WO2017166911A1 - 一种磁悬浮轴承组件和压缩机 - Google Patents

一种磁悬浮轴承组件和压缩机 Download PDF

Info

Publication number
WO2017166911A1
WO2017166911A1 PCT/CN2017/072033 CN2017072033W WO2017166911A1 WO 2017166911 A1 WO2017166911 A1 WO 2017166911A1 CN 2017072033 W CN2017072033 W CN 2017072033W WO 2017166911 A1 WO2017166911 A1 WO 2017166911A1
Authority
WO
WIPO (PCT)
Prior art keywords
working gap
mounting portion
core
magnetic suspension
suspension bearing
Prior art date
Application number
PCT/CN2017/072033
Other languages
English (en)
French (fr)
Inventor
龚高
胡余生
张小波
刘健宁
张芳
田思园
贾金信
郭长光
李广海
魏琼
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to DK17772942.3T priority Critical patent/DK3399202T3/da
Priority to US16/077,618 priority patent/US10767692B2/en
Priority to EP17772942.3A priority patent/EP3399202B8/en
Publication of WO2017166911A1 publication Critical patent/WO2017166911A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0417Passive magnetic bearings with permanent magnets on one part attracting the other part for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0427Passive magnetic bearings with permanent magnets on both parts repelling each other for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps

