WO2017167206A1 - 一种直流电网电压控制的方法 - Google Patents

一种直流电网电压控制的方法 Download PDF

Info

Publication number
WO2017167206A1
WO2017167206A1 PCT/CN2017/078626 CN2017078626W WO2017167206A1 WO 2017167206 A1 WO2017167206 A1 WO 2017167206A1 CN 2017078626 W CN2017078626 W CN 2017078626W WO 2017167206 A1 WO2017167206 A1 WO 2017167206A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
converter station
regulation
grid
control mode
Prior art date
Application number
PCT/CN2017/078626
Other languages
English (en)
French (fr)
Inventor
丁久东
卢宇
董云龙
李钢
胡兆庆
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to KR1020187025656A priority Critical patent/KR101967127B1/ko
Priority to DK17773236.9T priority patent/DK3419136T3/da
Priority to CA3018140A priority patent/CA3018140C/en
Priority to BR112018067439A priority patent/BR112018067439A2/pt
Priority to MX2018010563A priority patent/MX2018010563A/es
Priority to EA201891695A priority patent/EA032635B1/ru
Priority to ES17773236T priority patent/ES2819890T3/es
Priority to EP17773236.9A priority patent/EP3419136B1/en
Priority to US16/081,873 priority patent/US10840702B2/en
Publication of WO2017167206A1 publication Critical patent/WO2017167206A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/04Constant-current supply systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention belongs to the field of DC power grids, and particularly relates to a method for voltage control of a DC grid.
  • the position of the DC voltage can be analogized to the position of the frequency in the AC grid.
  • the stability of the DC voltage is directly related to the stability of the DC current, which is related to the safe and stable operation of the DC grid. Therefore, the control of the DC voltage in the DC grid is extremely important.
  • one of the converter stations controls the DC voltage, and the other converter station controls other variables such as active power, AC frequency or AC voltage. If the converter station that controls the DC voltage fails and loses the DC voltage control capability, the DC voltage will be destabilized, resulting in the shutdown of the flexible DC system at both ends, and the reliability of the system is low.
  • the single-point voltage control method uses a single converter station as the DC voltage control station. Since only one converter station controls the DC voltage at the same time, accurate control of the DC voltage can be achieved. If the converter station fails or the power exceeds the limit, the DC is lost. The voltage control capability will then take over the DC voltage control from other converter stations with DC voltage control capability.
  • the takeover method is classified into a communication-based unbiased control method and a non-communication-based deviation control method depending on whether or not the communication is dependent.
  • the non-deviation control method relies on the fast inter-station communication to realize the conversion of the DC voltage control right.
  • the backup converter station realizes the takeover of the DC voltage control right through the fast inter-station communication, but this method is The speed and reliability of inter-station communication put forward high requirements. If the communication delay is long, in the case of a DC voltage control station failure, it may be too late to realize the takeover of the DC voltage control right, so that the entire DC system is shut down. At the same time, when the scale of the DC grid is gradually increased, the backup converter station will gradually increase, the priority setting of the DC voltage control will become very complicated, and the high-speed communication network will gradually change and become complex. These defects make communication-based The application of the non-deviation control method in the DC grid has certain difficulties.
  • DC voltage deviation control is a control method that does not require inter-station communication. After the DC voltage control station fails to run out, the backup DC voltage control station can detect a large deviation of the DC voltage and switch to the constant DC voltage control mode.
  • the DC voltage is guaranteed to be stable, but multiple backup converter stations require multiple priorities, which increases the complexity of the controller design.
  • the backup converter station will also increase due to the DC of the DC grid.
  • the voltage has a certain operating range, so the deviation can not exceed the DC voltage operating range, which limits the level difference and the number of deviation control.
  • Multi-point voltage control method that is, multiple converter stations control DC voltage in the DC grid at the same time.
  • the common multi-point voltage control method is the slope voltage control method.
  • the active output of multiple slope voltage control converter stations is related to the impedance of the DC line and the respective slopes. The DC voltage and active power cannot be accurately controlled.
