WO2017166885A1 - 电池管理系统及对电池检测单元的编号方法 - Google Patents

电池管理系统及对电池检测单元的编号方法 Download PDF

Info

Publication number
WO2017166885A1
WO2017166885A1 PCT/CN2016/113505 CN2016113505W WO2017166885A1 WO 2017166885 A1 WO2017166885 A1 WO 2017166885A1 CN 2016113505 W CN2016113505 W CN 2016113505W WO 2017166885 A1 WO2017166885 A1 WO 2017166885A1
Authority
WO
WIPO (PCT)
Prior art keywords
bmu
signal
bcu
trigger signal
value
Prior art date
Application number
PCT/CN2016/113505
Other languages
English (en)
French (fr)
Inventor
赵玮炜
李培才
彭益攀
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017166885A1 publication Critical patent/WO2017166885A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers

Definitions

  • the present invention relates to the field of electric vehicles, and in particular to a battery management system and a numbering method for a battery detection unit.
  • a BMS Battery Management System
  • the BMS includes a BCU (Battery Control Unit) as a control center and at least one BMU (Battery Monitor Unit).
  • the BMU is used to monitor the voltage and temperature of the battery unit, and report the above information to the BCU through the communication bus.
  • the BCU then accurately monitors and adjusts the battery unit according to the above information reported by the BMU.
  • each BMU is often numbered separately.
  • the hardware numbering method using resistor network soldering is the BMU number.
  • the configuration of the resistor network it contains is different.
  • the resistor networks in BMU1, BMU2, ... to BMU8 are soldered differently in Figure 1, where NC represents that the resistors here are not soldered.
  • NC represents that the resistors here are not soldered.
  • BMU1 the three resistors in the first row are not soldered; for BMU2, the first two columns of resistors in the first row and the last column resistors in the second row are not soldered, and so on, BMU8 The three resistors of the second row are not soldered.
  • each BMU can obtain a unique number because the resistance of the resistor network is soldered differently.
  • the embodiment of the invention provides a battery management system and a numbering method for the battery detecting unit, which can complete the number setting in a uniformly configured BMU.
  • the technical solution is as follows:
  • a battery management system comprising: a signal generating unit, a BCU, and at least two BMUs; wherein, it can be understood that the signal generating unit and the BCU can be integrated;
  • the signal generating unit is connected to any one of the at least two BMUs, and the signal generating unit is configured to send a trigger signal to the BMU connected to the signal generating unit; wherein, the signal needs to be pointed out
  • the trigger signal of the generating unit output may be a constant voltage signal relative to the reference ground, or a square wave signal of a constant duty ratio or a constant frequency; the signal generating unit is connected to any one of the at least two BMUs. In other words, that is, in all BMUs, the signal generating unit is connected to only one of the BMUs.
  • the at least two BMUs are connected in sequence, and the BMUs in the at least two BMUs are configured to receive a trigger signal sent by the signal generating unit or connected to the first BMU, and obtain a digital measurement signal value according to the trigger signal. And transmitting the digital measurement signal value to the BCU; wherein, according to the type of the trigger signal, the digital measurement signal value may be a digital voltage value, a numerical current value or a digital frequency value or the like.
  • At least two BMUs are sequentially connected such that each BMU is connected to at most two BMUs; for each BMU except the BMU connected to the signal generating unit, a trigger signal of a BMU input connected thereto is received, and Another BMU connected to it outputs a trigger signal.
  • the BCU is connected to any one of the at least two BMUs, and is configured to number each BMU according to the received digital signal measurement value, and send a corresponding number to each BMU.
  • the BCU is connected to each BMU, and the BCU is implemented according to the sequential bits when the number is numbered, that is, the storage module of the BCU stores a mapping relationship between the sequence bits and the number.
  • the BCU uses the mapping relationship table and the correspondence between each digital measurement signal value and the sequence bit to implement the number of each BMU. among them, In the embodiment of the present invention, the hexadecimal number may be used to name each BMU.
  • any one of the at least two BMUs includes a measurement module, a signal processing module, a storage module, and a communication module; the storage module is connected to the communication module.
  • the communication module is configured to report the digital measurement signal value to the BCU, and is further configured to receive the number delivered by the BCU and send the number to the storage module;
  • the measurement module is configured to measure the a trigger signal sent by the signal generating unit or the connected first BMU to obtain the digital measurement signal value;
  • the signal processing module is configured to perform adjustment processing on the trigger signal sent by the signal generating unit or the connected first BMU And transmitting the processed signal to the connected second BMU; wherein the processed signal is a trigger signal of the second BMU.
  • the signal generating unit is connected to the measuring module and the signal processing module of the BMU connected thereto; one of the two BMUs connected to the signal processing module of one BMU and the measuring module and the signal processing module of the other BMU respectively Connected.
  • a method for numbering a battery detecting unit is provided, the method being applied to a battery management system, the battery management system comprising a signal generating unit, a BCU, and at least two BMUs; wherein the BCU and the Each of the at least two BMUs is connected in a preset order; the signal generating unit is connected to the first BMU, and the first BMU is the at least two Any BMU in the BMU; the BMU connected to the first BMU is a second BMU;
  • the method includes:
  • the signal generating unit sends a trigger signal to the first BMU
  • the first BMU When the first BMU receives the start number instruction, the first BMU measures the trigger signal to obtain a digital measurement signal value, and sends the digital measurement signal value to the BCU; the first BMU Adjusting the trigger signal, and sending the adjusted trigger signal to the second BMU; the second BMU is configured to measure the adjusted trigger signal according to the start number command to obtain a digital signal measurement value. And transmitting the acquired digital signal measurement value to the BCU;
  • the BCU numbers each BMU according to the received digital measurement signal value, and sends a corresponding number to each BMU.
  • the BCU receives the digital signal measurement value sent by each BMU.
  • the other BMUs also measure the trigger signal outputted by one BMU connected thereto and report the digital measurement signal value in the above manner. The trigger signal is then adjusted and the adjusted trigger signal is sent to another BMU connected to it.
  • the BCU sorts all the received digital measurement signal values to obtain a sort result
  • the BCU numbers each BMU according to the sorting result and a mapping relationship between the sequence bits and the number stored in advance.
  • the first BMU adjusts the trigger signal and sends the adjusted trigger signal to the second BMU, including the following three cases:
  • the first BMU serially divides the trigger signal to obtain a voltage dividing signal, and sends the voltage dividing signal to the second BMU, where the voltage dividing The signal is a trigger signal of the second BMU.
  • the first BMU performs parallel shunting on the trigger signal to obtain a shunt signal, and sends the shunt signal to the second BMU, where the shunt signal is the The trigger signal of the second BMU.
  • the first BMU performs frequency adjustment processing on the trigger signal according to a frequency step value to obtain an adjusted square wave signal, and sends the adjustment to the second BMU.
  • the first BMU measures the trigger signal to obtain a digital measurement signal value, including:
  • the first BMU measures a voltage value of the trigger signal, and uses the voltage value as the digital measurement signal value;
  • the first BMU measures a current value of the trigger signal, and uses the current value as the digital measurement signal value;
  • the first BMU measures a frequency value of the trigger signal, and uses the frequency value as the digital measurement signal value.
  • the pair is sent to each BMU. After the numbering, the method further includes:
  • the BMU receives the number sent by the BCU and stores the number. It should be noted that, when the BMU stores the number, the digital measurement signal value measured by the previous measurement module may also be acquired, and the correspondence between the number and the digital measurement signal value is stored.
  • the battery management system provides a signal generating unit, which is connected to any one of the at least two BMUs, and at least two BMUs are connected in sequence, and the BCU is connected to each BMU, so that each BMU can be
  • the BCU outputs a digital measurement signal value with a difference in size.
  • the BCU can automatically number the BMU according to the received digital signal measurement value. Therefore, all BMU hardware and software can be the same during the production process, without special process. Differentiating between different BMUs, the battery management system has lower production management costs.
  • FIG. 1 is a schematic structural diagram of a battery management system provided by the background art of the present invention.
  • FIG. 2 is a schematic structural diagram of a battery management system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a battery management system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a battery management system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a battery management system according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of a method for numbering a battery detecting unit according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for numbering a battery detecting unit according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for numbering a battery detecting unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a battery management system according to an embodiment of the present invention.
  • the system includes: a signal generating unit, a BCU, and at least two BMUs.
  • the signal generating unit is connected to any one of the at least two BMUs, and at least two BMUs are sequentially connected.
  • the meaning of the sequential connection is as shown in FIG. 2, the signal generating unit is connected to the BMU labeled BMU1, the BMU1 is connected to the BMU2, the BMU2 is connected to the BMU3, and so on, the BMUn-1 is connected to the BMUn.
  • n is the total number of BMUs in the battery management system, typically n is a positive integer greater than or equal to 2.
  • the BCU in order to facilitate the BCU to assign a number to each BMU in the subsequent process, the BCU is connected to each BMU as shown in FIG. 2 .
  • each BMU in order to facilitate the description of at least two BMUs, each BMU is identified by only BMU1, BMU2, BMU3, ..., BMUn-1 and BMUn, which does not represent the BMUs.
  • the numbering result is only a convenient name for each BMU.
  • the signal generating unit is configured to send a trigger signal to the BMU connected thereto, corresponding to FIG. 2, that is, the signal generating unit provides the required constant signal to the BMU labeled BMU1.
  • the signal generating unit may be a low-voltage power supply VCC.
  • the trigger signal output by the signal generating unit is a constant voltage signal relative to the reference ground, that is, the low-voltage voltage signal VCC is used as the trigger signal.
  • the trigger signal output by the signal generating unit may also be a square wave signal of a constant duty ratio or a constant frequency.
  • the signal generating unit may be a separate unit, and may be integrated with the BCU, that is, included in the BCU, which is not specifically limited in the embodiment of the present invention.
  • each BMU includes a measurement module, a signal processing module, a storage module, and a communication module.
  • the signal generating unit is respectively connected to the measuring module and the signal processing module of the BMU1; wherein the signal processing modules of one of the two BMUs are respectively connected to the measuring module and the signal processing module of the other BMU. That is, the signal processing module corresponding to FIG. 2BMU1 is connected to the measurement module and the signal processing module of the BMU2, the signal processing module of the BMU2 is connected to the measurement module and the signal processing module of the BMU3, and so on, the signal processing of the BMUn-1. The module is connected to the measurement module and signal processing module of BMUn.
