WO2017166869A1 - 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器 - Google Patents

一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器 Download PDF

Info

Publication number
WO2017166869A1
WO2017166869A1 PCT/CN2016/110660 CN2016110660W WO2017166869A1 WO 2017166869 A1 WO2017166869 A1 WO 2017166869A1 CN 2016110660 W CN2016110660 W CN 2016110660W WO 2017166869 A1 WO2017166869 A1 WO 2017166869A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber amplifier
gain
power
raman
hybrid
Prior art date
Application number
PCT/CN2016/110660
Other languages
English (en)
French (fr)
Inventor
陶金涛
付成鹏
张翠红
蔡飞
熊涛
景运瑜
卜勤练
余春平
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US16/089,929 priority Critical patent/US11239628B2/en
Publication of WO2017166869A1 publication Critical patent/WO2017166869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/1302Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by all-optical means, e.g. gain-clamping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2931Signal power control using AGC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Definitions

  • the invention belongs to the field of optical communication technologies, and in particular relates to a method for realizing precise control of target gain of a hybrid optical fiber amplifier and a hybrid optical fiber amplifier.
  • Optical fiber amplifiers are the most important devices in optical communication systems. With the development of optical communication technologies, especially the commercialization of 100G coherent systems, optical communication systems have higher requirements for amplifiers, and separate erbium-doped fiber amplifiers (EDFAs, The EDFAs below all indicate erbium-doped fiber amplifiers because of noise factor and other limitations, and the individual Raman fiber amplifiers (RFA, RFA below represent Raman fiber amplifiers) are limited by their gain, amplification efficiency, etc. It has been difficult to meet the requirements of an increasingly large-capacity optical communication system. Combining the two, combining the advantages of both, compensating for their respective defects, the hybrid fiber amplifier formed by unified control will be widely used in modern communication systems.
  • This out-of-band ASE consists of two parts, one due to the ASE generated when the signal light is amplified, and the other is that the original ASE power in the source signal light is amplified.
  • the type of transmission fiber is different, the environmental difference of the system will affect the relationship between gain and out-of-band ASE in the RFA control formula, and whether the EDFA is pumped in the same system, EDFA The output power level and so on will affect the ASE size of the next-level RFA that is passed to the system.
  • the gain error of the control will be Very big. If the feedback can be formed for the gain control of the RFA, and the RFA can control the stable out-of-band ASE power every time the pump is turned on, the gain control accuracy of the hybrid fiber amplifier can be greatly improved.
  • the EDFA described in the patent application 201210325897.6 does not contain a variable attenuator (VOA,
  • VOA variable attenuator
  • the control range is limited and cannot meet the needs of diverse transmission scenarios. If the EDFA optical path contains built-in VOA, the gain and slope adjustment range of the hybrid fiber amplifier can be greatly increased.
  • the problem of VDA-containing EDFA noise index is concerned because the noise figure of the hybrid fiber amplifier is mainly determined by the first-stage amplifier, so the noise figure of the hybrid amplifier itself is much smaller than that of the single EDFA, which can satisfy most systems. Need.
  • the main object of the present invention is to provide a hybrid optical fiber amplifier and a target gain precise control method thereof, aiming at solving the problem that the hybrid optical fiber amplifier is difficult to achieve accurate gain control in the system, and the gain adjustment range is not large enough.
  • a method for accurately controlling target gain of a hybrid fiber amplifier mainly includes the following steps:
  • Step 1 When the hybrid amplifier is turned on, first control the erbium-doped fiber amplifier in the hybrid fiber amplifier to output a constant power of light, denoted as P1;
  • Step 2 After the erbium-doped fiber amplifier outputs a constant power for a certain period of time, this time is recorded as t1, and the Raman fiber amplifier in the hybrid fiber amplifier is controlled to detect the source signal optical power, which is recorded as S1, and the out-of-band included in the source signal light.
  • ASE power recorded as Source_ASE1;
  • Step 4 After determining that the source signal power S1 detected by the Raman fiber amplifier is stable, control the Raman fiber amplifier to open the pump; and read the detected value of the out-of-band ASE power in real time;
  • Step 5 The out-of-band ASE power detection value read in step 4 is compared with Objec_ASE_1; when the two are equal, the pump power adjustment is stopped;
  • Step 3. Calculate the new target out-of-band ASE power, denoted as ASE3. Repeat steps 4 and 5 again;
  • step 5 the pump adjustment can be stopped, and the gain controlled by the Raman fiber amplifier at this time is also relatively accurate.
  • the system error is large, or the accuracy of the system is higher, you can repeat steps 3 to 6 after step 7 is completed until delta Gain reaches the accuracy required by the system.
  • Step 8 After the Raman pump power is stabilized, control the erbium-doped fiber amplifier to turn on the pump according to its set gain requirement. The rated hybrid fiber amplifier control gain is achieved.
  • the hybrid fiber amplifier includes a Raman fiber amplifier portion, an erbium doped fiber amplifier portion, and a control unit portion.
  • the Raman fiber amplifier portion includes a pump signal combiner, a Raman pump laser group connected to a pump input end of the pump signal combiner, and a signal output of the pump signal combiner
  • An end-connecting splitting coupler 1 a photodetector 1 connected to the small end of the splitting coupler 1, and an out-of-band ASE filter connected to the large end of the splitting coupler 1, and the out-of-band ASE Photodetector 2 connected to the out-of-band optical output of the filter, splitter coupler 2 (7) connected to the signal light output of the out-of-band ASE filter (5), and small end of the split coupler 2 (7)
  • Connected photodetector 3 (8), the large end of the split coupler 2 (7) is the output of the Raman fiber amplifier portion, and the output is connected to the input end of the erbium doped fiber amplifier portion (9);
  • the erbium doped fiber amplifier portion includes a pump laser group and a variable attenuator.
  • the control unit includes a pump laser output control unit, signal light and out-of-band ASE detection and storage unit, gain and out-of-band ASE calculation unit, erbium-doped fiber amplifier control unit, and the like.
  • the erbium-doped fiber amplifiers of all the hybrid fiber amplifiers simultaneously output constant optical power, and the Raman amplifiers of all the hybrid optical amplifiers start to scale at the same time, and the overall operation time of the system is greatly increased;
  • FIG. 1 is a structural view of a hybrid optical fiber amplifier device of the present invention
  • FIG. 2 is a schematic diagram of application configuration of a hybrid optical fiber amplifier in an actual system
  • Fig. 3 is a schematic structural view of a control unit portion.
  • control unit part
  • the hybrid fiber amplifier provided by the invention integrates the Raman fiber amplifier and the erbium-doped fiber amplifier into one body, and achieves the precise expected effect of the hybrid fiber amplifier through overall control.
  • FIG. 2 A hybrid fiber amplifier for achieving precise gain control according to the present invention is shown in FIG.
  • the application scenario of the fiber-optic hybrid fiber amplifier of the present invention is shown in FIG. 2 .
  • the hybrid fiber amplifier includes a pump signal combiner (2), and a pump input of the pump signal combiner is connected to a Raman pump laser group (11).
  • the signal output end of the pump signal combiner (2) is connected to the common end of the splitting coupler 1 (3), and the small end of the splitting coupler 1 (3) is connected to the photodetector 1 (4).