  • the object of the present invention is to provide a method for voltage control of a DC grid, which can accurately control a DC voltage in a steady state and suppress a DC voltage deviation in a transient state.
  • a DC grid voltage control method divides the DC grid voltage control into three processes, namely natural voltage regulation, primary voltage regulation and secondary voltage regulation, and the conversion in the DC power grid according to whether the converter station has a voltage regulation capability
  • the flow stations are divided into three categories, namely, the power conversion converter station, the auxiliary voltage regulation converter station, the voltage regulation converter station, the power conversion converter station works in the constant power control mode, and the voltage regulation converter station operates in the constant voltage control mode.
  • auxiliary voltage control mode auxiliary voltage control converter station works in auxiliary voltage control mode, all converter stations in the DC grid participate in natural voltage regulation, auxiliary voltage converter station and pressure regulating converter station participate in one voltage regulation
  • the pressure regulating converter station participates in the secondary pressure regulation.
  • the above natural voltage regulation utilizes the capacitance energy storage of each converter station in the DC power grid, and firstly assumes the change of the DC grid load. When the power in the DC grid is unbalanced, the DC voltage deviation will gradually increase with time, and the natural voltage regulation The process is done naturally and does not require any adjustments.
  • the above-mentioned one-time voltage regulation is to use the converter station working in the auxiliary voltage control mode to participate in the regulation of the DC voltage, and finally the DC voltage forms a deviation, and the one-time voltage regulation is automatically completed by the controller of the converter station itself, without intervention by the external control department. .
  • the above secondary voltage regulation is to use the converter station operating in the constant DC voltage control mode or the converter station operating in the auxiliary voltage control mode to participate in the adjustment of the DC voltage, and finally realize the precise control of the DC voltage, and the controller of the secondary voltage regulation. Installed inside the converter station or external control department.
  • the DC voltage and power can be precisely controlled during steady state
  • Figure 1 is a typical control mode of a DC grid converter, (a) is a constant power control mode, (b) is an auxiliary voltage control mode, and (c) is a constant voltage control mode;
  • 2 is an embodiment 1 of a DC grid voltage control
  • Figure 3 is a second embodiment of the DC grid voltage control.
  • a DC grid voltage control method divides the DC grid voltage control into three processes, namely natural voltage regulation, primary voltage regulation and secondary voltage regulation, and the conversion in the DC power grid according to whether the converter station has a voltage regulation capability
  • the flow stations are divided into three categories, namely, the power conversion converter station, the auxiliary voltage regulation converter station, the voltage regulation converter station, the power conversion converter station works in the constant power control mode, and the voltage regulation converter station operates in the constant voltage control mode.
  • auxiliary voltage control mode auxiliary voltage control converter station works in auxiliary voltage control mode, all converter stations in the DC grid participate in natural voltage regulation, auxiliary voltage converter station and pressure regulating converter station participate in one voltage regulation
  • the pressure regulating converter station participates in the secondary pressure regulation.
  • the above-mentioned natural voltage regulation utilizes the capacitive energy storage of each converter station in the DC grid, and first assumes the change of the DC grid load. When the power in the DC grid is unbalanced, the DC voltage deviation will gradually increase with time, and the natural voltage regulation The process is done naturally and does not require any adjustments.
  • the above-mentioned voltage regulation is to use the converter station operating in the auxiliary voltage control mode to participate in the regulation of the DC voltage, and finally the DC voltage forms a deviation.
  • the primary voltage regulation is automatically completed by the converter station's own controller, and no external control department is required. Intervention.
