WO2017166427A1 - 光栅组件、光源设备及其驱动方法 - Google Patents

光栅组件、光源设备及其驱动方法 Download PDF

Info

Publication number
WO2017166427A1
WO2017166427A1 PCT/CN2016/084701 CN2016084701W WO2017166427A1 WO 2017166427 A1 WO2017166427 A1 WO 2017166427A1 CN 2016084701 W CN2016084701 W CN 2016084701W WO 2017166427 A1 WO2017166427 A1 WO 2017166427A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sub
light source
pixels
diffraction grating
Prior art date
Application number
PCT/CN2016/084701
Other languages
English (en)
French (fr)
Inventor
王倩
陈小川
赵文卿
许睿
王磊
杨明
卢鹏程
高健
牛小辰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/528,416 priority Critical patent/US10795064B2/en
Publication of WO2017166427A1 publication Critical patent/WO2017166427A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering

Definitions

  • the invention belongs to the technical field of display, and in particular relates to a grating component, a light source device and a driving method thereof.
  • the light source used in the conventional display device can only provide light with a fixed direction, and can not flexibly adjust the direction of the light at different times, and cannot meet the requirements of many display devices.
  • the present invention is directed to the problem that the existing light source cannot provide directional controllable light, and provides a grating assembly, a light source device, and a driving method thereof that can provide directional controllable light.
  • the technical solution adopted to solve the technical problem of the present invention is a grating assembly, which includes:
  • a diffraction grating divided into a plurality of sub-pixels, each sub-pixel being divided into a plurality of regions, the diffraction grating being used to make light transmitted by each region into parallel light and transmitted through different regions of the same sub-pixel Different light directions;
  • a selector which is divided into a plurality of sub-pixels corresponding to sub-pixels of the diffraction grating, each sub-pixel being divided into a plurality of regions corresponding to respective regions of the sub-pixels of the diffraction grating, the selector being used to control whether each of the regions is transparent Light.
  • the grating assembly further includes: a liquid crystal lens, the selector and the diffraction grating are located on the same side of the liquid crystal lens, the liquid crystal lens is divided into a plurality of sub-pixels corresponding to the sub-pixels of the diffraction grating, and is used for controlling The direction of the light that each of its sub-pixels transmits.
  • each zone of the selector is a liquid crystal switch.
  • the selector is used to control each of its sub-pixels
  • the areas are lighted one by one.
  • the technical solution adopted to solve the technical problem of the present invention is a light source device, which includes:
  • the grating assembly described above is located in front of the light emitting surface of the surface light source.
  • the grating component is the above-described grating assembly including a liquid crystal lens, wherein the diffraction grating and the selector are both located between the liquid crystal lens and the surface light source.
  • the diffraction grating is a light-transmitting plate, and each of the regions is provided with a plurality of mutually parallel diffraction chutes, and the diffraction chutes in the same region have the same groove angle and different regions of the same sub-pixel.
  • the diffraction chutes in the grooves have different groove angles and/or extension directions.
  • the surface light source comprises a light guide plate and a blue light emitting device disposed outside the side of the light guide plate, wherein the light guide plate can emit yellow light under blue light excitation; the diffraction chute in each region of the diffraction grating includes The blue diffraction ditches and the yellow diffraction chutes having different widths are used to make the transmitted blue and yellow light into the same direction, respectively.
  • the selector is disposed between the diffraction grating and the surface light source.
  • each zone of the selector is a liquid crystal switch.
  • the selector is configured to control the regions of the sub-pixels to sequentially transmit light one by one.
  • the technical solution adopted to solve the technical problem of the present invention is a driving method of a light source device, wherein the light source device is the light source device described above, and the driving method includes:
  • the surface light source emits light
  • the selector controls whether or not each of its zones is transparent.
  • the light source device is the above-mentioned light source device having a liquid crystal lens
  • the driving method further includes: the liquid crystal lens transmits light that is incident on each of the sub-pixels and controls a direction of the transmitted light.
  • the irregular light emitted by the surface light source to each sub-pixel is converted into a plurality of sets of parallel light of different directions by the diffraction grating, and is selected.
  • the selector independently controls whether or not the light (light of each zone) can be emitted; thus, the light-emitting direction of each sub-pixel of the light source device is controllable, and can meet the requirements of various display devices.
  • the light source device of the present invention is suitable for use as a light source of a display device.
  • FIG. 1 is a partial cross-sectional structural view of a light source device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of dividing a sub-pixel and a region by a light source device according to an embodiment of the present invention
  • FIG. 3 is a partial cross-sectional structural view of a diffraction grating in a light source device according to an embodiment of the present invention
  • FIG. 4 is a partial cross-sectional structural view of a diffraction grating in another light source device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing states of different regions of one sub-pixel of a selector in a light source device at different times in one frame of a screen according to an embodiment of the present invention.
  • This embodiment provides a grating assembly, including:
  • a diffraction grating divided into a plurality of sub-pixels, each sub-pixel being divided into a plurality of regions, the diffraction grating being used to make light transmitted by each region into parallel light and transmitted through different regions of the same sub-pixel Different light directions;
  • a selector which is divided into a plurality of sub-pixels corresponding to sub-pixels of the diffraction grating, each sub-pixel being divided into a plurality of regions corresponding to respective regions of the sub-pixels of the diffraction grating, the selector being used to control whether each of the regions is transparent Light.
  • the grating assembly further includes: a liquid crystal lens, wherein the selector and the diffraction grating are located on a same side of the liquid crystal lens, and the liquid crystal lens is divided into a plurality of sub-pixels corresponding to the sub-pixels of the diffraction grating, and is used for control The direction of the light transmitted by each of its sub-pixels.
