WO2017166296A1 - 一种双轮电动平衡车 - Google Patents

一种双轮电动平衡车 Download PDF

Info

Publication number
WO2017166296A1
WO2017166296A1 PCT/CN2016/078340 CN2016078340W WO2017166296A1 WO 2017166296 A1 WO2017166296 A1 WO 2017166296A1 CN 2016078340 W CN2016078340 W CN 2016078340W WO 2017166296 A1 WO2017166296 A1 WO 2017166296A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
control system
user
electric balance
button
Prior art date
Application number
PCT/CN2016/078340
Other languages
English (en)
French (fr)
Inventor
闫学凯
李一鹏
蔡优飞
周伟
Original Assignee
深圳乐行天下科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳乐行天下科技有限公司 filed Critical 深圳乐行天下科技有限公司
Priority to PCT/CN2016/078340 priority Critical patent/WO2017166296A1/zh
Publication of WO2017166296A1 publication Critical patent/WO2017166296A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K3/00Bicycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices

Definitions

  • the application of the present application relates to the field of mechanical technology, and in particular to an electric balance vehicle.
  • Electric balance cars also known as body-sensing cars, are often used as a means of transportation.
  • the electric balance car on the market mainly has two types of single wheel and two wheels, wherein the single wheel means that the wheel is arranged in the middle of the foot pedal, and the two wheel means that the wheel is respectively arranged at the left and right sides of the foot pedal, and the user
  • the front side faces the direction in which the electric balance car advances.
  • the electric balance car is mainly built on a basic principle called "dynamic stability", which utilizes the self-balancing control system inside the vehicle body, generally including a gyroscope and an acceleration sensor to detect changes in the attitude of the vehicle body and utilize the servo.
  • the control system precisely drives the motor to make the appropriate adjustments to maintain the balance of the system.
  • the electric balance vehicle is provided with a user control device so that the user can control the traveling direction, the traveling speed, and the like of the electric balance vehicle.
  • the following two types of two-wheel electric balance vehicles are commonly found on the market.
  • the first type of two-wheel electric balance vehicle has a joystick close to the height of the operator's abdomen.
  • the operation lever is provided with a user control device, which can be used by the user during the travel of the electric balance vehicle.
  • the hand controls it;
  • the second type of balance car has a joystick that reaches the height of the user's knees.
  • the joystick is provided with a user control device that the user can control during the travel of the electric balance car through the legs.
  • these two types of two-wheeled electric balance vehicles are too large in the vertical direction, and when the user needs to jump off the vehicle in an emergency, the joystick will bring about a bad tie.
  • a user control device is placed on the foot pedal to design a two-wheel electric balance car without a joystick, which is similar in shape to a skateboard.
  • two-wheeled electric balance vehicles one is split-rotating, that is, the two pedals are connected by bearings or the vehicle body uses flexible material, so that the two pedals can rotate independently of each other.
  • the user can control the direction of travel of the balance car by controlling the relative rotation between the two pedals; the other type is one-piece, that is, the rigid connection between the two pedals cannot be independently rotated, and the user controls the surface of the pedal by controlling the sole of the foot.
  • the pressure distribution controls the direction of travel of the balance car.
  • the embodiment of the invention provides a two-wheel electric balance vehicle, which is used for solving the problem that the two-wheel electric balance vehicle is prone to false steering.
  • an aspect of an embodiment of the present invention provides a two-wheel electric balance vehicle, including:
  • the tire system includes a tire assembly and two hub motors, the hub motors are respectively disposed on the left and right sides of the vehicle body;
  • the vehicle body includes a standing area and a non-standing area, and the tire
  • the system is fixed to the vehicle body;
  • the power system is used to provide power;
  • the user control device includes a foot motion detecting device, and the foot motion detecting device is configured to detect motion information of the preset motion of the user's foot relative to the standing area, and to the control system
  • the steering information corresponding to the motion information is output;
  • the control system includes a steering control system and a self-balancing control system, and the steering control system is configured to control the tire system to perform corresponding steering according to the received steering information.