  • the above-mentioned secondary voltage regulation is to use the converter station operating in the constant DC voltage control mode or the converter station operating in the voltage assisted control mode to participate in the regulation of the DC voltage, and finally realize the precise control of the DC voltage and the control of the secondary voltage regulation.
  • the unit is installed inside the converter station or external control department.
  • Figure 1 is a typical control mode for a DC grid converter, where (a) is the constant power control mode, (b) is the auxiliary voltage control mode, and (c) is the constant voltage control mode.
  • the controller can be installed in the upper controller such as power dispatching or in the converter station.
  • the voltage controller is installed in the power dispatching system;
  • the converter station 1 and the converter station 2 are voltage regulating converter stations, and the voltage regulating converter station operates in the auxiliary voltage control mode and accepts voltage control.
  • the converter station 3 is an auxiliary voltage regulating converter station, which operates in the auxiliary voltage control mode and receives the power command of the power dispatch;
  • the converter station 4 is the power regulating converter station, and operates in the constant power control mode. , accept power commands for power dispatching.
  • the voltage controller automatically changes the power command of converter station 1 and converter station 2, thus realizing precise control of the DC voltage, while the converter station power reference value P ref3 3 is restored to the P order3, this process is the second process of the regulator; If the voltage controller adjusts the speed is fast enough, the communication delay is short enough, then the primary modulation The secondary voltage regulation process has been in effect before the pressure process is active, and the voltage controller changes P order1 and P order2 , Maintain power balance for precise control of DC voltage.
  • the voltage controller is installed in the converter station; the converter station 1 and the converter station 2 are voltage regulating converter stations, the converter station 1 operates in a constant voltage control mode, and the converter station 2 operates.
  • the converter station 2 receives the power command of the power dispatch;
  • the converter station 3 is the auxiliary voltage-regulating converter station, operates in the auxiliary voltage control mode, and receives the power command of the power dispatch;
  • the converter station 4 is the power-regulating station The converter station operates in a constant power control mode and accepts power commands for power dispatch.
  • the capacitor energy storage of the four converter stations first unbalances the power of the throughput, resulting in a gradual deviation of the DC voltage.
  • This process is a natural voltage regulation process; the voltage controller communication delay installed in the converter station The time is shorter and the adjustment speed is faster.
  • the voltage controller maintains the power balance by changing P order1 and P order2 to achieve precise control of the DC voltage.
  • the power of the DC grid may no longer be balanced.
  • the capacitor energy storage of the four converter stations first unbalances the throughput power, resulting in a gradual deviation of the DC voltage.
  • This process is a natural voltage regulation process;
  • the converter station 2 takes over the voltage control right through communication. If the communication delay is long, when the DC voltage deviation reaches a certain level, the converter station 2 and the converter station 3 operating in the auxiliary voltage control mode will automatically adjust their respective powers.
  • the reference value P ref maintains the power balance and thus suppresses the further deviation of the DC voltage.
  • This process is a voltage regulation process.
  • the first voltage regulation cannot achieve precise control of the DC voltage.
  • the converter station 2 takes over the voltage control right and switches to the fixed voltage.
  • voltage control mode to achieve an accurate control of the DC voltage, while the converter station 3 power reference value P ref3 restored to the P order3, this process is the second process of the regulator; if the communication delay is short enough, then a process regulator Before the switch, the converter station 2 has taken over the voltage control right, and the secondary voltage regulation process has already taken effect, thereby realizing the direct current Precise control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供一种直流电网电压控制的方法,将直流电网电压的控制分为三个过程,即自然调压、一次调压和二次调压,根据换流站是否具有调压能力将直流电网中的换流站分为三类,即调功换流站、辅助调压换流站、调压换流站,调功换流站工作在定功率控制模式,调压换流站工作在定电压控制模式或者辅助电压控制模式,辅助调压控制换流站工作在辅助电压控制模式,直流电网中的所有换流站都参与自然调压,辅助调压换流站和调压换流站参与一次调压,调压换流站参与二次调压,通过三个调压过程的配合,稳态时可以实现直流电压的精确控制,暂态时可以抑制直流电压变化。