  • the large end of the optical coupler 1 (3) is connected to the common end of the out-of-band ASE filter (5), and the out-of-band optical output of the out-of-band ASE filter (5) is connected to the photodetector 2 (6).
  • the signal light output end of the out-of-band ASE filter (5) is connected to the common end of the splitting coupler 2 (7), and the small end of the splitting coupler (7) 2 is connected to the photodetector 3 (8)
  • the large end of the splitting coupler (7) is an output of a Raman fiber amplifier portion connected to an input end of the erbium doped fiber amplifier portion (9); the control unit portion (10) is respectively associated with the Raman
  • the pump laser group (11), the photodetector 1 (4), the photodetector 2 (6), the photodetector 3 (8), and the erbium doped fiber amplifier portion (9) are connected.
  • the erbium doped fiber amplifier portion (9) includes a pump laser group (18) and a variable attenuator (19).
  • the application scenario of the hybrid fiber amplifier described includes an erbium-doped fiber power amplifier (12), a plurality of sequentially connected hybrid fiber amplifiers, a hybrid amplifier connected by an optical fiber, and a blend of the previous hybrid fiber amplifier.
  • the ⁇ fiber amplifier portion (9) is connected to the Raman fiber amplifier portion (1) of the latter hybrid fiber amplifier through a transmission fiber; the erbium-doped fiber power amplifier (12) is passed through the transmission fiber 1 (13) and the hybrid fiber amplifier 1 ( 14) connected, the hybrid fiber amplifier 1 (14) is connected to the hybrid fiber amplifier 2 (17) through the transmission fiber 2 (15), and the hybrid fiber amplifier 2 (17) is connected to the hybrid fiber amplifier 3 through the transmission fiber 3 (16). And so on.
  • control unit portion (10) includes a pump laser output control unit (20), a signal light and an out-of-band ASE detection and storage unit (21), a gain and an out-of-band ASE calculation unit (22). Erbium Fiber amplifier gain control unit (23).
  • the method for implementing precise control of the hybrid fiber amplifier gain involved in the present invention includes the following steps:
  • Step 1 After receiving the command to open the pump, the control unit controls the EDFA part to output a constant output power, for example, 6dBm; the light is transmitted to the Raman amplifier of the next stage through the transmission fiber, and the Raman amplifier of the station can receive the previous one.
  • a constant output power for example, 6dBm
  • Step 2 After the t1 time, the first photodetector of the Raman amplifier detects the source signal optical power when the Raman is turned off, and records it as S1, and the out-of-band ASE power contained in the source signal light, which is recorded as Source_ASE1;
  • Step 4 After determining that the source signal power S1 detected by the Raman fiber amplifier is stable, control the Raman fiber amplifier to open the pump; and read the detected value of the out-of-band ASE power in real time;
  • Step 5 Compare the out-of-band ASE power detection value read in step 4 with Objec_ASE_1; when the two are equal, stop the pump power adjustment;
  • step 3 to calculate the new target out-of-band ASE power, denoted as ASE3.
  • step 5 the pump adjustment can be stopped, and the gain controlled by the Raman fiber amplifier at this time is also relatively accurate.
  • the system error is large, or the accuracy of the system is higher, you can repeat steps 3 to 6 after step 7 is completed until delta Gain reaches the accuracy required by the system.
  • Step 8 After the Raman pump power is stabilized, control the erbium-doped fiber amplifier to turn on the pump according to its set gain requirement. The rated hybrid fiber amplifier control gain is achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供一种实现混合光纤放大器增益精确控制的方法及混合光纤放大器;其采用掺铒光纤放大器首先输出恒定功率的方法,给下一级的拉曼光纤放大器提供了一个可供比较的源信号光功率,通过拉曼开泵后计算的源信号光功率与关泵时探测的源信号光功率对比,从而对增益的控制形成一个反馈,极大的提高了拉曼光纤放大器的增益控制精度;且所有的混合光纤放大器的掺铒光纤放大器部分同时输出恒定光功率,所有混合光放大器的拉曼放大器部分同时开始定标,使系统整体运行启动的时间大幅提升;不限制掺铒光纤放大器部分是否使用内置可变衰减器,混合光纤放大器的增益调节范围大幅增加。