  • the foot motion detecting device includes a first signal generating module and a button, the button including a left button and a right button, a left button and a right button They are respectively disposed on the left non-standing area of the pedal and the non-standing area on the right side;
  • the first signal generating module is configured to generate left turn information when the left button is pressed, and output left turn information to the control system;
  • the first signal generating module is configured to generate right turn information when the right button is pressed, and output right turn information to the control system.
  • the foot motion detecting device includes a second signal generating module and an infrared sensor
  • the infrared sensor includes a left side infrared sensor and a right side infrared sensor, and the left side infrared
  • the sensor and the right infrared sensor are respectively disposed on the left side and the right side of the vehicle body;
  • the second signal generating module is configured to generate left turn information when the left infrared sensor detects that the user's heel is raised, and output left turn information to the control system;
  • the second signal generating module is configured to generate right turn information when the right infrared sensor detects that the user's heel is raised, and output right turn information to the control system.
  • the foot motion detecting apparatus further includes a first motion parameter module, where the first motion parameter module is configured to detect that the button is The degree information is pressed, and the steering angle information is generated according to the degree information; the first signal generating module is configured to generate the steering information according to the steering angle information.
  • the degree information that is pressed includes the distance and/or pressure that was pressed.
  • the infrared sensor is configured to detect a lifting distance of the user's heel.
  • the foot motion detecting apparatus further includes a second motion parameter module, and the second motion parameter module is configured to be raised according to The distance generates steering angle information; the second signal generating module is configured to generate steering information based on the steering angle information.
  • the self-balancing control system Includes gyroscopes and accelerometers.
  • the first possible implementation of the first aspect, the second possible implementation of the first aspect, the third possible implementation of the first aspect, the fourth possible aspect of the first aspect Any one of an implementation manner, a fifth possible implementation of the first aspect, a sixth possible implementation of the first aspect, and a seventh possible implementation of the first aspect, in the first aspect Among the eight possible implementations, the car body is an integrated design.
  • the vehicle body is provided with a handle for conveniently holding the two-wheel electric balance vehicle.
  • the foot motion detecting device is configured to detect motion information of a preset motion of the user's foot relative to the standing area, and output a steering letter corresponding to the motion information to the control system. Therefore, when the user needs to keep going straight, even if the center of gravity shifts, as long as the relative position between the foot and the standing area of the vehicle body is not changed, the traveling direction of the vehicle is not changed, the misdirection is avoided, and the safety is improved.
  • FIG. 1 is a schematic view of an embodiment of a two-wheeled electric balance vehicle of the present invention
  • FIG. 2 is a schematic view showing a specific embodiment of the two-wheel electric balance vehicle of the present invention.
  • FIG. 3 is a schematic view showing another specific embodiment of the two-wheel electric balance vehicle of the present invention.
  • FIG. 4 is a schematic view of another embodiment of the two-wheeled electric balance vehicle of the present invention.
  • the embodiment of the invention provides a two-wheel electric balance vehicle. As long as the user does not change the relative position between the foot and the standing area of the vehicle body, even if the center of gravity is offset, the traveling direction of the vehicle is not changed, and false steering is avoided.
  • an embodiment of the two-wheel electric balance vehicle in the embodiment of the present invention includes:
  • the two-wheeled electric balance vehicle includes a tire system 101, a vehicle body, a power supply system 102, a user control device 103, and a control system 104.
  • the tire system 101 includes a tire assembly and two hub motors, which are respectively disposed on the left and right sides of the vehicle body.
  • the hub motor can include a power unit, a transmission, a brake, and the like.
  • the vehicle body includes a standing area and a non-standing area, and the tire system 101 is fixed to the vehicle body.
  • the standing area refers to the area where the sole of the foot is stepped on the vehicle body when standing on the two-wheel electric balance car.
  • the power system 102 is used to provide power to the two-wheeled electric balance vehicle, primarily for powering the hub motors, user controls, and control systems.