Description

一种直流电网电压控制的方法 技术领域
本发明属于直流电网领域,特别涉及一种直流电网电压控制的方法。
背景技术
随着电力电子技术的不断进步,柔性直流输配电技术作为新一代的直流输配电技术可解决当前交流输配电技术存在的诸多问题,随着直流输电规模的扩大,直流电网也成为可能。
在直流电网中,直流电压的地位可以类比为交流电网中频率的地位,直流电压的稳定直接关系到直流潮流的稳定,关系到直流电网的安全稳定运行。因此,在直流电网中直流电压的控制极其重要。在传统的两端柔性直流系统中,其中一个换流站控制直流电压,另外一个换流站控制其他变量,比如有功功率、交流频率或者交流电压。如果控制直流电压的换流站故障从而失去直流电压控制能力,那么直流电压将会失稳从而导致两端柔性直流系统停运,系统的可靠性较低。在直流电网中往往有多个换流站具有直流电压控制能力,根据同一时刻参与控制直流电压的换流站的数量可以将目前常见的直流电压控制方法分为单点电压控制法和多点电压控制法。
单点电压控制法采用单个换流站作为直流电压控制站,由于同一时刻只有一个换流站控制直流电压,因此可以实现直流电压的精确控制,如果此换流站故障或者功率越限从而失去直流电压控制能力,那么将由其他具有直流电压控制能力的换流站接管直流电压控制权。接管方法根据是否依赖通信分为基于通信的无偏差控制法和不基于通信的偏差控制法。无偏差控制法依赖于快速站间通讯实现直流电压控制权的转换,当直流电压控制站故障退出运行后通过快速站间通讯使得后备换流站实现直流电压控制权的接管,但是这种方法对站间通讯的速度和可靠性提出了很高的要求,如果通讯延时较长,在直流电压控制站故障的情况下有可能来不及实现直流电压控制权的接管从而使得整个直流系统停运。同时当直流电网规模逐渐增大时,后备换流站也将逐渐增多,直流电压控制的优先级的设定也将变成很复杂,高速通讯网络也将逐渐变更复杂,这些缺陷使得基于通讯的无偏差控制法在直流电网中的推广应用存在一定的难度。
直流电压偏差控制是一种无需站间通信的控制方式,即在直流电压控制站故障退出运行后,后备的直流电压控制站能够检测到直流电压的较大偏差并转入定直流电压控制模式,保证直流电压的稳定,但是多个后备换流站需要多个优先级,增加了控制器设计的复杂度,当直流电网规模逐渐增大时,后备换流站也将增多,由于直流电网的直流电压存在一定的运行范围,因此偏差不能超出直流电压运行范围,这就限制了偏差控制的级差和级数,这些缺陷使得偏差控制法在直流电网中的推广应用存在一定的难度。
多点电压控制法,即同一时刻直流电网中有多个换流站控制直流电压,常见的多点电压控制法为斜率电压控制法。这种方法多个斜率电压控制换流站的有功出力跟直流线路的阻抗还有各自的斜率有关,直流电压和有功功率都不能做到精确控制。
发明内容
本发明的目的,在于提供一种直流电网电压控制的方法,稳态时可以精确控制直流电压,暂态时可以抑制直流电压偏差。
为了达成上述目的,本发明采用的技术方案是:
一种直流电网电压控制的方法,将直流电网电压的控制分为三个过程,即自然调压、一次调压和二次调压,根据换流站是否具有调压能力将直流电网中的换流站分为三类,即调功换流站、辅助调压换流站、调压换流站,调功换流站工作在定功率控制模式,调压换流站工作在定电压控制模式或者辅助电压控制模式,辅助调压控制换流站工作在辅助电压控制模式,直流电网中的所有换流站都参与自然调压,辅助调压换流站和调压换流站参与一次调压,调压换流站参与二次调压。
上述自然调压是利用直流电网中各换流站的电容储能,首先承担直流电网负荷的变化,当直流电网中的功率不平衡时直流电压的偏差将随时间逐渐增大,自然调压的过程是自然完成的,不需要任何调整手段。
上述一次调压是利用工作在辅助电压控制模式的换流站参与直流电压的调节,最终使得直流电压形成一个偏差,一次调压依靠换流站自身的控制器自动完成,无需外部调控部门进行干预。
上述二次调压是利用工作在定直流电压控制模式的换流站或者工作在辅助电压控制模式的换流站参与直流电压的调节,最终实现直流电压的精确控制,二次调压的控制器安装在换流站内部或者外部调控部门。
上述辅助电压控制模式的实现方法为:
(1)检测直流电压Udc
(2)计算直流电压Udc与额定直流电压Urate的偏差ΔU=Udc-Urate
(3)比较ΔU与电压偏差定值UsetH和UsetL(UsetH>UsetL)大小关系,当UsetL≤ΔU≤UsetH时ΔUmod=0,当ΔU>UsetH时ΔUmod=ΔU-UsetH,当ΔU<UsetL时ΔUmod=ΔU-UsetL
(4)计算功率指令偏差值ΔP=K*ΔUmod
(5)根据上层控制器下发的功率指令Porder和功率指令偏差值ΔP计算得到功率控制器的功率指令Pref=Porder-ΔP。
采用上述方案后,本发明的有益效果为:
(1)稳态时可以精确控制直流电压和功率;
(2)暂态时可以抑制直流电压变化;
(3)不需要配置高速通讯通道。
附图说明
图1是直流电网换流器的典型控制模式,(a)是定功率控制模式,(b)是辅助电压控制模式,(c)是定电压控制模式;