Definitions

  • the invention relates to the technical field of magnetic suspension bearings, in particular to a magnetic suspension bearing assembly and a compressor.
  • Magnetic suspension bearings have the advantages of low mechanical wear, low noise, low energy consumption, etc., and are widely used in ultra-high speed mechanical equipment.
  • Fig. 1 is a schematic view showing the structure of a magnetic suspension bearing assembly including a magnetic suspension bearing and a fixed housing in the prior art.
  • the magnetic suspension bearing assembly includes a magnetic suspension bearing and a fixed housing 5', wherein the magnetic suspension bearing includes a first core 1', a second core 2', a thrust plate 3', and a rotating shaft.
  • the first core 1' has a first coil accommodating portion on which the first coil 6' is mounted and a first mounting portion for connection with the fixed casing 5', and the second core 2' A second coil accommodating portion for mounting the second coil 7' and a second mounting portion for connecting to the fixed housing 5', the first mounting portion and the fixed housing 5' in the axial direction of the thrust disc 3' Between the second mounting portion and the fixed housing 5', the end surface of the first mounting portion away from the thrust disk 3' and the end surface of the second mounting portion near the side of the thrust plate 3' are disposed.
  • the distance between the partitions (assembly size for mating with the fixed housing 5') is L2', and the distance between the first coil housing portion and the thrust plate 3'
  • the distance from the (first working gap) is X1'
  • the distance between the second coil accommodating portion and the thrust disk 3' is X2'
  • the axial length of the thrust disk 3' is L0'
  • the bearing capacity of the magnetic suspension bearing mainly depends on the working clearance, when the magnetic suspension bearing works When the gap is deviated, the bearing capacity of the magnetic suspension bearing will not meet the load requirements, and may even cause problems such as magnetic levitation failure and product scrapping. It can be seen that whether the actual working clearance of the magnetic suspension bearing matches the design value is a key indicator to determine whether the bearing capacity of the magnetic suspension bearing meets the design requirements. However, due to the difficulty in processing and assembly errors, the actual working clearance of the magnetic suspension bearing often deviates from the design value. In this case, the working clearance of the magnetic suspension bearing needs to be adjusted.
  • the method of turning or grinding the end face of the iron core is mainly adopted to realize the adjustment of the working gap, as follows:
  • the above method of turning or grinding the end face of the iron core can realize the adjustment of the working gap, since the iron core is subjected to secondary processing by turning or grinding, the processing cost is high, the adjustment is difficult, and The geometrical tolerance of the secondary machining is difficult to guarantee, and the working position of the iron core is easily caused.
  • One technical problem to be solved by the present invention is to realize the adjustment of the working gap of the magnetic suspension bearing under the premise of avoiding the machining error and the risk of coil damage caused by the secondary machining.
  • a magnetic suspension bearing assembly comprising a magnetic suspension bearing, a fixed housing and a working gap adjusting device, wherein the magnetic suspension bearing comprises a first core, a second core and a thrust disc, The first iron core and the second iron core are disposed on two sides of the thrust plate along the axial direction of the thrust plate, the first iron core and the thrust plate have a first working gap, and the second iron core and the thrust plate have a first In the working gap, the first iron core and the second iron core are fixedly connected with the fixed casing, and the working gap adjusting device is disposed along the radial direction of the thrust disk between the radial inner circumference of the fixed casing and the thrust plate and along The axial direction of the thrust disc is disposed between the fixed housing and the second iron core, the axial end of the working gap adjusting device abuts the second iron core, and the air gap is fixed between the fixed housing and the second iron core, and works
  • the gap adjustment device is capable of adjusting the sum of the
  • the working gap adjusting device is disposed between the first iron core and the second iron core along the axial direction of the thrust disk, and the other axial end of the working gap adjusting device abuts the first iron core.
  • the magnetic suspension bearing further includes a first coil and a second coil, the first core having a first coil receiving portion mounting the first coil and a first mounting portion for connecting to the fixed housing, the second core a second coil accommodating portion for mounting the second coil and a second mounting portion for connecting to the fixed housing, the working gap adjusting device being disposed between the first mounting portion and the second mounting portion along the axial direction of the thrust plate The axial ends of the working gap adjusting device are respectively abutted with the first mounting portion and the second mounting portion.
  • the radial dimension of the second mounting portion is greater than the radial dimension of the first mounting portion
  • the fixed housing has a stepped mating portion that cooperates with the first mounting portion and the second mounting portion, the stepped mating portion having the first a mounting section and a second mounting section having a diameter larger than the first mounting section and connected to the first mounting section by a stepped surface, the stepped surface being in contact with an end surface of the first mounting portion away from the thrust disc side, and the second mounting section is away from the first mounting section
  • a clearance gap is provided between an end surface of a mounting section and an end surface of the second mounting portion adjacent to the side of the thrust plate.
  • the end surface of the first mounting portion near the thrust plate side is away from the thrust plate with respect to the end surface of the first coil accommodating portion near the thrust plate side, and the end surface of the second mounting portion near the thrust disk side is opposite to The end face of the second coil accommodating portion near the side of the thrust plate is away from the thrust plate.
  • the other axial end of the working gap adjusting device abuts the fixed housing.
  • the working gap adjusting device comprises a plurality of working gap adjusting members, and the lengths of the axial ends of the plurality of working gap adjusting members are different to be able to be set differently between the fixed housing and the second iron core
  • the working gap adjusting member adjusts the difference between the sum of the first working gap and the second working gap and the design value.
  • the working gap adjusting member is a working gap adjusting ring.
  • the radially outer circumference of the working gap adjusting ring abuts against the radially inner circumference of the stationary housing.
  • the length between the axial ends of the working gap adjusting device may be adjusted such that the sum of the first working gap and the second working gap coincides with the design value.
  • the working gap adjusting device comprises a first adjusting ring, a second adjusting ring and a locking member
  • the first adjusting ring has a first thread at one end
  • the second adjusting thread has a second thread at one end
  • the second thread and the second thread a threaded engagement to connect the first adjustment ring and the second adjustment ring and to adjust the length between the axial ends of the working gap adjusting device by the relative rotation of the first adjustment ring and the second adjustment ring to make the first working gap and
  • the sum of the second working gaps is consistent with the design value
  • the locking member is used to lock the relative positions of the first thread and the second thread.
  • a compressor comprising a magnetic suspension bearing assembly according to the invention.
  • the core abuts and has a clearance gap between the fixed housing and the second core. Therefore, the present invention can realize the first core and the length of the axial gap between the working gap adjusting devices.
  • the adjustment of the distance between the second cores enables the adjustment of the sum of the first working gap and the second working gap to match the design value, thereby ensuring that the bearing capacity of the magnetic suspension bearing meets the design requirements.
  • the present invention can avoid a series of problems caused by secondary machining errors, and since there is no need to turn or grind the iron core end face, the coil is not required. Cause damage. It can be seen that the present invention can effectively avoid the magnetic suspension bearing Under the premise of machining error and coil damage caused by secondary machining, the adjustment of the working clearance of the magnetic suspension bearing is conveniently realized.
  • Fig. 1 is a schematic view showing the structure of a magnetic suspension bearing assembly of the prior art.
  • FIG. 2 is a schematic view showing the structure of a magnetic suspension bearing assembly according to an embodiment of the present invention.
  • first iron core 1', first iron core; 2', second iron core; 3', thrust disc; 4', rotating shaft; 5', fixed casing; 6', first coil; 7', second iron core;
  • orientations such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” and the like are indicated. Or the positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the invention and the simplification of the description, which are not intended to indicate or imply the indicated device or component. It must be constructed and operated in a specific orientation or in a specific orientation, and thus is not to be construed as limiting the scope of the invention; the orientations “inside and outside” refer to the inside and outside of the contour of the components themselves.
  • the radial inner circumference is disposed between the fixed housing 5 and the second core 2 between the thrust disc 3 and the axial direction of the thrust disc 3, and the axial end of the working gap adjusting device is in contact with the second core 2
  • There is a clearance gap Y between the fixed housing 5 and the second core 2 and the working gap adjusting device can adjust the sum of the first working gap X1 and the second working gap X2 to match the design value.
  • the present invention abuts the second core 2 by providing an axial end between the fixed housing 5 and the second core 2 of the magnetic suspension bearing assembly, and has a clearance gap Y between the fixed housing 5 and the second core 2
  • the working gap adjusting device enables the present invention to achieve the sum of the first working gap X1 and the second working gap X2 (for convenience of description, hereinafter referred to as working gap) by the length between the axial ends of the working gap adjusting device. Adjust to ensure that the working gap is consistent with the design value (herein "meat" means that the working gap is equal to the design value or both The deviation is within the tolerance of the error, so as to ensure that the bearing capacity of the magnetic suspension bearing meets the design requirements.
  • the present invention can avoid a series of problems caused by the secondary machining error of the magnetic suspension bearing, and since the end face of the first iron core 1 or the end surface of the second iron core 2 is not required Turning or grinding is performed, so that the first coil 6 or the second coil 7 is not damaged. It can be seen that the invention can realize the adjustment of the working gap of the magnetic suspension bearing under the premise of effectively avoiding the machining error and the risk of coil damage caused by the secondary machining.
  • the working gap adjusting device of the present invention is disposed between the fixed housing 5 and the second core 2 along the axial direction of the thrust disc 3, and specifically, it can be disposed directly in the fixed housing 5 along the axial direction of the thrust disc 3. Between the second core 2 and the second core 2, the axial ends of the working gap adjusting device are respectively abutted with the fixed housing 5 and the second core 2; they may also be disposed indirectly along the axial direction of the thrust disc 3 in the fixed shell. Between the body 5 and the second core 2, for example, the axial ends of the working gap adjusting device abut against the first core 1 and the second core 2, respectively.
  • the working gap adjusting device may include a plurality of working gap adjusting members, and the lengths of the axial ends of the plurality of working gap adjusting members are different, so that the fixed housing can be passed through 5 Different working clearance adjusting members are arranged between the second iron core 2 to adjust different deviations between the working gap and the design value.