  • the power system may be a battery or a solar battery, and may be other types of power sources, which are not specifically limited herein.
  • the user control device 103 can control the traveling direction, the traveling speed, and the like of the two-wheeled electric balance vehicle.
  • the user control device 103 includes the foot motion detecting device 1031, and the user can control the two-wheel electric motor through the foot motion detecting device 1031. Balance the direction of travel of the car.
  • the foot motion detecting device 1031 is configured to detect motion information of a preset motion of the user's foot with respect to the standing region, and output steering information corresponding to the motion information to the control system.
  • the preset action is a preset foot motion indicating the steering command, such as lifting a one-sided heel, lifting a one-sided toe, or moving a single foot forward relative to the standing area.
  • the control system 104 includes a steering control system 1041 for controlling the tire system to perform corresponding steering based on the received steering information, and a self-balancing control system 1042 for maintaining balance of the two-wheeled electric balance vehicle.
  • the two-wheeled electric balance car will not actively steer. Therefore, during the process of the user standing on the balance car, even if the center of gravity is offset, the pressure distribution of the user's sole to the pedal surface changes, as long as the user's foot does not make a preset action relative to the standing area, the two-wheel electric balance car will No misdirection will occur and safety will be improved.
  • the foot motion detecting device 1031 may include a physical button, may also include an optical sensor, and may further include other motion detecting devices as long as the relative motion of the user's foot relative to the preset motion of the standing region can be detected.
  • the specifics are not limited.
  • the present invention is described in different forms of the foot motion detecting device 1031. Referring to FIG. 2 and FIG. 3, a specific embodiment of the two-wheel electric balancing vehicle in the embodiment of the present invention includes:
  • the foot motion detecting device includes a button
  • the two-wheeled electric balance vehicle includes a tire system 201, a vehicle body 202, a power supply system (not shown), a user control device 203, and a control system (not shown).
  • the tire system 201 includes a tire assembly and two hub motors, which are respectively disposed on the left and right sides of the vehicle body.
  • the vehicle body 202 includes a standing area 2021 and a non-standing area 2022, and the tire system is fixed to the vehicle body 202.
  • the power system is used to provide power.
  • the user control device 203 includes a foot motion detecting device including a first signal generating module (not shown) and a button 2031 including a left button and a right button, a left button and a right button
  • the buttons are respectively disposed on the left non-standing area of the pedal and the non-standing area on the right side.
  • the left button and the right button may be disposed in front of the standing area 2021.
  • FIG. 2 when the user stands in the standing area 2021 of the balance car, the button approaches the user's toe, and the user moves the foot forward.
  • the button can be touched; the left button and the right button can also be disposed between the left standing area and the right standing area, as shown in FIG. 3, that is, when the user stands in the standing area of the balance car, the button approaches the user.
  • the user moves one foot to the other and can touch the button.
  • the first signal generating module is configured to generate left turn information when the left button is pressed, and output left turn information to the control system.
  • the control system includes a steering control system and a self-balancing control system for controlling the left turn of the tire system based on the received left turn information.
  • the first signal generating module is further configured to generate right turn information when the right button is pressed, and output right turn information to the control system.
  • the control system is configured to control the right turn of the tire system based on the received right turn information.
  • the user control device 203 may further include a travel speed control module such that the user can control the travel speed of the two-wheeled electric balance vehicle through the travel speed control module, and the specific structure of the travel speed control module is not limited herein.
  • the foot motion detecting device may further include a first motion parameter module, wherein the first motion parameter module is configured to detect information on the degree of the button being pressed, and generate a steering according to the degree information.
  • Angle information such as steering angle information
  • the first signal generating module is configured to generate steering information according to the steering angle information, such as a steering information indication: turning to the left, the corner is 45 degrees. Then, the steering control system controls the tire system to turn left 45 degrees based on the received steering information.
  • the information on the degree to which the button detected by the first motion parameter module is pressed may include the distance and/or the pressure at which the button is pressed. This embodiment is described by taking the degree information as the distance at which the button is pressed.