图2是直流电网电压控制的实施方案一;
图3是直流电网电压控制的实施方案二。
具体实施方式
以下将结合附图及具体实施例,对本发明的技术方案进行详细说明。
一种直流电网电压控制的方法,将直流电网电压的控制分为三个过程,即自然调压、一次调压和二次调压,根据换流站是否具有调压能力将直流电网中的换流站分为三类,即调功换流站、辅助调压换流站、调压换流站,调功换流站工作在定功率控制模式,调压换流站工作在定电压控制模式或者辅助电压控制模式,辅助调压控制换流站工作在辅助电压控制模式,直流电网中的所有换流站都参与自然调压,辅助调压换流站和调压换流站参与一次调压,调压换流站参与二次调压。
上述述自然调压是利用直流电网中各换流站的电容储能,首先承担直流电网负荷的变化,当直流电网中的功率不平衡时直流电压的偏差将随时间逐渐增大,自然调压的过程是自然完成的,不需要任何调整手段。
上述述一次调压是利用工作在辅助电压控制模式的换流站参与直流电压的调节,最终使得直流电压形成一个偏差,一次调压依靠换流站自身的控制器自动完成,无需外部调控部门进行干预。
上述述二次调压是利用工作在定直流电压控制模式的换流站或者工作在电压辅助控制模式的换流站参与直流电压的调节,最终实现直流电压的精确控制,二次调压的控制器安装在换流站内部或者外部调控部门。
上述辅助电压控制模式的实现方法为:
(1)检测直流电压Udc
(2)计算直流电压Udc与额定直流电压Urate的偏差ΔU=Udc-Urate
(3)比较ΔU与电压偏差定值UsetH和UsetL(UsetH>UsetL)大小关系,当UsetL≤ΔU≤UsetH时ΔUmod=0,当ΔU>UsetH时ΔUmod=ΔU-UsetH,当ΔU<UsetL时ΔUmod=ΔU-UsetL
(4)计算功率指令偏差值ΔP=K*ΔUmod
(5)根据上层控制器下发的功率指令Porder和功率指令偏差值ΔP计算得到功率控制器的功率指令Pref=Porder-ΔP。
图1是直流电网换流器的典型控制模式,其中(a)是定功率控制模式,(b)是辅助电压控制模式,(c)是定电压控制模式。
直流网络中只能有一个定电压控制器,该控制器可以安装在电力调度等上层控制器中,也可以安装在换流站内。图2所示的直流电网中,电压控制器安装在电力调度系统中;换流站1和换流站2是调压换流站,调压换流站工作在辅助电压控制模式,接受电压控制器下发的功率指令;换流站3是辅助调压换流站,工作在辅助电压控制模式,接受电力调度的功率指令;换流站4是调功换流站,工作在定功率控制模式,接受电力调度的功率指令。当直流电网的负荷发生变化时,4个换流站的电容储能首先吞吐功率的不平衡,导致直流电压逐渐偏差,这个过程就是自然调压过程;如果电压控制器调节速度较慢或者通讯延时较长,那么当直流电压偏差达到一定程度时,工作在辅助电压控制模式的换流站1、换流站2和换流站3将自动调整各自的功率参考值Pref,保持功率平衡从而抑制直流电压的进一步偏差,这个过程就是一次调压过程,一次调压无法实现直流电压的精确控制,一段时间后电压控制器开始自动改变换流站1和换流站2的功率指令,从而实现直流电压的精确控制,同时换流 站3的功率参考值Pref3重新恢复到Porder3,这个过程就是二次调压过程;如果电压控制器调节速度足够快,通讯延时足够短,那么一次调压过程起作用之前二次调压过程已经起作用,电压控制器通过改变Porder1和Porder2,保持功率平衡从而实现直流电压的精确控制。
图3所示的直流电网中,电压控制器安装在换流站内;换流站1和换流站2是调压换流站,换流站1工作在定电压控制模式,换流站2工作在辅助电压控制模式,换流站2接受电力调度的功率指令;换流站3是辅助调压换流站,工作在辅助电压控制模式,接受电力调度的功率指令;换流站4是调功换流站,工作在定功率控制模式,接受电力调度的功率指令。当直流电网的负荷发生变化时,4个换流站的电容储能首先吞吐功率的不平衡,导致直流电压逐渐偏差,这个过程就是自然调压过程;安装在换流站内的电压控制器通讯延时较短,调节速度较快,电压控制器通过改变Porder1和Porder2,保持功率平衡从而实现直流电压的精确控制。当换流站1因故障退出运行后,直流电网的功率可能不再平衡,4个换流站的电容储能首先吞吐功率的不平衡,导致直流电压逐渐偏差,这个过程就是自然调压过程;换流站2通过通讯接管电压控制权,如果通讯延时较长,那么当直流电压偏差达到一定程度时,工作在辅助电压控制模式的换流站2和换流站3将自动调整各自的功率参考值Pref,保持功率平衡从而抑制直流电压的进一步偏差,这个过程就是一次调压过程,一次调压无法实现直流电压的精确控制,一段时间后换流站2接管电压控制权,切换到定电压控制模式,从而实现直流电压的精确控制,同时换流站3的功率参考值Pref3重新恢复到Porder3,这个过程就是二次调压过程;如果通讯延时足够短,那么一次调压过程起作用之前换流站2已经接管电压控制权,二次调压过程已经起作用,从而实现直流电压的精确控制。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (5)

