of the CCA includes at least one of the following:
  • the frequency domain start position and end position or center position of the CCA change, that is, the frequency domain position of the CCA slides within the bandwidth, and the frequency domain bandwidth of the CCA also changes.
  • the manner in which the CCA frequency domain position slides includes one of the following:
  • the offset is fixed at an integer multiple of the frequency domain length. There is no bandwidth overlap between the frequency domain positions of the two CCAs.
  • the CCA start frequency domain position is adjusted from low to high or the highest frequency domain position is from high to high. Low adjustment, or CCA detection in different frequency domain locations according to frequency hopping;
  • the frequency bands of the CCA overlap, and the starting or ending frequency domain position offset of the CCA is fixed.
  • the predefined rule of the CCA frequency domain range or location adjustment includes one of the following:
  • the case where the cumulative or consecutive N times of CCA results are satisfied includes at least one of the following: the number of idles reaches a predefined threshold X, the idle duration reaches a predefined threshold Y, the number of device transmissions reaches a predefined threshold T, and the detected energy Below the predefined threshold L;
  • the frequency domain range or bandwidth of the device CCA is expanded to the original P times or the lowest or highest frequency domain position of the CCA is adjusted, wherein N, X, and T are positive integers greater than or equal to 1, and Y, P, and L are all A positive integer or fraction greater than or equal to 1.
  • the case where the cumulative or consecutive M times of the CCA is satisfied in the device includes at least one of the following: the busy number reaches the predefined threshold X', the busy duration reaches the predefined threshold Y', and the device transmission times are less than the predefined threshold T, and the detected The energy is higher than the predefined threshold L;
  • the frequency domain range of the device CCA is reduced to the original 1/K or becomes the initial value, and the lowest or highest frequency domain position of the CCA is changed, wherein M, X', and T are positive integers greater than or equal to 1, Y' , K and L are positive integers or fractions greater than or equal to 1.
  • the timing of the frequency domain location of the CSA for determining or adjusting the contention of the resource competition includes one of the following:
  • the device CCA frequency domain location determining method includes:
  • the device When the device is configured to continuously schedule multiple subframes, and the frequency domain resource positions scheduled by each subframe are the same, the device performs the full bandwidth or only the scheduled frequency domain resources before the first scheduling subframe is transmitted.
  • CCA after transmission, continuously transmits multiple subframes;
  • the CCA is performed in one of the following manners;
  • the first scheduling subframe is a full-bandwidth CCA, and is successfully transmitted on the frequency domain resources corresponding to the multiple subframe scheduling indications after the success.
  • Each scheduling subframe performs CCA on the frequency domain resource indicated by the scheduling.
  • the CCA performed by the device in the frequency domain of the CCA includes:
  • the CCA performed by the device in the frequency domain of the CCA includes a continuous resource block (Resource Block, RB for short) or a CCA of a subcarrier, and a CCA of a discontinuous interval RB or a subcarrier;
  • Resource Block Resource Block
  • the energy statistics object of the CCA is the energy on a single RB or subcarrier.
  • the device after determining, by the device, the frequency domain location or the frequency domain range of the CCA that the resource competes according to the preset parameter and the predefined rule, the device includes:
  • the device sends an occupation signal or user data when the CCA frequency domain location detects that the channel is idle.
  • the sending the user data by the device includes:
  • the device sends data according to the scheduling indication signaling on the resource where the scheduling is performed, or the device autonomously selects a modulation coding level to send data on the resource that detects idle.
  • a competitive resource determining apparatus including:
  • a determining module configured to determine, according to a preset parameter and a predefined rule, a frequency domain location or a frequency domain range of the CCA of the idle channel of the resource competition, where the frequency domain location or the frequency domain range belongs to an unlicensed carrier system bandwidth a part of.
  • the device comprises:
  • a sending module configured to: when the device detects that the channel is idle in the frequency domain position of the CCA, send an occupation signal or user data.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for executing any of the above home monitoring methods.
  • the device determines or adjusts the frequency domain location or the frequency domain range of the CSA of the resource-competitive idle channel according to the preset parameter and the predefined rule, where the frequency domain location or the frequency domain range belongs to an unauthorized
  • a part of the system bandwidth on the carrier solves the problem that the CCA detection affects the access performance of the device and is easy to waste the scheduling resources of the device, improves the access probability of the CCA, and reduces the waste of scheduling resources.
  • FIG. 1 is a flowchart 1 of a method for determining a contention resource according to an embodiment of the present invention
  • FIG. 2 is a second flowchart of a method for determining a contention resource according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram 1 of a contention determining apparatus according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram 2 of a contention determining apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an LBT mechanism of a frame-based device FBE in accordance with a preferred embodiment of the present invention
  • FIG. 6 is a schematic diagram of an LBT mechanism of a load-based device LBE in accordance with a preferred embodiment of the present invention
  • FIG. 7 is a schematic diagram of resource contention frequency domain location determination according to a preferred embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of a method for determining a frequency domain in two CCAs according to a second embodiment of the present invention.
  • FIG. 9 is a schematic diagram b of a method for determining a frequency domain in two CCAs according to a second embodiment of the present invention.
  • FIG. 10 is a schematic diagram c of a method for determining a frequency domain in two CCAs according to a second embodiment of the present invention.
  • FIG. 11 is a first schematic diagram of a frequency domain position adjustment method for resource competition according to a preferred embodiment of the present invention.
  • FIG. 12 is a second schematic diagram of a frequency domain position adjustment method for resource competition according to a preferred embodiment of the present invention.
  • FIG. 13 is a third schematic diagram of a frequency domain position adjustment method for resource competition according to a preferred embodiment of the present invention.
  • FIG. 14 is a schematic diagram of determining frequency domain position determination of resources in accordance with a preferred embodiment of the present invention.
  • 15 is a schematic diagram b of determining a frequency domain position of resource competition according to a preferred embodiment of the present invention.
  • 16 is a schematic diagram 3 of determining a frequency domain position of resource competition according to a preferred embodiment of the present invention.
  • 17 is a schematic diagram b of resource content frequency domain location determination according to a preferred embodiment of the present invention.
  • FIG. 18 is a schematic diagram of determining a frequency domain position of resource competition according to a preferred embodiment of the present invention.
  • FIG. 19 is a first schematic diagram of determining frequency domain position of resource competition according to a preferred embodiment of the present invention.
  • 20 is a second schematic diagram of determining frequency domain position of resource competition according to a preferred embodiment of the present invention.
  • 21 is a schematic diagram of determining a frequency domain position of resource competition according to a preferred embodiment of the present invention.
  • Figure 22 is a flow chart showing an implementation of a preferred embodiment 11 in accordance with the present invention.
  • FIG. 1 is a flowchart 1 of a method for determining a contention resource according to an embodiment of the present invention. As shown in FIG. 1 , the process includes the following steps:
  • Step S102 The device determines or adjusts a frequency domain location or a frequency domain range of the CCA of the resource competition according to the preset parameter and the predefined rule, where the frequency domain location or the frequency domain range belongs to a part of the system bandwidth on the unlicensed carrier.
  • the device determines or adjusts a frequency domain location or a frequency domain range of the CCA of the resource competition according to the preset parameter and the predefined rule, where the frequency domain location or the frequency domain range belongs to a part of the system bandwidth on the unlicensed carrier, and the solution is solved.
  • the CCA detection affects the access performance of the device and is easy to cause waste of the scheduling resources of the device, improves the access probability of the CCA, and reduces the waste of scheduling resources.
  • the preset parameter includes at least one of the following:
  • the number of transmissions, wherein the result of the CCA includes at least one of the following: the duration of the channel busy, the number of times the channel is busy, the length of the channel idle, the number of times the channel is idle, and the detected energy, where N is a positive integer.
  • the frequency domain location of the CCA further includes at least one of the following:
  • the lowest frequency domain location the highest frequency domain location, the offset frequency domain value, and the virtual bandwidth.
  • determining or adjusting the frequency domain location of the CCA includes at least one of the following:
  • Each time the frequency domain location of the CCA is a predefined virtual bandwidth, and is adjusted within the system bandwidth according to the manner of rotation or frequency hopping in sequence;
  • the frequency domain position of the CCA is continuously adjusted within the system bandwidth
  • the frequency domain location of the CCA is a frequency band whose interference determined according to the channel quality measurement is less than a predefined threshold.
  • the frequency domain location of the CCA is centered on the center of the scheduled frequency domain resource, and the frequency domain range is m virtual bandwidths or n subbands covering the scheduled frequency domain resources, and m and n are positive integers;
  • the frequency domain location of the current CCA of the device is the same as the last time, and the resource location of the current scheduling is not present.
  • the frequency domain position of the current CCA is slid on the basis of the position of the last CCA frequency domain until the frequency domain resource of the current scheduling is covered;
  • the frequency domain location or frequency domain range of the CCA is determined based on the results of the first N times of CCA, and N is a positive integer.
  • the device after receiving the frequency domain location indicated by the CCA indication signaling sent by the device other than the device, the device determines that the frequency domain location of the CCA in the load-based device LBE is:
  • the frequency domain location for the initial CCA includes one of the following: full bandwidth, scheduled resource location, subband to which the scheduling resource belongs, predefined virtual bandwidth location to which the scheduling resource belongs, and one or more virtual centers centered on the scheduled resource. bandwidth;
  • the frequency domain position of each CCA in the extended CCA is adjusted according to a pre-defined rule based on the initial CCA or the first N times of CCA results, and N is a positive integer.
  • the value of the virtual bandwidth includes at least one of the following:
  • the device other than the device overwrites the minimum system bandwidth value of the scheduled frequency domain resource by a semi-static or dynamically configured value of higher layer or physical signaling.
  • adjusting the frequency domain location of the CCA includes at least one of the following:
  • the frequency domain start position and end position or center position of the CCA change, that is, the frequency domain position of the CCA slides within the bandwidth, and the frequency domain bandwidth of the CCA also changes.
  • the manner in which the CCA frequency domain position slides includes one of the following:
  • the CCA start frequency domain position is adjusted from low to high or the highest frequency domain position is adjusted from high to low, or the CCA detection of different frequency domain positions is performed according to the frequency hopping manner;
  • the frequency bands of the CCA overlap, and the CCA starts or ends the frequency domain position offset with a fixed value, such as offset N RB or M subcarriers, or 1/P of the system bandwidth or virtual bandwidth.
  • the predefined rules of the CCA frequency domain range or position adjustment include one of the following:
  • the case where the cumulative or consecutive N times of CCA results are satisfied includes at least one of the following: the number of idles reaches a predefined threshold X, the idle duration reaches a predefined threshold Y, the number of device transmissions reaches a predefined threshold T, and the detected energy Below the predefined threshold L;
  • the frequency domain range or bandwidth of the device CCA is expanded to the original P times or the lowest or highest frequency domain position of the CCA is adjusted, wherein N, X, and T are positive integers greater than or equal to 1, and Y, P, and L are all A positive integer or fraction greater than or equal to 1.
  • the case where the cumulative or consecutive M times of the CCA is satisfied in the device includes at least one of the following: the busy number reaches the predefined threshold X', the busy duration reaches the predefined threshold Y', and the device transmission times are less than the predefined threshold T, and the detected The energy is higher than the predefined threshold L;
  • the frequency domain range of the device CCA is reduced to the original 1/K or becomes the initial value, and the lowest or highest frequency domain position of the CCA is changed, wherein M, X', and T are positive integers greater than or equal to 1, Y' , K and L are positive integers or fractions greater than or equal to 1.
  • the timing of determining or adjusting the frequency domain location of the CCA for resource competition includes one of the following:
  • the device CCA frequency domain location determining method includes:
  • the device When the device is configured to continuously schedule multiple subframes, and the frequency domain resource positions scheduled by each subframe are the same, the device performs CCA on the full bandwidth or only the scheduled frequency domain resources before the first scheduling subframe is transmitted, and the device continuously transmits continuously. Multiple sub-frames.
  • the CCA is performed in one of the following manners:
  • the first scheduling subframe is a full-bandwidth CCA, and is successfully transmitted on the frequency domain resources corresponding to the multiple subframe scheduling indications after the success.
  • Each scheduling subframe performs CCA on the frequency domain resource indicated by the scheduling.