Description

一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器 技术领域
本发明属于光通信技术领域,尤其涉及一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器。
背景技术
光纤放大器是光通信系统中最重要的一个器件,随着光通信技术的发展,特别是100G相干系统的商用,光通信系统对放大器的要求越来越高,单独的掺铒光纤放大器(EDFA,下文中的EDFA均表示掺铒光纤放大器)因为噪声指数等原因的限制,及单独拉曼光纤放大器(RFA,下文中的RFA均表示拉曼光纤放大器)因为其增益大小、放大效率等原因的限制,已难以满足容量日益增长的光通信系统的要求。将它们两者结合,集合两者的优点,补偿各自的缺陷,通过统一的控制而形成的混合光纤放大器在现代通信系统中将会得到广泛的应用。
在之前的技术中,RFA和EDFA都是独立使用,独立调整其增益及/或斜率,没有一个统一的控制平台来调整混合光纤放大器(HYFA,下文中HYFA均表示混合光纤放大器)的放大增益和/或斜率,在2012年,专利申请201210325897.6提出了一种混合光纤放大器及其增益、增益斜率的调整方法及装置。其提出了详细的总体增益,总体斜率的调整方法。其控制RFA增益的方法是通过带外自发辐射放大光(ASE,下文中的ASE均表示自发辐射方大光)来实现。此带外ASE由两部分组成,一个因为放大信号光时产生的ASE,另一个是源信号光中本来的ASE功率得到了放大。要想得到RFA精确的增益控制,必须要对这两种ASE有精确的控制。而在实际的应用中,因为是RFA和EDFA混合使用,传输光纤的种类差异,系统的环境差异会影响RFA控制公式中增益和带外ASE的关系,及同一套系统中EDFA是否开泵,EDFA的输出功率大小等均会影响传到系统下一级RFA的ASE大小。由此种种,即使RFA能否探测到总体的带外ASE功率,但因为增益和带外ASE关系的差异,及RFA本身无法区分源信号光中带外ASE的大小,所以其控制的增益误差会很大。如果能够对RFA的增益控制形成反馈,及控制RFA每次开泵均能探测到稳定的带外ASE功率,则可以极大的改善混合光纤放大器的增益控制精度。
其次,专利申请201210325897.6中描述的EDFA是不含有可变衰减器(VOA, 下文中的VOA均表示可变衰减器)的,其控制EDFA增益的变化的同时会来带斜率的变化,虽然此斜率变化可以通过RFA斜率调整来补偿,但在实际的应用中,此增益的控制范围有限,无法满足多样化传输场景的需要。如果EDFA光路中含有内置VOA,则可以极大增加混合光纤放大器的增益和斜率的调节范围。其所担心的含有VOA的EDFA噪声指数问题,因为混合光纤放大器的噪声指数主要由第一级放大器决定,所以混合放大器本身的噪声指数比单独的EDFA的噪声指数小很多,能够满足绝大部分系统的需要。
发明内容
鉴于上述问题,本发明的主要目的在于提供一种混合光纤放大器及其目标增益精确控制方法,旨在于解决混合光纤放大器在系统中难以实现精确的增益控制,且增益调节范围不够大的问题。
本发明采用的技术方案是:
一种实现混合光纤放大器目标增益精确控制的方法,主要包括如下几个步骤:
步骤1:在混合放大器开泵时,先控制混合光纤放大器中的掺铒光纤放大器输出一个恒定功率的光,记为P1;
步骤2:在掺铒光纤放大器输出恒定功率一定时间后,此时间记为t1,控制混合光纤放大器中的拉曼光纤放大器探测源信号光功率,记为S1,及源信号光中含有的带外ASE功率,记为Source_ASE1;
步骤3:读取目标增益,记为G1,及定标所得的增益与带外ASE的关系,计算目标ASE功率,记为G1_ASE1,计算带源ASE补偿的目标带外ASE功率,记为目标ASE_1:目标_ASE1=G1_ASE1+Source_ASE1*G1;