  1. 一种直流电网电压控制的方法,其特征在于:将直流电网电压的控制分为自然调压、一次调压和二次调压三个过程;
    根据换流站是否具有调压能力将直流电网中的换流站分为调功换流站、辅助调压换流站、调压换流站三类;
    所述调功换流站工作在定功率控制模式,所述辅助调压换流站工作在辅助电压控制模式,所述调压换流站工作在定电压控制模式或者辅助电压控制模式;
    直流电网中的所有换流站都参与自然调压,辅助调压换流站和调压换流站参与一次调压,调压换流站参与二次调压。
  2. 如权利要求1所述的一种直流电网电压控制的方法,其特征在于:所述自然调压具体为,利用直流电网中各换流站的电容储能,自然调节直流电网直流电压。
  3. 如权利要求1所述的一种直流电网电压控制的方法,其特征在于:所述一次调压具体为,利用工作在辅助电压控制模式的换流站调节直流电网直流电压,使得直流电压形成一个偏差,一次调压依靠换流站自身的控制器完成。
  4. 如权利要求1所述的一种直流电网电压控制的方法,其特征在于:所述二次调压具体为,利用工作在定电压控制模式的换流站或者工作在电压辅助控制模式的换流站调节直流电网直流电压,实现直流电压的精确控制,二次调压的控制器安装在换流站内部或者外部调控部门。
  5. 如权利要求1所述的一种直流电网电压控制的方法,其特征在于:所述辅助电压控制模式的实现方法为:
    (1)检测直流电压Udc
    (2)计算直流电压Udc与额定直流电压Urate的偏差ΔU=Udc-Urate
    (3)设置大小不一的两电压偏差定值UsetH和UsetL,UsetH>UsetL,比较ΔU与UsetH、UsetL大小关系,当UsetL≤ΔU≤UsetH时ΔUmod=0,当ΔU>UsetH时ΔUmod=ΔU-UsetH,当ΔU<UsetL时ΔUmod=ΔU-UsetL
    (4)计算功率指令偏差值ΔP=K*ΔUmod,K为比例系数;
    (5)根据上层控制器下发的功率指令Porder和功率指令偏差值ΔP计算得到功率控制器的功率指令Pref=Porder-ΔP。
PCT/CN2017/078626 2016-03-30 2017-03-29 一种直流电网电压控制的方法 WO2017167206A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020187025656A KR101967127B1 (ko) 2016-03-30 2017-03-29 직류 전력망 전압 제어 방법
DK17773236.9T DK3419136T3 (da) 2016-03-30 2017-03-29 Jævnstrømselnetspændingsstyringsfremgangsmåde
CA3018140A CA3018140C (en) 2016-03-30 2017-03-29 Direct current power grid voltage control method
BR112018067439A BR112018067439A2 (pt) 2016-03-30 2017-03-29 método de controle de tensão de rede de energia elétrica de corrente contínua
MX2018010563A MX2018010563A (es) 2016-03-30 2017-03-29 Metodo de control de voltaje de red electrica de corriente continua.
EA201891695A EA032635B1 (ru) 2016-03-30 2017-03-29 Способ регулирования напряжения электрической сети постоянного тока
ES17773236T ES2819890T3 (es) 2016-03-30 2017-03-29 Método de control de voltaje de red de energía de corriente continua
EP17773236.9A EP3419136B1 (en) 2016-03-30 2017-03-29 Direct current power grid voltage control method
US16/081,873 US10840702B2 (en) 2016-03-30 2017-03-29 Direct current power grid voltage control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610190067.5A CN105870909B (zh) 2016-03-30 2016-03-30 一种直流电网电压控制的方法
CN201610190067.5 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017167206A1 true WO2017167206A1 (zh) 2017-10-05