  • the signal processing module uses a series voltage division, a parallel shunt, a duty ratio adjustment, or a frequency, so that each BMU outputs a differential constant signal to the BCU. That is, for other BMUs other than BMU1, the input of the current BMU signal processing module may be a current signal that is shunted through the signal processing modules of all BMUs, or may be a voltage signal that is serially divided by the signal processing modules of all BMUs. It can also be the frequency signal sent by the first BMU connected to it.
  • the signal processing module of BMU1 is used to send signals to the signal generating unit. The sent trigger signal is adjusted and the processed signal is sent to BMU2.
  • the BMUs other than the BMU1 adjust the trigger signal sent by the first BMU connected thereto, and send the processed signal to the second BMU connected thereto, and the processed signal is triggered by the second BMU. signal.
  • the first BMU connected to the BMU2 is the BMU1
  • the second BMU is the BMU3
  • the first BMU connected to the BMU3 is the BMU2
  • the second BMU is the BMU4, and so on
  • the first BMU connected to the BMUn is the BMUn-1.
  • the measurement module is configured to measure the received trigger signal, and obtain a digital measurement signal value of the trigger signal for the communication module to interact with the BCU.
  • the trigger signal received by its measurement module is derived from the signal generation unit.
  • the trigger signals received by their measurement modules are from the first BMU connected to it.
  • the trigger signal received by the measurement module of BMU2 is from BMU1
  • the trigger signal received by the measurement module of BMU3 is from BMU2.
  • the storage module is used to store the number delivered by the BCU.
  • the measurement module in each BMU is connected to the signal processing module, and the storage module is connected to the communication module.
  • the communication module is configured to report the digital measurement signal value measured by the measurement module in the BMU to the BCU, and after receiving the number sent by the BCU, send the number to the storage module.
  • the BCU includes the following modules: a communication module and a storage module.
  • the communication module is configured to receive the digital measurement signal value reported by each BMU, and send the BCU to each BMU according to the number assigned by each BMU according to each digital measurement signal value.
  • the storage unit is configured to store the mapping relationship between the sequential bits and the number, and number each BMU according to the mapping relationship between the measured value of the digital signal reported by each BMU and the sequence bit and the number. That is, the BCU serves as the control core of the entire battery management system, and is responsible for the coordination and control of the entire battery management system, and controls the start of the BMU numbering process, number distribution, and number confirmation. Among them, the BCU can trigger the numbering process of the BMU in various ways.
  • the BCU After receiving the start number command sent by the external device, the BCU starts the numbering process; or the BCU automatically detects whether there is an unnumbered BMU; if so, the numbering process is started, which is not specifically limited in this embodiment of the present invention.
  • the system provided by the embodiment of the present invention provides a signal generating unit, and the signal generating unit is connected to any one of the at least two BMUs, and at least two BMUs are sequentially connected, and the BCU is connected to each BMU, so that the BCU is connected to each BMU.
  • Each BMU can output a digital measurement signal value with a difference in size to the BCU.
  • the BCU can automatically number the BMU according to the received digital signal measurement value. Therefore, all BMU hardware and software can be the same during the production process.
  • FIG. 3 there is shown a block diagram of a battery management system for numbering individual BMUs in a series voltage division principle.
  • the low voltage power supply VCC serves as a signal generation unit that outputs a constant voltage signal with respect to the reference ground.
  • Each BMU uses a voltage divider resistor of the same resistance as a signal processing module, and these multiple voltage divider resistors are connected in series.
  • the signal processing module of the BMU1 is connected to the low-voltage power supply VCC, and the signal processing module of the BMUn is connected to the reference ground. Due to the characteristics of series voltage division, the voltage signals between the upper end of each BMU's signal processing module and the reference ground are different, that is, the voltage signals between the upper end of each voltage dividing resistor and the reference ground are different. This ensures that the voltage signals received by the measurement modules of each BMU are different, so that the value of the digital measurement signals that each BMU finally outputs to the BCU through the communication module is different, thus implementing the BMU for each BMU. Different numbers.
  • an A/D converter is used as a measurement module for measuring a received trigger signal.
  • the trigger signal refers to the voltage signal at the upper end of the signal processing module included in itself.
  • the trigger signal is output by the signal generating unit, that is, the low voltage power supply VCC.
  • the trigger signal is the voltage of the lower end of the signal processing module of the first BMU connected thereto.
  • the signal corresponds to the voltage signal at the upper end of the signal processing module that it contains.
  • the trigger signal is the voltage signal at the lower end of the signal processing module of BMU1, corresponding to the voltage signal at the upper end of the signal processing module included in BMU2.
  • the voltage dividing resistor of the BMU1 serially divides the trigger signal outputted by the signal generating unit to obtain a voltage dividing signal, and outputs the divided voltage signal to the BMU 2 as a trigger signal of the BMU 2 connected thereto.
  • Each BMU uses an EEPROM (Electrically Erasable Programmable Read-Only Memory) as a storage module for storing the number issued by the BCU.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • the EEPROM is also used as the memory module.
  • the communication mode it contains In terms of blocks, the communication connection with the BMU is implemented using the CAN bus. It should be noted that, in FIG. 3, a uC single-chip microcomputer is further included for controlling each module in the BMU, wherein the uC single-chip microcomputer can also be any type of processor, which is not specifically limited in the embodiment of the present invention.
  • the system provided by the embodiment of the present invention provides a signal generating unit, and the signal generating unit is connected to any one of the at least two BMUs, and at least two BMUs are sequentially connected, and the BCU is connected to each BMU, so that the BCU is connected to each BMU.
  • Each BMU can output a digital measurement signal value with a difference in size to the BCU.
  • the BCU can automatically number the BMU according to the received digital signal measurement value. Therefore, the hardware and software of all BMUs are the same during the production process. There is no need for special processes to distinguish between different BMUs. This kind of battery management system has lower production management cost.
  • the BMU fails and needs to be repaired or replaced, there is no need for BMU in specific software or hardware form, and only after replacing the general BMU. After the numbering process is restarted, the normal function of the battery pack can be realized, and the subsequent maintenance cost is reduced.
  • the mapping table is stored in the BCU, the BMU number is completed by the BCU, and the same BMU can be used for different battery packs. Therefore, it is only necessary to upgrade and manage the BCU to realize the adaptation configuration of different battery packs, and the versatility and flexibility are strong.
  • FIG. 4 there is shown a block diagram of a battery management system for numbering individual BMUs by adjusting the frequency principle of a square wave signal.
  • a frequency output module as a signal generating unit is integrated in the BCU.
  • the frequency output module may specifically be a PWM (Pulse Width Modulation) output module of the single chip microcomputer, and output a square wave signal with a constant frequency or a constant duty ratio.
  • the frequency output module is used as the signal processing module, and the signal processing module also uses the PWM output module of the single chip microcomputer. The difference is that the frequency of the square wave signal output by the signal processing module is somewhat adjusted compared to the input square wave signal.
  • the signal processing module outputs a square wave signal of N+K Hz and a duty ratio of m%.
  • the frequency is sequentially increased to ensure that the frequency of the square wave signal collected by the second BMU connected thereto is different from the frequency of the square wave signal collected by the current BMU by KHz. That is, if the frequency of the square wave signal collected by BMU1 is N Hz, the frequency of the square wave signal collected by BMU2 is N+K Hz, and the frequency of the square wave signal collected by BMU3 is N+2K Hz.
  • the frequency of the square wave signal acquired by BMUn is N+(n-1)KHz.
  • the frequency output module of the BMU performs frequency adjustment processing on the trigger signal according to the frequency step value, and obtains the adjusted square wave signal. And output the adjusted square wave signal to the second BMU as a trigger signal of the BMU connected thereto.
  • the manner of adjusting the duty ratio of the square wave signal may be adopted, which is not specifically limited in this embodiment of the present invention.
  • a method of gradually reducing the frequency may be adopted, which is not specifically limited in the embodiment of the present invention.
  • the frequency acquisition module is used as the measurement module of the BMU, wherein the frequency acquisition module is specifically an input capture module of the single chip, and is used for measuring the frequency or duty ratio of the input trigger signal.
  • the trigger signal is a constant frequency square wave signal outputted by the frequency output module in the BCU, that is, the signal generating unit; for other BMUs other than BMU1, the trigger signal is the first connected thereto
  • the signal processing module of the BMU is also the frequency-adjusted square wave signal output by the frequency output module.
  • Each BMU uses an EEPROM as a storage module to store the number delivered by the BCU.
  • a communication connection with the BCU is implemented using the CAN bus.
  • the EEPROM is also used as the storage module; the communication module uses the CAN bus to implement the communication connection with the BMU.
  • the system provided by the embodiment of the present invention provides a signal generating unit, and the signal generating unit is connected to any one of the at least two BMUs, and at least two BMUs are sequentially connected, and the BCU is connected to each BMU, so that the BCU is connected to each BMU.
  • Each BMU can output a digital measurement signal value with a difference in size to the BCU.
  • the BCU can automatically number the BMU according to the received digital signal measurement value. Therefore, the hardware and software of all BMUs are the same during the production process. There is no need for special processes to distinguish between different BMUs. This kind of battery management system has lower production management cost.
  • the BMU fails and needs to be repaired or replaced, there is no need for BMU in specific software or hardware form, and only after replacing the general BMU. After the numbering process is restarted, the normal function of the battery pack can be realized, and the subsequent maintenance cost is reduced.
  • the mapping table is stored in the BCU, the BMU number is completed by the BCU, and the same BMU can be used for different battery packs. Therefore, it is only necessary to upgrade and manage the BCU to realize the adaptation configuration of different battery packs, and the versatility and flexibility are strong.
  • FIG. 5 there is shown a block diagram of a battery management system for numbering individual BMUs in parallel shunting.
  • the low-voltage power supply VCC is used as a signal generating unit, and the output is relative to the reference ground. Constant voltage signal.
  • Each BMU uses a resistor of the same resistance as the signal processing module. Under the action of these same resistances, each BMU can detect different currents due to the parallel connection of each BMU.
  • the signal processing module of the BMU1 is connected to the low-voltage power supply VCC, and the signal processing module of the BMUn is suspended.
  • a power conversion module can be included for each BMU. The power conversion module is used to provide working power for all modules in the BMU.