  • the length between the axial ends of the working gap adjusting device can be adjusted to match the working gap with the design value.
  • the working gap adjusting device itself can change the length between the two ends of the axial direction, so that in the process of adjusting the working gap, it is not necessary to replace the different ones.
  • the working gap adjusting member only needs to change the axial length of the working gap adjusting device itself, so that the adjustment of the working gap is more convenient and quick.
  • the working gap adjusting device may include a first adjusting ring, a second adjusting ring and a locking member, wherein the first adjusting ring has a first thread at one end and a second adjusting ring One end has a second thread, and the second thread cooperates with the first thread to connect the first adjusting ring and the second adjusting ring and can adjust the axial direction of the working gap adjusting device by the relative rotation of the first adjusting ring and the second adjusting ring
  • the length between the ends is such that the working gap corresponds to the design value, and the locking member is used to lock the first thread and the second thread relative position.
  • the locking element can be, for example, a locking pin or a locking screw.
  • the locking hole can be locked in the radial direction (or axial direction) on the first adjusting ring and the second locking ring at the same time, and the lock pin is locked.
  • the hole is a light hole, and the locking hole matched with the locking screw is a threaded hole, and then the locking pin or the locking screw is fitted into the locking hole to lock the relative positions of the first adjusting ring and the second adjusting ring.
  • the axial length of the working gap adjusting device itself can be conveniently adjusted by the relative rotation of the first adjusting ring and the second adjusting ring, and the locking is set. Therefore, after the axial length of the working gap adjusting device is adjusted to a required value, the relative positions of the first adjusting ring and the second adjusting ring can be locked by the locking member so that the axial ends of the working gap adjusting ring are The length is difficult to be mis-adjusted, the accuracy of the working gap adjustment is ensured, and the locked working gap adjusting device can also form a more stable supporting positioning for the first mounting portion or the second mounting portion.
  • the magnetic suspension bearing assembly includes a magnetic suspension bearing, a fixed housing 5 and a working gap adjusting device, wherein the working gap adjusting device is disposed between the first core 1 and the second core 2 And the working gap adjusting device includes a plurality of working gap adjusting rings 8 as working gap adjusting members.
  • the magnetic suspension bearing includes a first core 1, a second core 2, a first coil 6, a second coil 7, and a thrust disc 3.
  • the thrust disc 3 is fixed on the rotating shaft 4 and can rotate together with the rotating shaft 4, that is, the thrust disc 3 forms a rotor of the magnetic suspension bearing;
  • the first coil 6 is disposed on the first iron core 1
  • the second coil 7 is disposed in the first
  • the first core 1 and the second core 2 are disposed on both sides of the thrust plate 3 along the axial direction of the thrust disk 3, and the first working core has a first working gap between the first core 1 and the thrust plate 3.
  • the second core 2 and the thrust plate 3 have a second working gap X2, and the first core 1 and the second core 2 are both fixedly connected with the fixed housing 5, so that the first core 1, the first The coil 6, the second core 2 and the second core 7 together form a stator of the magnetic suspension bearing, such that when the thrust disk 3 is rotated by the rotating shaft 4 and the first coil 6 and the second coil 7 are supplied with current, the magnetic suspension bearing A magnetic field is generated between the stator and the rotor, and the magnetic force of the magnetic field enables the rotor to float in the air.
  • the first core 1 has a first coil accommodating portion and a first mounting portion
  • the second core 2 has a second coil accommodating portion and a second mounting portion
  • the first coil The accommodating portion is for mounting the first coil 6,
  • the second coil accommodating portion is for mounting the second coil 7, the first coil accommodating portion to which the first coil 6 is mounted, and the second coil accommodating portion to which the second coil 7 is mounted
  • the portion cooperates with the thrust plate 3 to form a magnetic field
  • the first mounting portion and the second mounting portion are respectively connected to the fixed housing 5 to fix the first core 1 and the second core 2.
  • a fixed connection between the first mounting portion and the second mounting portion and the fixed housing 5 may be achieved by a fastener such as a screw or a bolt.
  • a first working gap X1 is formed between the first coil accommodating portion and the thrust disc 3, and a second working gap X2 is formed between the second coil accommodating portion and the thrust disc 3.
  • the axial length of the thrust disc 3 is L0.
  • the working gap adjusting ring 8 is disposed between the radially inner circumference of the fixed casing 5 and the thrust plate 3 along the radial direction of the thrust disk 3, and the working gap adjusting ring 8 is disposed first along the axial direction of the thrust disk 3.
  • the length of the interval (hereinafter referred to as the axial length) is equal to the separation distance L3 between the first mounting portion and the second mounting portion, so that when the working gap adjusting ring 8 of different axial lengths is selected, the first mounting portion and the second mounting portion are disposed.
  • the separation distance L3 between the first mounting portion and the second mounting portion changes.
  • the radial dimension of the second mounting portion is larger than the radial dimension of the first mounting portion
  • the fixed housing 5 has a first mounting portion and a second mounting portion.
  • a stepped fitting portion the stepped fitting portion has a first mounting portion and a second mounting portion having a diameter larger than the first mounting portion and connected to the first mounting portion through the stepped surface, and the stepped surface and the first mounting portion are away from the thrust
  • the end surface of the disc 3 (the left end surface of the first mounting portion) is fitted, and the end surface of the second mounting portion away from the first mounting portion and the end surface of the second mounting portion near the side of the thrust disc 3 (the second mounting portion
  • a clearance gap Y is provided between the right end faces, such that the end face of the first mounting portion away from the thrust plate 3 (the left end face of the first mounting portion) and the end face of the second mounting portion near the side of the thrust plate 3
  • the axial interval between (the right end surface of the second mounting portion) is L2, and the difference between
  • the working gap can be adjusted for the working gap adjusting ring 8 to facilitate the adjustment of the working gap by selecting the working gap adjusting ring 8 of different axial lengths, and the stator fixing stability and the magnetic levitation can be ensured.
  • the compactness of the bearing assembly structure is not limited.
  • the working gap adjusting ring 8 in order to make the working gap adjusting ring 8 more stably disposed in the radial direction of the thrust disk 3 between the radially inner circumference of the fixed casing 5 and the thrust disk 3, as shown in FIG. 2, in this embodiment The radial outer circumference of the working gap adjusting ring 8 abuts against the radially inner circumference of the fixed housing 5 such that the radial displacement of the working gap adjusting ring 8 is limited by the fixed housing 5, and the working gap adjusting ring 8 can thus be further It is stably disposed between the radially inner circumference of the fixed casing 5 and the thrust disk 3 without causing up and down turbulence in the radial direction.
  • both axial ends of the working gap adjusting ring 8 abut against the first mounting portion and the second mounting portion, the axial displacement of the working gap adjusting ring 8 is restricted by the first mounting portion and the second mounting portion,
  • the axial displacement and the radial displacement of the working gap adjusting ring 8 of the embodiment are all limited, and the working gap adjusting ring 8 can be better positioned, and at the same time, since the positioning is formed by abutting, the working gap is replaced by In the process of adjusting the ring 8 to adjust the working gap, it is not necessary to disassemble the excess fixing member. Therefore, the embodiment can be conveniently disassembled and assembled, so that the adjustment of the working gap is more time-saving and labor-saving, and the working gap adjusting efficiency is improved.
  • an end surface of the first mounting portion near the side of the thrust disk 3 (in FIG. 2, that is, a right end surface of the first mounting portion) is opposed to the first coil housing portion.
  • the end face near the side of the thrust plate 3 (the right end face of the first coil accommodating portion in FIG. 2) is away from the thrust plate 3, and the end face of the second mounting portion near the side of the thrust plate 3 (in FIG. 2 a left end surface of the second mounting portion) close to the thrust plate 3 with respect to the second coil housing portion
  • the end surface of one side (the left end surface of the second coil accommodating portion in FIG.
  • the working gap adjusting device of the embodiment includes a plurality of working gap adjusting rings 8 having different axial lengths
  • the working gap adjusting ring 8 having a larger axial length may be selected to increase Large working gap, and when the working gap is larger than the design value, the working gap adjusting ring 8 with smaller axial length can be used to reduce the working gap, so that the adjustment of the working gap can be achieved, so that it always matches the design value.
  • the magnetic suspension bearing assembly needs to disassemble the magnetic suspension bearing assembly when adjusting the working gap, and the specific disassembly and assembly process is as follows:
  • stator assembly first winding the first coil 6 and the second coil 7, and then mounting the first coil 6 on the first coil accommodating portion, so that the first coil 6 and the first core 1 form the first a certain sub-assembly, and the second coil 7 is mounted on the second coil accommodating portion, so that the second coil 7 and the second core 2 form a second stator assembly;
  • the left end surface of the second mounting portion of the second core 2 abuts the axial right end of the working gap adjusting ring 8, and at this time, the left end surface of the second mounting portion and the fixed housing
  • a clearance gap Y is formed between the two
  • a second working gap X2 is formed between the left end surface of the second coil accommodating portion and the right end surface of the thrust disk 3, and the second mounting portion is fixed by a fastener such as a screw or a bolt.
  • the housing 5 is fixed.
  • the working clearance adjusting ring 8 with different axial lengths can be assembled into the magnetic suspension bearing to realize the adjustment of the working gap, and the bearing capacity of the magnetic suspension bearing can meet the design requirements.
  • the bit tolerance is easy to guarantee and the adjustment accuracy is high.
  • the embodiment does not need to perform secondary processing on the first core 1 or the second core 2, so the adjustment of the working gap is further improved.
  • the adjustment precision of the working gap can also be improved; in addition, since the first iron core 1 or the second iron core 2 need not be further Turning or grinding is performed, so that damage to the first coil 6 or the second coil 7 can be effectively avoided, thereby preventing electrical safety hazards and ensuring normal operation of the magnetic suspension bearing. Moreover, the working gap adjusting ring 8 of this embodiment is less likely to be damaged in use and can be recycled twice. Therefore, this embodiment can also effectively save resources and reduce production costs.
  • the embodiment provides a working gap adjusting device and the working gap adjusting device has a space gap Y between the fixed housing 5 and the second core 2, so that the magnetic suspension bearing assembly can conveniently adjust the working gap. , can meet the assembly requirements of magnetic suspension bearings.
  • the magnetic suspension bearing assembly of the invention can be applied to products such as compressors, and the magnetic suspension bearing assembly of the invention can better satisfy the bearing of magnetic suspension bearing for products such as compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种磁悬浮轴承组件,其包括磁悬浮轴承、固定壳体(5)和工作间隙调整装置(8),磁悬浮轴承包括第一铁芯(1)、第二铁芯(2)和推力盘(3),工作间隙调整装置(8)沿径向设置在固定壳体(5)的径向内周与推力盘(3)之间且沿轴向设置在固定壳体(5)与第二铁芯(2)之间,工作间隙调整装置(8)的轴向一端与第二铁芯(2)抵接并且固定壳体(5)与第二铁芯(2)之间设有避空间隙(Y),并能够改变工作间隙调整装置(8)的轴向两端之间的长度来实现对磁悬浮轴承工作间隙的调整,使得工作间隙与设计值相符。还公开一种包括该磁悬浮轴承组件的压缩机。本发明能够在有效避免对磁悬浮轴承二次加工所造成的加工误差和线圈损坏风险的前提下,方便地实现对磁悬浮轴承工作间隙的调整。