  • the CCA performed by the device in the frequency domain of the CCA includes:
  • the CCA performed by the device in the frequency domain of the CCA includes a CCA of a continuous resource block RB or a subcarrier, and a CCA of a discontinuous interval RB or a subcarrier;
  • the energy statistics object of the CCA is the energy on a single RB or subcarrier.
  • FIG. 2 is a flowchart 2 of a method for determining a contention resource according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 The device determines or adjusts a frequency domain location or a frequency domain range of the CCA that the resource competes according to the preset parameter and the predefined rule.
  • Step S204 The device sends an occupation signal or user data when detecting that the channel is idle in the frequency domain position of the determined or adjusted CCA.
  • the device After the device determines or adjusts the frequency domain location or the frequency domain range of the CCA of the resource competition according to the preset parameters and the predefined rules, the device sends the channel when the CCA frequency domain detects that the channel is idle. Occupation of signal or user data solves the problem that CCA detection affects device access performance, and is easy to cause waste of device scheduling resources, improves access probability of CCA, and reduces waste of scheduling resources.
  • the device sending user data includes:
  • the device sends data according to the scheduling indication signaling on the resource where the scheduling is performed, or the device independently selects a modulation coding level to send data on the resource that detects idle.
  • a competing resource determining apparatus is also provided in this embodiment, and the apparatus is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram 1 of a contention determining apparatus according to an embodiment of the present invention. Placed on the device, as shown in Figure 3, the device includes:
  • the determining module 32 is configured to determine or adjust a frequency domain location or a frequency domain range of the CCA of the resource competition according to the preset parameter and the predefined rule, where the frequency domain location or the frequency domain range belongs to a part of the system bandwidth on the unlicensed carrier.
  • the device determines or adjusts a frequency domain location or a frequency domain range of the CCA of the resource competition according to the preset parameter and the predefined rule, where the frequency domain location or the frequency domain range belongs to a part of the system bandwidth on the unlicensed carrier, and the solution is solved.
  • the CCA detection affects the access performance of the device and is easy to cause waste of the scheduling resources of the device, improves the access probability of the CCA, and reduces the waste of scheduling resources.
  • FIG. 4 is a block diagram 2 of a competitive resource determining apparatus according to an embodiment of the present invention.
  • the device is located on a device. As shown in FIG. 4, the device includes:
  • the transmitting module 42 is coupled to the determining module 32 of FIG. 3 and configured to transmit an occupancy signal or user data when the channel is detected to be idle in the frequency domain of the determined or adjusted CCA.
  • the device After the device determines or adjusts the frequency domain location or the frequency domain range of the CCA of the resource competition according to the preset parameter and the predefined rule, the device sends the channel when the CCA frequency domain detects that the channel is idle. Occupation of signal or user data solves the problem that CCA detection affects device access performance, and is easy to cause waste of device scheduling resources, improves access probability of CCA, and reduces waste of scheduling resources.
  • a preferred embodiment of the present invention provides a method for determining a competitive resource, and the specific process includes:
  • the device determines the set of unlicensed carriers that the resource competes with and the frequency domain location of the CCA on each carrier.
  • the device performs CCA on the determined frequency domain location corresponding to each carrier, and transmits data if successful.
  • the set of unlicensed carriers is determined according to the measurement result of the channel for a period of time.
  • the frequency domain position of each carrier CCA is determined according to at least one of the following parameters:
  • Channel quality information For example, Traffic load size, frequency domain location for data transmission, scheduling indication signaling, results of N times CCA and frequency domain location.
  • the device performs CCA on the determined frequency domain location, including the following:
  • the device performs CCA on the full bandwidth.
  • the device performs CCA at the corresponding resource location according to CCA indication signaling or scheduling indication signaling.
  • the device performs CCA on a predefined virtual bandwidth.
  • the device can perform adjustment of the CCA frequency domain position according to the result of the first N times of CCA.
  • the device determines by using the following manners: The frequency domain location of each CCA.
  • Manner 1 The center of the scheduling resource is centered.
  • the frequency domain of the CCA is a virtual bandwidth that can include the scheduled frequency domain resources.
  • the size of the virtual bandwidth is a predefined value.
  • Manner 2 The predefined system divides the system bandwidth into a plurality of consecutive or non-contiguous overlapping virtual bandwidth sets, and then the UE performs CCA on one or more virtual bandwidths to which the scheduling resource belongs.
  • the virtual bandwidth is a value that is semi-statically or dynamically configured by other devices through signaling, or is a minimum system bandwidth value that covers scheduling frequency domain resources.
  • the device When the device performs CCA in the LBE mode, the device adjusts the frequency domain position and range according to the rules and the results of the previous CCA every time the CCA is used.
  • the adjusted parameters include the initial frequency domain position of the CCA, and the frequency domain position is terminated. Central frequency domain location, frequency domain range or virtual bandwidth. The specific adjustments are as follows.
  • the first type adjusts the frequency domain range of the CCA centering on the center of the scheduled frequency domain resource or the center of the system bandwidth.
  • the second type the minimum frequency domain position or the highest frequency domain position of the scheduling is unchanged, and the frequency domain range of the CCA is adjusted.
  • N is an integer greater than or equal to 1
  • the detection result of the CCA satisfies the adjustment basis
  • the frequency domain range of the CCA is expanded to the original K times or reduced to the original 1/T.
  • the adjustment basis includes: the duration or number of times the channel is idle, the energy detected by the CCA, and the number of times of data transmission.
  • the device may also determine different CCA frequency domain locations according to the scheduled scenario:
  • the UE When the scheduling UE continuously transmits multiple subframes, and the scheduling resource positions of each subframe are the same, the UE performs CCA on the full bandwidth or only the scheduled resources before the first scheduling subframe transmission, and continuously transmits multiple subframes after success.
  • Manner 1 The first scheduling subframe is full bandwidth, and subsequent CCA direct continuous transmission is not required.
  • the UE When the scheduling UE is a non-contiguous subframe, the UE performs CCA on the frequency domain resources scheduled by each subframe.
  • the scheduled frequency domain resource is one or more non-contiguous clusters in a scheduling unit of RBs or subcarriers.
  • the UE When the resources allocated by the UE in a certain subframe are non-contiguous multiple clusters, the UE performs CCA on the allocated RBs or subcarriers, or the UE continuously or non-contiguous n subbands to which the allocated RBs or subcarriers belong. Perform CCA on the CCA, or allocate m virtual bandwidths to which the resources belong.
  • the CCA frequency domain location adopts the frequency domain range of each detection unchanged, and the frequency domain starting location slides within the system bandwidth. The way.
  • the CCA detection is performed at a granularity of 5M or the granularity of the previously scheduled frequency domain resources, and is slid within the system bandwidth.
  • the specific sliding methods are as follows:
  • the first type is performed with a granularity of an integer multiple of the offset fixed frequency domain window length, and there is no overlap between the two, and the CCA start position can be sequentially increased from low to high, or different frequency according to frequency hopping.
  • CCA detection of domain location is performed with a granularity of an integer multiple of the offset fixed frequency domain window length, and there is no overlap between the two, and the CCA start position can be sequentially increased from low to high, or different frequency according to frequency hopping.
  • the two frequency bands may overlap, and the initial frequency domain position of the CCA is offset by a fixed value, such as offset N RB or M subcarriers or 1/X of the sliding window length.
  • the occupation signal is sent immediately when the device finds the idle resource, and the occupied signal includes user data, measurement reference signal, preamble sequence, demodulation reference signal, and synchronization signal.
  • the device after the device succeeds in the corresponding frequency domain location CCA, the device directly sends the user data, and the data sending method includes:
  • the UE When the UE detects that the frequency domain location corresponding to the scheduling resource is idle, the UE performs uplink data transmission according to the scheduling indication signaling on the scheduled RB.
  • the UE may perform data transmission on the idle resource by means of autonomous transmission.
  • the preferred embodiment is directed to a site (including a base station, a user equipment (UE), a home base station, a relay station.) a frame-based device (FBE) LBT mode and a load-based device (Load-based Equipment)
  • a site including a base station, a user equipment (UE), a home base station, a relay station.
  • FBE frame-based device
  • Load-based Equipment Load-based Equipment
  • FIG. 5 is a schematic diagram of an LBT mechanism of a frame-based device FBE according to a preferred embodiment of the present invention.
  • a FBE there is a fixed transmission frame structure, and a channel occupation time and an idle period constitute a fixed frame period, and the device is in a device.
  • the CCA detection is performed during the idle period, and when the channel is detected to be idle, the data transmission can be performed immediately; otherwise, the CCA detection is performed during the idle period of the next fixed frame period.
  • the channel occupancy time is 1ms to 10ms
  • the idle period is at least 5% of the channel occupation time.
  • the CCA test lasts for at least 20 ⁇ s, and the CCA test can be based on energy detection or based on signal detection.
  • eCCA extended CCA
  • the X value is randomly selected from 1 to q and is called a random backoff value.
  • the method for determining and adjusting the frequency domain location in the process of performing CCA by the UE provided by the UE in the manner that the UE performs the CBE in the FBE mode is described in detail.
  • the UE performs the LBT by using the description of the FBE in the first embodiment, that is, the initial CCA is performed only once in each frame period. For example, if the frame period is 1 ms, the UE can perform CCA in each subframe.
  • the LBT mode is preferably adopted. .
  • the starting time domain position of the CCA performed by the UE is a predefined value, and the length of one CCA is located at the edge of the ion frame at the end of the subframe, or the length of a CCA is performed from the start symbol of the subframe.
  • the CCA has a time domain length of 34 microseconds, or 20 microseconds, or 10 microseconds or 9 microseconds.
  • the frequency domain range in which the UE performs CCA is as follows:
  • Method 1 The UE performs CCA on the entire system bandwidth.
  • Manner 2 The UE performs CCA only on the scheduled resources.
  • the UE is centered on the center of the scheduling resource.
  • the frequency domain of the CCA is a virtual bandwidth that can include the scheduled frequency domain resources.
  • the size of the virtual bandwidth is a predefined value, such as 5M, 10M, 15M, or 20M, or L.
  • the subband, or virtual bandwidth is a value that the base station indicates semi-statically or dynamically by signaling.
  • FIG. 7 is a schematic diagram of determining frequency domain location of resource contention according to a preferred embodiment 2 of the present invention.
  • the RB index of the UE is scheduled to be 26-35, and the frequency domain range of the CCA is centered on the center of the 30th RB, and the virtual bandwidth is 5M, that is, the frequency domain of the coverage is preferably covered.
  • the UE If the UE performs CCA success in the corresponding time-frequency domain location of the scheduling subframe, the UE sends data according to the base station scheduling signaling on the scheduled RB resource.
  • the UE may continuously transmit multiple subframes.
  • the UE When the UE is scheduled for the next time, if the last virtual bandwidth includes the resources scheduled by the UE, the UE may first perform CCA detection according to the previous virtual bandwidth in the corresponding corresponding frequency domain location, and if idle, may perform data transmission.
  • the UE may perform an offset offset based on the original frequency domain location, and the offset location still includes the scheduled RB.
  • the frequency domain of the CCA is still the virtual bandwidth indicated by the predefined or signaling, such as 5M.
  • FIG. 8 is a schematic diagram of a method for determining a frequency domain in two CCAs according to a second embodiment of the present invention
  • FIG. 9 is a schematic diagram of a method for determining a frequency domain in two CCAs according to a preferred embodiment of the present invention
  • FIG. A schematic diagram c of the method for determining the frequency domain in the two CCAs in the second embodiment is preferred; as shown in FIG. 8, FIG. 9 and FIG. 10, the RB index of the UE scheduled in the nth subframe is 26-35, and the UE performs the frequency domain range of the CCA.
  • the frequency domain virtual bandwidth of the CCA is the minimum system bandwidth value of 5M. If the CCA is successful, the UE can perform data transmission. If it fails, data transmission is not possible, or the UE still transmits data at a power lower than a predefined threshold.
  • the UE is in the CCA frequency domain position of the n+1 subframe, that is, the second CCA virtual The bandwidth is unchanged.
  • Manner 1 The UE performs offset offset on the original CCA position of the n+1 subframe until the scheduled frequency domain location is included, as shown in FIG.
  • the mode 1 when the value of the position difference of the frequency domain resources that are twice scheduled is less than the predefined threshold, the mode 1 is adopted, and when the threshold is greater than the predefined threshold, the mode 2 is adopted.
  • the first mode when the result of the first detection is idle, the first mode is adopted, and when the first detection result is busy, the second mode is adopted.