  • each zone of the selector is a liquid crystal switch.
  • the selector is configured to control the regions of the sub-pixels to sequentially transmit light one by one.
  • the grating assembly of this embodiment can be used in a light source device, so that the light-emitting direction of the light source device can be controlled, and the specific content thereof will be described in detail in the following embodiments of the light source device.
  • the embodiment provides a light source device.
  • the light source device can provide directional controllable light, and more specifically, each of its sub-pixels 9 can controllably emit parallel light in a plurality of different directions, whereby it can be used in a variety of display devices.
  • the light source apparatus includes the grating assembly of Embodiment 1 (which includes the selector 2 and the diffraction grating 3) and the surface light source 1, and the grating assembly is disposed in front of the light emitting surface of the surface light source 1. That is, the light source device includes:
  • the diffraction grating 3 disposed in front of the light-emitting surface of the surface light source 1 is divided into a plurality of sub-pixels 9, each of which is divided into a plurality of regions 91 for diffracting the light transmitted by each of the regions 91 into parallel Light, and the directions of light transmitted by different regions 91 of the same sub-pixel 9 are different;
  • the selector 2 provided in front of the light-emitting surface of the surface light source 1 is divided into a plurality of sub-pixels 9 corresponding to the respective sub-pixels of the diffraction grating 3, and each of the sub-pixels 9 is divided into a plurality of sub-pixels corresponding to the diffraction grating 3
  • the area 91, the selector 2 is used to control whether or not each of its areas 91 is transparent.
  • the diffraction grating 3 and the selector 2 constitute the above-described grating assembly, so that they are both located in front of the light-emitting surface of the surface light source 1.
  • the structure of the diffraction grating 3 is as shown in Fig. 3, and its function is to convert light incident thereon in different directions (for simplicity, the direction of incident light in the figure) into parallel transmitted light.
  • the diffraction grating 3 of the present embodiment is divided into a plurality of sub-pixels 9, each of which corresponds to a smallest independently displayable "point" in the display device, such as a red sub-pixel, a green sub-pixel, and a blue in the display device. Subpixels, etc.
  • each sub-pixel 9 is subdivided into a plurality of regions 91 (in the figure, divided into four regions 91), and the diffraction gratings 3 have different structures in different regions 91 of the same sub-pixel 9.
  • the diffraction grating 3 of the present embodiment can convert light transmitted through the same region 91 (the incident light direction can be different) into parallel light, and can ensure that the light directions transmitted by the different regions 91 of each sub-pixel 9 are different.
  • the diffraction grating 3 is used to convert light transmitted by different positions of each sub-pixel 9 into a plurality of sets of parallel light of different directions.
  • the selector 2 has sub-pixels 9 and 91 corresponding to the sub-pixels and regions of the diffraction grating 3 (the sub-pixels 9 of course also correspond to the sub-pixels of the display device), and can control whether or not each of the regions 91 is transparent, that is, It is controlled whether the parallel light in each of the regions 91 of the diffraction grating 3 can be finally emitted from the light source device (or the grating assembly).
  • the irregular light emitted by the surface light source 1 and directed to each sub-pixel 9 is converted into a plurality of sets of parallel light of different predetermined directions by the diffraction grating 3, and the selector 2 is used.
  • the light of each zone 91 can be independently controlled to be emitted; thus, the light-emitting direction of each sub-pixel 9 of the light source device is controllable, which can meet the requirements of various display devices.
  • the grating assembly in the light source device has a liquid crystal lens 4, and the selector 2 and the diffraction grating 3 are both located between the surface light source 1 and the liquid crystal lens 4.
  • the light source device further includes a liquid crystal lens 4 disposed in front of the diffraction grating 3 and the selector 2 (ie, away from the side of the surface light source 1), and the liquid crystal lens 4 It is divided into a plurality of sub-pixels 9 corresponding to the sub-pixels of the diffraction grating 3, and is used to control the direction of light transmitted by each of the sub-pixels 9.
  • the liquid crystal lens 4 includes a liquid crystal layer disposed between the two substrates, and a driving electrode and a common electrode for driving the liquid crystal layer. By controlling the voltage on each electrode, liquid crystal molecules in the liquid crystal layer at the corresponding positions can be obtained. Torsion occurs, resulting in something like a "lens (or prism)"
  • the role of changing the direction of the transmitted light of course, the specific degree, direction, etc. of the change can be further adjusted by changing the voltage on each electrode.
  • the light corresponding to each sub-pixel 9 is converted into multiple sets of parallel light having different directions; and the selector 2, it is possible to control whether the parallel light of each of the regions 91 of the sub-pixels 9 corresponding to the diffraction grating 3 can enter the liquid crystal lens 4 and when it enters the liquid crystal lens 4; when the selected parallel light is incident on the liquid crystal lens 4 for a predetermined time
  • the liquid crystal lens 4 further changes its direction according to specific needs (the light-emitting directions can be different at different times), and finally ensures that the light of the desired direction can be emitted from the desired position.
  • the liquid crystal lens 4 further adjustment of the light passing through the diffraction grating 3 can be realized, so that the light-emitting position of the light source device is not only controllable (ie, whether light is emitted in each direction), and the light-emitting direction is variable (ie, can be It is necessary to change the direction of the light emitted from each of the regions 91 of each sub-pixel 9.
  • the diffraction grating 3 is a light-transmitting plate, and each of the regions 91 is provided with a plurality of mutually parallel diffraction chutes 31, and the diffraction chutes 31 in the same region 91 have the same groove angle r (the groove angle r is The angle between the surface of the diffraction chute 31 and the lower surface of the diffraction grating 3), the groove angle r and/or the extending direction of the diffraction chute 31 in the different regions 91 of the same sub-pixel 9 are different (Figs.