  • each BMU Since each BMU is connected in parallel, according to the characteristics of the parallel shunt, the magnitude of the current detected by each BMU is different, so that the value of the digital measurement signal that each BMU finally outputs to the BCU through the communication module is different, thus realizing The number of each BMU.
  • each BMU a current acquisition module is used as a measurement module for measuring the current on the power line.
  • each BMU's power port is connected to the power port of the second BMU connected to it through the signal processing module.
  • the current collecting module of the BMU's current collecting module at the end of the wire harness measures a current of 0, and the current collected by the BMU1 current collecting module on the wire harness is n*Ibmu.
  • each BMU's current acquisition module can detect a unique current value.
  • Each BMU uses an EEPROM as a storage module to store the number delivered by the BCU.
  • a communication connection with the BCU is implemented using the CAN bus.
  • the EEPROM is also used as the storage module, and the communication module uses the CAN bus to implement a communication connection with the BMU.
  • the system provided by the embodiment of the present invention provides a signal generating unit, and the signal generating unit is connected to any one of the at least two BMUs, and at least two BMUs are sequentially connected, and the BCU is connected to each BMU, so that the BCU is connected to each BMU.
  • Each BMU can output a digital measurement signal value with a difference in size to the BCU.
  • the BCU can automatically number the BMU according to the received digital signal measurement value. Therefore, the hardware and software of all BMUs are the same during the production process. There is no need for special processes to distinguish between different BMUs. This kind of battery management system has lower production management cost.
  • the BMU fails and needs to be repaired or replaced, there is no need for BMU in specific software or hardware form, and only after replacing the general BMU. After the numbering process is restarted, the normal function of the battery pack can be realized, and the subsequent maintenance cost is reduced.
  • the mapping table is stored in the BCU, the BMU number is completed by the BCU, and the same BMU can be used for different battery packs. Therefore, it is only necessary to upgrade and manage the BCU to realize the adaptation configuration of different battery packs, and the versatility and flexibility are strong.
  • a method for numbering a battery detecting unit is applied to the battery management system shown in FIG. 3, and the method includes:
  • the signal generating unit sends a trigger signal to the BMU1.
  • the BCU sends a start number instruction to each BMU connected thereto through the CAN bus.
  • each BMU After each BMU receives the start number command and activates the A/D converter according to the start number command, the A/D converter of each BMU measures the voltage value of the received trigger signal to obtain a plurality of digital voltage values.
  • the trigger signal is a signal output by the signal generating unit.
  • BMU1 measures the trigger signal to obtain a digital measurement signal value.
  • the trigger signal received by BMU2 is the voltage dividing signal output by BMU1, and the voltage dividing signal is obtained by serially dividing the trigger signal received by BMU1.
  • the trigger signal received by the BMU3 is a divided voltage signal output by the BMU2, and the divided voltage signal is obtained by serially dividing the trigger signal received by the BMU2.
  • the trigger signal received by BMUn is the divided voltage output of BUnn-1, and the divided voltage signal is obtained by serially dividing the trigger signal received by BUnn-1.
  • the digitized measurement value of the trigger signal can be measured by using an A/D converter. That is, the A/D converter converts the voltage signal at the upper end of the voltage dividing resistor of the BMU into a digital measurement value.
  • Each BMU sends a digital voltage value to the BCU through a CAN bus.
  • the BCU After receiving the digital voltage value sent by each BMU, the BCU sorts all the received digital voltage values to obtain a sorting result.
  • the order of the voltage values may be arranged in the order of the voltage values.
  • the sorting result may be as shown in the following Table 1. This embodiment of the present invention does not specifically limit this.
  • the BCU numbers each BMU according to the sorting result and the mapping relationship between the pre-stored sequence bits and the number, and sends a corresponding number to each BMU.
  • the order of mapping with the number may be as shown in Table 2 below.
  • the BCU can number each BMU according to Tables 1 and 2 above. Among them, the number can be as shown in Table 3 below.
  • V Digital voltage value
  • V Digital voltage value 12 0xA0 10.8 0xA7 9.6 0xA2 8.4 0xA3 7.2 0xA1
  • the BCU After obtaining the number of each BMU, the BCU can send a corresponding number to each BMU through the CAN bus. After each BMU receives the corresponding number through the CAN bus, the corresponding number is stored in the EEPROM.
  • the BMU measures the received trigger signal, obtains a digital measurement signal value, and sends a digital measurement signal value to the BCU, and the BCU receives each BMU transmission.
  • the received digital measurement signal values are sorted to obtain the sort result, and each BMU is numbered according to the sorting result, the pre-stored order bit and the number mapping relationship, and then to each BMU.
  • the corresponding number is issued, and the invention realizes the automatic numbering of the BMU, so that the hardware and software of all BMUs can be the same in the production process, and no special process is needed to distinguish different BMUs.
  • the production management cost of the battery management system is relatively high. Low; In addition, when the BMU fails to be repaired or replaced, there is no need for a specific software or hardware BMU, and only after the replacement of the universal BMU, the numbering process is restarted to re-number the battery pack to achieve normal function of the battery pack. Subsequent maintenance costs; in addition, due to mapping The table is stored in the BCU, and the BMU is numbered by the BCU. Different battery packs can use the same BMU. Therefore, only the upgrade management BCU can realize the adaptation configuration of different battery packs, and the versatility and flexibility are strong.
  • a method for numbering a battery detecting unit is applied to the battery management system shown in FIG. 4, and the method includes:
  • the signal generating unit sends a trigger signal to the BMU1.
  • the BCU sends a start number instruction to each BMU connected thereto through the CAN bus.
  • each BMU receives the start number command and activates the frequency acquisition module according to the start number instruction, the frequency acquisition module of each BMU measures the frequency value of the received trigger signal to obtain multiple digital frequency values.
  • the trigger signal is the square wave signal output by the frequency output module in the BCU for the BMU1.
  • BMU1 measures the trigger signal to obtain a digital measurement signal value.
  • the trigger signal received by BMU2 is the frequency-adjusted square wave signal output by BMU1
  • the square wave signal is used by BMU1 to receive the square wave signal according to the frequency step value.
  • the frequency adjustment process is obtained.
  • the trigger signal received by the BMU3 is the frequency-adjusted square wave signal output by the BMU2, and the square wave signal is obtained by the BMU2 performing frequency adjustment processing on the square wave signal received by the frequency step value.
  • the trigger signal received by BUnn is the square wave signal output by BUnn-1, and the square wave signal is obtained by frequency-adjusting the square wave signal received by BUnn-1 according to the frequency step value.
  • Each BMU sends a digital frequency value to the BCU through a CAN bus.
  • the BCU After receiving the digital frequency value sent by each BMU, the BCU sorts all the received digital frequency values to obtain a sorting result.
  • the arrangement of the frequency values may be in the order of the frequency values, which is not specifically limited in the embodiment of the present invention. This can be implemented by referring to step 604, and details are not described herein.
  • the BCU numbers each BMU according to the sorting result and the mapping relationship between the pre-stored sequence bits and the number, and sends a corresponding number to each BMU.
  • the numbering process can be implemented by referring to step 605, and details are not described herein.
  • the BCU can send a corresponding number to each BMU through the CAN bus.
  • the corresponding number is stored in the EEPROM.
  • the BMU measures the received trigger signal, obtains a digital measurement signal value, and sends a digital measurement signal value to the BCU, and the BCU receives each BMU transmission.
  • the received digital measurement signal values are sorted to obtain the sort result, and each BMU is numbered according to the sorting result, the pre-stored order bit and the number mapping relationship, and then to each BMU.
  • the corresponding number is issued, and the invention realizes the automatic numbering of the BMU, so that the hardware and software of all BMUs can be the same in the production process, and no special process is needed to distinguish different BMUs.
  • the production management cost of the battery management system is relatively high. Low; In addition, when the BMU fails to be repaired or replaced, there is no need for a specific software or hardware BMU, and only after the replacement of the universal BMU, the numbering process is restarted to re-number the battery pack to achieve normal function of the battery pack. Subsequent maintenance costs; in addition, because the mapping table is stored in the BCU, the BMU completes the BMU number, different batteries Can be used the same BMU, so only through BCU upgrade management can be realized adaptation of different battery pack configurations, versatility and flexibility is strong.
  • a method for numbering a battery detecting unit is applied to the battery management system shown in FIG. 5, and the method includes:
  • the signal generating unit sends a trigger signal to the BMU1.
  • the 802 and the BCU send a start number command to each BMU connected thereto through the CAN bus.
  • each BMU receives the startup number instruction and activates the current collection module according to the startup number instruction, the current collection module of each BMU measures the current value of the received trigger signal to obtain a plurality of digital current values.
  • Each BMU sends a digital current value to the BCU through a CAN bus.
  • the BCU After receiving the digital current value sent by each BMU, the BCU sorts all the received digital current values to obtain a sorting result.
  • the arrangement of the current values is in the order of the largest, and is not specifically limited in the embodiment of the present invention. This can be implemented by referring to step 604, and details are not described herein.
  • the BCU numbers each BMU according to the sorting result and the mapping relationship between the pre-stored sequence bits and the number, and sends a corresponding number to each BMU.
  • the numbering process can be implemented by referring to step 605, and details are not described herein.
  • the BCU can send a corresponding number to each BMU through the CAN bus.
  • the corresponding number is stored in the EEPROM. in.
  • the BMU measures the received trigger signal, obtains a digital measurement signal value, and sends a digital measurement signal value to the BCU, and the BCU receives each BMU transmission.
  • the received digital measurement signal values are sorted to obtain the sort result, and each BMU is numbered according to the sorting result, the pre-stored order bit and the number mapping relationship, and then to each BMU.
  • the corresponding number is issued, and the invention realizes the automatic numbering of the BMU, so that the hardware and software of all BMUs can be the same in the production process, and no special process is needed to distinguish different BMUs.
  • the production management cost of the battery management system is relatively high. Low; In addition, when the BMU fails to be repaired or replaced, there is no need for a specific software or hardware BMU, and only after the replacement of the universal BMU, the numbering process is restarted to re-number the battery pack to achieve normal function of the battery pack. Subsequent maintenance costs; in addition, because the mapping table is stored in the BCU, the BMU completes the BMU number, different batteries Can be used the same BMU, so only through BCU upgrade management can be realized adaptation of different battery pack configurations, versatility and flexibility is strong.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池管理系统及对电池检测单元的编号方法。该系统包括:信号发生单元、BCU和至少两个BMU;信号发生单元与至少两个BMU中的任意一个BMU相连;至少两个BMU依次相连,至少两个BMU中的BMU用于接收信号发生单元发送的或者相连接的第一BMU发送的触发信号,根据触发信号获取数字测量信号值,并向BCU发送数字测量信号值;BCU与每一个BMU均相连,用于根据接收到的数字信号测量值为每一个BMU进行编号,并向每一个BMU下发对应的编号。每一个BMU均向BCU输出一个数字测量信号值,BCU根据接收到的大小各不相同的数字信号测量值即可实现对BMU的自动编号,因此在生产过程中所有BMU均相同,无需特殊工艺来区分不同的BMU,生产管理成本较低。