  • the UE performs CCA within a virtual bandwidth, which can improve the probability of success to a certain extent compared with performing CCA in the entire system bandwidth.
  • the result of scheduling the subframe CCA in front of the UE can provide a reference to the frequency domain location of the subframe, further improving the probability of success of the CCA.
  • the scheduling UE adopts the LBT mode of the LBE to perform CCA
  • the implementation process of the CCA frequency domain location determining and adjusting method provided by the present invention is described.
  • the specific process of the LBE is as described in Embodiment 1, and the CCA process before data transmission includes multiple CCAs.
  • the frequency domain position of the plurality of CCAs can be adjusted according to rules or detection results.
  • the specific process is as follows:
  • the UE first performs the initial CCA at the scheduled frequency domain resource location, or performs the CCA of the virtual bandwidth frequency domain range centering on the center of the scheduling resource.
  • the time domain length of the CCA is 34 microseconds, or 20 microseconds.
  • the second CCA still uses the same CCA frequency domain range for the first time until the N value is reduced to 0 before the data transmission timing, and the data is transmitted at the data timing.
  • the UE may expand the frequency domain of the CCA, and the specific expansion manner is as follows:
  • the first type the starting position of the frequency domain of the CCA is unchanged, and the frequency domain range is performed according to a certain agreed value, for example, the frequency domain range is doubled, or N RBs or subcarriers are expanded each time, and the N value is 2, 5 , 6, 8, 15 Wait.
  • the number of expanded RBs is n1
  • the number of expanded RBs is n2.
  • the number of the expanded RBs is n1
  • the number of the expanded RBs is n2.
  • the UE performs frequency domain position adjustment according to the indication signaling sent by the base station.
  • the UE adjusts according to the number of transmissions.
  • FIG. 11 A schematic diagram 1 of a frequency domain position adjustment method for resource competition in the third embodiment is shown in FIG.
  • FIG. 12 is a second schematic diagram of a method for adjusting a frequency domain position of a resource according to a preferred embodiment of the present invention, as shown in FIG. 12.
  • the frequency domain range and/or location of the subsequent CCA may be adjusted or reduced according to the result of the previous CCA correlation.
  • the UE may perform the adjustment of the CCA frequency domain range according to the detected energy, or the number of CCA cumulative failures, or the busy duration, or the base station signaling indication.
  • the adjustment method for reducing the frequency domain range of the CCA can still have the above three types:
  • FIG. 13 is a schematic diagram 3 of the method for adjusting the frequency domain of the resource in the preferred embodiment according to the third embodiment of the present invention. Figure 13 shows.
  • the minimum frequency domain position or the highest frequency domain position of the scheduling is unchanged, and the frequency domain range of the CCA is reduced.
  • the probability of LBE success can be improved, and resource waste is reduced.
  • the preferred embodiment illustrates a specific method of bandwidth expansion of the UE CCA (such as mentioned in the preferred embodiment 3).
  • the adjustment basis includes one of the following conditions:
  • Condition 1 The number of idles reaches a predefined threshold X.
  • Condition three the number of UE transmissions reaches a predefined threshold T
  • Condition 4 The detected energy is below the predefined threshold L.
  • the first one as shown in Figure 11. Centering on the center of the scheduling resource or the center of the system bandwidth, the CCA frequency domain bandwidth CCABW is expanded to K times, K is a positive integer greater than 1 or a fraction, and the maximum value cannot exceed the system bandwidth.
  • FIG. 14 is a schematic diagram d of determining a frequency domain position of resource competition according to a preferred embodiment of the present invention, as shown in FIG. 14.
  • FIG. 15 is a schematic diagram b of resource content frequency domain location determination according to a preferred embodiment of the present invention, as shown in FIG. 15.
  • the third type the center of the CCA, the initial frequency domain position, the termination frequency domain position changes, the overall bandwidth is expanded to the original K times, and the CCA range always covers the scheduled resources, as shown in FIG.
  • the method for adjusting the frequency domain range of the CCA can be used for more than one scheduling of the LBE. In addition to the secondary CCA, it can also be used for the next scheduling between multiple schedulings to adjust according to the results of the last scheduled CCA. For FBE, the same applies if the frequency domain locations of the scheduled multiple subframes are the same.
  • the preferred embodiment illustrates a specific method of reducing the bandwidth of the CCA (such as mentioned in the preferred embodiment 3).
  • the adjustment basis includes one of the following conditions:
  • Condition 1 The number of busy times reaches the predefined threshold X',
  • Condition 3 The number of UE transmissions is less than a predefined threshold T.
  • Condition 4 The detected energy is above the predefined threshold L.
  • the first one is shown in Figure 12. Centering on the center of the scheduled frequency domain resource or the center of the system bandwidth, the CCA frequency domain bandwidth CCABW is reduced to the original 1/K, K is a positive integer greater than 1, or is a fraction, or returns to the scheduled RB frequency domain location. And the minimum CCA frequency domain bandwidth cannot be less than one RB or scheduled RB or subcarrier.
  • FIG. 16 is a schematic diagram d of determining a frequency domain position of resource competition according to a preferred embodiment of the present invention, as shown in FIG. 16.
  • FIG. 17 is a schematic diagram b of resource content frequency domain location determination according to a fifth embodiment of the present invention, as shown in FIG. 17.
  • FIG. 18 is a schematic diagram of determining a frequency domain position of resource competition according to a preferred embodiment of the present invention, as shown in FIG. 18.
  • the CCA frequency domain range reduction adjustment method can be used not only for multiple CCAs of one scheduling of the LBE, but also for the next scheduling between multiple schedulings according to the result of the last scheduled CCA.
  • the foregoing preferred embodiments are all described in the method for determining and adjusting the frequency domain location of the CCA when the UE performs the CCA after receiving the base station scheduling indication signaling or the CCA detection indication signaling.
  • the preferred embodiment describes a frequency domain position adjustment method when the UE does not receive the scheduling signaling or the CCA indication signaling performs CCA detection.
  • the frequency domain range of each detection may be changed, and the starting position of the frequency domain may be changed.
  • the CCA detection is performed at a granularity of 5M or the granularity of the previously scheduled frequency domain resources, and is slid within the system bandwidth.
  • the specific sliding methods are as follows:
  • FIG. 19 is a first schematic diagram of determining the frequency domain position of resource competition according to a preferred embodiment of the present invention, as shown in FIG. 19.
  • FIG. 20 is a second schematic diagram of determining the frequency domain position of resource competition according to a preferred embodiment of the present invention, as shown in FIG. 20.
  • the idle resource When the idle resource is found, it is reported to the base station through the authorized carrier, and the UE sends the occupancy signal.
  • the method is mainly used for the UE to actively perform the CCA and then feed back the idle or busy frequency domain location to the base station, and the base station performs uplink scheduling and resource allocation on the UE based on the result. Or the method is used for the UE to assist the base station to perform carrier selection. When the UE finds the idle carrier, the method reports the signal to the base station, and the base station can use the carrier for the downlink or the uplink.
  • the frequency domain location of the CCA can also be described by a predefined and scheduled RB joint determination method.
  • the predefined divides the system bandwidth into a plurality of consecutive or non-contiguous overlapping sets of virtual bandwidths, and then the UE performs CCA on one or more virtual bandwidths to which the scheduled frequency domain resources belong.
  • FIG. 21 is a schematic diagram of determining a frequency domain position of resource competition according to a preferred embodiment of the present invention.
  • the system bandwidth is assumed to be 20M, and if the predefined virtual bandwidth is 5M, it may be divided into four. . If the virtual bandwidth is 10M, it can be divided into two.
  • the base station is scheduled, one UE is scheduled to be in a virtual bandwidth as much as possible to avoid cross-virtual bandwidth scheduling. In this way, each UE has a unique virtual bandwidth corresponding to each schedule.
  • a set of bandwidths may have an intersection between two adjacent sets of frequencies, that is, some RBs may belong to two different sets of virtual bandwidths at the same time.
  • the UE can only perform CCA according to the virtual bandwidth occupied by the set A of the scheduled frequency domain resources according to the manner of dividing the virtual bandwidth on the right side. If the virtual bandwidth is divided according to the left figure, the UE may use the set A as the frequency domain location of the CCA, or the set B as the frequency domain location of the CCA. If the UE performs the CCA with the set A, the CCA is unsuccessful. It can be successful with set B, so that the uplink data can be sent.
  • the base station schedules or allocates resources, it is in units of RBs or subcarriers, and the allocated resources are continuous and non-contiguous.
  • the result of the CCA detection is averaged in units of the entire scheduled frequency domain bandwidth, that is, the statistical object is the entire resource bandwidth.
  • the frequency domain location of the UE CCA has three modes:
  • Manner 1 The CCA is performed only on the scheduled non-contiguous RBs or subcarriers, and the UE CCA energy detection result is averaged in units of each scheduled non-contiguous RB or subcarrier.
  • Manner 2 Perform CCA on N virtual bandwidths covering all non-contiguous RBs or subcarriers.
  • the CCA detection result is averaged by using each virtual bandwidth as a statistical object.
  • the probability of successful CCA detection can be improved, so that the UE can quickly access the scheduled carrier, thereby avoiding waste of resources.
  • the subsequent data transmission method is:
  • the UE receives the scheduling indication signaling of the subframe before the CCA, when the UE detects that the frequency domain location corresponding to the scheduling resource is idle, the UE performs uplink data transmission according to the scheduling indication signaling on the scheduling resource.
  • the UE may perform data transmission on the idle resource by means of autonomous transmission.
  • the TB block size is selected in a conservative manner, or the MCS information is jointly encoded and transmitted with the data, or the offset information of the MCS or RB at the time of the last scheduling is given, and the data coding modulation is not given.
  • the resource location information indicates that it is consistent with the previous information.
  • the UE first sends an occupation signal on the resource, and notifies the base station of the idle resource, and the base station schedules other users or the UE to perform uplink data transmission on the resource.
  • the base station sends an indication signaling to the UE that is geographically close to the UE and is scheduled in the subframe, so that the UE sends data on the idle resource.
  • the base station sends scheduling indication information to the UE, and after receiving the information, the UE performs uplink data transmission in the next subframe.
  • the preferred embodiment describes the interaction information between the base station and the base station in the UE resource competition.
  • the UE Before the UE competes for resources, it will receive the unlicensed carrier sent by the base station to compete. Indicating information and/or scheduling transmission information.
  • Resource competition CCA related parameters include: the starting position of the CCA, the backoff value N, and at least one of the window lengths.
  • the transmission parameter includes carrier index information of the unlicensed carrier, subframe position index information of the UE for data transmission on the unlicensed carrier, physical resource location and number allocated by each subframe, modulation and coding policy MCS, hybrid automatic Retransmit the request HARQ process number.
  • the parameters of the subframes may be identical or partially identical, such as having the same frequency domain resource location, or the frequency domain resource location on each subframe is also different.
  • the UE adopts different CCA frequency domain granularities according to the scheduling scenario:
  • the scheduling UE continuously transmits multiple subframes, and the frequency domain resource location of each subframe is the same, preferably, the UE performs CCA on the full bandwidth or only the scheduled frequency domain resource before the first scheduling subframe transmission, and succeeds continuously. Transfer multiple subframes.
  • Manner 1 The first scheduling subframe is full bandwidth, and subsequent CCA direct continuous transmission is not required.
  • the UE When the scheduling UE is a non-contiguous subframe, the UE performs CCA on the frequency domain resources scheduled by each subframe.
  • the UE performs CCA according to a frequency domain location that is semi-statically or dynamically indicated by the base station.
  • the UE performs LBT and data transmission according to the received parameters.
  • the preferred embodiment describes the implementation process of the competitive resource determining method provided by the present invention.
  • Figure 22 is a flow chart showing an implementation of a preferred embodiment 11 of the present invention, as shown in Figure 22.
  • step S222 the device determines that the unlicensed carrier index of the CCA is performed, and the unlicensed carrier may be multiple, that is, the device may perform CCA on multiple unlicensed carriers at the same time;
  • Step S224 the device determines a starting frequency domain location and a frequency domain range or a virtual bandwidth of the CCA on each unlicensed carrier;
  • the device may determine the starting frequency domain location and the frequency domain range or virtual bandwidth of the CCA according to the location of the data transmission or the scheduled resource or the result of the previous CCA or the result of the channel measurement.