Description

一种磁悬浮轴承组件和压缩机
本申请要求于2016年3月31日提交中国专利局、申请号为201610196615.5、发明名称为“一种磁悬浮轴承组件和压缩机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及磁悬浮轴承技术领域,特别涉及一种磁悬浮轴承组件和压缩机。
背景技术
磁悬浮轴承具有机械磨损小、噪声小、能耗低等优点,被广泛应用于超高速机械设备中。
图1示出了现有技术中包括磁悬浮轴承与固定壳体的磁悬浮轴承组件的结构示意图。如图1所示,在现有技术中,磁悬浮轴承组件包括磁悬浮轴承和固定壳体5’,其中,磁悬浮轴承包括第一铁芯1’、第二铁芯2’、推力盘3’、转轴4’、第一线圈6’和第二线圈7’,推力盘3’固定于转轴4’上,第一铁芯1’和第二铁芯2’沿着推力盘3’的轴向设置在推力盘3’的两侧,第一铁芯1’具有安装第一线圈6’的第一线圈容置部和用于与固定壳体5’连接的第一安装部,第二铁芯2’具有安装第二线圈7’的第二线圈容置部和用于与固定壳体5’连接的第二安装部,在推力盘3’的轴向方向上第一安装部与固定壳体5’之间以及第二安装部与固定壳体5’之间均贴合设置,第一安装部的远离推力盘3’一侧的端面与第二安装部的靠近推力盘3’一侧的端面之间的间隔距离(装配尺寸,用于与固定壳体5’相配合)为L2’,第一线圈容置部与推力盘3’之间的间隔距离(第一工作间隙)为X1’,第二线圈容置部与推力盘3’之间的间隔距离(第二工作间隙)为X2’,推力盘3’的轴向长度为L0’,因此,若定义第一工作间隙X1’与第二工作间隙X2’之和为磁悬浮轴承的工作间隙,则磁悬浮轴承的工作间隙等于X1’+X2’。
磁悬浮轴承的承载力主要取决于工作间隙,当磁悬浮轴承的工作 间隙发生偏差时,将造成磁悬浮轴承的承载力不能满足负载要求,甚至可能造成磁悬浮失效、产品报废等问题。可见,磁悬浮轴承的实际工作间隙与设计值是否相符是衡量磁悬浮轴承承载能力是否满足设计要求的一个关键指标。然而由于加工以及装配误差难以避免,磁悬浮轴承的实际工作间隙与设计值经常出现偏差,这种情况下就需要对磁悬浮轴承的工作间隙进行调整。
基于现有的磁悬浮轴承组件结构,目前主要采取车削或磨削铁芯端面的方法来实现对工作间隙的调整,具体如下:
(1)当工作间隙大于设计值、且二者偏差为△L时,将第二安装部的靠近推力盘3’一侧的端面(在图1中即为第二安装部的与装配尺寸L2’对应的左端面)向右车削△L,使得第二安装部与固定壳体5’在轴向上产生△L的间隔,再将第二铁芯2’整体向左移动△L使第二安装部重新与固定壳体5’贴合,则工作间隙减小△L,从而工作间隙被调整至与设计值相符,实现调整工作间隙的目的。
(2)当工作间隙小于设计值、且二者偏差为△L时,将第一线圈容置部的靠近推力盘3’一侧的端面(在图1中即为第一线圈容置部的与工作间隙对应的右端面)向左车削△L,或者,将第二线圈容置部的靠近推力盘3’一侧的端面(在图1中即为第二线圈容置部的与工作间隙对应的左端面)向右车削△L,则工作间隙增大△L,从而工作间隙被调整至与设计值相符,实现调整工作间隙的目的。
上述车削或磨削铁芯端面的方法虽然能够实现对工作间隙的调整,但由于需要通过车削或磨削来对铁芯进行二次加工,因此,加工成本较高,调整难度较大,并且二次加工时的形位公差难以保证,容易导致铁芯工作位不正;此外,车削或磨削铁芯端面时容易对第一线圈6’或第二线圈7’造成损伤,以致于影响磁悬浮轴承的正常工作,引发电气安全隐患,甚至还可能直接造成第一线圈6’或第二线圈7’的报废,增加生产成本。
发明内容
本发明所要解决的一个技术问题是:在避免二次加工所造成的加工误差和线圈损坏风险的前提下,实现对磁悬浮轴承工作间隙的调整。
根据本发明的第一方面,本发明提供了一种磁悬浮轴承组件,其包括磁悬浮轴承、固定壳体和工作间隙调整装置,其中,磁悬浮轴承包括第一铁芯、第二铁芯和推力盘,第一铁芯和第二铁芯沿着推力盘的轴向设置在推力盘的两侧,第一铁芯与推力盘之间具有第一工作间隙,第二铁芯与推力盘之间具有第二工作间隙,第一铁芯和第二铁芯均与固定壳体固定连接,工作间隙调整装置沿着推力盘的径向设置在固定壳体的径向内周与推力盘之间且沿着推力盘的轴向设置在固定壳体与第二铁芯之间,工作间隙调整装置的轴向一端与第二铁芯抵接并且固定壳体与第二铁芯之间具有避空间隙,工作间隙调整装置能够调整第一工作间隙和第二工作间隙之和至与设计值相符。
可选地,工作间隙调整装置沿着推力盘的轴向设置在第一铁芯与第二铁芯之间,且工作间隙调整装置的轴向另一端与第一铁芯抵接。
可选地,磁悬浮轴承还包括第一线圈和第二线圈,第一铁芯具有安装第一线圈的第一线圈容置部和用于与固定壳体连接的第一安装部,第二铁芯具有安装第二线圈的第二线圈容置部和用于与固定壳体连接的第二安装部,工作间隙调整装置沿着推力盘的轴向设置在第一安装部与第二安装部之间,工作间隙调整装置的轴向两端分别与第一安装部和第二安装部相抵接。
可选地,第二安装部的径向尺寸大于第一安装部的径向尺寸,固定壳体具有与第一安装部和第二安装部配合的台阶形配合部,台阶形配合部具有第一安装段和直径大于第一安装段且与第一安装段通过台阶面连接的第二安装段,台阶面与第一安装部的远离推力盘一侧的端面贴合,第二安装段的远离第一安装段的端面与第二安装部的靠近推力盘一侧的端面之间设有避空间隙。
可选地,第一安装部的靠近推力盘一侧的端面相对于第一线圈容置部的靠近推力盘一侧的端面远离推力盘,第二安装部的靠近推力盘一侧的端面相对于第二线圈容置部的靠近推力盘一侧的端面远离推力 盘。
可选地,工作间隙调整装置的轴向另一端与固定壳体相抵接。
可选地,工作间隙调整装置包括多个工作间隙调整件,多个工作间隙调整件的轴向两端之间的长度均不同,以能够通过在固定壳体与第二铁芯之间设置不同的工作间隙调整件来调整第一工作间隙和第二工作间隙之和与设计值之间的不同偏差。
可选地,工作间隙调整件为工作间隙调整环。
可选地,工作间隙调整环的径向外周与固定壳体的径向内周相抵接。
可选地,工作间隙调整装置的轴向两端之间的长度可调节至使第一工作间隙和第二工作间隙之和与设计值相符。
可选地,工作间隙调整装置包括第一调整环、第二调整环和锁止件,第一调整环的一端具有第一螺纹,第二调整环的一端具有第二螺纹,第二螺纹与第一螺纹配合以连接第一调整环和第二调整环且通过第一调整环和第二调整环的相对转动能够调节工作间隙调整装置的轴向两端之间的长度以使第一工作间隙和第二工作间隙之和与设计值相符,锁止件用于锁定第一螺纹和第二螺纹的相对位置。
根据本发明的第二方面,本发明还提供了一种压缩机,其包括如本发明的磁悬浮轴承组件。