步骤4:在判断拉曼光纤放大器探测的源信号功率S1稳定后,控制拉曼光纤放大器开泵;并实时读取带外ASE功率的探测值;
步骤5:较步骤4读取的带外ASE功率探测值与Objec_ASE_1;当两者相等时,停止泵浦功率调节;
步骤6:在拉曼光纤放大器泵浦功率稳定后,计算开泵后的源信号光功率,记为S2,比较S1与S2,计算delta Gain=S2-S1;
步骤7:将delta Gain补偿给目标增益,记为G2,即G2=G1-delta Gain。重复 步骤3,计算新的目标带外ASE功率,记为ASE3。再重复步骤4和步骤5;
一般情况下,步骤5完成后,可以停止泵浦调节,且拉曼光纤放大器此时控制的增益也比较精确。但如果系统误差较大,或者系统的精度要求更高,可以在步骤7完成后重复步骤3~6,直到delta Gain达到系统要求的精度为止。
步骤8:在拉曼泵浦功率稳定后,控制掺铒光纤放大器按照其设置的增益要求开泵。达到额定的混合光纤放大器控制增益。
所述的混合光纤放大器,包括拉曼光纤放大器部分、掺铒光纤放大器部分及控制单元部分。所述拉曼光纤放大器部分包括泵浦信号合波器,与所述泵浦信号合波器的泵浦输入端连接的拉曼泵浦激光器组,与所述泵浦信号合波器的信号输出端连接分光耦合器1,与所述分光耦合器1的小端连接的光电探测器1,及与所述分光耦合器1的大端连接的带外ASE滤波器,及与所述带外ASE滤波器的带外光输出端连接的光电探测器2,与带外ASE滤波器(5)的信号光输出端连接的分光耦合器2(7),与分光耦合器2(7)的小端连接的光电探测器3(8),所述分光耦合器2(7)的大端为拉曼光纤放大器部分的输出端,该输出端与掺铒光纤放大器部分(9)的输入端相连;所述控制单元部分(10)分别与所述的拉曼泵浦激光器组(11),光电探测器1(4),光电探测器2(6),光电探测器3(8),掺铒光纤放大器(9)相连。所述的掺铒光纤放大器部分包括泵浦激光器组,可变衰减器。所述的控制单元部分包括泵浦激光器输出控制单元,信号光及带外ASE探测及存储单元,增益及带外ASE计算单元,掺铒光纤放大器控制单元等。
本发明的混合光纤放大器及目标增益精确控制方法,具有如下优点:
1.采用前一级的混合光纤放大器中的掺铒光纤放大器部分首先输出恒定功率的方法,给下一级的混合光纤放大器的拉曼光纤放大器部分提供了一个可供比较的源信号光功率,通过拉曼开泵后计算的源信号光功率与关泵时探测的源信号光功率对比,从而对增益的控制形成一个反馈,极大的提高了拉曼光纤放大器的增益控制精度;
2.所有的混合光纤放大器的掺铒光纤放大器部分同时输出恒定光功率,所有混合光放大器的拉曼放大器部分同时开始定标,系统整体运行启动的时间大幅提升;
3.不限制掺铒光纤放大器部分是否使用内置可变衰减器,混合光纤放大器的增 益调节范围大幅增加。
附图说明
图1为本发明的混合光纤放大器装置结构图;
图2为混合光纤放大器在实际系统中应用配置示意图;
图3为控制单元部分的结构示意图。
其中:
1:拉曼光纤放大器部分;
2:泵浦信号合波器;
3:分光耦合器1;
4:光电探测器1;
5:带外ASE滤波器;
6:光电探测器2;
7:分光耦合器2;
8:光电探测器3;
9:掺铒光纤放大器部分;
10:控制单元部分;
11:拉曼泵浦激光器组;
12:掺铒光纤功率放大器;
13:传输光纤1;
14:混合光纤放大器1;
15:传输光纤2;
16:传输光纤3;
17:混合光纤放大器2;
18:EDFA泵浦激光器组;
19:可调衰减器;
20:泵浦激光器组控制单元;
21:信号光及带外ASE探测及存储单元;
22:增益及带外ASE计算单元;
23:掺铒光纤放大器控制单元。
具体的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明做进一步的详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不限定本发明。