Family

ID=56627455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078626 WO2017167206A1 (zh) 2016-03-30 2017-03-29 一种直流电网电压控制的方法

Country Status (12)

Country Link
US (1) US10840702B2 (zh)
EP (1) EP3419136B1 (zh)
KR (1) KR101967127B1 (zh)
CN (1) CN105870909B (zh)
BR (1) BR112018067439A2 (zh)
CA (1) CA3018140C (zh)
DK (1) DK3419136T3 (zh)
EA (1) EA032635B1 (zh)
ES (1) ES2819890T3 (zh)
MX (1) MX2018010563A (zh)
PT (1) PT3419136T (zh)
WO (1) WO2017167206A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870909B (zh) * 2016-03-30 2017-10-13 南京南瑞继保电气有限公司 一种直流电网电压控制的方法
CN107689626A (zh) * 2016-08-05 2018-02-13 国家电网公司 一种直流电网电压控制的方法
CN106681147B (zh) * 2017-01-09 2020-06-26 中南大学 一种直流微电网分布式控制方法
CN106684902B (zh) * 2017-01-16 2019-03-05 许继集团有限公司 柔性直流电网的换流站及多换流站协调控制方法
CN106786481A (zh) * 2017-01-23 2017-05-31 全球能源互联网研究院 一种直流电网多点电压控制方法
CN106684852B (zh) * 2017-01-25 2021-11-09 国家电网公司 一种柔性直流电网电压管理中心及其电压稳定控制方法
DE102017210617A1 (de) * 2017-06-23 2018-12-27 Audi Ag Elektrische Energieliefervorrichtung mit Stromschienenmatrix sowie Verfahren zum Betreiben der Energieliefervorrichtung
CN111654018B (zh) * 2020-04-27 2022-03-22 许继电气股份有限公司 一种多端口直流配电系统的直流母线电压控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969733A (zh) * 2012-11-08 2013-03-13 南京南瑞继保电气有限公司 一种多端柔性直流输电系统协调控制方法
CN103178539A (zh) * 2013-03-21 2013-06-26 浙江省电力公司电力科学研究院 一种多端柔性直流输电系统的直流电压偏差斜率控制方法
CN104022522A (zh) * 2014-06-09 2014-09-03 山东大学 一种多端柔性直流输电系统协调控制方法
CN104104102A (zh) * 2014-07-30 2014-10-15 济南希恩软件科技有限公司 电压源换流器型多端直流输电系统稳态工作点优化方法
CN105870909A (zh) * 2016-03-30 2016-08-17 南京南瑞继保电气有限公司 一种直流电网电压控制的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130561A (en) * 1990-08-29 1992-07-14 Alcatel Network Systems, Inc. Switching mode power supplies with controlled synchronization
CN1204422A (zh) * 1995-11-30 1999-01-06 西门子公司 调节高压直流输电多点网的n个换流站的方法和装置
ATE338373T1 (de) * 1999-03-23 2006-09-15 Advanced Energy Ind Inc Gleichstromgespeistes rechnersystem mit einem hochfrequenzschaltnetzteil
US6809678B2 (en) * 2002-10-16 2004-10-26 Perkinelmer Inc. Data processor controlled DC to DC converter system and method of operation
JP4706361B2 (ja) 2005-07-11 2011-06-22 株式会社明電舎 系統安定化装置
US7564706B1 (en) * 2006-06-23 2009-07-21 Edward Herbert Power factor corrected single-phase AC-DC power converter using natural modulation
US8401706B2 (en) * 2008-08-28 2013-03-19 ETM Electromatic Networked multi-inverter maximum power-point tracking
SG175717A1 (en) * 2009-04-17 2011-12-29 Ampt Llc Methods and apparatus for adaptive operation of solar power systems
US20120049634A1 (en) * 2010-08-24 2012-03-01 Samuel Martin Babb Power conversion using dc and ac current sharing to produce an ac distribution output
US20140285010A1 (en) * 2011-05-24 2014-09-25 D. Kevin CAMERON System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads
KR101302866B1 (ko) * 2011-12-13 2013-09-24 주식회사 효성 전력 제어 시스템
WO2014103192A1 (ja) 2012-12-27 2014-07-03 川崎重工業株式会社 電力変換装置を備えた複合発電システム
CN104518519B (zh) * 2013-09-26 2017-11-03 南京南瑞继保电气有限公司 直流电压控制方法及装置
CN104901301B (zh) * 2014-03-04 2017-12-05 国家电网公司 一种多端柔性直流输电系统的协调控制方法
KR101819267B1 (ko) * 2014-03-17 2018-01-16 엘에스산전 주식회사 전압형 컨버터의 제어 장치 및 그 동작 방법
CN104485683B (zh) * 2014-12-23 2018-07-06 南京南瑞继保电气有限公司 一种孤岛转联网方法
CN104821595B (zh) * 2015-04-30 2018-05-04 许继集团有限公司 一种多端柔性直流输电系统的直流电压混合控制策略