  • the bottom of the button can be fixed to the vehicle body by a spring, and the distance at which the button is pressed is the deformation distance of the spring.
  • the first action parameter module may include an infrared sensor, and the first action parameter module detects the deformation distance d of the spring by the infrared sensor, for example, obtaining a deformation distance d of 0.5 cm. Afterwards, the first motion parameter module compares the obtained deformation distance with a preset angle threshold.
  • the preset angle threshold is: the steering distance corresponding to the steering angle of 15 degrees is: 0.2cm ⁇ d ⁇ 1.2cm; the steering angle is 30 degrees.
  • the corresponding deformation distance range is: 1.2cm ⁇ d ⁇ 2.2cm; the deflection distance corresponding to the steering angle of 45 degrees is: 2.2 cm ⁇ d ⁇ 3.2 cm.
  • the first action parameter module generates angle information indicating that the corner is 15 degrees.
  • the body 202 can also be provided with a fender 2023 for preventing the tire system from splashing muddy water on the road surface to the user during the rotation process.
  • a handle 2024 may also be disposed on the vehicle body 202, and the specific position may be an upper surface of the vehicle body, such as a position in the middle of two standing areas of the vehicle body, or may be on the side of the vehicle body, such as the front side or the rear side of the vehicle body. It is convenient for users to hold two-wheel electric balance car.
  • the self-balancing control system generally includes a gyroscope and an acceleration sensor to detect changes in the posture of the vehicle body, and uses a servo control system to accurately drive the motor to perform corresponding adjustments to maintain the balance of the system.
  • the body of the two-wheel electric balance vehicle is an integrated body, that is, the two pedals are rigidly connected, and cannot be independently rotated, and the vehicle body can be made by using a stretching process.
  • the profile is used as a bearing component.
  • FIG. 4 another specific embodiment of the two-wheel electric balance vehicle in the embodiment of the present invention includes:
  • the foot motion detecting device includes an infrared sensor.
  • the two-wheeled electric balance vehicle includes a tire system 401, a vehicle body 402, a power supply system (not shown), a user control device 403, and a control system (not shown).
  • the tire system 401 includes a tire assembly and two hub motors, and the hub motors are respectively disposed on the left and right sides of the vehicle body.
  • the vehicle body 402 includes a standing area 4021 and a non-standing area 4022, and the tire system is fixed to the vehicle body 402.
  • the power system is used to provide power.
  • the user control device 403 includes a foot motion detecting device.
  • the foot motion detecting device includes a second signal generating module (not shown) and an infrared sensor 4031.
  • the infrared sensor 4031 includes a left infrared sensor and a right infrared sensor.
  • the infrared sensor and the right infrared sensor are respectively disposed on the left and right sides of the vehicle body.
  • the infrared sensor can include both an infrared emitting device and an infrared receiving device.
  • the second signal generating module is configured to generate left turn information when the left infrared sensor detects that the user's heel is raised, and output left turn information to the control system.
  • the control system includes a steering control system and a self-balancing control system for controlling the left turn of the tire system based on the received left turn information.
  • the second signal generating module is further configured to generate when the right infrared sensor detects that the user's heel is raised Turn right to the message and output a right turn message to the control system.
  • the steering control system is configured to control the right turn of the tire system based on the received right turn information.
  • the infrared sensor 4042 is further configured to detect the lifting distance of the user's heel
  • the foot motion detecting device may further include a second motion parameter module
  • the second motion parameter module is configured to The lift distance detected by the infrared sensor generates steering angle information.
  • the second signal generating module is configured to generate steering information according to the steering angle information.
  • the body 402 can also be provided with a fender 4023 to prevent the tire system from splashing muddy water on the road surface to the user during the rotation process.
  • a handle 4024 may also be disposed on the vehicle body 402.
  • the specific position may be the upper surface of the vehicle body, such as the position between the two standing areas of the vehicle body, and may also be on the side of the vehicle body, such as the front side or the rear side of the vehicle body. It is convenient for users to hold two-wheel electric balance car.