本发明所提供的磁悬浮轴承组件,由于包括沿着推力盘的轴向设置于固定壳体与第二铁芯之间的工作间隙调整装置,且该工作间隙调整装置的轴向一端与第二铁芯抵接并且固定壳体之间与第二铁芯之间具有避空间隙,因此,本发明可以通过改变工作间隙调增装置的轴向两端之间的长度来实现对第一铁芯和第二铁芯之间距离的调整,从而能够调整第一工作间隙和第二工作间隙之和至与设计值相符,进而能够保证磁悬浮轴承的承载能力满足设计要求。由于无须对磁悬浮轴承进行二次加工,因此,本发明能够避免因二次加工误差所带来的一系列的问题,而且由于无须对铁芯端面进行车削或磨削,因此,也不会对线圈造成损坏。可见,本发明能够在有效避免对磁悬浮轴承进行二 次加工所造成的加工误差和线圈损坏风险的前提下,方便地实现对磁悬浮轴承工作间隙的调整。
通过以下参照附图对本发明的示例性实施例进行详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出现有技术中磁悬浮轴承组件的结构示意图。
图2示出本发明一实施例的磁悬浮轴承组件的结构示意图。
图中:
1’、第一铁芯;2’、第二铁芯;3’、推力盘;4’、转轴;5’、固定壳体;6’、第一线圈;7’、第二铁芯;
1、第一铁芯;2、第二铁芯;3、推力盘;4、转轴;5、固定壳体;6、第一线圈;7、第二铁芯;8、工作间隙调整环。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有开展创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
在本发明的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
图2示出了本发明一实施例的磁悬浮轴承组件的结构示意图。参照图2,本发明所提供的磁悬浮轴承组件,包括磁悬浮轴承、固定壳体5和工作间隙调整装置,其中,磁悬浮轴承包括第一铁芯1、第二铁芯2和推力盘3,第一铁芯1和第二铁芯2沿着推力盘3的轴向设置在推力盘3的两侧,第一铁芯1与推力盘3之间具有第一工作间隙X1,第二铁芯2与推力盘3之间具有第二工作间隙X2,第一铁芯1和第二铁芯2均与固定壳体5固定连接,工作间隙调整装置沿着推力盘3的径向设置在固定壳体5的径向内周与推力盘3之间且沿着推力盘3的轴向设置在固定壳体5与第二铁芯2之间,工作间隙调整装置的轴向一端与第二铁芯2抵接并且固定壳体5与第二铁芯2之间具有避空间隙Y,工作间隙调整装置能够调整第一工作间隙X1和第二工作间隙X2之和至与设计值相符。
本发明通过在磁悬浮轴承组件的固定壳体5与第二铁芯2之间设置轴向一端与第二铁芯2抵接并且固定壳体5与第二铁芯2之间具有避空间隙Y的工作间隙调整装置,使得本发明可以通过工作间隙调整装置轴向两端之间的长度来实现对第一工作间隙X1与第二工作间隙X2之和(为了描述方便,以下简称工作间隙)的调整,保证工作间隙与设计值相符(此处的“相符”指工作间隙与设计值相等或者二者的 偏差在误差允许范围之内),进而保证磁悬浮轴承的承载能力满足设计要求。由于无须对磁悬浮轴承进行二次加工,因此,本发明能够避免由对磁悬浮轴承进行二次加工误差所带来的一系列问题,而且由于无须对第一铁芯1端面或第二铁芯2端面进行车削或磨削,因此,也不会对第一线圈6或第二线圈7造成损坏。可见,本发明能够在有效避免二次加工所造成的加工误差和线圈损坏风险的前提下,实现对磁悬浮轴承工作间隙的调整。
本发明的工作间隙调整装置沿着推力盘3的轴向设置于固定壳体5与第二铁芯2之间,具体地,其可以直接沿着推力盘3的轴向设置在固定壳体5与第二铁芯2之间,即工作间隙调整装置的轴向两端分别与固定壳体5和第二铁芯2相抵接;其也可以沿着推力盘3的轴向间接设置在固定壳体5与第二铁芯2之间,例如,工作间隙调整装置的轴向两端分别与第一铁芯1和第二铁芯2相抵接。
作为工作间隙调整装置的第一实施方式,工作间隙调整装置可以包括多个工作间隙调整件,多个工作间隙调整件的轴向两端之间的长度均不同,这样就能够通过在固定壳体5与第二铁芯2之间设置不同的工作间隙调整件来调整工作间隙与设计值之间的不同偏差。
作为工作间隙调整装置的第二实施方式,工作间隙调整装置的轴向两端之间的长度可调节至使工作间隙与设计值相符。与第一实施方式不同的,在该第二实施方式中,工作间隙调整装置自身即能够改变自己轴向两端之间的长度,这样在对工作间隙进行调整的过程中,无须再更换不同的工作间隙调整件,而只需要改变工作间隙调整装置自身的轴向长度即可,从而使得对工作间隙的调整更加方便快捷。
作为该第二实施方式工作间隙调整装置的一个实施例,工作间隙调整装置可以包括第一调整环、第二调整环和锁止件,第一调整环的一端具有第一螺纹,第二调整环的一端具有第二螺纹,第二螺纹与第一螺纹配合以连接第一调整环和第二调整环且通过第一调整环和第二调整环的相对转动能够调节工作间隙调整装置的轴向两端之间的长度以使工作间隙与设计值相符,锁止件用于锁定第一螺纹和第二螺纹的 相对位置。其中,锁止件例如可以为锁止销或锁止螺钉。在工作间隙调整装置调整至合适的轴向长度后,可以同时在第一调整环上和第二锁止环上沿径向(或轴向)打锁止孔,与锁止销配合的锁止孔为光孔,与锁止螺钉配合的锁止孔为螺纹孔,之后将锁止销或锁止螺钉装配入锁止孔内实现第一调整环和第二调整环的相对位置的锁定。
由于第一调整环和第二调整环之间通过螺纹连接,因此可以通过第一调整环和第二调整环的相对转动方便地调整工作间隙调整装置自身的轴向长度,且由于设置了锁止件,因此在将工作间隙调整装置轴向长度调节至需要值后,可以通过该锁止件锁定第一调整环和第二调整环的相对位置,使工作间隙调整环的轴向两端之间的长度难以发生误调整,保证工作间隙调整的准确性,且锁定后的工作间隙调整装置也能够对第一安装部或第二安装部形成更稳定的支撑定位。
下面结合图2所示的实施例来对上述第一实施方式进行进一步地说明。
如图2所示,在该实施例中,磁悬浮轴承组件包括磁悬浮轴承、固定壳体5和工作间隙调整装置,其中,工作间隙调整装置设置于第一铁芯1与第二铁芯2之间,且工作间隙调整装置包括多个作为工作间隙调整件的工作间隙调整环8。
磁悬浮轴承包括第一铁芯1、第二铁芯2、第一线圈6、第二线圈7和推力盘3。其中,推力盘3固定在转轴4上且能够随着转轴4一起转动,也即推力盘3形成磁悬浮轴承的转子;第一线圈6设置在第一铁芯1上,第二线圈7设置在第二铁芯2上,第一铁芯1和第二铁芯2沿着推力盘3的轴向设置在推力盘3的两侧,第一铁芯1与推力盘3之间具有第一工作间隙X1,第二铁芯2与推力盘3之间具有第二工作间隙X2,并且第一铁芯1和第二铁芯2均与固定壳体5固定连接,从而第一铁芯1、第一线圈6、第二铁芯2和第二铁芯7一起形成磁悬浮轴承的定子,这样当推力盘3在转轴4的带动下转动且第一线圈6和第二线圈7通入电流时,磁悬浮轴承的定子和转子之间就会产生磁场,磁场的磁力能够使转子悬浮于空中。