Description

电池管理系统及对电池检测单元的编号方法
本申请要求于2016年03月29日提交中国专利局、申请号为201610188692.6、发明名称为“电池管理系统及对电池检测单元的编号方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电动汽车领域,特别涉及一种电池管理系统及对电池检测单元的编号方法。
背景技术
随着市场对电动汽车的续航里程要求不断提升,电动汽车的电池包所存储的能量逐渐加大,这便导致电池包内可重复充电的电池单元的数量越来越多。在循环使用电池包时基于安全性的考量,通常会配置一个BMS(Battery Manage ment System,电池管理系统)。其中,BMS中包含一个作为控制中心的BCU(Battery Control Unit,电池控制单元)和至少一个BMU(Battery Monitor Unit,电池检测单元)。BMU用于对电池单元的电压、温度等信息进行监控,并通过通信总线将上述信息上报至BCU,进而BCU根据BMU上报的上述信息对电池单元进行精确监控和调节。而当BMS中存在多个BMU时,为了使得BCU区分出接收到的信息由哪一个BMU上报,常常会对每一个BMU进行独立编号。
参见图1,使用电阻网络选焊的硬件编号方法为BMU编号。对于每一个BMU来说,其包含的电阻网络的配置均不同。比如,在图1中BMU1、BMU2……至BMU8中的电阻网络的焊接方式均不同,其中NC代表此处的电阻不进行焊接。比如,对于BMU1来说第一排的三个电阻是不进行焊接的;对于BMU2来说第一排的前两列电阻和第二排的最后一列电阻是不进行焊接的,依此类推,BMU8的第二排的三个电阻不进行焊接。这样每一个BMU因为电阻网络中电阻的焊接方式不同,因此可获取到唯一的编号。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
针对上述编号方式,由于每一个BMU的电阻网络的配置均不同,所以生产一条包含N个BMU的电池包便需要管理N套BMU的BOM(Bill of Material,物料清单)及对应加工工艺,因此该种编号方式的生产管理成本过高。
发明内容
本发明实施例提供了一种电池管理系统及对电池检测单元的编号方法,能够以统一配置的BMU完成编号设置。所述技术方案如下:
第一方面,提供了一种电池管理系统,所述系统包括:信号发生单元、BCU和至少两个BMU;其中,可以理解的是,所述信号发生单元和所述BCU可以集成于一体;
所述信号发生单元与所述至少两个BMU中的任意一个BMU相连,所述信号发生单元用于向与所述信号发生单元连接的BMU发送触发信号;其中,需要指出的是,所述信号发生单元输出的触发信号既可以为相对参考地的恒定电压信号,也可以是恒定占空比或恒定频率的方波信号;所述信号发生单元与所述至少两个BMU中的任意一个BMU相连,换句话说,也即在全部的BMU中所述信号发生单元仅与其中一个BMU相连接。
所述至少两个BMU依次相连,所述至少两个BMU中的BMU用于接收所述信号发生单元发送的或者相连接的第一BMU发送的触发信号,根据所述触发信号获取数字测量信号值,并向所述BCU发送所述数字测量信号值;其中,根据触发信号的类型不同,数字测量信号值可为数字电压值、数值电流值或者数字频率值等。至少两个BMU依次相连,使得每一个BMU最多仅与两个BMU相连;对于除与所述信号发生单元相连的BMU之外的每一个BMU,接收与其相连的一个BMU输入的触发信号,并向与其相连的另一个BMU输出触发信号。
所述BCU与所述至少两个BMU中的任意一个BMU均相连,用于根据接收到的数字信号测量值为每一个BMU进行编号,并向每一个BMU下发对应的编号。其中,BCU与每一个BMU均相连接,BCU在进行编号时是按照顺序位实现的,即BCU的存储模块存储了顺序位与编号之间的映射关系表。在对每一个BMU进行编号时,首先是对接收到的各个数字测量信号值进行排序,得到各个数字测量信号值对应的顺序位。之后,BCU利用该映射关系表、各个数字测量信号值与顺序位之间的对应关系,实现为每一个BMU的编号。其中, 在编号时可采取十六进制数字为每一个BMU命名等,本发明实施例对此不进行具体限定。
结合第一方面所描述的内容,需要指出的是,所述至少两个BMU中的任意一个BMU均包括测量模块、信号处理模块、存储模块和通信模块;所述存储模块与通信模块相连,所述通信模块用于向所述BCU上报所述数字测量信号值,还用于接收所述BCU下发的所述编号并向所述存储模块发送所述编号;所述测量模块用于测量所述信号发生单元或相连接的第一BMU发送的触发信号以获得所述数字测量信号值;所述信号处理模块用于对所述信号发生单元或相连接的第一BMU发送的触发信号进行调整处理,并将处理后的信号向相连接的第二BMU发送;其中,所述处理后的信号是所述第二BMU的触发信号。简言之,所述信号发生单元同与其相连接的BMU的测量模块和信号处理模块相连;相连的两个BMU中,其中一个BMU的信号处理模块分别与另一个BMU的测量模块和信号处理模块相连。
第二方面,提供了一种对电池检测单元的编号方法,所述方法应用于电池管理系统,所述电池管理系统包括信号发生单元、BCU以及至少两个BMU;其中,所述BCU与所述至少两个BMU中的每个BMU分别连接,所述至少两个BMU中的BMU按照预设顺序依次连接;所述信号发生单元与第一BMU连接,所述第一BMU是所述至少两个BMU中的任意一个BMU;与所述第一BMU连接的BMU是第二BMU;
所述方法包括:
信号发生单元向第一BMU发送触发信号;
所述BCU向与所述BCU连接的BMU均发送启动编号指令;
当第一BMU接收到所述启动编号指令时,所述第一BMU对所述触发信号进行测量以获得数字测量信号值,并向所述BCU发送所述数字测量信号值;所述第一BMU对所述触发信号进行调整,并向所述第二BMU发送调整后的触发信号;所述第二BMU根据所述启动编号指令,对所述调整后的触发信号进行测量以获取数字信号测量值,并向所述BCU发送获取的数字信号测量值;
所述BCU根据接收到的数字测量信号值为每一个BMU进行编号,并向每一个BMU下发对应的编号。
其中,所述BCU会接收到每一个BMU发送的数字信号测量值。对于除 与信号发生单元连接的第一BMU和与所述第一BMU连接的第二BMU之外,其他BMU均同样按照上述方式对与其相连的一个BMU输出的触发信号进行测量并上报数字测量信号值,之后调整该触发信号并向与其相连的另一个BMU发送调整后的触发信号。
结合第二方面所描述的内容,其中,所述BCU根据接收到的数字测量信号值为每一个BMU进行编号,包括:
所述BCU对接收到的全部数字测量信号值进行排序,得到排序结果;
所述BCU根据所述排序结果、预先存储的顺序位与编号的映射关系,为每一个BMU进行编号。
结合第二方面所描述的内容,需要指出的是,所述第一BMU对所述触发信号进行调整,并向所述第二BMU发送调整后的触发信号,包括以下三种情况:
若所述触发信号为电压信号,则所述第一BMU对所述触发信号进行串联分压以获取分压信号,并向所述第二BMU发送所述分压信号,其中,所述分压信号为所述第二BMU的触发信号。
若所述触发信号为电流信号,则所述第一BMU对所述触发信号进行并联分流以获取分流信号,并向所述第二BMU发送所述分流信号,其中,所述分流信号为所述第二BMU的触发信号。
若所述触发信号为方波信号,则所述第一BMU根据频率步进值对所述触发信号进行频率调整处理以获取调整后的方波信号,并向所述第二BMU发送所述调整后的方波信号,其中,所述调整后的方波信号为所述第二BMU的触发信号。
结合第二方面所描述的内容,所述第一BMU对所述触发信号进行测量以获得数字测量信号值,包括:
若所述触发信号为电压信号,则所述第一BMU测量所述触发信号的电压值,将所述电压值作为所述数字测量信号值;或,
若所述触发信号为电流信号,则所述第一BMU测量所述触发信号的电流值,将所述电流值作为所述数字测量信号值;或,
若所述触发信号为方波信号,则所述第一BMU测量所述触发信号的频率值,将所述频率值作为所述数字测量信号值。
结合第二方面所描述的内容,需要指出的是,所述向每一个BMU下发对 应的编号之后,所述方法还包括:
所述BMU接收所述BCU发送的编号,并将所述编号进行存储。需要说明的是,在BMU对所述编号进行存储时,还可获取之前测量模块测量得到的数字测量信号值,存储所述编号与所述数字测量信号值之间的对应关系。
本发明实施例提供的技术方案带来的有益效果是:
电池管理系统提供了一个信号发生单元,该信号发生单元与至少两个BMU中的任意一个BMU相连,且至少两个BMU之间依次相连,BCU与每一个BMU均相连,使得每一个BMU均可向BCU输出一个大小存在差异的数字测量信号值,BCU根据接收到的数字信号测量值即可实现对BMU的自动编号,因此在生产过程中所有BMU的硬件及软件均可相同,无需特殊工艺来区分不同的BMU,该种电池管理系统的生产管理成本较低。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明背景技术提供的一种电池管理系统的结构示意图;
图2是本发明实施例提供的一种电池管理系统的结构示意图;
图3是本发明实施例提供的一种电池管理系统的结构示意图;
图4是本发明实施例提供的一种电池管理系统的结构示意图;
图5是本发明实施例提供的一种电池管理系统的结构示意图;
图6是本发明实施例提供的一种对电池检测单元的编号方法流程图;
图7是本发明实施例提供的一种对电池检测单元的编号方法流程图;