  • the self-balancing control system generally includes a gyroscope and an acceleration sensor to detect changes in the posture of the vehicle body, and uses a servo control system to accurately drive the motor to perform corresponding adjustments to maintain the balance of the system.
  • the body of the two-wheel electric balance vehicle is an integrated body, that is, the two pedals are rigidly connected, and cannot be independently rotated, and the vehicle body can be made by using a stretching process.
  • the profile is used as a bearing component.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

一种双轮电动平衡车,包括:轮胎系统(201)、车体(202)、电源系统、用户控制装置(203)和控制系统;轮胎系统(201)包括轮胎组件和两个轮毂马达,轮毂马达分别设置于车体(202)的左右两侧;车体(202)包括站立区(2021)和非站立区(2022),轮胎系统(201)固定于车体(202);电源系统用于提供电力;用户控制装置(203)包括脚部动作检测装置,脚部动作检测装置用于检测用户脚部相对于站立区的预设动作的动作信息,并向控制系统输出与动作信息相应的转向信息;控制系统包括转向控制系统和自平衡控制系统,转向控制系统用于根据接收到的转向信息控制轮胎系统(201)进行相应的转向。该双轮电动平衡车,只要不改变脚与车体(202)的站立区之间的相对位置,即使重心偏移,也不会改变车的行进方向,避免误转向。

Description

一种双轮电动平衡车 技术领域
本申请实施涉及机械技术领域,具体涉及一种电动平衡车。
背景技术
电动平衡车,又叫体感车,通常被用来作为代步工具。目前市场上的电动平衡车主要有独轮和双轮两类,其中独轮是指在脚踏板中间的位置设置车轮,双轮是指在脚踏板左右两侧的位置分别设置车轮,用户正面朝向电动平衡车前进的方向。电动平衡车主要是建立在一种被称为“动态稳定”的基本原理上,利用车体内部的自平衡控制系统,一般包括陀螺仪和加速度传感器,来检测车体姿态的变化,并利用伺服控制系统,精确地驱动电机进行相应的调整,以保持系统的平衡。电动平衡车上设置有用户控制装置,使得用户可以控制电动平衡车的行进方向、行进速度等。
市场上常见以下两类双轮电动平衡车,第一类双轮电动平衡车具有接近操作者腹部高度的操纵杆,操作杆上设置有用户控制装置,用户在电动平衡车的行进过程中可以用手对其进行控制;第二类平衡车具有到达用户膝盖左右高度的操纵杆,操纵杆上设置有用户控制装置,用户可以通过腿部在电动平衡车的行进过程中对其进行控制。然而这两类双轮电动平衡车在垂直方向上体积过大,并且当用户需要紧急跳下车时,操纵杆会带来不良牵绊。
为了提高双轮电动平衡车的便携性和安全性,有人将用户控制装置设置在脚踏板上,设计出不带操纵杆的双轮电动平衡车,其外形类似滑板。常见的此类双轮电动平衡车有两类:一类是分体转动式的,即两个踏板之间通过轴承连接或者车体使用柔性材料,使得两个踏板之间可以相互独立的发生转动,用户可以通过控制两个踏板间的相对转动进而控制平衡车的行进方向;另一类是一体式的,即两个踏板之间刚性连接,无法独立的转动,用户通过控制脚底对踏板表面的压力分布来控制平衡车的行进方向。对于这两类双轮电动平衡车,用户站立在车上直行前进的过程中,若需要改变行进方向,用户不需要改变脚与踏板之间的相对位置,只需调整脚底对踏板表面的压力分布,即可使车转变方向。