  • Step S226 the device performs CCA on the determined frequency domain location of the corresponding unlicensed carrier, and if the CCA succeeds, transmits data in the corresponding frequency domain location.
  • the foregoing preferred embodiment provides a frequency domain location determining method for competing resources, which solves how the uplink UE performs the LBT time-frequency domain location within the system bandwidth when the LTE system operates in the unlicensed carrier frequency band, and implements the multi-user frequency complex.
  • the problem is to improve the probability of user access and spectrum efficiency, and solve the problem of poor system performance caused by low frequency domain utilization efficiency in the prior art.
  • the method for determining a competitive resource solves the problem of resource competition and data scheduling and transmission when LTE performs uplink data transmission on an unlicensed carrier, and avoids the problem of resource waste caused by CCA caused by the full bandwidth of the device, and improves the device connection.
  • the probability of entering an unlicensed carrier and the spectral efficiency It should be noted that some embodiments are described by using a UE as an example, but the frequency domain CCA method provided by the present invention is also applicable to other sites or devices, such as a base station or a relay station.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the storage medium may be configured to store program code for performing the method steps of the above embodiment:
  • the foregoing storage medium may include, but is not limited to: a USB flash drive, read only.
  • a medium that can store program code such as a memory (ROM, Read-Only Memory), a random access memory (RAM), a removable hard disk, a magnetic disk, or an optical disk.
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the method and device for determining a contention of a competition resource includes: determining, by a device, a frequency domain location or a frequency domain range of a CSA of a resource-available idle channel according to a preset parameter and a predefined rule, the frequency The domain location or the frequency range is part of the system bandwidth on the unlicensed carrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种竞争资源确定方法及装置,其中,该方法包括:设备根据预设参数以及预定义规则,确定或调整资源竞争的空闲信道评估CCA的频域位置或频域范围,该频域位置或频域范围属于非授权载波上系统带宽的一部分,解决了CCA检测影响设备接入性能,并容易造成设备调度资源的浪费的问题,提高CCA的接入概率,减少了调度资源的浪费。

Description

竞争资源确定方法及装置 技术领域
本发明实施例涉及但不限于通信领域,尤指一种竞争资源确定方法及装置。
背景技术
在长期演进(Long-Term Evolution,简称为LTE)技术的演进过程中,LTE Rel-13版本的一个重要内容就是LTE系统使用非授权载波工作。这项技术将使得LTE系统能够使用目前存在的非授权载波,以大大提升LTE系统的潜在频谱资源,使得LTE系统能够获得更低的频谱成本。
但是,LTE利用非授权载波时会面临诸多问题。首先,在有些国家和地区,对于非授权频谱的使用,有相应的管制政策。比如,设备在使用非授权载波发送数据之前必须先进行先听后说(Listen Before Talk,简称为LBT,也叫做空闲信道评估(Clear Channel Assessment,简称为CCA)),只有LBT成功的设备才能在该非授权载波上发送数据。
目前,LTE在非授权运营时对于上行数据传输,用户设备(User Equipment,简称为UE)如何执行LBT特别是执行CCA的时候频域位置如何确定还没有定论。如果按照现有的CCA检测机制,UE在发送上行数据之前,需要在整个系统带宽上执行CCA检测,检测到全带宽的信道空闲后,才能使用该载波资源,这样会极大降低UE接入的概率或者对设备接入产生较大的延迟。
另外,对于LTE上行,基站在同一个子帧调度多个用户时,在非授权频段会存在如下问题:在用户执行LBT不同步的情况下,竞争成功的第一个用户在CCA结束后,如果立即发送数据会造成其他UE对信道进行全带宽CCA检测时失败,导致分配给其它UE的资源浪费。
针对相关技术中的CCA检测影响设备接入性能,并容易造成设备调度资源的浪费的问题,目前尚未有具体的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种竞争资源确定方法及装置,以至少解决相关技术中CCA检测影响设备接入性能,并容易造成设备调度资源的浪费的问题。
根据本发明实施例的一个方面,提供了一种竞争资源确定方法,包括:
设备根据预设参数以及预定义规则,确定或调整资源竞争的空闲信道评估CCA的频域位置或频域范围,所述频域位置或频域范围属于非授权载波上系统带宽的一部分。
可选地,所述预设参数包括以下至少之一:
信道质量信息,业务负载,所述设备准备进行数据传输的频域位置,调度指示信令里的资源位置指示信息,前N次CCA的频域位置及对应的CCA的结果,数据在所述频域位置传输的次数,其中,所述CCA的结果包括以下至少之一:信道忙的时长,信道忙的次数,信道闲的时长,信道闲的次数,检测到的能量,其中,N为正整数。
可选地,所述CCA的频域位置还包括以下至少之一:
最低频域位置,最高频域位置,偏移的频域值,虚拟带宽。
可选地,所述确定或调整CCA的频域位置包括以下至少之一:
接收到的所述设备以外的其他设备发送的CCA指示信令指示的频域位置;
调度指示信令指示的调度资源位置,或覆盖调度资源位置的n个子带,或覆盖调度资源位置的m个虚拟带宽,其中,n和m分别为正整数;
每次CCA的频域位置为一个预定义的虚拟带宽,且按照依次轮流或跳频的方式在系统带宽内调整;
CCA的频域位置在系统带宽内滑动不断调整;
CCA的频域位置为根据信道质量测量结果确定的干扰小于预定义阈值的频段。
可选地,所述接收到的所述设备以外的其他设备发送的CCA指示信令 指示的频域位置之后,所述设备确定基于帧的设备(Frame-based Equipment,简称为FBE)中资源竞争的CCA的频域位置包括:
CCA的频域位置以调度的频域资源的中心为中心,频域范围为覆盖调度的频域资源的m个虚拟带宽或n个子带,m和n均为正整数;
预定义将系统带宽分为若干连续或者非连续重叠的虚拟带宽集合,设备在调度资源所属的一个或多个虚拟带宽上进行CCA;
当上次CCA成功,且在本次调度的资源位置仍然在上次的频域范围覆盖内的情况下,设备本次CCA的频域位置跟上次相同,在本次调度的资源位置不在上次的频域范围覆盖内的情况下,本次CCA的频域位置在上次CCA频域位置的基础上进行滑动直至覆盖本次调度的频域资源;
CCA的频域位置或频域范围根据前N次CCA的结果确定,N为正整数。
可选地,所述接收到的所述设备以外的其他设备发送的CCA指示信令指示的频域位置之后,所述设备确定基于负载的设备(Load-based Equipment,简称为LBE)中资源竞争的CCA的频域位置包括:
对于初始CCA的频域位置包括以下之一:全带宽,调度的资源位置,调度资源所属的子带,调度资源所属的预定义虚拟带宽位置,以调度资源的中心为中心的一个或多个虚拟带宽;
扩展CCA中的每次CCA的频域位置根据预定义规则在初始CCA或者前N次CCA结果基础上调整确定,N为正整数。
可选地,所述虚拟带宽的值包括以下至少之一:
预定义的值,所述设备以外的其他设备通过高层或物理信令半静态或者动态配置的值,覆盖调度频域资源的最小的系统带宽值。
可选地,所述调整CCA的频域位置包括以下至少之一:
以调度资源的中心或系统带宽的中心为中心,调整CCA的频域范围或带宽,即同时改变CCA的最低频域位置和最高频域位置;
保持CCA最低频域位置或最高频域位置不变,调整CCA的频域覆盖范围;
CCA的频域起始位置及结束位置或中心位置均改变,即CCA的频域位置在带宽内滑动,且CCA的频域带宽也改变。
可选地,所述CCA频域位置滑动的方式包括以下之一:
每次均以偏移固定频域长度的整数倍的粒度进行,两次CCA的频域位置之间没有带宽重叠,CCA起始频域位置从低到高调整或最高频域位置从高到低调整,或者按照跳频的方式进行不同频域位置的CCA检测;
CCA的频带有重叠,CCA的起始或终止频域位置偏移固定值。
可选地,所述CCA频域范围或位置调整的预定义规则包括以下之一:
在设备累计或连续N次CCA的结果满足的情况包括以下至少之一:空闲的次数达到预定义阈值X,空闲的时长达到预定义阈值Y,设备传输次数达到预定义阈值T,检测到的能量低于预定义门限L;
设备CCA的频域范围或带宽扩大为原来的P倍或调整CCA的最低或最高频域位置,其中,N、X、以及T均为大于等于1的正整数,Y、P以及L均为大于等于1的正整数或分数。
在设备累计或连续M次CCA的结果满足的情况包括以下至少之一:忙的次数达到预定义阈值X’,忙的时长达到预定义阈值Y’,设备传输次数小于预定义阈值T,检测到的能量高于预定义门限L;
设备CCA的频域范围缩小为原来的1/K或变为初始值,改变CCA的最低或最高频域位置,其中,M、X’、以及T均为大于等于1的正整数,Y’、K以及L均为大于等于1的正整数或分数。
可选地,所述确定或调整资源竞争的空闲信道评估CCA的频域位置时机包括以下之一:
同一设备一次LBE的多次CCA之间;一次或多次调度中不同LBE之间;基于FBE下调度的多个子帧之间;设备需要遍历全带宽确定忙闲频域位置时。
可选地,所述设备CCA频域位置确定方法包括:
当所述设备为连续调度多个子帧,每个子帧调度的频域资源位置相同的时候,设备在第一个调度子帧传输前全带宽或仅调度的频域资源上进行 CCA,成功后连续传输多个子帧;
当所述设备为连续调度多个子帧,多个子帧调度的频域资源位置不完全相同的时候:采用如下之一方式进行CCA;
第一个调度子帧为全带宽CCA,成功后连续在多个子帧调度指示对应的频域资源上传输;
每个调度子帧都在调度指示的频域资源上进行CCA。
可选地,所述设备在所述CCA频域范围内进行的CCA包括:
所述设备在所述CCA频域范围内进行的CCA包括连续资源块(Resource Block,简称为RB)或子载波的CCA以及非连续间隔RB或子载波的CCA;