具体地,在该实施例中,第一铁芯1具有第一线圈容置部和第一安装部,第二铁芯2具有第二线圈容置部和第二安装部,其中,第一线圈容置部用于安装第一线圈6,第二线圈容置部用于安装第二线圈7,安装有第一线圈6的第一线圈容置部和安装有第二线圈7的第二线圈容置部与推力盘3配合形成磁场,第一安装部和第二安装部则分别用于与固定壳体5连接以实现第一铁芯1和第二铁芯2的固定。第一安装部和所述第二安装部与固定壳体5之间可以通过螺钉或螺栓等紧固件实现固定连接。第一线圈容置部与推力盘3之间形成第一工作间隙X1,第二线圈容置部与推力盘3之间形成第二工作间隙X2,推力盘3的轴向长度为L0,则第一线圈容置部与第二线圈容置部之间的间隔距离为L1=X1+L0+X2,磁悬浮轴承的工作间隙(第一工作间隙X1与第二工作间隙X2之和)等于X1+X2。
工作间隙调整环8沿着推力盘3的径向设置于固定壳体5的径向内周与推力盘3之间,同时,工作间隙调整环8沿着推力盘3的轴向设置于第一铁芯1与第二铁芯2之间,并且工作间隙调整环8的轴向两端与第一安装部和第二安装部分别抵接,也即工作间隙调整环8的轴向两端之间的长度(以下简称轴向长度)等于第一安装部和第二安装部之间的间隔距离L3,这样当选用不同轴向长度的工作间隙调整环8设置于第一安装部和第二安装部之间时,第一安装部和第二安装部之间的间隔距离L3则会发生改变。
为了能够方便地改变第一安装部和第二安装部之间的间隔距离L3,如图2所示,在该实施例中,第二安装部与固定壳体5之间具有避空间隙Y,而第一安装部与固定壳体5之间沿着推力盘3的轴向贴合,这样当工作间隙调整环8的轴向长度发生改变使得第一安装部和第二安装部之间的间隔距离L3发生改变时,避空间隙Y也会发生改变,从而可以方便地调整磁悬浮轴承的工作间隙,使工作间隙保持与设计值相符。
具体地,如图2所示,在该实施例中,第二安装部的径向尺寸大于第一安装部的径向尺寸,固定壳体5具有与第一安装部和第二安装 部配合的台阶形配合部,台阶形配合部具有第一安装段和直径大于第一安装段且与第一安装段通过台阶面连接的第二安装段,台阶面与第一安装部的远离推力盘3一侧的端面(第一安装部的左端面)贴合,第二安装段的远离第一安装段的端面与第二安装部的靠近推力盘3一侧的端面(第二安装部的右端面)之间设有避空间隙Y,这样,第一安装部的远离推力盘3一侧的端面(第一安装部的左端面)与第二安装部的靠近推力盘3一侧的端面(第二安装部的右端面)之间的轴向间隔为L2,且L2与L3之差为第一安装部沿推力盘3轴向的厚度。基于该设置,既能够为工作间隙调整环8调整工作间隙预留空间,方便通过选用不同轴向长度的工作间隙调整环8来实现对工作间隙的调整,又能够保证定子固定的牢固性以及磁悬浮轴承组件结构的紧凑性。
进一步地,为了使工作间隙调整环8沿着推力盘3的径向更稳定地设置于固定壳体5的径向内周与推力盘3之间,如图2所示,在该实施例中,工作间隙调整环8的径向外周与固定壳体5的径向内周相抵接,这样工作间隙调整环8的径向位移被固定壳体5所限制,工作间隙调整环8因此能够被更为稳定地设置于固定壳体5的径向内周与推力盘3之间,而不会产生径向方向上的上下窜动。而且,由于工作间隙调整环8的轴向两端分别与第一安装部和第二安装部抵接,工作间隙调整环8的轴向位移被第一安装部和第二安装部所限制,因此,该实施例的工作间隙调整环8的轴向位移和径向位移都得以限制,工作间隙调整环8能够被较好地定位,同时由于该定位均是通过抵接形成,在通过更换工作间隙调整环8来调整工作间隙的过程中,无须拆装多余的固定件,因此,该实施例还能够方便拆装,使得对工作间隙的调整更加省时省力,提高工作间隙调整效率。
此外,如图2所示,在该实施例中,第一安装部的靠近推力盘3一侧的端面(在图2中即为第一安装部的右端面)相对于第一线圈容置部的靠近推力盘3一侧的端面(在图2中即为第一线圈容置部的右端面)远离推力盘3,第二安装部的靠近推力盘3一侧的端面(在图2中即为第二安装部的左端面)相对于第二线圈容置部的靠近推力盘3 一侧的端面(在图2中即为第二线圈容置部的左端面)远离推力盘3,这样第一安装部和第二安装部之间的间隔距离L3大于第一线圈容置部与第二线圈容置部之间的间隔距离L1,从而能够更便于工作间隙调整环8的设置。
由于该实施例的工作间隙调整装置包括多个具有不同轴向长度的工作间隙调整环8,因此,当工作间隙小于设计值时,可以选用具有较大轴向长度的工作间隙调整环8来增大工作间隙,而当工作间隙大于设计值时,则可以选用具有较小轴向长度的工作间隙调整环8来减小工作间隙,从而实现对工作间隙的调整,使其始终与设计值保持相符,保证磁悬浮轴承的承载能力满足设计要求。可见,基于该实施例的磁悬浮轴承组件来对工作间隙进行调整时需要对磁悬浮轴承组件进行拆装,其具体拆装过程如下:
(1)组装定子组件:首先绕制第一线圈6和第二线圈7,然后,将第一线圈6安装于第一线圈容置部上,使第一线圈6与第一铁芯1形成第一定子组件,并将第二线圈7安装于第二线圈容置部上,使第二线圈7与第二铁芯2形成第二定子组件;
(2)组装转子组件:将推力盘3热装到转轴4上,形成转子组件;
(3)组装第一定子组件、固定壳体5和转子组件:将第一定子组件通过第一铁芯1的第一安装部安装于固定壳体5上,再装配转子组件,并使推力盘3的左端面与第一铁芯1的第一线圈容置部的右端面形成第一工作间隙X1;
(4)装配工作间隙调整环8:使工作间隙调整环8的轴向左端与第一安装部的右端面抵接,并使工作间隙调整环8的径向外周与固定壳体5的径向内周相抵接;
(5)装配第二定子组件:使第二铁芯2的第二安装部的左端面与工作间隙调整环8的轴向右端相抵接,此时,第二安装部的左端面与固定壳体5之间形成避空间隙Y,且第二线圈容置部的左端面与推力盘3的右端面之间形成第二工作间隙X2,通过螺钉或螺栓等紧固件将第二安装部与固定壳体5固定。
(6)检测第一工作间隙X1和第二工作间隙X2之和的大小(通常通过位移传感器检测),判断第一工作间隙X1与第二工作间隙X2之和是否与设计值相符,也即判断工作间隙是否与设计值相符;
(7)当工作间隙与设计值之间存在偏差时,拆卸第二定子组件和工作间隙调整环8,替换相应长度的工作间隙调整环8,并重复上述步骤(4)-(6)直至工作间隙与设计值相符。
可见,基于该实施例的磁悬浮轴承组件,可以通过选配具有不同轴向长度的工作间隙调整环8装配到磁悬浮轴承中来实现对工作间隙的调整,保证磁悬浮轴承的承载能力满足设计要求,形位公差容易保证,调整精度较高。相对于现有技术中通过车削或磨削铁芯端面的调整方法,该实施例由于不需要再对第一铁芯1或第二铁芯2进行二次加工,因此,对工作间隙的调整更加方便,省时省力,而且由于不再存在由二次加工所造成的形位误差,因此也能够提高对工作间隙的调整精度;此外,由于无需再对第一铁芯1或第二铁芯2进行车削或磨削,因此,还可以有效避免对第一线圈6或第二线圈7的损坏,从而可以防止引发电气安全隐患,保证磁悬浮轴承的正常工作。而且,该实施例的工作间隙调整环8不易发生使用损坏,可以二次回收利用,因此,该实施例还能够有效节约资源,降低生产成本。