图8是本发明实施例提供的一种对电池检测单元的编号方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图2是本发明实施例提供的一种电池管理系统的结构示意图。参见图2,该系统包括:信号发生单元、BCU和至少两个BMU。
其中,信号发生单元与至少两个BMU中的任意一个BMU相连,至少两个BMU依次相连。其中,依次相连的含义如图2所示,信号发生单元与标号为BMU1的BMU相连,而BMU1又与BMU2相连,BMU2与BMU3相连,依此类推,BMUn-1与BMUn相连。其中,n为电池管理系统中BMU的总数量,通常n为大于或等于2的正整数。在本发明实施例中,为了方便后续过程中BCU为每一个BMU分配编号,如图2所示BCU与每一个BMU均相连。需要说明的是,在本发明实施例中,为了方便对至少两个BMU进行描述,仅以BMU1、BMU2、BMU3……、BMUn-1与BMUn对各个BMU进行标识,其并不代表各个BMU的编号结果,仅是方便称谓各个BMU的名称而已。
在本发明实施例中,信号发生单元用于向与其连接的BMU发送触发信号,对应于如图2,即信号发生单元为标号为BMU1的BMU提供所需的恒定信号。其中,信号发生单元可为低压供电电源VCC,此时信号发生单元输出的触发信号为相对参考地的恒定电压信号,即使用低压电压信号VCC作为触发信号。此外,信号发生单元输出的触发信号还可为恒定占空比或恒定频率的方波信号。需要说明的是,在电池管理系统中信号发生单元可以是一个独立的单元,还可和BCU集成于一体,即包含在BCU中,本发明实施例对此不进行具体限定。
参见图2,每一个BMU均包括测量模块、信号处理模块、存储模块和通信模块。
其中,信号发生单元分别与BMU1的测量模块和信号处理模块相连;相连的两个BMU中,其中一个BMU的信号处理模块分别与另一个BMU的测量模块和信号处理模块相连。也即,对应于图2BMU1的信号处理模块与BMU2的测量模块和信号处理模块分别相连,BMU2的信号处理模块与BMU3的测量模块和信号处理模块分别相连,依此类推,BMUn-1的信号处理模块与BMUn的测量模块和信号处理模块分别相连。
在本发明实施例中,信号处理模块利用串联分压、并联分流、调整占空比或频率等方式,使得每一个BMU向BCU输出一个有差异的恒定信号。也即,对于除BMU1以外的其他BMU,当前BMU的信号处理模块的输入可以是经过所有BMU的信号处理模块并联分流的电流信号,也可以是经过所有BMU的信号处理模块串联分压的电压信号,还可以是与其相连的第一BMU发送过来的频率信号。对应于图2,即BMU1的信号处理模块用于对信号发生单元发 送的触发信号进行调整处理,并将处理后的信号向BMU2发送。除BMU1之外的其他BMU,对与其相连的第一BMU发送的触发信号进行调整处理,并将处理后的信号向与其相连接的第二BMU发送,该处理后的信号为第二BMU的触发信号。其中,与BMU2相连的第一BMU为BMU1、第二BMU为BMU3,与BMU3相连的第一BMU为BMU2、第二BMU为BMU4,依此类推,与BMUn相连的第一BMU为BMUn-1。
测量模块用于测量接收到的触发信号,得到该触发信号的数字测量信号值,以供通信模块与BCU进行交互。对于BMU1来讲,它的测量模块接收到的触发信号来源于信号发生单元,对于除BMU1以外的其他BMU来说,它们的测量模块接收到的触发信号均来自于与其相连的第一BMU。比如,BMU2的测量模块接收到的触发信号来自于BMU1,BMU3的测量模块接收到的触发信号来自于BMU2。存储模块用于存储BCU下发的编号。其中,每一个BMU中的测量模块与信号处理模块相连,存储模块与通信模块相连。通信模块,用于将本BMU内的测量模块测量得到的数字测量信号值上报至BCU,并在接收到BCU下发的编号后,将该编号发送至存储模块。
如图2所示,BCU包括以下模块:通信模块和存储模块。其中,通信模块,用于接收各个BMU上报的数字测量信号值,并将BCU根据各个数字测量信号值为每一个BMU分配的编号下发给各个BMU。存储单元,用于存储顺序位与编号的映射关系,根据各个BMU上报的数字信号测量值、顺序位与编号的映射关系为各个BMU进行编号。也即,BCU作为整个电池管理系统的控制核心,负责整个电池管理系统的协同与控制,控制BMU编号过程的开始、编号分发、编号确认等操作。其中,BCU可通过多种方式触发对BMU的编号过程。比如,BCU在接收外部设备发送的启动编号指令后,启动编号流程;或者BCU自发检测是否存在未进行编号的BMU;如果有,则启动编号过程,本发明实施例对此不进行具体限定。
本发明实施例提供的系统,提供了一个信号发生单元,该信号发生单元与至少两个BMU中的任意一个BMU相连,且至少两个BMU之间依次相连,BCU与每一个BMU均相连,使得每一个BMU均可向BCU输出一个大小存在差异的数字测量信号值,BCU根据接收到的数字信号测量值即可实现对BMU的自动编号,因此在生产过程中所有BMU的硬件及软件均可相同,无需特殊工艺来区分不同的BMU,该种电池管理系统的生产管理成本较低;此外, 当BMU出现故障需要维修或更换时,无需特定软件或硬件形式的BMU,也仅需在更换通用BMU后,重新启动编号过程进行再次编号后即可实现电池包的正常功能,减少了后续维护成本;另外,由于映射表存储在BCU,由BCU完成BMU的编号,不同的电池包均可使用相同的BMU,所以仅需通升级管理BCU便可实现对不同电池包的适配配置,通用性和灵活性较强。
参见图3,其示出了一种以串联分压原理实现对各个BMU进行编号的电池管理系统的结构示意图。
在图3中,低压供电电源VCC作为信号发生单元,输出相对于参考地的恒定电压信号。每一个BMU使用相同阻值的分压电阻作为信号处理模块,这多个分压电阻串联而成。其中,BMU1的信号处理模块连接低压供电电源VCC,BMUn的信号处理模块连接参考地。由于串联分压的特性,因此每一个BMU的信号处理模块的上端与参考地之间的电压信号大小均不相同,即每一个分压电阻的上端与参考地之间的电压信号大小均不相同,这便保证了各个BMU的测量模块接收到的电压信号均是不一样的,这样每一个BMU最终通过通信模块输出到BCU的数字测量信号值均是不一样的,因此实现了对各个BMU的不同编号。
此外,在本发明实施例中使用A/D转换器作为测量模块,用于对接收到的触发信号进行测量。其中,对于每一个BMU来说,该触发信号即指代自身包含的信号处理模块上端的电压信号。对于BMU1来说,该触发信号是由信号发生单元也即低压供电电源VCC输出的,对于除了BMU1之外的其他BMU,该触发信号是与其相连接的第一BMU的信号处理模块的下端的电压信号,对应自身包含的信号处理模块上端的电压信号。比如,对于BMU2来说,该触发信号是BMU1的信号处理模块下端的电压信号,对应BMU2包含的信号处理模块上端的电压信号。即,BMU1的分压电阻对信号发生单元输出的触发信号进行串联分压以获取分压信号,并将分压信号作为与其相连的BMU2的触发信号输出至BMU2。
每一个BMU使用EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦可编程只读存储器)作为存储模块,用于存储BCU下发的编号。对于通信模块来说,使用CAN总线实现与BCU之间的通信连接。
针对BCU而言,同样使用EEPROM作为存储模块。对于其包含的通信模 块来说,使用CAN总线实现与BMU之间的通信连接。需要说明的是,在图3中还包括uC单片机,用于对BMU中的各个模块进行控制,其中uC单片机还可为任意型号的处理器,本发明实施例对此不进行具体限定。
本发明实施例提供的系统,提供了一个信号发生单元,该信号发生单元与至少两个BMU中的任意一个BMU相连,且至少两个BMU之间依次相连,BCU与每一个BMU均相连,使得每一个BMU均可向BCU输出一个大小存在差异的数字测量信号值,BCU根据接收到的数字信号测量值即可实现对BMU的自动编号,因此在生产过程中所有BMU的硬件及软件均相同,无需特殊工艺来区分不同的BMU,该种电池管理系统的生产管理成本较低;此外,当BMU出现故障需要维修或更换时,无需特定软件或硬件形式的BMU,也仅需在更换通用BMU后,重新启动编号过程进行再次编号后即可实现电池包的正常功能,减少了后续维护成本;另外,由于映射表存储在BCU,由BCU完成BMU的编号,不同的电池包均可使用相同的BMU,所以仅需通升级管理BCU便可实现对不同电池包的适配配置,通用性和灵活性较强。
参见图4,其示出了一种以调整方波信号的频率原理实现对各个BMU进行编号的电池管理系统的结构示意图。
在图4中,作为信号发生单元的频率输出模块集成在BCU中。其中,频率输出模块具体可为单片机的PWM(Pulse Width Modulation,脉冲宽度调制)输出模块,输出恒定频率或恒定占空比的方波信号。对于每一个BMU来说,使用频率输出模块作为信号处理模块,该信号处理模块同样使用单片机的PWM输出模块。不同的是,信号处理模块输出的方波信号的频率相比于输入的方波信号做了一些调整。
例如,一个信号处理模块输入的方波信号的频率为N Hz,占空比为m%,则该信号处理模块输出N+K Hz,占空比m%的方波信号。频率依次递增,保证与其相连接的第二BMU采集到的方波信号的频率与当前BMU采集到的方波信号的频率相差KHz。也即,如果BMU1采集到的方波信号的频率为N Hz,那么BMU2采集的方波信号的频率便为N+K Hz,BMU3采集的方波信号的频率便为N+2K Hz,依此类推,BMUn采集的方波信号的频率便为N+(n-1)KHz。总结来说,若一个BMU接收到的触发信号为方波信号,则该BMU的频率输出模块根据频率步进值对该触发信号进行频率调整处理,得到调整后的方波信 号,并将调整后的方波信号作为与其相连接的BMU的触发信号输出至第二BMU。