  • FIGS. 3 and 4 show An example in which the extending directions are the same, that is, the extending direction of the diffraction chute 31 is shown such that the outgoing light is "integrally" directed toward the upper left (as exemplified in FIGS. 3 and 4), so that the two regions 91 are known.
  • Different directions of extension of the diffractive chute 31 result in the "integral orientation" of the exiting light of one zone being different from the "whole orientation" of the exiting light of the other zone.
  • the diffraction grating 3 may be a transparent dielectric layer having a plurality of grooves (diffraction chutes 31). Since the size of the above diffraction chute 31 is on the order of nanometers, the specificity is satisfied. In the case, the diffraction chute 31 can enhance the 0th-order diffracted light by the diffraction effect, and convert the light incident into the diffraction grating 3 from a plurality of different directions into a direction perpendicular to the surface (inclined surface) of the diffraction chute 31.
  • the diffraction chutes 31 in the same region 91 must have the same groove angle r and be parallel to each other; and in order to make the light-emitting directions of different regions 91 of one sub-pixel 9 different, different regions thereof
  • the groove angle r of the diffraction chute 31 in 91 should be different to change the "angle value" of the light, or
  • the direction in which the diffractive chute 31 extends should be different to change the "overall orientation" of the exiting light.
  • the light exiting direction of each zone 91 is determined, so the groove angle r is determined, and the wavelength ⁇ of the incident light is also determined. Therefore, the width d of the diffraction chute 31 in each of the regions 91 (i.e., the width of the vertical projection of the diffraction chute 31 on the lower surface of the diffraction grating 3) should be set according to the wavelength ⁇ and the desired groove angle r, here No longer described in detail.
  • the surface light source 1 includes a light guide plate and a blue light emitting device (such as a blue LED) disposed outside the side of the light guide plate, and the light guide plate can emit yellow light under blue light excitation; as shown in FIG. 4, each of the diffraction gratings 3
  • the diffraction chute 31 in the region 91 includes a blue diffraction chute 311 and a yellow diffraction chute 312 having different widths d for respectively making the transmitted blue light and yellow light into the same direction.
  • the upper light source 1 can be in the form of a side-entry backlight commonly used in liquid crystal display devices.
  • the surface light source 1 mainly comprises a light guide plate and a light-emitting device (of course, an optical film layer such as a reflection sheet), and the light emitted from the light-emitting device is incident from the side surface of the light guide plate, and then through a series of reflections, refractions, etc., from the top surface of the light guide plate. Shoot out.
  • a blue-emitting LED for example, an organic light-emitting diode
  • the emitted blue light can inspire the light guide plate to generate yellow light, thereby passing yellow light and blue light.
  • the mixing makes the outgoing light a white light that is usually required.
  • the wavelength ⁇ of the yellow light and the blue light are different, and it is necessary to ensure that the light directions of the two colors of light in the same region 91 are the same (that is, the groove angle r is the same), the width d of the corresponding diffraction chute 31 is corresponding. It must be different. Therefore, as shown in FIG.
  • the selector 2 is disposed between the diffraction grating 3 and the surface light source 1.
  • the light passes through the diffraction grating 3 and the transmission directions in the different regions 91 are different, so that the light of the two regions 91 may overlap each other.
  • each zone 91 of the selector 2 is a liquid crystal switch.
  • the selector 2 can take the form of a liquid crystal switch.
  • the selector 2 may include two substrates, a liquid crystal layer on the inner side of the two substrates and a plurality of driving electrodes respectively corresponding to the respective regions 91, and a polarizing plate (such as a linear polarizing plate whose polarization directions are perpendicular to each other) are disposed on the outer sides of the two substrates. Therefore, by controlling the voltage of each of the driving electrodes, it is possible to determine whether or not each of the regions 91 is transparent. Since the specific form of the liquid crystal switch is various, it will not be described in detail herein.
  • the selector 2 is configured to control the respective areas 91 of the sub-pixels 9 to sequentially transmit light one by one.
  • each of the areas 91 in each of the sub-pixels 9 when light is supplied to the same frame display screen, the above selector 2 is used to control each of the areas 91 in each of the sub-pixels 9 to be in a light-transmissive state one by one (the pockmark area in the figure indicates no Light transmission, the blank area indicates light transmission), that is, in each sub-pixel 9, only one area 91 is transmitted at any time, and in one frame, each area 91 of each sub-pixel 9 transmits light once. Accordingly, for the diffraction grating 3, in each of the sub-pixels 9, light emitted from only one of the regions 91 at any time is incident on the liquid crystal lens 4. Therefore, for the liquid crystal lens 4, each of the sub-pixels 9 is incident only in parallel light of the same direction at any time, so that the direction of the emitted light can be controlled most accurately.
  • the light source device of the present embodiment can control the light emitted from each sub-pixel 9 to be sequentially directed to a plurality of different directions in the same frame picture. Therefore, the light-emitting direction of each sub-pixel 9 in the display device using the light source device can also be controlled, and the human eye can be controlled by controlling the time ratio of the light emitted from a certain sub-pixel 9 to the human eye in one frame. The energy density of the light, so that the brightness of the sub-pixel 9 is perceived.
  • the embodiment further provides a driving method of the above light source device, which includes:
  • the surface light source 1 emits light, and the selector 2 controls whether or not the respective regions 91 thereof are transparent.
  • the driving method further includes:
  • the liquid crystal lens 4 transmits the light incident on each of the sub-pixels 9 and controls the direction of the transmitted light.
  • the surface light source 1 can be continuously illuminated, and the selector 2 and the diffraction grating 3 can be used to determine when and at what angle of parallel light is incident on each of the liquid crystal lenses 4.
  • the sub-pixel 9, the liquid crystal lens 4, redirects the light to a desired direction to satisfy the requirements of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种光栅组件、光源设备及其驱动方法,属于显示技术领域,其可解决现有的光源不能提供方向可控的光的问题。光栅组件包括:衍射光栅(3),其分为多个子像素(9),每个子像素(9)分为多个区(91),所述衍射光栅(3)用于使由每个区(91)透过的光变为平行光,且由同一子像素(9)的不同区(91)透过的光方向不同;以及选择器(2),其分为与衍射光栅(3)的子像素(9)对应的多个子像素(9),每个子像素(9)分为与衍射光栅(3)的子像素(9)的各个区(91)对应的多个区(91),所述选择器(2)用于控制其每个区(91)是否透光。光源设备包括上述光栅组件和面光源(1),该光源设备适用于作为显示装置的光源。