但是,用户站在平衡车上直行前进的过程中,难以和平衡车之间保持相对 静止,用户改变姿势或者单侧手提重物等,都可能导致重心偏移,用户脚底对踏板表面的压力分布发生改变,使得平衡车发生误转向,用户体验差,甚至给用户带来危险。
发明内容
本发明实施例提供了一种双轮电动平衡车,用于解决双轮电动平衡车容易发生误转向的问题。
为达到上述目的,本发明实施例的一方面提供了一种双轮电动平衡车,包括:
轮胎系统、车体、电源系统、用户控制装置和控制系统;轮胎系统包括轮胎组件和两个轮毂马达,轮毂马达分别设置于车体的左右两侧;车体包括站立区和非站立区,轮胎系统固定于车体;电源系统用于提供电力;用户控制装置包括脚部动作检测装置,脚部动作检测装置用于检测用户脚部相对于站立区的预设动作的动作信息,并向控制系统输出与动作信息相应的转向信息;控制系统包括转向控制系统和自平衡控制系统,转向控制系统用于根据接收到的转向信息控制轮胎系统进行相应的转向。
结合第一方面,在第一方面的第一种可能的实现方式中,脚部动作检测装置包括第一信号产生模块和按钮,按钮包括左侧按钮和右侧按钮,左侧按钮和右侧按钮分别设置于踏板的左侧非站立区和右侧非站立区;
第一信号产生模块用于当左侧按钮被按下时,生成左转信息,并向控制系统输出左转信息;
第一信号产生模块用于当右侧按钮被按下时,生成右转信息,并向控制系统输出右转信息。
结合第一方面,在第一方面的第二种可能的实现方式中,脚部动作检测装置包括第二信号产生模块和红外传感器,红外传感器包括左侧红外传感器和右侧红外传感器,左侧红外传感器和右侧红外传感器分别设置于车体的左侧和右侧;
第二信号产生模块用于当左侧红外传感器检测到用户脚跟抬起时,生成左转信息,并向控制系统输出左转信息;
第二信号产生模块用于当右侧红外传感器检测到用户脚跟抬起时,生成右转信息,并向控制系统输出右转信息。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,脚部动作检测装置还包括第一动作参数模块,第一动作参数模块用于检测按钮被按下的程度信息,并根据程度信息生成转向角度信息;第一信号产生模块用于根据转向角度信息生成转向信息。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,被按下的程度信息包括被按下的距离和/或压力。
结合第一方面的第二种可能的实现方式,在第一方面的第五种可能的实现方式中,红外传感器用于检测用户脚跟的抬起距离。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,脚部动作检测装置还包括第二动作参数模块,第二动作参数模块用于根据抬起距离生成转向角度信息;第二信号产生模块用于根据转向角度信息生成转向信息。
结合第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可能的实现方式、第一方面的第三种可能的实现方式、第一方面的第四种可能的实现方式、第一方面的第五种可能的实现方式和第一方面的第六种可能的实现方式之中任意一种,在第一方面的第七种可能的实现方式中,自平衡控制系统包括陀螺仪和加速度传感器。
结合第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可能的实现方式、第一方面的第三种可能的实现方式、第一方面的第四种可能的实现方式、第一方面的第五种可能的实现方式、第一方面的第六种可能的实现方式和第一方面的第七种可能的实现方式之中任意一种,在第一方面的第八种可能的实现方式中,车体为一体式设计。
结合第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可能的实现方式、第一方面的第三种可能的实现方式、第一方面的第四种可能的实现方式、第一方面的第五种可能的实现方式、第一方面的第六种可能的实现方式、第一方面的第七种可能的实现方式和第一方面的第八种可能的实现方式之中任意一种,在第一方面的第九种可能的实现方式中,车体上设置有提手,用以方便用户手持双轮电动平衡车。