需要说明的是,除了采取调整方波信号的频率的方式,还可以采取调整方波信号的占空比的方式,本发明实施例对此不进行具体限定。此外,除了采取逐步增大频率的方式,还可采取逐步减小频率的方式,本发明实施例对此同样不进行具体限定。
在本发明实施例中,使用频率采集模块作为BMU的测量模块,其中频率采集模块具体可为单片机的输入捕获模块,用于测量输入的触发信号的频率或者占空比。其中,对于BMU1来说,该触发信号是BCU中的频率输出模块也即信号发生单元输出的恒定频率的方波信号;对于除BMU1之外的其他BMU,该触发信号是与其相连接的第一BMU的信号处理模块也即频率输出模块输出的经过频率调整后的方波信号。
每一个BMU使用EEPROM作为存储模块,用于存储BCU下发的编号。对于通信模块来说,使用CAN总线实现与BCU之间的通信连接。针对BCU而言,同样使用EEPROM作为存储模块;通信模块使用CAN总线实现与BMU之间的通信连接。
本发明实施例提供的系统,提供了一个信号发生单元,该信号发生单元与至少两个BMU中的任意一个BMU相连,且至少两个BMU之间依次相连,BCU与每一个BMU均相连,使得每一个BMU均可向BCU输出一个大小存在差异的数字测量信号值,BCU根据接收到的数字信号测量值即可实现对BMU的自动编号,因此在生产过程中所有BMU的硬件及软件均相同,无需特殊工艺来区分不同的BMU,该种电池管理系统的生产管理成本较低;此外,当BMU出现故障需要维修或更换时,无需特定软件或硬件形式的BMU,也仅需在更换通用BMU后,重新启动编号过程进行再次编号后即可实现电池包的正常功能,减少了后续维护成本;另外,由于映射表存储在BCU,由BCU完成BMU的编号,不同的电池包均可使用相同的BMU,所以仅需通升级管理BCU便可实现对不同电池包的适配配置,通用性和灵活性较强。
参见图5,其示出了一种以并联分流原理实现对各个BMU进行编号的电池管理系统的结构示意图。
在图5中,低压供电电源VCC作为信号发生单元,输出相对于参考地的 恒定电压信号。每一个BMU使用相同阻值的电阻作为信号处理模块。在这些相同阻值的电阻作用下,由于每一个BMU并联,使得每一个BMU可检测到不同的电流。其中,BMU1的信号处理模块连接低压供电电源VCC,BMUn的信号处理模块悬空。对于每一个BMU来说,除了测量模块、信号处理模块、存储模块和通信模块之外,还可包括一个电源转换模块。其中,电源转换模块用于为BMU内所有模块提供工作电源。由于每个BMU并联,根据并联分流的特性,每一个BMU检测到的电流大小是不一样的,这样每一个BMU最终通过通信模块输出到BCU的数字测量信号值均是不一样的,因此实现了对各个BMU的编号。
在图5中,对于每一个BMU来讲,使用电流采集模块作为测量模块,用于测量电源线上的电流。每个BMU的电源端口除了给内部供电之外,还通过信号处理模块再接入与其连接的第二BMU的电源端口。假设每个BMU消耗电流大小为Ibmu,则线束最末端的BMUn的电流采集模块测量到的电流大小为0,而线束上BMU1的电流采集模块采集到的电流为n*Ibmu。以此类推,每一个BMU的电流采集模块均可以检测到唯一的电流值。
每一个BMU使用EEPROM作为存储模块,用于存储BCU下发的编号。对于通信模块来说,使用CAN总线实现与BCU之间的通信连接。针对BCU而言,同样使用EEPROM作为存储模块,通信模块使用CAN总线实现与BMU之间的通信连接。
本发明实施例提供的系统,提供了一个信号发生单元,该信号发生单元与至少两个BMU中的任意一个BMU相连,且至少两个BMU之间依次相连,BCU与每一个BMU均相连,使得每一个BMU均可向BCU输出一个大小存在差异的数字测量信号值,BCU根据接收到的数字信号测量值即可实现对BMU的自动编号,因此在生产过程中所有BMU的硬件及软件均相同,无需特殊工艺来区分不同的BMU,该种电池管理系统的生产管理成本较低;此外,当BMU出现故障需要维修或更换时,无需特定软件或硬件形式的BMU,也仅需在更换通用BMU后,重新启动编号过程进行再次编号后即可实现电池包的正常功能,减少了后续维护成本;另外,由于映射表存储在BCU,由BCU完成BMU的编号,不同的电池包均可使用相同的BMU,所以仅需通升级管理BCU便可实现对不同电池包的适配配置,通用性和灵活性较强。
参见图6,其示出了一种对电池检测单元的编号方法,应用于上述图3所示的电池管理系统,该方法流程包括:
601、信号发生单元向BMU1发送触发信号。
602、BCU通过CAN总线向与其连接的各个BMU均发送启动编号指令。
603、当各个BMU接收到启动编号指令并根据启动编号指令激活A/D转换器后,各个BMU的A/D转换器测量接收到的触发信号的电压值,得到多个数字电压值。
其中,对于BMU1来讲该触发信号为信号发生单元输出的信号。当BMU1接收到启动编号指令时,BMU1对该触发信号进行测量以获得数字测量信号值。对于除BMU1之外的其他BMU来讲,BMU2接收到的触发信号为BMU1输出的分压信号,该分压信号由BMU1对其接收到的触发信号进行串联分压处理得到。BMU3接收到的触发信号为BMU2输出的分压信号,该分压信号由BMU2对其接收到的触发信号进行串联分压处理得到。以此类推,BMUn接收到的触发信号为BMUn-1输出的分压信号,该分压信号由BMUn-1对其接收到的触发信号进行串联分压处理得到。其中,使用A/D转换器可测量得到该触发信号的数字化测量值。即,A/D转换器将本BMU的分压电阻上端的电压信号转换为数字化测量值。
604、各个BMU通过CAN总线向BCU发送数字电压值。
605、BCU在接收到每一个BMU发送的数字电压值后,对接收到的全部数字电压值进行排序,得到排序结果。
其中,可按照电压值由大到小的顺序进行排列,比如排序结果可诸如下表1所示,本发明实施例对此不进行具体限定。
表1
序号 数字电压值(V)
1 12
2 10.8
3 9.6
4 8.4
5 7.2
606、BCU根据排序结果、预先存储的顺序位与编号的映射关系,为每一个BMU进行编号,向每一个BMU下发对应的编号。
在本发明实施例中,顺序为与编号的映射关系可诸如下述表2所示。
表2
序号 编号
1 0xA0
2 0xA7
3 0xA2
4 0xA3
5 0xA1
有了上述表1和表2,BCU便可根据上述表1和表2为各个BMU进行编号。其中,编号可如下述表3所示。
表3
数字电压值(V) 数字电压值(V)
12 0xA0
10.8 0xA7
9.6 0xA2
8.4 0xA3
7.2 0xA1
在得到各个BMU的编号后,BCU可通过CAN总线向各个BMU下发对应的编号。而每一个BMU在通过CAN总线接收到对应的编号后,将对应的编号存储在EEPROM中。
本发明实施例提供的方法,在BCU启动对BMU的编号过程后,BMU测量接收到的触发信号,得到数字测量信号值,并向BCU发送数字测量信号值,而BCU在接收到每一个BMU发送的数字测量信号值后,对接收到的全部数字测量信号值进行排序得到排序结果,并根据排序结果、预先存储的顺序位与编号的映射关系,为每一个BMU进行编号,之后向每一个BMU下发对应的编号,本发明实现了对BMU的自动编号,使得在生产过程中所有BMU的硬件及软件均可相同,无需特殊工艺来区分不同的BMU,该种电池管理系统的生产管理成本较低;此外,当BMU出现故障需要维修或更换时,无需特定软件或硬件形式的BMU,也仅需在更换通用BMU后,重新启动编号过程进行再次编号后即可实现电池包的正常功能,减少了后续维护成本;另外,由于映射 表存储在BCU,由BCU完成BMU的编号,不同的电池包均可使用相同的BMU,所以仅需通升级管理BCU便可实现对不同电池包的适配配置,通用性和灵活性较强。
参见图7,其示出了一种对电池检测单元的编号方法,应用于上述图4所示的电池管理系统,该方法流程包括:
701、信号发生单元向BMU1发送触发信号。
702、BCU通过CAN总线向与其连接的各个BMU均发送启动编号指令。
703、当各个BMU接收到启动编号指令并根据启动编号指令激活频率采集模块后,各个BMU的频率采集模块测量接收到的触发信号的频率值,得到多个数字频率值。
其中,对于BMU1来讲该触发信号为BCU中频率输出模块输出的方波信号。当BMU1接收到启动编号指令时,BMU1对该触发信号进行测量以获得数字测量信号值。对于除BMU1之外的其他BMU来讲,BMU2接收到的触发信号为BMU1输出的经过频率调整后的方波信号,该方波信号由BMU1根据频率步进值对其接收到的方波信号进行频率调整处理得到。BMU3接收到的触发信号为BMU2输出的经过频率调整后的方波信号,该方波信号由BMU2根据频率步进值对其接收到的方波信号进行频率调整处理得到。以此类推,BMUn接收到的触发信号为BMUn-1输出的方波信号,该方波信号由BMUn-1根据频率步进值对其接收到的方波信号进行频率调整处理得到。
704、各个BMU通过CAN总线向BCU发送数字频率值。
705、BCU在接收到每一个BMU发送的数字频率值后,对接收到的全部数字频率值进行排序,得到排序结果。
其中,可按照频率值由大到小的顺序进行排列,本发明实施例对此不进行具体限定。可参考步骤604实现,在此不再进行赘述。