对于非连续RB或子载波的CCA,CCA的能量统计对象为单个RB或子载波上的能量。
可选地,所述设备根据预设参数以及预定义规则,确定或调整资源竞争的所述CCA的频域位置或频域范围之后,包括:
所述设备在所述CCA频域位置检测到信道空闲的时候,发送占用信号或者用户数据。
可选地,所述设备发送用户数据包括:
所述设备按照调度指示信令在调度所在的资源上发送数据,或者所述设备自主选择调制编码等级在检测到空闲的资源上发送数据。
根据本发明实施例的另一个方面,还提供了一种竞争资源确定装置,包括:
确定模块,设置为设备根据预设参数以及预定义规则,确定或调整资源竞争的空闲信道评估CCA的频域位置或频域范围,所述频域位置或频域范围属于非授权载波上系统带宽的一部分。
可选地,该装置包括:
发送模块,设置为所述设备在所述CCA的频域位置检测到信道空闲的时候,发送占用信号或者用户数据。
本发明实施例再提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一家居监控方法。
通过本发明实施例提供的技术方案,设备根据预设参数以及预定义规则,确定或调整资源竞争的空闲信道评估CCA的频域位置或频域范围,该频域位置或频域范围属于非授权载波上系统带宽的一部分,解决了CCA检测影响设备接入性能,并容易造成设备调度资源的浪费的问题,提高CCA的接入概率,减少了调度资源的浪费。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种竞争资源确定方法的流程图一;
图2是根据本发明实施例的一种竞争资源确定方法的流程图二;
图3是根据本发明实施例的一种竞争资源确定装置的结构框图一;
图4是根据本发明实施例的一种竞争资源确定装置的结构框图二;
图5为根据本发明优选实施例的基于帧的设备FBE的LBT机制示意图;
图6为根据本发明优选实施例的基于负载的设备LBE的LBT机制示意图;
图7为根据本发明优选实施例二中提供的资源竞争频域位置确定示意图;
图8为根据本发明优选实施例二中两次CCA中频域位置确定方式示意图a;
图9为根据本发明优选实施例二中两次CCA中频域位置确定方式示意图b;
图10为根据本发明优选实施例二中两次CCA中频域位置确定方式示意图c;
图11为根据本发明优选实施例三中资源竞争频域位置调整方式示意图一;
图12为根据本发明优选实施例三中资源竞争频域位置调整方式示意图二;
图13为根据本发明优选实施例三中资源竞争频域位置调整方式示意图三;
图14为根据本发明优选实施例四中资源竞争频域位置确定示意图a;
图15为根据本发明优选实施例四中资源竞争频域位置确定示意图b;
图16为根据本发明优选实施例五中资源竞争频域位置确定示意图a;
图17为根据本发明优选实施例五中资源竞争频域位置确定示意图b;
图18为根据本发明优选实施例五中资源竞争频域位置确定示意图;
图19为根据本发明优选实施例六中资源竞争频域位置确定示意图一;
图20为根据本发明优选实施例六中资源竞争频域位置确定示意图二;
图21为根据本发明优选实施例七中资源竞争频域位置确定示意图;
图22是根据本发明优选实施例十一实施的流程图。
本发明的较佳实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
图1是根据本发明实施例的一种竞争资源确定方法的流程图一,如图1所示,该流程包括如下步骤:
步骤S102,设备根据预设参数以及预定义规则,确定或调整资源竞争的CCA的频域位置或频域范围,该频域位置或频域范围属于非授权载波上系统带宽的一部分。
通过上述步骤,设备根据预设参数以及预定义规则,确定或调整资源竞争的CCA的频域位置或频域范围,该频域位置或频域范围属于非授权载波上系统带宽的一部分,解决了CCA检测影响设备接入性能,并容易造成设备调度资源的浪费的问题,提高CCA的接入概率,减少了调度资源的浪费。
在本实施例中,该预设参数包括以下至少之一:
信道质量信息,业务负载,该设备准备进行数据传输的频域位置,调度指示信令里的资源位置指示信息,前N次CCA的频域位置及对应的CCA的结果,数据在该频域位置传输的次数,其中,该CCA的结果包括以下至少之一:信道忙的时长,信道忙的次数,信道闲的时长,信道闲的次数,检测到的能量,其中,N为正整数。
在本实施例中,该CCA的频域位置还包括以下至少之一:
最低频域位置,最高频域位置,偏移的频域值,虚拟带宽。
在本实施例中,确定或调整CCA的频域位置包括以下至少之一:
接收到的所述设备以外的其他设备发送的CCA指示信令指示的频域位置;
调度指示信令指示的调度资源位置,或覆盖调度资源位置的n个子带,或覆盖调度资源位置的m个虚拟带宽,其中,n和m分别为正整数;
每次CCA的频域位置为一个预定义的虚拟带宽,且按照依次轮流或跳频的方式在系统带宽内调整;
CCA的频域位置在系统带宽内滑动不断调整;
CCA的频域位置为根据信道质量测量结果确定的干扰小于预定义阈值的频段。
在本实施例中,接收到的所述设备以外的其他设备发送的CCA指示信令指示的频域位置之后,该设备确定基于帧的设备FBE中资源竞争的CCA的频域位置包括:
CCA的频域位置以调度的频域资源的中心为中心,频域范围为覆盖调度的频域资源的m个虚拟带宽或n个子带,m和n均为正整数;
预定义将系统带宽分为若干连续或者非连续重叠的虚拟带宽集合,设备在调度资源所属的一个或多个虚拟带宽上进行CCA;
当上次CCA成功,且在本次调度的资源位置仍然在上次的频域范围覆盖内的情况下,设备本次CCA的频域位置跟上次相同,在本次调度的资源位置不在上次的频域范围覆盖内的情况下,本次CCA的频域位置在上次CCA频域位置的基础上进行滑动直至覆盖本次调度的频域资源;
CCA的频域位置或频域范围根据前N次CCA的结果确定,N为正整数。
在本实施例中,接收到的所述设备以外的其他设备发送的CCA指示信令指示的频域位置之后,该设备确定基于负载的设备LBE中资源竞争的CCA的频域位置包括:
对于初始CCA的频域位置包括以下之一:全带宽,调度的资源位置,调度资源所属的子带,调度资源所属的预定义虚拟带宽位置,以调度资源的中心为中心的一个或多个虚拟带宽;
扩展CCA中的每次CCA的频域位置根据预定义规则在初始CCA或者前N次CCA结果基础上调整确定,N为正整数。
在本实施例中,虚拟带宽的值包括以下至少之一:
预定义的值,所述设备以外的其他设备通过高层或物理信令半静态或者动态配置的值,覆盖调度频域资源的最小的系统带宽值。
在本实施例中,调整CCA的频域位置包括以下至少之一:
以调度资源的中心或系统带宽的中心为中心,调整CCA的频域范围或带宽,即同时改变CCA的最低频域位置和最高频域位置;
保持CCA最低频域位置或最高频域位置不变,调整CCA的频域覆盖范围;
CCA的频域起始位置及结束位置或中心位置均改变,即CCA的频域位置在带宽内滑动,且CCA的频域带宽也改变。
在本实施例中,CCA频域位置滑动的方式包括以下之一:
每次均以偏移固定频域长度的整数倍的粒度进行,两次CCA的频域位 置之间没有带宽重叠,CCA起始频域位置从低到高调整或最高频域位置从高到低调整,或者按照跳频的方式进行不同频域位置的CCA检测;
CCA的频带有重叠,CCA的起始或终止频域位置偏移固定值,比如偏移N个RB或M个子载波,或者系统带宽或虚拟带宽的1/P。
在本实施例中,CCA频域范围或位置调整的预定义规则包括以下之一:
在设备累计或连续N次CCA的结果满足的情况包括以下至少之一:空闲的次数达到预定义阈值X,空闲的时长达到预定义阈值Y,设备传输次数达到预定义阈值T,检测到的能量低于预定义门限L;
设备CCA的频域范围或带宽扩大为原来的P倍或调整CCA的最低或最高频域位置,其中,N、X、以及T均为大于等于1的正整数,Y、P以及L均为大于等于1的正整数或分数。
在设备累计或连续M次CCA的结果满足的情况包括以下至少之一:忙的次数达到预定义阈值X’,忙的时长达到预定义阈值Y’,设备传输次数小于预定义阈值T,检测到的能量高于预定义门限L;
设备CCA的频域范围缩小为原来的1/K或变为初始值,改变CCA的最低或最高频域位置,其中,M、X’、以及T均为大于等于1的正整数,Y’、K以及L均为大于等于1的正整数或分数。
在本实施例中,确定或调整资源竞争的CCA的频域位置时机包括以下之一:
同一设备一次LBE的多次CCA之间;一次或多次调度中不同LBE之间;基于FBE下调度的多个子帧之间;设备需要遍历全带宽确定忙闲频域位置时。
可选地,该设备CCA频域位置确定方法包括:
当该设备为连续调度多个子帧,每个子帧调度的频域资源位置相同的时候,设备在第一个调度子帧传输前全带宽或仅调度的频域资源上进行CCA,成功后连续传输多个子帧。
当该设备为连续调度多个子帧,多个子帧调度的频域资源位置不完全相同的时候,采用如下之一方式进行CCA:
第一个调度子帧为全带宽CCA,成功后连续在多个子帧调度指示对应的频域资源上传输;
每个调度子帧都在调度指示的频域资源上进行CCA。
在本实施例中,该设备在该CCA频域范围内进行的CCA包括:
该设备在该CCA频域范围内进行的CCA包括连续资源块RB或子载波的CCA以及非连续间隔RB或子载波的CCA;
对于非连续RB或子载波的CCA,CCA的能量统计对象为单个RB或子载波上的能量。
在本实施例中还提供了一种竞争资源确定方法,图2是根据本发明实施例的一种竞争资源确定方法的流程图二,如图2所示,该流程包括如下步骤:
步骤S202,设备根据预设参数以及预定义规则,确定或调整资源竞争的CCA的频域位置或频域范围;
步骤S204,设备在确定或调整的CCA的频域位置检测到信道空闲时,发送占用信号或者用户数据。
通过图2所示的步骤,设备根据预设参数以及预定义规则,确定或调整资源竞争的CCA的频域位置或频域范围之后,设备在该CCA频域位置检测到信道空闲的时候,发送占用信号或者用户数据,解决了CCA检测影响设备接入性能,并容易造成设备调度资源的浪费的问题,提高了CCA的接入概率,减少了调度资源的浪费。
在本实施例中,设备发送用户数据包括:
设备按照调度指示信令在调度所在的资源上发送数据,或者设备自主选择调制编码等级在检测到空闲的资源上发送数据。
在本实施例中还提供了一种竞争资源确定装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的一种竞争资源确定装置的结构框图一,该装 置位于设备上,如图3所示,该装置包括:
确定模块32,设置为根据预设参数以及预定义规则,确定或调整资源竞争的CCA的频域位置或频域范围,该频域位置或频域范围属于非授权载波上系统带宽的一部分。
通过上述装置,设备根据预设参数以及预定义规则,确定或调整资源竞争的CCA的频域位置或频域范围,该频域位置或频域范围属于非授权载波上系统带宽的一部分,解决了CCA检测影响设备接入性能,并容易造成设备调度资源的浪费的问题,提高CCA的接入概率,减少了调度资源的浪费。
图4是根据本发明实施例的一种竞争资源确定装置的结构框图二,该装置位于设备上,如图4所示,该装置包括:
发送模块42与图3的确定模块32连接,设置为在确定或调整的CCA的频域位置检测到信道空闲时,发送占用信号或者用户数据。
通过图4所示的装置,设备根据预设参数以及预定义规则,确定或调整资源竞争的CCA的频域位置或频域范围之后,设备在该CCA频域位置检测到信道空闲的时候,发送占用信号或者用户数据,解决了CCA检测影响设备接入性能,并容易造成设备调度资源的浪费的问题,提高了CCA的接入概率,减少了调度资源的浪费。
下面结合优选实施例和实施方式对本发明进行说明。
本发明优选实施例提供了一种竞争资源确定方法,具体过程包括:
首先,设备确定资源竞争的非授权载波集合以及每个载波上CCA的频域位置。
然后,设备在确定的每个载波对应的频域位置上进行CCA,如果成功则发送数据。
可选的,非授权载波集合根据一段时间信道的测量结果确定。
优选的,每个载波CCA的频域位置根据以下至少之一参数确定:
信道质量信息,业务负载大小,准备进行数据传输的频域位置,调度指示信令,上N次CCA的结果及频域位置。
具体的,设备在确定的频域位置上进行CCA包括以下几种:
第一种:设备在全带宽上进行CCA。
第二种:设备按照CCA指示信令或调度指示信令在相应的资源位置进行CCA。
第三种:设备在一个预定义的虚拟带宽上进行CCA。
优选的,设备可以根据前N次CCA的结果进行CCA频域位置的调整。
优选的,当设备在进行CCA之前接收到其它设备发送的调度指示信令上行授权的时候,且当两次CCA不属于同一次调度或者设备采用FBE的方式进行CCA的时候,设备通过以下方式确定每次CCA的频域位置。
方式一:以调度资源的中心为中心,CCA的频域范围为能够包括调度的频域资源的一个虚拟带宽,虚拟带宽的大小为预定义值。
方式二:预定义将系统带宽分为若干连续或者非连续重叠的虚拟带宽集合,然后,UE在调度资源所属的一个或多个虚拟带宽上进行CCA。
方式三:当上次CCA成功,且本次调度的资源位置仍然在上次的频域范围覆盖内的时候,设备本次CCA的频域位置跟上次相同,否则,本次CCA的频域位置在上次CCA频域位置的基础上进行滑动直至覆盖本次调度的频域资源。
其中,虚拟带宽为其它设备通过信令半静态或者动态配置的值,或者为覆盖调度频域资源的最小的系统带宽值。
当设备采用LBE的方式进行CCA的时候,设备每次CCA的时候根据规则及前面CCA的结果对频域位置及范围进行调整,调整的参数包括CCA的起始频域位置,终止频域位置,中心频域位置,频域范围或虚拟带宽。具体调整有下面几种。