本发明提供的混合光纤放大器将拉曼光纤放大器和掺铒光纤放大器集成为一体,通过对整体的控制,使得混合光纤放大器达到精确的预期效果。
本发明所涉及的一种实现增益精确控制的混合光纤放大器如图1所示。本发明的光纤混合光纤放大器的应用场景如图2所示。
如图1所示,所述的混合光纤放大器,包括泵浦信号合波器(2),所述泵浦信号合波器的泵浦输入端与拉曼泵浦激光器组(11)连接,所述泵浦信号合波器(2)的信号输出端与分光耦合器1(3)的公共端相连,所述分光耦合器1(3)的小端与光电探测器1(4)相连,所述分光耦合器1(3)的大端与带外ASE滤波器(5)的公共端相连,所述带外ASE滤波器(5)的带外光输出端与光电探测器2(6)相连,所述带外ASE滤波器(5)的信号光输出端与分光耦合器2(7)的公共端相连,所述分光耦合器(7)2的小端与光电探测器3(8)相连,所述分光耦合器(7)的大端为拉曼光纤放大器部分的输出,与掺铒光纤放大器部分(9)的输入端相连;所述控制单元部分(10)分别与所述的拉曼泵浦激光器组(11),光电探测器1(4),光电探测器2(6),光电探测器3(8),掺铒光纤放大器部分(9)相连。
所述的掺铒光纤放大器部分(9)包括泵浦激光器组(18)、可变衰减器(19)。
如图2所示,所描述的混合光纤放大器的应用场景,包括掺铒光纤功率放大器(12)、多个依次连接的混合光纤放大器,混合放大器之间通过光纤连接,前一个混合光纤放大器的掺铒光纤放大器部分(9)与后一个混合光纤放大器的拉曼光纤放大器部分(1)通过传输光纤连接;所述掺铒光纤功率放大器(12)通过传输光纤1(13)与混合光纤放大器1(14)相连、所述混合光纤放大器1(14)通过传输光纤2(15)与混合光纤放大器2(17)相连,混合光纤放大器2(17)通过传输光纤3(16)与混合光纤放大器3连接,以此类推。
如图3所示,所述的控制单元部分(10)包括泵浦激光器输出控制单元(20),信号光及带外ASE探测及存储单元(21),增益及带外ASE计算单元(22),掺铒 光纤放大器增益控制单元(23)。
本发明中涉及的实现混合光纤放大器增益精确控制的方法,包括以下步骤:
步骤1:控制单元在接到开泵的命令后,控制EDFA部分输出恒定的输出功率,例如6dBm;此光经过传输光纤传给下一级的Raman放大器,同时本台的Raman放大器可以接收上一台混合光纤放大器的EDFA部分输出的恒定光功率。
步骤2:经过t1时间后,Raman放大器的第1光电探测器探测到Raman关泵时的源信号光功率,记为S1,及源信号光中含有的带外ASE功率,记为Source_ASE1;
步骤3:读取目标增益,记为G1,及定标所得的增益与带外ASE的关系,计算目标ASE功率,记为G1_ASE1,计算带源ASE补偿的目标带外ASE功率,记为目标ASE_1:Objec_ASE_1=G1_ASE1+Source_ASE1*G1;
步骤4:在判断拉曼光纤放大器探测的源信号功率S1稳定后,控制拉曼光纤放大器开泵;并实时读取带外ASE功率的探测值;
步骤5:比较步骤4读取的带外ASE功率探测值与Objec_ASE_1;当两者相等时,停止泵浦功率调节;
步骤6:在拉曼光纤放大器泵浦功率稳定后,计算开泵后的源信号光功率,记为S2,比较S1与S2,计算delta Gain=S2-S1;
步骤7:将delta Gain补偿给目标增益,记为G2,即G2=G1-delta Gain。重复步骤3,计算新的目标带外ASE功率,记为ASE3。再重复步骤4和步骤5;
一般情况下,步骤5完成后,可以停止泵浦调节,且拉曼光纤放大器此时控制的增益也比较精确。但如果系统误差较大,或者系统的精度要求更高,可以在步骤7完成后重复步骤3~6,直到delta Gain达到系统要求的精度为止。
步骤8:在拉曼泵浦功率稳定后,控制掺铒光纤放大器按照其设置的增益要求开泵。达到额定的混合光纤放大器控制增益。