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969733A (zh) * 2012-11-08 2013-03-13 南京南瑞继保电气有限公司 一种多端柔性直流输电系统协调控制方法
CN103178539A (zh) * 2013-03-21 2013-06-26 浙江省电力公司电力科学研究院 一种多端柔性直流输电系统的直流电压偏差斜率控制方法
CN104022522A (zh) * 2014-06-09 2014-09-03 山东大学 一种多端柔性直流输电系统协调控制方法
CN104104102A (zh) * 2014-07-30 2014-10-15 济南希恩软件科技有限公司 电压源换流器型多端直流输电系统稳态工作点优化方法
CN105870909A (zh) * 2016-03-30 2016-08-17 南京南瑞继保电气有限公司 一种直流电网电压控制的方法

Also Published As

Publication number Publication date
EP3419136A4 (en) 2019-04-17
PT3419136T (pt) 2020-09-10
EP3419136A1 (en) 2018-12-26
BR112018067439A2 (pt) 2019-01-02
EA032635B1 (ru) 2019-06-28
CA3018140A1 (en) 2017-10-05
CA3018140C (en) 2019-07-23
KR20180103178A (ko) 2018-09-18
EP3419136B1 (en) 2020-06-17
ES2819890T3 (es) 2021-04-19
EA201891695A1 (ru) 2018-12-28
CN105870909B (zh) 2017-10-13
CN105870909A (zh) 2016-08-17
US20190341777A1 (en) 2019-11-07
DK3419136T3 (da) 2020-08-17
MX2018010563A (es) 2019-02-11
US10840702B2 (en) 2020-11-17
KR101967127B1 (ko) 2019-04-08

Similar Documents

Publication Publication Date Title
WO2017167206A1 (zh) 一种直流电网电压控制的方法
US9831810B2 (en) System and method for improved reactive power speed-of-response for a wind farm
CN108306312B (zh) 一种风电场一次调频控制方法
US11394221B2 (en) Method and system for controlling DC bus voltage
US9203333B2 (en) System and method for voltage control of wind generators
WO2015131602A1 (zh) 一种多端柔性直流输电系统的协调控制方法
CN108092274B (zh) 电压和无功功率双闭环控制的调相机励磁系统控制方法
US20150142190A1 (en) Power system with an energy generator and a hybrid energy storage system
CN111837309A (zh) 操作能量产生系统的方法和能量产生系统的逆变器
CN110061529B (zh) 柔性多状态开关的平滑切换控制方法
CN105515012A (zh) 一种储能参与电力系统电压控制方法及装置
CN107732941B (zh) 一种电池储能电源参与电网一次调频的控制方法
BR112019017572B1 (pt) Método para colocar em funcionamento uma rede de geração de energia, instalação de energia eólica, e, parque eólico
CN105680465B (zh) 用于多端柔性直流输电系统的改进协调控制方法
CN107910869A (zh) 一种分布式静止串联补偿器控制系统及其控制方法
Hosseinimehr et al. Power sharing control of batteries within autonomous microgrids based on their state of charge
US20180262022A1 (en) Off-grid energy storage system and control method for off-grid energy storage system
CN109586305B (zh) 一种基于柔性多状态开关的配电网运行控制策略
CN108197788B (zh) 一种对等控制模式下微电网电压频率偏差估计方法
CN108173277B (zh) 一种柔性直流输电系统的变目标控制方法
CN113241777A (zh) 一种基于移动储能系统的台区功率平抑方法及其装置
CN105529730A (zh) 一种直流输电系统定电压控制方法
CN107634545A (zh) 一种不对称结构的交流发电机组并联运行功率分配方法
CN112103984B (zh) 抑制混合双馈入直流输电系统连续换相失败的控制方法
CN108551174B (zh) 一种广义下垂控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201891695

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/010563

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20187025656

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187025656

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 3018140

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2017773236

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773236

Country of ref document: EP

Effective date: 20180921

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018067439

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018067439

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180831