第一种:以调度的频域资源的中心或系统带宽的中心为中心,调整CCA的频域范围。
第二种:调度的最小频域位置或最高频域位置不变,调整CCA的频域范围。
第三种:CCA的频域起始位置及结束位置或中心位置均改变,但范围仍然覆盖调度的资源。
优选的,当设备累计或者连续N(N为大于等于1的整数)次CCA的检测结果满足调整依据的时候,CCA的频域范围扩大为原来的K倍或缩小为原来的1/T。
优选的,所述的调整依据包括:信道空闲的时长或者次数,CCA检测到的能量,数据传输的次数。
可选的,设备还可以根据调度的场景,确定不同的CCA频域位置:
当调度UE连续传输多个子帧,且每个子帧的调度资源位置相同的时候,UE在第一个调度子帧传输前全带宽或仅调度的资源上进行CCA,成功后连续传输多个子帧。
当调度UE多个子帧的资源位置不同的时候:采用如下之一方式CCA:
方式一:第一个调度子帧是全带宽,后续不用再进行CCA直接连续传输,
方式二:每个调度子帧都要在调度资源上进行CCA。
当调度UE为非连续的子帧,UE在每个子帧调度的频域资源上进行CCA。
优选的,调度的频域资源为以RB或子载波为调度单位的一个或多个非连续的簇。
当UE在某个子帧分配的资源为非连续的多个簇的时候,UE在分配的RB或子载波上进行CCA,或者UE在分配的RB或子载波所属的连续或非连续的n个子带上进行CCA,或者分配资源所属的m个虚拟带宽上进行CCA。
当设备没有接收到调度信令或CCA指示信令,自己主动选择频域位置进行CCA的时候,CCA频域位置采用每次检测的频域范围不变,频域起始位置在系统带宽内滑动的方式。
比如每次以5M的粒度,或者之前调度的频域资源的粒度进行CCA检测,并在系统带宽内滑动,具体滑动的方式有下面两种:
第一种,每次均以偏移固定频域窗长的整数倍的粒度进行,两次之间没有重叠,CCA起始位置可以从低到高依次增长,或者按照跳频的方式进行不同频域位置的CCA检测。
第二种,两次的频带可以有重叠,CCA的起始频域位置偏移固定值,比如偏移N个RB或M个子载波或者滑动窗长的1/X。
当设备发现空闲资源的时候立即发送占用信号,所述的占用信号包括用户数据,测量参考信号,前导序列,解调参考信号,同步信号。
或者,设备在对应的频域位置CCA成功之后,直接发送用户数据,数据发送方法包括:
当UE检测到包含调度资源对应的频域位置空闲的时候,UE在调度的RB上按照调度指示信令进行上行数据的发送。
如果检测到空闲的频域位置不是基站预先调度的资源,且该位置空闲的时间超过预定义时长,则该UE可以采用自主传输的方式在该空闲资源上进行数据传输。
优选实施例1
本优选实施例对站点(包括基站、用户设备(UE)、家庭基站、中继站。)基于帧的设备(Frame-based Equipment,简称为FBE)的LBT的方式和基于负载的设备(Load-based Equipment,简称为LBE)的LBT的方式进行简单介绍。
图5为根据本发明优选实施例的基于帧的设备FBE的LBT机制示意图,如图5所示,对于FBE,具有固定的传输帧结构,信道占用时间和空闲时期构成固定的帧周期,设备在空闲时期进行CCA检测,当检测到信道为闲时,则可以立即进行数据传输,否则,在下一个固定帧周期的空闲时期再进行CCA检测。对于欧洲的FBE,信道占用时间为1ms到10ms,空闲时期至少为信道占用时间的5%。CCA检测持续的时间至少为20μs,CCA检测可以基于能量检测,也可以基于信号检测。
图6为根据本发明优选实施例的基于负载的设备LBE的LBT机制示意图,如图6所示,对于LBE,基于负载的竞争。即当有数据传输需求时,设 备才开始去进行CCA检测,如果在进行CCA检测后,发现信道为空闲时,则可以立即进行数据传输,数据传输可占用的最大时间为(13/32)×q ms,其中q={4,5,6…31,32}是可配置的;否则,如果发现信道为忙,进入扩展CCA(eCCA)检测时期,也就是要进行X次的CCA检测,X的值存储在一个计数器里,其中X值在1到q里随机选取,称为随机回退值。每次CCA检测(每次CCA检测时间相同)如果发现信道是空闲的,则计数器开始递减,如果信道不是空闲的,则计数器不递减,当计数器递减到0时,则可以开始进行数据传输,数据传输时间根据需求确定,但是最大不能超过(13/32)×qms。
优选实施例二
本优选实施例对UE执行CCA采用FBE的方式下本发明提供的UE每次执行CCA的过程中频域位置确定及调整方法进行详细说明。
对于FBE的方式,UE执行LBT采用优选实施例一中对FBE的描述,即每个帧周期内仅执行一次初始CCA,比如如果帧周期为1ms,则UE可以在每个子帧都能进行CCA。对于优先级较高的业务,比如重传业务或者反馈相关的信息,或者当基站调度多个UE在相同子帧复用发送,或者UE自己发现调度的RB小于上行带宽时,优选采用该LBT方式。
该方式下,UE执行CCA的起始时域位置为预定义值,位于子帧末尾离子帧边界一个CCA的时长,或者从子帧起始符号开始,执行一个CCA的长度。该CCA的时域长度为34微秒,或者20微秒,或者10微秒或9微秒。
频域上,UE执行CCA的频域范围为以下几种情况:
方式一:UE在整个系统带宽上进行CCA。
方式二:UE仅在调度的资源上进行CCA。
方式三:UE以调度资源的中心为中心,CCA的频域范围为能够包括调度的频域资源的一个虚拟带宽,虚拟带宽的大小为预定义值,比如5M,10M,15M或者20M,或者L个子带,或者虚拟带宽为基站通过信令半静态或者动态指示的值。
图7为根据本发明优选实施例二中提供的资源竞争频域位置确定示意 图,如图7所示,调度某UE所在的RB索引为26-35,则UE进行CCA的频域范围以第30个RB的中心为中心,虚拟带宽为5M,即优选覆盖调度的频域资源的最小的系统带宽值或者基站通过RRC信令或者DCI信令配置给UE的值。
如果UE在调度子帧相应的时频域位置进行CCA成功,则UE在调度的RB资源上按照基站调度信令发送数据。
如果该UE连续调度多个子帧,并且下一个子帧的调度的频域资源位置也在虚拟带宽内,则该UE可以连续传输多个子帧。
该UE在下次被调度的时候,如果上次虚拟带宽包括本次UE被调度的资源,则该UE可以先按照之前的虚拟带宽在上次对应的频域位置进行CCA检测,如果空闲则可以进行数据传输。
或者,如果上次CCA虚拟带宽不包括本次UE被调度的频域资源,则该UE可以在原来频域位置基础上进行一个偏移offset,偏移后的位置仍然包括本次调度的RB,CCA的频域范围仍然为预定义或信令指示的虚拟带宽,比如5M。
图8为根据本发明优选实施例二中两次CCA中频域位置确定方式示意图a;图9为根据本发明优选实施例二中两次CCA中频域位置确定方式示意图b;图10为根据本发明优选实施例二中两次CCA中频域位置确定方式示意图c;如图8,图9以及图10所示,UE在第n个子帧调度的RB索引为26-35,UE进行CCA的频域范围为以索引为30的RB为中心,CCA的频域虚拟带宽为最小的系统带宽值5M。如果CCA成功,则该UE就可以进行数据传输。如果失败,则不能进行数据传输,或者该UE仍然以低于预定义门限值的功率进行数据传输。
具体的,如果UE在n+1子帧调度的频域资源仍然在上一次CCA虚拟带宽内如图8所示,则该UE在n+1子帧的CCA频域位置即第2次CCA虚拟带宽不变。
如果n+1子帧调度的频域资源不在上一次CCA虚拟带宽内,则有两种选择:
方式一:该UE在n+1子帧的CCA位置在原来的基础上进行偏移offset,直到包含调度的频域位置,如图9所示。
方式二,当该UE在n+1子帧进行CCA的时候,以本次调度的资源的中心为中心进行相应虚拟带宽内的CCA检测,如图10所示。
或者,当两次调度的频域资源的位置差的值小于预定义门限的时候,采用方式一,当大于预定义门限的时候,采用方式二。
或者,当第一次检测的结果为空闲的时候,采用方式一,当第一次检测结果为忙的时候采用方式二。
通过本优选实施例可以看出,UE在一个虚拟带宽内进行CCA,与在整个系统带宽内进行CCA相比在一定程度上能够提升成功的概率。并且,UE前面调度子帧CCA的结果能够对本子帧的频域位置提供参考,进一步提升CCA成功的概率。
优选实施例三
本优选实施例对调度UE采用LBE的LBT方式进行CCA的时候,本发明提供的CCA频域位置确定及调整方法的实施过程进行说明。
LBE的具体过程如实施一中描述,数据发送之前的CCA过程包括多次CCA。根据本发明,这多次CCA的频域位置可以根据规则或者检测结果进行调整。具体过程如下:
UE先在调度的频域资源位置进行初次CCA,或者以调度资源的中心为中心进行虚拟带宽频域范围的CCA。该CCA的时域长度为34微秒,或者20微秒。
如果成功,则第二次CCA仍然跟第一次采用相同CCA频域范围,直至在数据发送定时之前N值减为0,则在数据定时时刻发送数据。
或者当CCA的结果满足调整的条件的时候,比如成功的次数达到预定义阈值的时候,比如预定义的阈值为2,UE可以将CCA频域范围扩大,具体扩大的方式有下面两种:
第一种:CCA的频域起始位置不变,频域范围按照某个约定的值进行,比如频域范围加倍,或者每次都是扩大N个RB或子载波,N值为2,5,6,8,15 等。
或者,根据检测的情况分为几个等级。
当检测到的能量门限小于预定义门限一的时候,扩大的RB数目为n1,当检测到的能量门限小于预定义门限二的时候,扩大RB的数目为n2。
或者当检测到空闲的时长或者次数达到预定义阈值一的时候,扩大的RB数目为n1,当检测到空闲的时长或者次数小于预定义门限二的时候,扩大RB的数目为n2。
或者UE按照基站发送的指示信令进行频域位置的调整。
或者UE根据传输的次数进行调整。
第二种:CCA的中心频域为调度资源的中心或者系统带宽的中心为中心不变,频域范围扩大也是按照约定的值或者如上述所描述的约定的规则进行,图11为根据本发明优选实施例三中资源竞争频域位置调整方式示意图一,如图11所示。
第三种:CCA的频域起始位置或者中心频域位置以及范围均改变,但CCA的频域范围总包含调度的资源。图12为根据本发明优选实施例三中资源竞争频域位置调整方式示意图二,如图12所示。
相反,当UE在全带宽或者虚拟带宽进行初始CCA或扩展CCA检测结果满足一定条件的时候,后续CCA的频域范围和/或位置可以根据上次CCA相关的结果进行调整或者缩小。
比如,UE可以根据检测到的能量,或者CCA累计失败的次数,或者忙的时长,或者基站信令指示,进行CCA频域范围的调整。
将CCA的频域范围缩小的调整方式依然可以有上述三种:
第一种:以调度资源的中心或系统带宽的中心为中心,将CCA的频域范围缩小某个长度,图13为根据本发明优选实施例三中资源竞争频域位置调整方式示意图三,如图13所示。
第二种:调度的最小频域位置或最高频域位置不变,将CCA的频域范围缩小。
第三种:CCA的频域起始位置及结束位置或中心位置均改变,但范围仍然覆盖调度的资源。
通过不断调整UE CCA的频域范围,可以提高LBE成功的概率,降低了资源的浪费。
优选实施例四
本优选实施例对UE CCA的带宽扩大(比如在优选实施例三中提到的)的具体方法进行说明。
当UE N(N为大于等于1的整数)次CCA的检测结果满足调整依据的时候,CCA的频域范围扩大为原来的K倍。所述的调整依据包括满足如下条件之一:
条件一:空闲的次数达到预定义阈值X,
条件二:空闲的时长达到预定义阈值Y,
条件三:UE传输次数达到预定义阈值T,
条件四:检测到的能量低于预定义门限L。
具体扩大有三种方式:
第一种:如图11所示。以调度资源的中心或系统带宽的中心为中心,CCA频域带宽CCABW扩大为原来的K倍,K为大于1的正整数或者为分数,最大值不能超过系统带宽。
第二种:CCA的起始低频域位置不变,改变CCA终止频域位置。整体的带宽扩大为原来的K倍,即向高的频域位置改变。图14为根据本发明优选实施例四中资源竞争频域位置确定示意图a,如图14所示。
或者,CCA的终止的高频域位置不变,改变起始低频域位置。整体的带宽扩大为原来的K倍,即向低的频域位置改变。图15为根据本发明优选实施例四中资源竞争频域位置确定示意图b,如图15所示。
第三种:CCA的中心,起始频域位置,终止频域位置都改变,整体的带宽扩大为原来的K倍,并且CCA的范围一直覆盖调度的资源,如图11所示。
所述的CCA频域范围扩大的调整方法既可以用于LBE的一次调度的多 次CCA之外,还可以用于多次调度之间下次调度根据上次调度CCA的结果进行调整。对于FBE下,如果调度的多个子帧的频域位置相同的情况也同样适用。
优选实施例五
本优选实施例对CCA的带宽缩小(比如在优选实施例三中提到的)的具体方法进行说明。
当UE N(N为大于等于1的整数)次CCA的检测结果满足调整的依据的时候,CCA的频域范围缩小为之前的1/K。所述的调整依据包括满足如下条件之一:
条件一:忙的次数达到预定义阈值X’,
条件二:忙的时长达到预定义阈值Y’,
条件三:UE传输次数小于预定义阈值T,
条件四:检测到的能量高于预定义门限L。
具体缩小有三种方式:
第一种,如图12所示。以调度的频域资源的中心或者系统带宽的中心为中心,CCA频域带宽CCABW缩小为原来的1/K,K为大于1的正整数或者为分数,或者回到调度的RB频域位置。且最小的CCA频域带宽不能小于一个RB或者调度的RB或子载波。
第二种,CCA的起始低频域位置不变,改变终止频域位置。整体的带宽缩小为原来的1/K。图16为根据本发明优选实施例五中资源竞争频域位置确定示意图a,如图16所示。