706、BCU根据排序结果、预先存储的顺序位与编号的映射关系,为每一个BMU进行编号,向每一个BMU下发对应的编号。
其中,编号过程可参考步骤605实现,在此不再进行赘述。在得到各个BMU的编号后,BCU可通过CAN总线向各个BMU下发对应的编号。而每一个BMU在通过CAN总线接收到对应的编号后,将对应的编号存储在EEPROM中。
本发明实施例提供的方法,在BCU启动对BMU的编号过程后,BMU测量接收到的触发信号,得到数字测量信号值,并向BCU发送数字测量信号值,而BCU在接收到每一个BMU发送的数字测量信号值后,对接收到的全部数字测量信号值进行排序得到排序结果,并根据排序结果、预先存储的顺序位与编号的映射关系,为每一个BMU进行编号,之后向每一个BMU下发对应的编号,本发明实现了对BMU的自动编号,使得在生产过程中所有BMU的硬件及软件均可相同,无需特殊工艺来区分不同的BMU,该种电池管理系统的生产管理成本较低;此外,当BMU出现故障需要维修或更换时,无需特定软件或硬件形式的BMU,也仅需在更换通用BMU后,重新启动编号过程进行再次编号后即可实现电池包的正常功能,减少了后续维护成本;另外,由于映射表存储在BCU,由BCU完成BMU的编号,不同的电池包均可使用相同的BMU,所以仅需通升级管理BCU便可实现对不同电池包的适配配置,通用性和灵活性较强。
参见图8,其示出了一种对电池检测单元的编号方法,应用于上述图5所示的电池管理系统,该方法流程包括:
801、信号发生单元向BMU1发送触发信号。
802、BCU通过CAN总线向与其连接的各个BMU均发送启动编号指令。
803、当各个BMU接收到启动编号指令并根据启动编号指令激活电流采集模块后,各个BMU的电流采集模块测量接收到的触发信号的电流值,得到多个数字电流值。
804、各个BMU通过CAN总线向BCU发送数字电流值。
805、BCU在接收到每一个BMU发送的数字电流值后,对接收到的全部数字电流值进行排序,得到排序结果。
其中,可按照电流值由大到小的顺序进行排列,本发明实施例对此不进行具体限定。可参考步骤604实现,在此不再进行赘述。
806、BCU根据排序结果、预先存储的顺序位与编号的映射关系,为每一个BMU进行编号,向每一个BMU下发对应的编号。
其中,编号过程可参考步骤605实现,在此不再进行赘述。在得到各个BMU的编号后,BCU可通过CAN总线向各个BMU下发对应的编号。而每一个BMU在通过CAN总线接收到对应的编号后,将对应的编号存储在EEPROM 中。
本发明实施例提供的方法,在BCU启动对BMU的编号过程后,BMU测量接收到的触发信号,得到数字测量信号值,并向BCU发送数字测量信号值,而BCU在接收到每一个BMU发送的数字测量信号值后,对接收到的全部数字测量信号值进行排序得到排序结果,并根据排序结果、预先存储的顺序位与编号的映射关系,为每一个BMU进行编号,之后向每一个BMU下发对应的编号,本发明实现了对BMU的自动编号,使得在生产过程中所有BMU的硬件及软件均可相同,无需特殊工艺来区分不同的BMU,该种电池管理系统的生产管理成本较低;此外,当BMU出现故障需要维修或更换时,无需特定软件或硬件形式的BMU,也仅需在更换通用BMU后,重新启动编号过程进行再次编号后即可实现电池包的正常功能,减少了后续维护成本;另外,由于映射表存储在BCU,由BCU完成BMU的编号,不同的电池包均可使用相同的BMU,所以仅需通升级管理BCU便可实现对不同电池包的适配配置,通用性和灵活性较强。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种电池管理系统,其特征在于,所述系统包括:信号发生单元、电池控制单元BCU和至少两个电池检测单元BMU;
    所述信号发生单元与所述至少两个BMU中的任意一个BMU相连,所述信号发生单元用于向与所述信号发生单元连接的BMU发送触发信号;
    所述至少两个BMU依次相连,所述至少两个BMU中的BMU用于接收所述信号发生单元发送的或者相连接的第一BMU发送的触发信号,根据所述触发信号获取数字测量信号值,并向所述BCU发送所述数字测量信号值;
    所述BCU与所述至少两个BMU中的任意一个BMU均相连,用于根据接收到的数字信号测量值为每一个BMU进行编号,并向每一个BMU下发对应的编号。
  2. 根据权利要求1所述的系统,其特征在于,所述至少两个BMU中的任意一个BMU均包括测量模块、信号处理模块、存储模块和通信模块;
    所述存储模块与通信模块相连,所述通信模块用于向所述BCU上报所述数字测量信号值,还用于接收所述BCU下发的所述编号并向所述存储模块发送所述编号;
    所述测量模块用于测量所述信号发生单元或相连接的第一BMU发送的触发信号以获得所述数字测量信号值;
    所述信号处理模块用于对所述信号发生单元或相连接的第一BMU发送的触发信号进行调整处理,并将处理后的信号向相连接的第二BMU发送;其中,所述处理后的信号是所述第二BMU的触发信号。
  3. 根据权利要求1所述的系统,其特征在于,所述信号发生单元输出的触发信号为相对参考地的恒定电压信号。
  4. 根据权利要求1所述的系统,其特征在于,所述信号发生单元输出的触发信号为恒定占空比或恒定频率的方波信号。
  5. 一种对电池检测单元的编号方法,所述方法应用于电池管理系统,其特征在于,所述电池管理系统包括信号发生单元、电池控制单元BCU以及至少两个电池检测单元BMU;其中,所述BCU与所述至少两个BMU中的每个BMU分别连接,所述至少两个BMU中的BMU按照预设顺序依次连接;所述信号发生单元与第一BMU连接,所述第一BMU是所述至少两个BMU中的任意一个 BMU;与所述第一BMU连接的BMU是第二BMU;
    所述方法包括:
    信号发生单元向第一BMU发送触发信号;
    所述BCU向与所述BCU连接的BMU均发送启动编号指令;
    当第一BMU接收到所述启动编号指令时,所述第一BMU对所述触发信号进行测量以获得数字测量信号值,并向所述BCU发送所述数字测量信号值;所述第一BMU对所述触发信号进行调整,并向所述第二BMU发送调整后的触发信号;所述第二BMU根据所述启动编号指令,对所述调整后的触发信号进行测量以获取数字信号测量值,并向所述BCU发送获取的数字信号测量值;
    所述BCU根据接收到的数字测量信号值为每一个BMU进行编号,并向每一个BMU下发对应的编号。
  6. 根据权利要求5所述的方法,其特征在于,所述BCU根据接收到的数字测量信号值为每一个BMU进行编号,包括:
    所述BCU对接收到的全部数字测量信号值进行排序,得到排序结果;
    所述BCU根据所述排序结果、预先存储的顺序位与编号的映射关系,为每一个BMU进行编号。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一BMU对所述触发信号进行调整,并向所述第二BMU发送调整后的触发信号,包括:
    若所述触发信号为电压信号,则所述第一BMU对所述触发信号进行串联分压以获取分压信号,并向所述第二BMU发送所述分压信号,其中,所述分压信号为所述第二BMU的触发信号。
  8. 根据权利要求5或6所述的方法,其特征在于,所述第一BMU对所述触发信号进行调整,并向所述第二BMU发送调整后的触发信号,包括:
    若所述触发信号为电流信号,则所述第一BMU对所述触发信号进行并联分流以获取分流信号,并向所述第二BMU发送所述分流信号,其中,所述分流信号为所述第二BMU的触发信号。
  9. 根据权利要求5或6所述的方法,其特征在于,所述第一BMU对所述触发信号进行调整,并向所述第二BMU发送调整后的触发信号,包括:
    若所述触发信号为方波信号,则所述第一BMU根据频率步进值对所述触发信号进行频率调整处理以获取调整后的方波信号,并向所述第二BMU发送所述调整后的方波信号,其中,所述调整后的方波信号为所述第二BMU的触发信号。
  10. 根据权利要求5至9任一所述的方法,其特征在于,所述第一BMU对所述触发信号进行测量以获得数字测量信号值,包括:
    若所述触发信号为电压信号,则所述第一BMU测量所述触发信号的电压值,将所述电压值作为所述数字测量信号值;或,
    若所述触发信号为电流信号,则所述第一BMU测量所述触发信号的电流值,将所述电流值作为所述数字测量信号值;或,
    若所述触发信号为方波信号,则所述第一BMU测量所述触发信号的频率值,将所述频率值作为所述数字测量信号值。
  11. 根据权利要求5至10任一所述的方法,其特征在于,所述向每一个BMU下发对应的编号之后,所述方法还包括:
    所述BMU接收所述BCU发送的编号,并将所述编号进行存储。
PCT/CN2016/113505 2016-03-29 2016-12-30 电池管理系统及对电池检测单元的编号方法 WO2017166885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610188692.6A CN107239047B (zh) 2016-03-29 2016-03-29 电池管理系统及对电池检测单元的编号方法
CN201610188692.6 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017166885A1 true WO2017166885A1 (zh) 2017-10-05