Description

光栅组件、光源设备及其驱动方法 技术领域
本发明属于显示技术领域,具体涉及一种光栅组件、光源设备及其驱动方法。
背景技术
现有的很多显示装置都对入射的光有严格的要求,只有确定入射光的方向才能正确的控制出光的方向以进行显示。
但是,现有的显示装置用的光源只能提供方向固定的光,而不能在不同时间灵活的调整光的方向,不能满足很多显示装置的要求。
发明内容
本发明针对现有的光源不能提供方向可控的光的问题,提供一种能提供方向可控的光的光栅组件、光源设备及其驱动方法。
解决本发明技术问题所采用的技术方案是一种光栅组件,其包括:
衍射光栅,其分为多个子像素,每个子像素分为多个区,所述衍射光栅用于使由每个区透过的光变为平行光,且由同一子像素的不同区透过的光方向不同;
选择器,其分为与衍射光栅的子像素对应的多个子像素,每个子像素分为与衍射光栅的子像素的各个区对应的多个区,所述选择器用于控制其每个区是否透光。
可选地,所述光栅组件还包括:液晶透镜,所述选择器和衍射光栅位于液晶透镜的同一侧,所述液晶透镜分为与衍射光栅的子像素对应的多个子像素,并用于控制由其每个子像素透过的光的方向。
可选地,所述选择器的每个区为一个液晶开关。
可选地,在一帧画面中,所述选择器用于控制其子像素的各 区依次逐一透光。
解决本发明技术问题所采用的技术方案是一种光源设备,其包括:
用于发光的面光源;
上述的光栅组件,其位于面光源的发光面前方。
可选地,所述光栅组件为上述包括液晶透镜的光栅组件,其中,所述衍射光栅和选择器均位于液晶透镜与面光源之间。
可选地,所述衍射光栅为透光板,其每个区中设有多条相互平行的衍射斜槽,同一区中的所述衍射斜槽具有相同的槽角,同一子像素的不同区中的所述衍射斜槽的槽角和/或延伸方向不同。
可选地,所述面光源包括导光板和设于导光板侧面外的蓝光发光器件,所述导光板能在蓝光激发下发出黄光;所述衍射光栅的每个区中的衍射斜槽包括宽度不同的蓝光衍射斜槽和黄光衍射斜槽,分别用于使透过的蓝光和黄光变为相同方向。
可选地,所述选择器设于衍射光栅和面光源之间。
可选地,所述选择器的每个区为一个液晶开关。
可选地,在一帧画面中,所述选择器用于控制其子像素的各区依次逐一透光。
解决本发明技术问题所采用的技术方案是一种光源设备的驱动方法,所述光源设备为上述的光源设备,所述驱动方法包括:
所述面光源发光;以及
所述选择器控制其各区是否透光。
可选地,所述光源设备为上述具有液晶透镜的光源设备,所述驱动方法还包括:所述液晶透镜使射到其各子像素上的光透过并控制透过的光的方向。
本发明的光源设备中,通过衍射光栅将由面光源发出的射向每个子像素的无规则的光转变为多组不同方向的平行光,并用选 择器独立控制这些光(各区的光)是否可以射出;由此,该光源设备的每个子像素的出光方向都是可控的,能满足多种显示装置的要求。
本发明的光源设备适用于作为显示装置的光源。
附图说明
图1为本发明的实施例的一种光源设备的局部剖面结构示意图;
图2为本发明的实施例的一种光源设备对子像素和区的划分示意图;
图3为本发明的实施例的一种光源设备中的衍射光栅的局部剖面结构示意图;
图4为本发明的实施例的另一种光源设备中的衍射光栅的局部剖面结构示意图;
图5为本发明的实施例的一种光源设备中的选择器的一个子像素的各区在一帧画面内的不同时间的状态示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
实施例1:
本实施例提供一种光栅组件,其包括:
衍射光栅,其分为多个子像素,每个子像素分为多个区,所述衍射光栅用于使由每个区透过的光变为平行光,且由同一子像素的不同区透过的光方向不同;以及
选择器,其分为与衍射光栅的子像素对应的多个子像素,每个子像素分为与衍射光栅的子像素的各个区对应的多个区,所述选择器用于控制其每个区是否透光。
可选地,所述光栅组件还包括:液晶透镜,其中所述选择器和衍射光栅位于液晶透镜的同一侧,所述液晶透镜分为与衍射光栅的子像素对应的多个子像素,并用于控制由其每个子像素透过的光的方向。
可选地,所述选择器的每个区为一个液晶开关。
可选地,在一帧画面中,所述选择器用于控制其子像素的各区依次逐一透光。
本实施例的光栅组件可用于光源设备中,从而使光源设备的出光方向可控,其具体内容在以下光源设备的实施例中再详细介绍。