或者,CCA的终止的高频域位置不变,改变起始低频域位置。整体的带宽缩小为原来的1/K。图17为根据本发明优选实施例五中资源竞争频域位置确定示意图b,如图17所示。
第三种,CCA的中心,起始频域位置,终止频域位置都改变,整体的带宽缩小为原来的1/K,且频域范围仍然覆盖调度的所有RB。图18为根据本发明优选实施例五中资源竞争频域位置确定示意图,如图18所示。
同样,所述的CCA频域范围缩小调整方法既可以用于LBE的一次调度的多次CCA之外,还可以用于多次调度之间下次调度根据上次调度CCA的结果进行调整。对于FBE下,如果调度的多个子帧的频域RB位置相同的情况也同样适用。
优选实施例六
上述优选实施例均是UE在接收到基站调度指示信令或CCA检测指示信令后才进行CCA的时候,CCA频域位置确定及调整的方法进行说明。本优选实施例对UE未接收到调度信令或CCA指示信令进行CCA检测时候的频域位置调整方法进行说明。
此时UE在进行CCA的时候,还可以采用每次检测的频域范围不变,频域起始位置改变的方式。
比如每次以5M的粒度,或者之前调度的频域资源的粒度进行CCA检测,并在系统带宽内滑动,具体滑动的方式有下面两种:
第一种,每次均以偏移固定频域窗长的整数倍的粒度进行,两次之间没有重叠,CCA起始位置可以从低到高依次增长,或者按照跳频的方式进行不同频域位置的CCA检测。图19为根据本发明优选实施例六中资源竞争频域位置确定示意图一,如图19所示。
第二种,两次的频带可以有重叠,CCA的起始频域位置偏移固定值,比如偏移N个RB,N可以为2,3,4…,最大频域位置最好不超过带宽的边界。图20为根据本发明优选实施例六中资源竞争频域位置确定示意图二,如图20所示。
当发现空闲资源的时候立即通过授权载波上报给基站,同时该UE发送占用信号。
该方式主要用于UE主动进行CCA然后将发现空闲或者忙的频域位置反馈给基站,基站基于此结果对UE进行上行调度及资源分配的情况。或者该方法用于UE辅助基站进行载波选择,当UE发现空闲的载波的时候上报给基站,基站既可以将该载波用于下行也可以用于上行。
优选实施例七
UE除了自己根据规则进行CCA频域位置确定及调整外,CCA的频域位置还可以通过预定义及调度的RB联合确定的方法进行说明。
比如,预定义将系统带宽分为若干连续或者非连续重叠的虚拟带宽集合,然后,UE在调度的频域资源所属的一个或多个虚拟带宽上进行CCA。
图21为根据本发明优选实施例七中资源竞争频域位置确定示意图,如图21所示,对于右边的图,假设系统带宽为20M,如果预定义虚拟带宽为5M,则可以分为4个。如果虚拟带宽为10M,则可以分为2个。并且基站调度的时候尽可能将一个UE调度在一个虚拟带宽内,避免出现跨虚拟带宽调度的情况。这样每个UE每次调度都有唯一的所属于的虚拟带宽相对应。
或者将系统带宽分为若干个重叠的虚拟系统带宽的集合,如图21的左边所示,假设将20M的系统带宽分为A,B,C,D,E五个不同的均为5M的虚拟带宽的集合,两个相邻集合之间频域可能会有交集,即某些RB可能同时属于两个不同的虚拟带宽集合。
假设某UE调度的RB为图21中阴影部分的频域位置,如果按照右边虚拟带宽划分的方式,UE只能按照调度的频域资源所属的集合A所占的虚拟带宽进行CCA。如果按照左边的图所示的虚拟带宽的划分方式,则UE可以以集合A做为CCA的频域位置,也可以以集合B做为CCA的频域位置,如果UE以集合A进行CCA不成功,可以以集合B进行可能会成功,这样就能发送上行数据。
通过该方式,可以提高UE CCA成功的概率,减少调度资源的浪费。
优选实施例八
对于上行,基站调度或分配资源的时候,以RB为单位或者以子载波为单位,并且分配的资源有连续和非连续两种。对于UE分配的RB或子载波资源是连续的情况,此时CCA检测的结果以整个调度的频域带宽为单位进行平均,即统计对象是整个资源带宽。
如果UE分配的RB资源是非连续的RB或子载波,比如每间隔n个RB或l个子载波取m个RB或p个子载波分配给同一个UE,此时UE CCA的频域位置有三种方式:
方式一:仅在调度的非连续的RB或子载波上进行CCA,且该UE CCA能量检测结果以每个调度的非连续的RB或子载波为单位进行平均判断结果。
方式二:在N个覆盖所有非连续RB或子载波的虚拟带宽上进行CCA,CCA检测结果以每个虚拟带宽为统计对象进行平均判断结果。
方式三:在调度的频域资源所属的M个子带上进行CCA,CCA结果判断以每个子带为单位。
通过以上方式,可以提升CCA检测成功的概率,使UE能快速接入调度的载波,避免了资源的浪费。
优选实施例九
当UE在对应的虚拟带宽内或频域范围内CCA检测结果为空闲的时候,后续数据传输的方法为:
如果UE在CCA之前接收到该子帧的调度指示信令,则当UE检测到包含调度资源对应的频域位置空闲的时候,UE在调度资源上按照调度指示信令进行上行数据的发送。
如果检测到空闲的频域位置不是基站预先调度的资源,且该位置空闲的时间超过预定义时长,则该UE可以采用自主传输的方式在该空闲资源上进行数据传输。具体MCS,TB块大小的选择采用保守的方式,或将MCS信息跟数据一起联合编码发送,或者给出跟上次调度时候的MCS或RB的偏移量信息,未给出的数据编码调制及资源位置信息表示跟上次的信息一致。
或者UE在该资源上先发送占用信号,并将检测到空闲的资源通知给基站,基站在该资源上调度其它用户或者该UE进行上行数据传输。
具体的,比如基站发送一个指示信令给跟UE地理位置相近的并且调度在该子帧的UE,让该UE在空闲资源上发送数据。或者基站给该UE发送调度指示信息,UE接收到该信息后在下一个子帧进行上行数据的传输。
优选实施例十
本优选实施例对UE资源竞争中跟基站之间的交互信息进行说明。
首先,UE进行资源竞争之前会接收基站发送的该非授权载波上进行竞 争的指示信息和/或调度传输信息。
资源竞争CCA相关的参数包括:CCA的起始位置,回退值N,窗长至少之一。
所述传输参数包括非授权载波的载波索引信息、所述UE在非授权载波上进行数据传输的子帧位置索引信息、每个子帧分配的物理资源位置及个数、调制编码策略MCS、混合自动重传请求HARQ进程号。
当UE被调度到多个子帧的时候,这些子帧的参数可以完全相同,或者部分相同,比如有相同的频域资源位置,或者每个子帧上的频域资源位置也不同。
UE根据调度场景,采用不同的CCA频域粒度:
当调度UE连续传输多个子帧,且每个子帧的频域资源位置相同的时候,优选,UE在第一个调度子帧传输前全带宽或仅调度的频域资源上进行CCA,成功后连续传输多个子帧。
当调度UE多个子帧的频域资源位置不同的时候:采用如下之一方式CCA:
方式一:第一个调度子帧是全带宽,后续不用再进行CCA直接连续传输,
方式二:每个调度子帧都要在调度的频域资源上进行CCA。
当调度UE为非连续的子帧,UE在每个子帧调度的频域资源上进行CCA。
或者,UE按照基站半静态或动态指示的频域位置进行CCA。
然后,UE按照接收到的参数进行LBT及数据传输。
优选实施例十一
本优选实施例对本发明提供的竞争资源确定方法实施过程进行说明。
图22是根据本发明优选实施例十一实施的流程图,如图22所示。
步骤S222,设备确定进行CCA的非授权载波索引,所述的非授权载波可以是多个,即设备可以同时在多个非授权载波上进行CCA;
步骤S224,设备确定每个非授权载波上CCA的起始频域位置及频域范围或虚拟带宽;
设备可以根据要进行数据传输的位置或者调度的资源或者之前CCA的结果或者信道测量的结果确定CCA的起始频域位置及频域范围或虚拟带宽。
步骤S226,设备在对应的非授权载波的确定的频域位置上进行CCA,如果CCA成功,则在相应的频域位置发送数据。
上述优选实施例提供了一种竞争资源频域位置确定方法,解决了LTE系统在非授权载波频段进行操作时,上行UE如何在系统带宽内进行LBT时频域位置如何确定及实现多用户频率复用的问题,提高了用户接入的概率及频谱效率,解决了现有技术中频域利用效率低造成系统性能差的问题。
本发明提供的竞争资源确定方法解决了LTE在非授权载波进行上行数据传输时资源竞争及数据调度及传输的具体问题,避免了设备均以全带宽进行CCA造成的资源浪费问题,提高了设备接入非授权载波的概率以及频谱效率。需要说明的是,有些实施例虽然都是以UE为例进行描述的,但本发明提供的频域CCA方法也适用于其它的站点或设备,比如基站或者中继站。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行上述实施例的方法步骤的程序代码:
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读 存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提出的竞争资源确定方法及装置,其中,该方法包括:设备根据预设参数以及预定义规则,确定或调整资源竞争的空闲信道评估CCA的频域位置或频域范围,该频域位置或频域范围属于非授权载波上系统带宽的一部分,解决了CCA检测影响设备接入性能,并容易造成设备调度资源的浪费的问题,提高CCA的接入概率,减少了调度资源的浪费。

Claims (18)

  1. 一种竞争资源确定方法,包括:
    设备根据预设参数以及预定义规则,确定或调整资源竞争的空闲信道评估CCA的频域位置或频域范围,所述频域位置或频域范围属于非授权载波上系统带宽的一部分。
  2. 根据权利要求1所述的竞争资源确定方法其中,所述预设参数包括以下至少之一:
    信道质量信息,业务负载,所述设备准备进行数据传输的频域位置,调度指示信令里的资源位置指示信息,前N次CCA的频域位置及对应的CCA的结果,数据在所述频域位置传输的次数,其中,所述CCA的结果包括以下至少之一:信道忙的时长,信道忙的次数,信道闲的时长,信道闲的次数,检测到的能量,其中,N为正整数。
  3. 根据权利要求1所述的竞争资源确定方法,其中,所述CCA的频域位置还包括以下至少之一:
    最低频域位置,最高频域位置,偏移的频域值,虚拟带宽。
  4. 根据权利要求1所述的竞争资源确定方法,其中,所述确定或调整CCA的频域位置包括以下至少之一:
    接收到的所述设备以外其它设备发送的CCA指示信令指示的频域位置;
    调度指示信令指示的调度资源位置,或覆盖调度资源位置的n个子带,或覆盖调度资源位置的m个虚拟带宽,其中,n和m分别为正整数;
    每次CCA的频域位置为一个预定义的虚拟带宽,且按照依次轮流或跳频的方式在系统带宽内调整;
    CCA的频域位置在系统带宽内滑动不断调整;
    CCA的频域位置为根据信道质量测量结果确定的干扰小于预定义阈值的频段。
  5. 根据权利要求4所述的竞争资源确定方法,所述接收到的所述设备以外的其他设备发送的CCA指示信令指示的频域位置之后,所述设备确定 基于帧的设备FBE中资源竞争的CCA的频域位置包括:
    所述CCA的频域位置以调度的频域资源的中心为中心,频域范围为覆盖调度的频域资源的m个虚拟带宽或n个子带,m和n均为正整数;
    预定义将系统带宽分为若干连续或者非连续重叠的虚拟带宽集合,设备在调度资源所属的一个或多个虚拟带宽上进行CCA;
    当上次CCA成功,且在本次调度的资源位置仍然在上次的频域范围覆盖内的情况下,设备本次CCA的频域位置跟上次相同,在本次调度的资源位置不在上次的频域范围覆盖内的情况下,本次CCA的频域位置在上次CCA频域位置的基础上进行滑动直至覆盖本次调度的频域资源;
    所述CCA的频域位置或频域范围根据前N次CCA的结果确定,N为正整数。
  6. 根据权利要求4所述的竞争资源确定方法,所述接收到的所述设备以外的其他设备发送的CCA指示信令指示的频域位置之后,所述设备确定基于负载的设备LBE中资源竞争的CCA的频域位置包括:
    对于初始CCA的频域位置包括以下之一:全带宽,调度的资源位置,调度资源所属的子带,调度资源所属的预定义虚拟带宽位置,以调度资源的中心为中心的一个或多个虚拟带宽;
    扩展CCA中的每次CCA的频域位置根据预定义规则在初始CCA或者前N次CCA结果基础上调整确定,N为正整数。
  7. 根据权利要求3至6任一项所述的竞争资源确定方法,其中,所述虚拟带宽的值包括以下至少之一:
    预定义的值,所述设备以外的其他设备通过高层或物理信令半静态或者动态配置的值,覆盖调度频域资源的最小的系统带宽值。
  8. 根据权利要求1或4任一项所述的竞争资源确定方法,其中,所述调整CCA的频域位置包括以下至少之一:
    以调度资源的中心或系统带宽的中心为中心,调整CCA的频域范围或带宽,即同时改变CCA的最低频域位置和最高频域位置;
    保持CCA最低频域位置或最高频域位置不变,调整CCA的频域覆盖范 围;
    CCA的频域起始位置及结束位置或中心位置均改变,即CCA的频域位置在带宽内滑动,且CCA的频域带宽也改变。
  9. 根据权利要求8所述的竞争资源确定方法,其中,所述CCA频域位置滑动的方式包括以下之一:
    每次均以偏移固定频域长度的整数倍的粒度进行,两次CCA的频域位置之间没有带宽重叠,CCA起始频域位置从低到高调整或最高频域位置从高到低调整,或者按照跳频的方式进行不同频域位置的CCA检测;
    CCA的频带有重叠,CCA的起始或终止频域位置偏移固定值。