Claims (3)

  1. 一种实现混合光纤放大器目标增益精确控制的方法,其特征在于,包括如下步骤:
    步骤1:在混合放大器开泵时,先控制混合光纤放大器中的掺铒光纤放大器输出一个恒定功率的光,记为P1;
    步骤2:在掺铒光纤放大器输出恒定功率t1时间后,控制混合光纤放大器中的拉曼光纤放大器探测源信号光功率,记为S1,及源信号光中含有的带外ASE功率,记为Source_ASE1;
    步骤3:读取目标增益,记为G1,及定标所得的增益与带外ASE的关系,计算目标ASE功率,记为G1_ASE1,计算带源ASE补偿的目标带外ASE功率,记为Objec_ASE_1:Objec_ASE_1=G1_ASE1+Source_ASE1*G1;
    步骤4:在判断拉曼光纤放大器探测的源信号功率S1稳定后,控制拉曼光纤放大器开泵;并实时读取带外ASE功率的探测值;
    步骤5:比较步骤4读取的带外ASE功率探测值与Objec_ASE_1;当两者相等时,停止泵浦功率调节;
    步骤6:在拉曼光纤放大器泵浦功率稳定后,计算开泵后的源信号光功率,记为S2,比较S1与S2,计算delta Gain=S2-S1;如果delta Gain满足精度要求,则直接到步骤8;如果不满足精度要求,则继续步骤7;
    步骤7:将delta Gain补偿给目标增益,记为G2,即G2=G1-delta Gain;重复步骤3,计算新的目标带外ASE功率,记为ASE3;再依次重复步骤4、步骤5、步骤6;
    步骤8:在拉曼泵浦功率稳定后,控制掺铒光纤放大器按照其设置的增益要求开泵,达到额定的混合光纤放大器控制增益。
  2. 一种实现目标增益精确控制的混合光纤放大器,其特征在于:包括拉曼光纤放大器部分(1)、掺铒光纤放大器部分(9)及控制单元部分(10);所述拉曼光纤放大器部分包括泵浦信号合波器(2),与所述泵浦信号合波器(2)的泵浦输入端连接的拉曼泵浦激光器组(11),与所述泵浦信号合波器(2)的信号输出端连接分光耦合器1(3),与所述分光耦合器1(3)的小端连接的光电探测器1(4),及与所述分光耦合器1(3)的大端连接的带外ASE滤波器(5),及与所述带外ASE滤波器(5)的带外光输出端连接的光电探测器2(6);与带外ASE滤波器 (5)的信号光输出端连接的分光耦合器2(7),与分光耦合器2(7)的小端连接的光电探测器3(8),所述分光耦合器2(7)的大端为拉曼光纤放大器部分的输出端,该输出端与掺铒光纤放大器部分(9)的输入端相连;
    所述控制单元部分(10)分别与所述的拉曼泵浦激光器组(11),光电探测器1(4),光电探测器2(6),光电探测器3(8),掺铒光纤放大器部分(9)相连。
  3. 根据权利要求2所述的一种实现目标增益精确控制的混合光纤放大器,其特征在于:
    所述的控制单元部分(10)包括泵浦激光器输出控制单元(20),信号光及带外ASE探测及存储单元(21),增益及带外ASE计算单元(22),掺铒光纤放大器增益控制单元(23)。
PCT/CN2016/110660 2016-03-30 2016-12-19 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器 WO2017166869A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/089,929 US11239628B2 (en) 2016-03-30 2016-12-19 Method for realizing precise target gain control for hybrid fibre amplifier, and hybrid fibre amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610189349.3 2016-03-30
CN201610189349.3A CN105871468B (zh) 2016-03-30 2016-03-30 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器

Publications (1)

Publication Number Publication Date
WO2017166869A1 true WO2017166869A1 (zh) 2017-10-05

Family

ID=56627177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110660 WO2017166869A1 (zh) 2016-03-30 2016-12-19 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器

Country Status (3)

Country Link
US (1) US11239628B2 (zh)
CN (1) CN105871468B (zh)
WO (1) WO2017166869A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105871468B (zh) 2016-03-30 2018-04-20 武汉光迅科技股份有限公司 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器
CN110350977B (zh) * 2017-06-28 2022-05-13 武汉光迅科技股份有限公司 一种混合光纤放大器ase补偿参数使用方法
CN109946047B (zh) * 2019-04-02 2020-09-08 南京聚科光电技术有限公司 一种微弱激光信号相频噪声特性测量技术
CN110166138B (zh) * 2019-06-10 2021-10-08 无锡市德科立光电子技术股份有限公司 拉曼光纤放大器ase功率校准方法
CN114745053A (zh) * 2019-09-27 2022-07-12 海思光电子有限公司 光放大器及光放大器的增益调节方法
CN112310791B (zh) * 2020-10-23 2021-10-12 武汉光迅电子技术有限公司 一种增益调节方法和光纤放大器
CN114204992B (zh) * 2021-12-09 2023-07-04 北京邮电大学 一种超长距无中继光纤传输系统中的混合放大方法及系统
CN117293642A (zh) * 2023-11-27 2023-12-26 广州芯泰通信技术有限公司 一种dci数据中心自动切换的插拔式光放大器模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190123A1 (en) * 2003-03-26 2004-09-30 Fujitsu Limited Optical transmission apparatus
US20110255151A1 (en) * 2008-10-23 2011-10-20 Roberto Magri Optical Network Amplifier Node and Method of Channel Power Depletion Compensation
CN102843192A (zh) * 2012-09-05 2012-12-26 武汉光迅科技股份有限公司 混合光纤放大器及其增益、增益斜率的调整方法及装置
CN103904550A (zh) * 2012-12-25 2014-07-02 昂纳信息技术(深圳)有限公司 一种带有增益自动控制装置的rfa和edfa混合光放大器及其控制方法
CN105871468A (zh) * 2016-03-30 2016-08-17 武汉光迅科技股份有限公司 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904835B2 (ja) * 2001-01-29 2007-04-11 株式会社日立製作所 光増幅器、光ファイバラマン光増幅器、及び光システム
CN1268980C (zh) * 2002-10-14 2006-08-09 华为技术有限公司 增益谱可控的喇曼光纤放大器及其控制方法
US7969647B2 (en) * 2007-10-08 2011-06-28 Jds Uniphase Corporation Apparatus and method for flattening gain profile of an optical amplifier
WO2013077434A1 (ja) * 2011-11-25 2013-05-30 古河電気工業株式会社 光増幅器および光増幅器の制御方法
US9300110B2 (en) * 2013-09-26 2016-03-29 Cisco Technology, Inc. Multi-wavelength distributed raman amplification set-up