该实施例的磁悬浮轴承组件,由于第二安装部与固定壳体5之间设有避空间隙Y,因此能够为工作间隙的调整预留空间,又由于工作间隙调整环8的轴向两端分别与第一安装部与第二安装部抵接,因此,工作间隙调整环8能够始终对第二铁芯2形成支撑定位,这就使得虽然设有避空间隙Y,但仍然能够形成对第二铁芯2的牢固固定,保证第二铁芯2的装配精度。可见,该实施例通过设置工作间隙调整装置且该工作间隙调整装置使固定壳体5与第二铁芯2之间具有避空间隙Y,使得磁悬浮轴承组件既能够方便地实现对工作间隙的调整,又能够满足磁悬浮轴承的装配要求。
本发明的磁悬浮轴承组件可以应用于压缩机等产品中,采用本发明的磁悬浮轴承组件可以更好地满足压缩机等产品对磁悬浮轴承承载 能力的要求,改善压缩机等产品的工作性能。
以上所述仅为本发明的示例性实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种磁悬浮轴承组件,其特征在于,所述磁悬浮轴承组件包括磁悬浮轴承、固定壳体(5)和工作间隙调整装置,所述磁悬浮轴承包括第一铁芯(1)、第二铁芯(2)和推力盘(3),所述第一铁芯(1)和所述第二铁芯(2)沿着所述推力盘(3)的轴向设置在所述推力盘(3)的两侧,所述第一铁芯(1)与所述推力盘(3)之间具有第一工作间隙(X1),所述第二铁芯(2)与所述推力盘(3)之间具有第二工作间隙(X2),所述第一铁芯(1)和所述第二铁芯(2)均与所述固定壳体(5)固定连接,所述工作间隙调整装置沿着所述推力盘(3)的径向设置在所述固定壳体(5)的径向内周与所述推力盘(3)之间且沿着所述推力盘(3)的轴向设置在所述固定壳体(5)与所述第二铁芯(2)之间,所述工作间隙调整装置的轴向一端与所述第二铁芯(2)抵接并且所述固定壳体(5)与所述第二铁芯(2)之间具有避空间隙(Y),所述工作间隙调整装置能够调整所述第一工作间隙(X1)和所述第二工作间隙(X2)之和至与设计值相符。
  2. 根据权利要求1所述的磁悬浮轴承组件,其特征在于,所述工作间隙调整装置沿着所述推力盘(3)的轴向设置在所述第一铁芯(2)与所述第二铁芯(3)之间,且所述工作间隙调整装置的轴向另一端与所述第一铁芯(2)抵接。
  3. 根据权利要求2所述的磁悬浮轴承组件,其特征在于,所述磁悬浮轴承还包括第一线圈(6)和第二线圈(7),所述第一铁芯(1)具有安装所述第一线圈(6)的第一线圈容置部和用于与所述固定壳体(5)连接的第一安装部,所述第二铁芯(2)具有安装所述第二线圈(7)的第二线圈容置部和用于与所述固定壳体(5)连接的第二安装部,所述工作间隙调整装置沿着所述推力盘(3)的轴向设置在所述第一安装部与所述第二安装部之间,所述工作间隙调整装置的轴向两端分别与所述第一安装部和所述第二安装部相抵接。
  4. 根据权利要求3所述的磁悬浮轴承组件,其特征在于,所述 第二安装部的径向尺寸大于所述第一安装部的径向尺寸,所述固定壳体(5)具有与所述第一安装部和所述第二安装部配合的台阶形配合部,所述台阶形配合部具有第一安装段和直径大于所述第一安装段且与所述第一安装段通过台阶面连接的第二安装段,所述台阶面与所述第一安装部的远离所述推力盘(3)一侧的端面贴合,所述第二安装段的远离所述第一安装段的端面与所述第二安装部的靠近所述推力盘(3)一侧的端面之间设有所述避空间隙(Y)。
  5. 根据权利要求3所述的磁悬浮轴承组件,其特征在于,所述第一安装部的靠近所述推力盘(3)一侧的端面相对于所述第一线圈容置部的靠近所述推力盘(3)一侧的端面远离所述推力盘(3),所述第二安装部的靠近所述推力盘(3)一侧的端面相对于所述第二线圈容置部的靠近所述推力盘(3)一侧的端面远离所述推力盘(3)。
  6. 根据权利要求1所述的磁悬浮轴承组件,其特征在于,所述工作间隙调整装置的轴向另一端与所述固定壳体(5)相抵接。
  7. 根据权利要求1-6任一所述的磁悬浮轴承组件,其特征在于,所述工作间隙调整装置包括多个工作间隙调整件,所述多个工作间隙调整件的轴向两端之间的长度均不同,以能够通过在所述固定壳体(5)与所述第二铁芯(2)之间设置不同的工作间隙调整件来调整所述第一工作间隙(X1)和所述第二工作间隙(X2)之和与所述设计值之间的不同偏差。
  8. 根据权利要求7所述的磁悬浮轴承组件,其特征在于,所述工作间隙调整件为工作间隙调整环(8)。
  9. 根据权利要求8所述的磁悬浮轴承组件,其特征在于,所述工作间隙调整环(8)的径向外周与所述固定壳体(5)的径向内周相抵接。
  10. 根据权利要求1-6任一所述的磁悬浮轴承组件,其特征在于,所述工作间隙调整装置的轴向两端之间的长度可调节至使所述第一工作间隙(X1)和所述第二工作间隙(X2)之和与所述设计值相符。
  11. 根据权利要求10所述的磁悬浮轴承组件,其特征在于,所述 工作间隙调整装置包括第一调整环、第二调整环和锁止件,所述第一调整环的一端具有第一螺纹,所述第二调整环的一端具有第二螺纹,所述第二螺纹与所述第一螺纹配合以连接所述第一调整环和所述第二调整环且通过所述第一调整环和所述第二调整环的相对转动能够调节所述工作间隙调整装置的轴向两端之间的长度以使所述第一工作间隙(X1)和所述第二工作间隙(X2)之和与所述设计值相符,所述锁止件用于锁定所述第一螺纹和所述第二螺纹的相对位置。
  12. 一种压缩机,其特征在于,所述压缩机包括如权利要求1-11任一所述的磁悬浮轴承组件。
PCT/CN2017/072033 2016-03-31 2017-01-22 一种磁悬浮轴承组件和压缩机 WO2017166911A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK17772942.3T DK3399202T3 (da) 2016-03-31 2017-01-22 Magnetisk levitationslejeanordning og kompressor
US16/077,618 US10767692B2 (en) 2016-03-31 2017-01-22 Magnetic levitation bearing assembly and compressor
EP17772942.3A EP3399202B8 (en) 2016-03-31 2017-01-22 Magnetic levitation bearing assembly and compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610196615.5A CN105650117B (zh) 2016-03-31 2016-03-31 一种磁悬浮轴承组件和压缩机
CN201610196615.5 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017166911A1 true WO2017166911A1 (zh) 2017-10-05