实施例2:
如图1至图5所示,本实施例提供一种光源设备。
该光源设备可以提供方向可控的光,更具体地,其每个子像素9可向多个不同方向可控地发出平行光,由此其可用于多种显示装置中。
如图1所示,所述光源设备包括实施例1的光栅组件(其包括选择器2和衍射光栅3)和面光源1,且光栅组件设于面光源1的发光面前方。也就是说,该光源设备包括:
用于发光的面光源1;
设于面光源1发光面前方的衍射光栅3,其分为多个子像素9,每个子像素9分为多个区91,衍射光栅3用于使由每个区91透过的光变为平行光,且由同一子像素9的不同区91透过的光方向不同;
设于面光源1发光面前方的选择器2,其分为与衍射光栅3的各子像素对应的多个子像素9,每个子像素9分为与衍射光栅3的子像素的各个区对应的多个区91,选择器2用于控制其每个区91是否透光。
衍射光栅3和选择器2构成上述的光栅组件,故它们均位于面光源1的发光面前方。
衍射光栅3的结构如图3所示,其作用是将以不同方向(为简略,图中入射光方向相同)入射到其上的光转变为平行的透射光。本实施例的衍射光栅3分为多个子像素9,每个子像素9对应显示装置中的一个最小的可独立显示的“点”,例如显示装置中的一个红色子像素、绿色子像素、蓝色子像素等。如图2所示,每个子像素9再分为多个区91(图中以分为4个区91为例),衍射光栅3在同一子像素9的不同区91中的结构不同。由此,本实施例的衍射光栅3可将由同一个区91透过的光(入射光方向可不同)转变为平行光,且能保证由每个子像素9的不同区91透过的光方向不同,或者说,衍射光栅3用于将由每个子像素9的不同位置透过的光转变为多组不同方向的平行光。
选择器2具有与衍射光栅3的子像素和区对应的子像素9和区91(子像素9当然也与显示装置的子像素对应),且可控制其每个区91是否透光,也就是控制衍射光栅3的每个区91中的平行光是否可最终从光源设备(或光栅组件)中射出。
由此可见,本实施例的光源设备中,通过衍射光栅3将由面光源1发出的、射向每个子像素9的、无规则的光转变为多组不同预定方向的平行光,并用选择器2独立控制各区91的光是否可以射出;由此,该光源设备的每个子像素9的出光方向都是可控的,能满足多种显示装置的要求。
可选地,所述光源设备中的光栅组件具有液晶透镜4,且选择器2和衍射光栅3均位于面光源1与液晶透镜4之间。
也就是说,如图1所示,可选地,所述光源设备还包括设于衍射光栅3和选择器2的前方(即,远离面光源1的一侧)的液晶透镜4,液晶透镜4分为与衍射光栅3的子像素对应的多个子像素9,并用于控制由其每个子像素9透过的光的方向。具体地,液晶透镜4包括设于两个基板间的液晶层,以及用于驱动液晶层的驱动电极和公共电极等,通过控制各电极上的电压,可使相应位置的液晶层中的液晶分子发生扭转,从而产生类似于“透镜(或棱镜)” 的作用,改变透过的光的方向;当然,该改变的具体程度、方向等,也可通过改变各电极上的电压进一步调整。
可见,如图1所示,本实施例的光源设备中,面光源1发出的光经过衍射光栅3后,对应每个子像素9的光即被转变为多组方向不同的平行光;而选择器2则可控制对应衍射光栅3的子像素9的每个区91的平行光是否可进入液晶透镜4以及何时进入液晶透镜4;当被选定的平行光以预定的时间射到液晶透镜4的子像素9后,液晶透镜4再根据具体需要进一步改变其方向(在不同时间出光方向可不同),最终保证所需方向的光可从所需的位置射出。由此,通过设置液晶透镜4,可实现对经过衍射光栅3的光的进一步调整,使光源设备的出光位置不仅可控(即决定每个方向是否出光),而且出光方向可变(即可以根据需要改变每个子像素9的每个区91射出的光的方向)。
可选地,衍射光栅3为透光板,其每个区91中设有多条相互平行的衍射斜槽31,同一区91中的衍射斜槽31具有相同的槽角r(槽角r为衍射斜槽31表面与衍射光栅3下表面的夹角),同一子像素9的不同区91中的衍射斜槽31的槽角r和/或延伸方向不同(图3和图4均示出了延伸方向相同的示例,即所示出的衍射斜槽31的延伸方向使得出射光“整体上”均朝向左上方(以图3和图4所示为例)出射,因此可知两个区91的衍射斜槽31的延伸方向不同会导致一个区的出射光“整体朝向”与另一区的出射光“整体朝向”不同)。