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190123A1 (en) * 2003-03-26 2004-09-30 Fujitsu Limited Optical transmission apparatus
US20110255151A1 (en) * 2008-10-23 2011-10-20 Roberto Magri Optical Network Amplifier Node and Method of Channel Power Depletion Compensation
CN102843192A (zh) * 2012-09-05 2012-12-26 武汉光迅科技股份有限公司 混合光纤放大器及其增益、增益斜率的调整方法及装置
CN103904550A (zh) * 2012-12-25 2014-07-02 昂纳信息技术(深圳)有限公司 一种带有增益自动控制装置的rfa和edfa混合光放大器及其控制方法
CN105871468A (zh) * 2016-03-30 2016-08-17 武汉光迅科技股份有限公司 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, XINHUA ET AL.: "EDFA-and RFA-based Gain-Variable Hybrid Fiber Amplifiers", STUDY ON OPTICAL COMMUNICATIONS, 30 April 2014 (2014-04-30) *

Also Published As

Publication number Publication date
CN105871468B (zh) 2018-04-20
US20190131758A1 (en) 2019-05-02
CN105871468A (zh) 2016-08-17
US11239628B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2017166869A1 (zh) 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器
JP3903650B2 (ja) 光増幅器および光増幅器制御方法
JP2000299518A (ja) 光ファイバ増幅器及びその制御方法
US8472110B2 (en) Optical amplifier, control circuit, and method of controlling optical amplifier
US8351112B2 (en) Optical amplifier
JP2007081405A (ja) チャンネル出力平坦化機能を有する光増幅装置
CN110601766B (zh) 一种控制方法及光纤放大器
JP2001094181A (ja) 光増幅器
US8908265B2 (en) Optical fiber amplifier comprising an embedded filter and a control method with improved feedforward control performance
JP5285211B2 (ja) 光ファイバ増幅器における高速動的利得制御
JP3628202B2 (ja) 光ファイバー増幅器
US8164826B2 (en) Multi-stage optical amplifier and method of controlling the same
US10971888B2 (en) Optical amplifier
CN210376959U (zh) 一种半导体光纤放大器的光路结构
CN210111283U (zh) 掺铒光纤放大器中单波输入波长确定装置
US7068422B2 (en) Optical fiber amplification method and apparatus for controlling gain
CN103794983A (zh) 全光增益控制的增益平坦型高功率光纤放大器
JP2004520702A (ja) 増幅作用を有する媒体、例えば光ファイバ導波体を制御する方法および装置
JP2007067235A (ja) 光増幅器
JPH10335722A (ja) 光増幅器
JP3551417B2 (ja) 波長多重用光増幅器
US20120045212A1 (en) Optical amplification device, communication system, and amplification method
US8077383B2 (en) Optical amplifier
US11764536B2 (en) Optical amplifier for multiple bands
JP4773703B2 (ja) 光増幅器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896637

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896637

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16896637

Country of ref document: EP

Kind code of ref document: A1