Family

ID=56496568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072033 WO2017166911A1 (zh) 2016-03-31 2017-01-22 一种磁悬浮轴承组件和压缩机

Country Status (5)

Country Link
US (1) US10767692B2 (zh)
EP (1) EP3399202B8 (zh)
CN (1) CN105650117B (zh)
DK (1) DK3399202T3 (zh)
WO (1) WO2017166911A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650117B (zh) 2016-03-31 2017-12-19 珠海格力节能环保制冷技术研究中心有限公司 一种磁悬浮轴承组件和压缩机
DE102016215638A1 (de) * 2016-08-19 2018-02-22 Robert Bosch Gmbh Lagervorrichtung, Verdichter und Verfahren zur Herstellung solch einer Lagervorrichtung
CN107842552B (zh) * 2017-09-05 2019-08-27 珠海格力电器股份有限公司 磁悬浮装置同轴度的调整方法
CN107939699B (zh) * 2017-12-04 2023-12-26 南京磁谷科技股份有限公司 一种磁悬浮压缩机结构
CN108087321B (zh) * 2017-12-21 2023-11-21 珠海格力节能环保制冷技术研究中心有限公司 一种磁悬浮轴承、磁悬浮转子支承组件和压缩机
CN108448776A (zh) * 2018-05-16 2018-08-24 珠海格力电器股份有限公司 磁悬浮轴承绕组固定结构、轴向磁悬浮轴承及装配方法
CN109322916A (zh) * 2018-11-05 2019-02-12 南京航空航天大学 一种轴向磁悬浮轴承结构
CN110985543B (zh) * 2019-12-09 2020-11-17 珠海格力电器股份有限公司 磁悬浮轴承控制方法及装置、磁悬浮轴承、压缩机
CN110894855B (zh) * 2019-12-26 2024-05-28 南京磁谷科技股份有限公司 一种磁悬浮轴承总成
CN112268066B (zh) * 2020-10-14 2023-01-24 中车株洲电机有限公司 一种电机、间隙调整装置及间隙调整方法
CN113794342B (zh) * 2021-08-11 2022-07-15 鑫磊压缩机股份有限公司 一种磁悬浮电机轴向间隙调整方法
CN113700746A (zh) * 2021-09-23 2021-11-26 珠海格力电器股份有限公司 磁悬浮轴承、压缩机和空调器
CN113700744B (zh) * 2021-09-23 2022-11-25 珠海格力电器股份有限公司 磁悬浮轴承、压缩机和空调器
CN117386722B (zh) * 2023-10-25 2024-04-16 中船重工电机科技股份有限公司 一种轴向磁悬浮轴承及其保护轴承的安装结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196064A (ja) * 1996-01-24 1997-07-29 Shinko Electric Co Ltd センサ一体形スラスト磁気軸受
CN202451603U (zh) * 2012-02-24 2012-09-26 洛阳轴研科技股份有限公司 组合式磁悬浮轴承
CN104454989A (zh) * 2013-09-13 2015-03-25 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮轴承及离心式压缩机
CN105650117A (zh) * 2016-03-31 2016-06-08 珠海格力节能环保制冷技术研究中心有限公司 一种磁悬浮轴承组件和压缩机
CN205446400U (zh) * 2016-03-31 2016-08-10 珠海格力节能环保制冷技术研究中心有限公司 一种磁悬浮轴承组件和压缩机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180946A (en) * 1975-10-02 1980-01-01 Maurice Brunet Tool holding spindle assembly particularly for a grinding machine
CH663644A5 (de) * 1982-02-22 1987-12-31 Bbc Brown Boveri & Cie Turboverdichter.
US5021697A (en) * 1990-05-24 1991-06-04 Mechanical Technology Incorporated Auxiliary bearing design for active magnetic bearings
US5622040A (en) * 1994-12-21 1997-04-22 W. Schlafhorst Ag & Co. Bearing for an open-end spinning rotor
JP3046533B2 (ja) * 1995-10-11 2000-05-29 株式会社荏原製作所 軸受ユニット
JPH11101235A (ja) * 1997-07-30 1999-04-13 Nippon Seiko Kk 磁気軸受
CN101132870A (zh) * 2004-06-15 2008-02-27 艾利·厄尔-舍费 控制流体膜轴承不稳定性的方法
DE102007019766B3 (de) * 2007-04-25 2008-11-20 Siemens Ag Lagereinrichtung mit einer magnetisch gegenüber einem Stator um eine Achse drehbar gelagerten Welle und einer Dämpfungsvorrichtung
AU2009246773A1 (en) * 2008-04-18 2009-11-19 Synchrony, Inc. Magnetic thrust bearing with integrated electronics
CN101771308B (zh) * 2009-04-26 2015-12-16 张玉宝 一种磁悬浮转子支撑系统与磁悬浮轴承及偏磁减重装置
KR101272594B1 (ko) * 2011-07-12 2013-06-11 기아자동차주식회사 연료전지 스택용 매니폴드 블록
TWI444539B (zh) * 2011-10-28 2014-07-11 Ind Tech Res Inst 磁浮式液態冷媒泵
CN105570300B (zh) * 2016-03-16 2018-01-02 珠海格力节能环保制冷技术研究中心有限公司 一种轴向磁悬浮轴承

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196064A (ja) * 1996-01-24 1997-07-29 Shinko Electric Co Ltd センサ一体形スラスト磁気軸受
CN202451603U (zh) * 2012-02-24 2012-09-26 洛阳轴研科技股份有限公司 组合式磁悬浮轴承
CN104454989A (zh) * 2013-09-13 2015-03-25 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮轴承及离心式压缩机
CN105650117A (zh) * 2016-03-31 2016-06-08 珠海格力节能环保制冷技术研究中心有限公司 一种磁悬浮轴承组件和压缩机
CN205446400U (zh) * 2016-03-31 2016-08-10 珠海格力节能环保制冷技术研究中心有限公司 一种磁悬浮轴承组件和压缩机

Also Published As

Publication number Publication date
US10767692B2 (en) 2020-09-08
EP3399202A1 (en) 2018-11-07
CN105650117B (zh) 2017-12-19
CN105650117A (zh) 2016-06-08
EP3399202A4 (en) 2019-09-04
EP3399202B1 (en) 2021-02-17
DK3399202T3 (da) 2021-04-19
US20190085902A1 (en) 2019-03-21
EP3399202B8 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2017166911A1 (zh) 一种磁悬浮轴承组件和压缩机
TWI684308B (zh) 旋轉驅動裝置、旋轉驅動裝置的組裝方法、軸流送風器、軸流送風器的組裝方法及雷射振盪裝置
CN205446400U (zh) 一种磁悬浮轴承组件和压缩机
US20140239754A1 (en) Rotary electric machine
EP3865722B1 (en) Bearing stator, compressor, and air conditioner
KR101992818B1 (ko) 모터 구조
US11005322B2 (en) Rotor assemblies for axial flux machines
WO2018076970A1 (zh) 叶轮及风机
JP6428696B2 (ja) ハイブリッドパワーユニット用モータの回転センサ取付構造
JP5728704B2 (ja) レゾルバの取付構造
US9828878B2 (en) Method and apparatus for supporting and aligning diaphragms in turbomachines
US10288112B2 (en) Floating bush bearing device and supercharger provided with the same
US6839979B1 (en) Top mounted turbine casing alignment tool with multi-axis maneuverability
US9056358B2 (en) Cutter assembly
CN101007388A (zh) 基于单轴转台的单摆铣头
TWI535156B (zh) 具平衡件之轉軸構造
JP6304298B2 (ja) 遠心ポンプ
CN209335046U (zh) 一种花辊快速拆装机构
CN202560566U (zh) 单螺杆压缩机的螺杆轴向调整机构
CN220492723U (zh) 一种外转子结构及外转子电机
CN108856762A (zh) 机加工刀柄
JP6603267B2 (ja) エンドカバー結合方法
JP2018031323A (ja) 圧縮機の製造方法及び圧縮機の軸受位置決め装置
CN219993885U (zh) 一种防偏心的调心结构
CN208885703U (zh) 定位组件及同轴工件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017772942

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017772942

Country of ref document: EP

Effective date: 20180801

NENP Non-entry into the national phase

Ref country code: DE