也就是说,如图3所示,衍射光栅3可以是一个开有多个槽(衍射斜槽31)的透光介质层,由于以上衍射斜槽31的尺寸在纳米量级,故在满足特定条件时,衍射斜槽31可通过衍射效应增强0级衍射光,将由多个不同方向射入衍射光栅3的光转变为沿垂直于衍射斜槽31表面(斜面)的方向射出。为使同一区91的出光方向相同,同一区91中的衍射斜槽31必须具有相同的槽角r,且相互平行;而为使一个子像素9的不同区91的出光方向不同,其不同区91中衍射斜槽31的槽角r应当不同以改变出光“角度值”,或者, 衍射斜槽31的延伸方向应不同以改变出射光的“整体朝向”。
具体的,实现以上转变应满足的条件为:2d×sinr=λ,其中,λ为入射光波长,槽角r为衍射斜槽31表面与衍射光栅3下表面的夹角。每个区91的出光方向是确定的,故槽角r是确定的,而入射光的波长λ也确定。因此,每个区91中的衍射斜槽31的宽度d(即,衍射斜槽31在衍射光栅3下表面上的垂直投影的宽度)应当根据波长λ和所需槽角r设定,在此不再详细描述。
可选地,面光源1包括导光板和设于导光板侧面外的蓝光发光器件(如蓝光LED),导光板能在蓝光激发下发出黄光;如图4所示,衍射光栅3的每个区91中的衍射斜槽31包括宽度d不同的蓝光衍射斜槽311和黄光衍射斜槽312,分别用于使透过的蓝光和黄光变为相同方向。
也就是说,以上面光源1可采用液晶显示装置中常用的侧入式背光源的形式。该面光源1主要包括导光板和发光器件(当然还有反射片等光学膜层),发光器件发出的光从导光板侧面入射后,再经一系列的反射、折射等,从导光板顶面射出。但是,在导光板式的面光源1中,一般采用发蓝光的LED(例如有机发光二极管)作为实际的发光器件,而其发出的蓝光又可激发导光板产生黄光,从而通过黄光与蓝光的混合使出射光成为通常所需的白光。在此情况下,由于黄光与蓝光的波长λ不同,且又要保证同一区91中两种颜色光的出光方向相同(即槽角r相同),因此它们对应的衍射斜槽31的宽度d必然不同。由此,如图4所示,需要在衍射光栅3的同一个区91中,设置两种宽度d不同但槽角r相同的衍射斜槽31(因蓝光波长较短,故必然是蓝光衍射斜槽311的宽度d较小),分别用于衍射黄光和蓝光,而射出的黄光和蓝光再次混合为平行的白光。
可选地,选择器2设于衍射光栅3和面光源1之间。
如图3所示,光线经过衍射光栅3后在不同区91的透射方向不同,故可能出现两个区91的光相互交叠的情况。为避免以上现象,优选将选择器2设在衍射光栅3靠近面光源1的一侧,即先 让光线通过选择器2后再射到衍射光栅3上,从而保证衍射光栅3只有需要的区91才有光线入射,避免其出射光的交叠。
可选地,选择器2的每个区91为一个液晶开关。
也就是说,选择器2可采用液晶开关的形式。具体地,选择器2可包括两个基板,两基板内侧设有液晶层以及分别与各区91对应的多个驱动电极,而两基板外侧则设有偏振片(如偏振方向相互垂直的线偏振片),故通过控制每个驱动电极的电压,即可决定每个区91是否透光。由于液晶开关的具体形式是多样的,故在此不再详细描述。
可选地,在一帧画面中,选择器2用于控制其子像素9的各区91依次逐一透光。
也就是说,如图5所示,在为同一帧显示画面提供光时,以上选择器2用于控制其每个子像素9中的各区91依次逐一处于透光状态(图中麻点区域表示不透光,空白区域表示透光),即每个子像素9中,任意时刻只有一个区91透光,且在一帧中,每个子像素9的每个区91都透光一次。相应的,对于衍射光栅3,其每个子像素9中,任意时刻只有一个区91发出的光能射到液晶透镜4中。故对于液晶透镜4,其每个子像素9在任意时刻都只有同一个方向的平行光射入,从而可最精确的控制射出光的方向。
本实施例的光源设备可在同一帧画面中,控制从每个子像素9处射出的光依次射向多个不同方向。因此,使用该光源设备的显示装置中各子像素9的出光方向也都可控制,只要控制一帧画面中从某子像素9射出的光射向人眼的时间比例,即可控制人眼接收的光的能量密度,从而让人感觉到子像素9亮度的变化。
实施例3
本实施例还提供一种上述光源设备的驱动方法,其包括:
面光源1发光,选择器2控制其各区91是否透光。
可选地,对于以上具有液晶透镜4的光源设备,驱动方法还包括:
液晶透镜4使射到其各子像素9上的光透过并控制透过的光的方向。