Family

ID=59963404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113505 WO2017166885A1 (zh) 2016-03-29 2016-12-30 电池管理系统及对电池检测单元的编号方法

Country Status (2)

Country Link
CN (1) CN107239047B (zh)
WO (1) WO2017166885A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507403A (zh) * 2021-06-28 2021-10-15 江苏纳通能源技术有限公司 便于精确定位的从bmu的自动组网系统及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509308A (zh) * 2019-01-31 2020-08-07 北京新能源汽车股份有限公司 一种电池管理系统子板编码的控制方法、装置及系统
CN109991901A (zh) * 2019-04-08 2019-07-09 奇瑞汽车股份有限公司 一种电池管理系统的编号电路及方法
CN110716147A (zh) * 2019-11-14 2020-01-21 云蜂数智物联网有限公司 一种电池组内阻的测量方法和装置
CN111123780B (zh) * 2019-12-23 2022-04-15 北京海博思创科技股份有限公司 编号配置方法、装置、电子设备及存储介质
CN112532759B (zh) * 2020-10-30 2023-03-07 深圳市禾望电气股份有限公司 总线节点标识符的自动配置方法以及总线网络系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110259A (ja) * 2000-09-28 2002-04-12 Hitachi Ltd 蓄電装置
CN101667668A (zh) * 2008-09-03 2010-03-10 欧姆龙株式会社 多单元电池系统及管理编号赋予方法
CN103155344A (zh) * 2010-10-11 2013-06-12 株式会社Lg化学 用于对电池组中的多个从设置顺序标识的方法和系统
JP2014041747A (ja) * 2012-08-22 2014-03-06 Toshiba Corp 蓄電池装置、蓄電池装置の管理方法、および、蓄電池システム
CN103650290A (zh) * 2011-09-05 2014-03-19 株式会社Lg化学 用于向电池组的多个从分配标识符的方法和系统
CN103809476A (zh) * 2014-02-24 2014-05-21 中国第一汽车股份有限公司 分布式电池管理系统的模块控制单元id动态管理方法
CN103825324A (zh) * 2014-02-10 2014-05-28 奇瑞汽车股份有限公司 电池模组编号系统和方法
CN104756351A (zh) * 2012-11-20 2015-07-01 三菱重工业株式会社 电池管理装置及其控制方法及程序、以及具备这些的电池监视系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110259A (ja) * 2000-09-28 2002-04-12 Hitachi Ltd 蓄電装置
CN101667668A (zh) * 2008-09-03 2010-03-10 欧姆龙株式会社 多单元电池系统及管理编号赋予方法
CN103155344A (zh) * 2010-10-11 2013-06-12 株式会社Lg化学 用于对电池组中的多个从设置顺序标识的方法和系统
CN103650290A (zh) * 2011-09-05 2014-03-19 株式会社Lg化学 用于向电池组的多个从分配标识符的方法和系统
JP2014041747A (ja) * 2012-08-22 2014-03-06 Toshiba Corp 蓄電池装置、蓄電池装置の管理方法、および、蓄電池システム
CN104756351A (zh) * 2012-11-20 2015-07-01 三菱重工业株式会社 电池管理装置及其控制方法及程序、以及具备这些的电池监视系统
CN103825324A (zh) * 2014-02-10 2014-05-28 奇瑞汽车股份有限公司 电池模组编号系统和方法
CN103809476A (zh) * 2014-02-24 2014-05-21 中国第一汽车股份有限公司 分布式电池管理系统的模块控制单元id动态管理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507403A (zh) * 2021-06-28 2021-10-15 江苏纳通能源技术有限公司 便于精确定位的从bmu的自动组网系统及方法
CN113507403B (zh) * 2021-06-28 2023-04-18 江苏纳通能源技术有限公司 便于精确定位的从bmu的自动组网系统及方法

Also Published As

Publication number Publication date
CN107239047A (zh) 2017-10-10
CN107239047B (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2017166885A1 (zh) 电池管理系统及对电池检测单元的编号方法
CN103019234B (zh) 新能源汽车电池管理采集子系统及其控制方法
CN209488195U (zh) 移动终端
US9553460B2 (en) Wireless battery management system
US9595847B2 (en) Uninterrupted lithium battery power supply system
US9000935B2 (en) Battery management system
US9853464B2 (en) Energy storage system and synchronization method thereof
CN202995453U (zh) 新能源汽车电池管理采集子系统
CN105227013B (zh) 一种电动工具及其控制方法
EP3074267B1 (de) Verfahren und vorrichtung zur prüfung einer traktionsbatterie eines elektrofahrzeugs
CN107834711A (zh) 一种支持多负载的无线充电动态控制设备及其控制方法
CN106537749A (zh) 用于控制输出电压的方法和装置以及适配器
CN104377781A (zh) 适配器及包括该适配器的充电系统、充电的方法
WO2016047040A1 (ja) 蓄電システム、制御装置、および制御方法
CN107634533B (zh) 电池能量回馈电池测试方法
CN102347625A (zh) 串联监控电池化成测试法及其设备
CN105891716A (zh) 一种电池特性参数测试装置
CN205040065U (zh) 一种可调输出电流的恒压恒流驱动电路
CN103812330B (zh) 可动态调整输出电压的电源转换器及其适用的供电系统
CN105548734A (zh) 非车载直流充电机检测装置
CN105119510A (zh) 混合型级联多电平换流器的电容电压平衡方法与系统
CN106569146A (zh) 一种电源模块测试系统及方法
CN103986205A (zh) 可动态适配的十六串锂电池组多模式均衡控制方法
CN104577228A (zh) 一种电池均衡模块电压偏差检测修调系统
CN210225002U (zh) 充电控制装置及系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896653

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896653

Country of ref document: EP

Kind code of ref document: A1