  10. 根据权利要求1或6所述的竞争资源确定方法,其中,所述CCA频域范围或位置调整的预定义规则包括以下之一:
    在所述设备累计或连续N次CCA的结果满足的情况包括以下至少之一:空闲的次数达到预定义阈值X,空闲的时长达到预定义阈值Y,设备传输次数达到预定义阈值T,检测到的能量低于预定义门限L;
    所述设备的CCA的频域范围或带宽扩大为原来的P倍或调整CCA的最低或最高频域位置,其中,N、X、以及T均为大于等于1的正整数,Y、P以及L均为大于等于1的正整数或分数;
    在所述设备累计或连续M次CCA的结果满足的情况包括以下至少之一:忙的次数达到预定义阈值X’,忙的时长达到预定义阈值Y’,设备传输次数小于预定义阈值T,检测到的能量高于预定义门限L;
    所述设备的CCA的频域范围缩小为原来的1/K或变为初始值,改变CCA的最低或最高频域位置,其中,M、X’、以及T均为大于等于1的正整数,Y’、K以及L均为大于等于1的正整数或分数。
  11. 根据权利要求1至6任一项所述的方法,其中,所述确定或调整资源竞争的空闲信道评估CCA的频域位置时机包括以下之一:
    同一设备一次LBE的多次CCA之间;一次或多次调度中不同LBE之间;基于FBE下调度的多个子帧之间;设备需要遍历全带宽确定忙闲频域位置时。
  12. 根据权利要求11所述的竞争资源确定方法,其中,所述设备CCA频域位置确定方法包括:
    当所述设备为连续调度多个子帧,每个子帧调度的频域资源位置相同的时候,设备在第一个调度子帧传输前全带宽或仅调度的频域资源上进行CCA,成功后连续传输多个子帧;
    当所述设备为连续调度多个子帧,多个子帧调度的频域资源位置不完全相同的时候:采用如下之一方式进行CCA;
    第一个调度子帧为全带宽CCA,成功后连续在多个子帧调度指示对应的频域资源上传输;
    每个调度子帧都在调度指示的频域资源上进行CCA。
  13. 根据权利要求11所述的竞争资源确定方法,其中,所述设备在所述CCA频域范围内进行的CCA包括:
    所述设备在所述CCA频域范围内进行的CCA包括连续资源块RB或子载波的CCA以及非连续间隔RB或子载波的CCA;
    对于非连续RB或子载波的CCA,CCA的能量统计对象为单个RB或子载波上的能量。
  14. 根据权利要求11所述的竞争资源确定方法,所述确定或调整资源竞争的所述CCA的频域位置或频域范围之后,包括:
    所述设备在所述CCA频域位置检测到信道空闲的时候,发送占用信号或者用户数据。
  15. 根据权利要求14所述的竞争资源确定方法,其中,所述设备发送用户数据包括:
    所述设备按照调度指示信令在调度所在的资源上发送数据,或者所述设备自主选择调制编码等级在检测到空闲的资源上发送数据。
  16. 一种竞争资源确定装置,包括:
    确定模块,设置为根据预设参数以及预定义规则,确定或调整资源竞争的空闲信道评估CCA的频域位置或频域范围,所述频域位置或频域范围属 于非授权载波上系统带宽的一部分。
  17. 根据权利要求16所述的竞争资源确定装置,该装置还包括:
    发送模块,设置为在所述CCA的频域位置检测到信道空闲时,发送占用信号或者用户数据。
  18. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权1~权15任一项的竞争资源确定方法。
PCT/CN2016/089694 2015-08-06 2016-07-11 竞争资源确定方法及装置 WO2017020684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510479180.0A CN106455087B (zh) 2015-08-06 2015-08-06 竞争资源确定方法及装置
CN201510479180.0 2015-08-06

Publications (1)

Publication Number Publication Date
WO2017020684A1 true WO2017020684A1 (zh) 2017-02-09

Family

ID=57942410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089694 WO2017020684A1 (zh) 2015-08-06 2016-07-11 竞争资源确定方法及装置

Country Status (2)

Country Link
CN (1) CN106455087B (zh)
WO (1) WO2017020684A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810972B (zh) * 2017-05-04 2021-02-12 华为技术有限公司 通信方法、终端设备和网络设备
CN110381598B (zh) * 2018-04-12 2021-11-23 维沃移动通信有限公司 资源调度方法、信息传输方法、网络设备及终端
CN110505706B (zh) 2018-05-16 2023-02-03 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN116321458A (zh) 2018-05-28 2023-06-23 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110831022B (zh) 2018-08-09 2023-05-26 北京三星通信技术研究有限公司 物理资源处理方法及用户设备
CN111294930B (zh) * 2018-12-07 2022-10-04 华为技术有限公司 一种通信方法及装置
CN111385882B (zh) 2018-12-28 2023-02-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111417213B (zh) * 2019-01-07 2022-05-10 中国移动通信有限公司研究院 信号传输方法、装置、相关设备及存储介质
CN114071446B (zh) * 2020-08-04 2023-05-05 维沃移动通信有限公司 信息传输方法、信息传输装置、终端及网络侧设备
US20230370890A1 (en) * 2020-11-23 2023-11-16 Qualcomm Incorporated Null resources configuration for channel estimation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087229A (zh) * 2001-03-08 2007-12-12 诺基亚有限公司 在无线通信系统中用于报告一个测量提要的装置和方法
CN101594346A (zh) * 2008-05-28 2009-12-02 北京中电华大电子设计有限责任公司 用于802.11n设备的空闲信道评估方法
CN102281595A (zh) * 2011-06-24 2011-12-14 华为技术有限公司 控制次信道cca的方法、发送设备及接收设备
CN102595569A (zh) * 2011-01-14 2012-07-18 华为技术有限公司 载波侦听的方法和系统
CN104038950A (zh) * 2013-03-06 2014-09-10 美国博通公司 无线通信中的空闲信道评估水平
US20150098397A1 (en) * 2013-10-04 2015-04-09 Qualcomm Incorporated Techniques for assessing clear channel in an unlicensed radio frequency spectrum band
CN105592467A (zh) * 2014-11-07 2016-05-18 北京三星通信技术研究有限公司 长期演进通信系统中竞争信道资源的方法及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792179B1 (en) * 2011-12-15 2017-08-16 Nokia Solutions and Networks Oy Radio operations in a carrier aggregation system
EP4376496A3 (en) * 2013-09-13 2024-07-17 InterDigital Patent Holdings, Inc. Clear channel assessment (cca) threshold adaptation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087229A (zh) * 2001-03-08 2007-12-12 诺基亚有限公司 在无线通信系统中用于报告一个测量提要的装置和方法
CN101594346A (zh) * 2008-05-28 2009-12-02 北京中电华大电子设计有限责任公司 用于802.11n设备的空闲信道评估方法
CN102595569A (zh) * 2011-01-14 2012-07-18 华为技术有限公司 载波侦听的方法和系统
CN102281595A (zh) * 2011-06-24 2011-12-14 华为技术有限公司 控制次信道cca的方法、发送设备及接收设备
CN104038950A (zh) * 2013-03-06 2014-09-10 美国博通公司 无线通信中的空闲信道评估水平
US20150098397A1 (en) * 2013-10-04 2015-04-09 Qualcomm Incorporated Techniques for assessing clear channel in an unlicensed radio frequency spectrum band
CN105592467A (zh) * 2014-11-07 2016-05-18 北京三星通信技术研究有限公司 长期演进通信系统中竞争信道资源的方法及设备

Also Published As

Publication number Publication date
CN106455087A (zh) 2017-02-22
CN106455087B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
US11277864B2 (en) Method and apparatus for determining LBT mode and method for LBT mode switching
WO2017020684A1 (zh) 竞争资源确定方法及装置
CN108174445B (zh) 一种上行信息处理的方法及装置
CN107295696B (zh) 信道接入方法、装置、ue及基站
US10028151B2 (en) Uplink channel access, reservation and data transmission for licensed assist access long term evolution (LAA-LTE)
CN106301733B (zh) 数据的传输方法及装置
CN106453182B (zh) 前导发送方法和装置
WO2017125077A1 (zh) 数据传输方法及装置
KR102032884B1 (ko) 물리적 다운링크 제어 채널의 전송 방법 및 장치
WO2017071647A1 (zh) 先听后说参数处理方法、竞争窗调整方法和装置
WO2017076344A1 (zh) 信道干净评估检测方法和装置
EP3354094B1 (en) Methods, apparatuses, and systems for interference-dependent cross-carrier scheduling for license assisted access uplink
US10903956B2 (en) Uplink data transmission method and related device
CN107734713B (zh) 一种数据传输的方法和装置
CN107734682A (zh) 信息传输方法、传输节点及传输系统
CN109565692B (zh) 使用非授权频谱的上行传输方法、资源分配方法、用户设备及基站
EP3673698B1 (en) Methods and nodes for communication on multiple channels
CN113330807A (zh) 无线系统中的干扰抑制
WO2024016129A1 (zh) 资源重选方法、装置、设备、存储介质及程序产品
CN107295672B (zh) 上行cca检测方法及装置、终端
CN118648326A (zh) 资源排除方法、装置、设备、存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832172

Country of ref document: EP

Kind code of ref document: A1