也就是说,在驱动本实施例的光源设备进行发光时,可使面光源1持续发光,并通过选择器2和衍射光栅3来决定什么时间有什么角度的平行光射到液晶透镜4的各子像素9,液晶透镜4再将这些光转向所需方向,从而满足显示装置的要求。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种光栅组件,包括:
    衍射光栅,其分为多个子像素,每个子像素分为多个区,所述衍射光栅用于使由每个区透过的光变为平行光,且由同一子像素的不同区透过的光方向不同;以及
    选择器,其分为与衍射光栅的各子像素对应的多个子像素,每个子像素分为与衍射光栅的子像素的各个区对应的多个区,所述选择器用于控制其每个区是否透光。
  2. 根据权利要求1所述的光栅组件,其中,还包括:
    液晶透镜,所述选择器和衍射光栅位于液晶透镜的同一侧,所述液晶透镜分为与衍射光栅的各子像素对应的多个子像素,并用于控制由其每个子像素透过的光的方向。
  3. 根据权利要求1所述的光栅组件,其中,
    所述选择器的每个区为一个液晶开关。
  4. 根据权利要求1所述的光栅组件,其中,
    在一帧画面中,所述选择器用于控制其子像素的各区依次逐一透光。
  5. 一种光源设备,包括:
    用于发光的面光源;
    权利要求1所述的光栅组件,其位于面光源的发光面前方。
  6. 根据权利要求5所述的光源设备,其中,所述光栅组件还包括液晶透镜,所述衍射光栅和选择器均位于液晶透镜与面光源之间,所述液晶透镜分为与衍射光栅的子像素对应的多个子像素,并用于控制由其每个子像素透过的光的方向。
  7. 根据权利要求5所述的光源设备,其中,
    所述衍射光栅为透光板,其每个区中设有多条相互平行的衍射斜槽,同一区中的所述衍射斜槽具有相同的槽角,同一子像素的不同区中的所述衍射斜槽的槽角和/或延伸方向不同。
  8. 根据权利要求7所述的光源设备,其中,
    所述面光源包括导光板和设于导光板侧面外的蓝光发光器件,所述导光板能在蓝光激发下发出黄光;
    所述衍射光栅的每个区中的衍射斜槽包括宽度不同的蓝光衍射斜槽和黄光衍射斜槽,分别用于使透过的蓝光和黄光变为相同方向。
  9. 根据权利要求5所述的光源设备,其中,
    所述选择器设于衍射光栅和面光源之间。
  10. 根据权利要求5所述的光源设备,其中,
    所示选择器的每个区为一个液晶开关。
  11. 根据权利要求5所述的光源设备,其中,
    在一帧画面中,所述选择器用于控制其子像素的各区依次逐一透光。
  12. 一种光源设备的驱动方法,其中,所述光源设备为权利要求5至11中任意一项所述的光源设备,所述驱动方法包括:
    所述面光源发光;以及
    所述选择器控制其各区是否透光。
  13. 根据权利要求12所述的驱动方法,其中,所述光源设备的所述光栅组件还包括液晶透镜,所述衍射光栅和选择器均位于 液晶透镜与面光源之间,所述液晶透镜分为与衍射光栅的子像素对应的多个子像素,并用于控制由其每个子像素透过的光的方向,所述驱动方法还包括:
    所述液晶透镜使射到其各子像素上的光透过并控制透过的光的方向。
PCT/CN2016/084701 2016-03-31 2016-06-03 光栅组件、光源设备及其驱动方法 WO2017166427A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/528,416 US10795064B2 (en) 2016-03-31 2016-06-03 Grating assembly, light source apparatus and driving method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610196096.2A CN105607172B (zh) 2016-03-31 2016-03-31 光栅组件、光源设备及其驱动方法
CN201610196096.2 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017166427A1 true WO2017166427A1 (zh) 2017-10-05

Family

ID=55987246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084701 WO2017166427A1 (zh) 2016-03-31 2016-06-03 光栅组件、光源设备及其驱动方法

Country Status (3)

Country Link
US (1) US10795064B2 (zh)
CN (1) CN105607172B (zh)
WO (1) WO2017166427A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10969616B2 (en) 2017-06-29 2021-04-06 Boe Technology Group Co., Ltd. Display mode controlling device, controlling method thereof and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607172B (zh) * 2016-03-31 2020-03-27 京东方科技集团股份有限公司 光栅组件、光源设备及其驱动方法
CN110213465B (zh) * 2019-04-24 2021-02-05 维沃移动通信有限公司 一种显示模组及终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147225A (ja) * 1998-11-16 2000-05-26 Toppan Printing Co Ltd 回折格子パターン
CN102231020A (zh) * 2011-07-06 2011-11-02 上海理工大学 一种新型立体显示器系统
CN102243387A (zh) * 2011-07-04 2011-11-16 上海理工大学 一种高分辨率的新型立体显示器系统
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
CN105223641A (zh) * 2015-09-25 2016-01-06 苏州苏大维格光电科技股份有限公司 一种量子点激光器指向型背光模组及裸眼3d显示装置
CN105589256A (zh) * 2016-03-11 2016-05-18 京东方科技集团股份有限公司 显示装置
CN105607172A (zh) * 2016-03-31 2016-05-25 京东方科技集团股份有限公司 光栅组件、光源设备及其驱动方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868480A (en) * 1996-12-17 1999-02-09 Compaq Computer Corporation Image projection apparatus for producing an image supplied by parallel transmitted colored light
JP2008084444A (ja) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd 光ピックアップ装置および光ディスク装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147225A (ja) * 1998-11-16 2000-05-26 Toppan Printing Co Ltd 回折格子パターン
CN102243387A (zh) * 2011-07-04 2011-11-16 上海理工大学 一种高分辨率的新型立体显示器系统
CN102231020A (zh) * 2011-07-06 2011-11-02 上海理工大学 一种新型立体显示器系统
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
CN105223641A (zh) * 2015-09-25 2016-01-06 苏州苏大维格光电科技股份有限公司 一种量子点激光器指向型背光模组及裸眼3d显示装置
CN105589256A (zh) * 2016-03-11 2016-05-18 京东方科技集团股份有限公司 显示装置
CN105607172A (zh) * 2016-03-31 2016-05-25 京东方科技集团股份有限公司 光栅组件、光源设备及其驱动方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10969616B2 (en) 2017-06-29 2021-04-06 Boe Technology Group Co., Ltd. Display mode controlling device, controlling method thereof and display device

Also Published As

Publication number Publication date
CN105607172B (zh) 2020-03-27
US10795064B2 (en) 2020-10-06
US20180196175A1 (en) 2018-07-12
CN105607172A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN108572482B (zh) 一种背光模组、显示装置及其驱动方法
US11221441B2 (en) Display panel, display apparatus and driving method thereof
US9581858B2 (en) Mirror display device
US11187844B2 (en) Display device and control method thereof
JP7062366B2 (ja) 表示装置、表示方法及び色分離素子
WO2020048304A1 (zh) 准直背光源、显示装置及其驱动方法
US10394077B2 (en) Backlight module
US10705282B2 (en) Backlight module comprising a plurality of light extraction gratings arranged in an array on a light emission surface of a light guide plate and liquid crystal display using the same
US20190302515A1 (en) Display device and display method
WO2018129950A1 (zh) 液晶显示面板、显示装置及其驱动方法
KR100750168B1 (ko) 컬러필터 불요형 액정 디스플레이 장치
US20190101681A1 (en) Edge-lit type backlight module and display device
US10908343B2 (en) Light source assembly and display device
CN105700212A (zh) 一种显示装置
CN102713742A (zh) 显示设备和光源设备
US11106080B2 (en) Backlight module, display device and driving method for the same
JP2003187623A (ja) 照明装置及びこれを用いた表示装置
WO2017166427A1 (zh) 光栅组件、光源设备及其驱动方法
WO2014176815A1 (zh) 直下式背光源及液晶显示装置
US10613372B2 (en) Display device and display method
WO2018192278A1 (zh) 光源、光源组件、显示装置及显示方法
TW201629551A (zh) 具有方向性控制輸出之顯示裝置,及該顯示裝置的背光
US8876353B2 (en) Lighting apparatus
KR100933111B1 (ko) 듀얼 모드 디스플레이
JP2003187622A (ja) 照明装置及び表示装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896201

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896201

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 105 DATED 21/02/2019)