本申请实施例提供的方案中,脚部动作检测装置用于检测用户脚部相对于站立区的预设动作的动作信息,并向控制系统输出与动作信息相应的转向信 息,因此,当用户需要保持直行时,即使重心发生偏移,只要不改变脚与车体的站立区之间的相对位置,就不会改变车的行进方向,避免误转向,提高安全性。
附图说明
图1是本发明双轮电动平衡车一个实施例示意图;
图2是本发明双轮电动平衡车一个具体实施例示意图;
图3是本发明双轮电动平衡车另一个具体实施例示意图;
图4是本发明双轮电动平衡车另一个具体实施例示意图。
具体实施方式
本发明实施例提供了一种双轮电动平衡车,用户只要不改变脚与车体的站立区之间的相对位置,即使重心偏移,也不会改变车的行进方向,避免误转向。
为了使本技术领域的人员更好的理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚的列出的那些步骤或单元,而是可包括没有清楚的列出的或对于这些过程、方法、产品或设备固有的其他步骤或单元。
为便于理解,下面对本发明实施例中的具体流程进行描述,参阅图1,本发明实施例中双轮电动平衡车的一个实施例包括:
双轮电动平衡车包括轮胎系统101、车体、电源系统102、用户控制装置103和控制系统104。
轮胎系统101包括轮胎组件和两个轮毂马达,轮毂马达分别设置于车体的左右两侧。轮毂马达可以包括动力装置、传动装置和制动装置等。
车体包括站立区和非站立区,轮胎系统101固定于车体。其中站立区是指用户站在双轮电动平衡车上直行前进时,脚底在车体上踩踏的区域。
电源系统102用于向双轮电动平衡车提供电力,主要用于向轮毂马达、用户控制装置和控制系统供电。电源系统可以为蓄电池,也可以为太阳能电池,还可以为其他形式的电源,此处不做具体限定。
用户通过用户控制装置103可以控制双轮电动平衡车的行进方向和行进速度等,本实施例中用户控制装置103包括脚部动作检测装置1031,用户可以通过脚部动作检测装置1031控制双轮电动平衡车的行进方向。具体的,脚部动作检测装置1031用于检测用户脚部相对于站立区的预设动作的动作信息,并向控制系统输出与动作信息相应的转向信息。预设动作为预先设定的指示转向指令的脚步动作,比如抬起单侧脚跟、翘起单侧脚尖或者将单只脚前移等相对于站立区的动作。
控制系统104包括转向控制系统1041和自平衡控制系统1042,转向控制系统用于根据接收到的转向信息控制轮胎系统进行相应的转向,自平衡控制系统用于保持双轮电动平衡车的平衡。
可以理解的是,如果用户脚部相对于车体上的站立区没有相对运动,双轮电动平衡车不会发生主动转向。因此用户站在平衡车上直行前进的过程中,即使重心偏移,用户脚底对踏板表面的压力分布发生改变,只要用户脚部没有相对于站立区做出预设动作,双轮电动平衡车便不会发生误转向,提高了安全性。
在实际使用中,脚部动作检测装置1031可以包括实体按钮,也可以包括光学传感器,还可以包括其他动作检测装置,只要能够检测用户脚部相对于站立区的预设动作的相对运动即可,具体不做限定。本发明以脚部动作检测装置1031的不同形式分别进行描述,请参阅图2和图3,本发明实施例中双轮电动平衡车的一个具体实施例包括:
一、脚部动作检测装置包括按钮;
双轮电动平衡车包括轮胎系统201、车体202、电源系统(图中未示出)、用户控制装置203和控制系统(图中未示出)。
轮胎系统201包括轮胎组件和两个轮毂马达,轮毂马达分别设置于车体的左右两侧。车体202包括站立区2021和非站立区2022,轮胎系统固定于车体202。电源系统用于提供电力。
用户控制装置203包括脚部动作检测装置,脚部动作检测装置包括第一信号产生模块(图中未示出)和按钮2031,按钮2031包括左侧按钮和右侧按钮,左侧按钮和右侧按钮分别设置于踏板的左侧非站立区和右侧非站立区。在实际使用中,左侧按钮和右侧按钮可以设置于站立区2021的前方,如图2所示,当用户站立在平衡车的站立区2021时,按钮接近用户脚尖,用户向前移动脚部,能够接触到按钮;左侧按钮和右侧按钮还可以设置于左侧站立区和右侧站立区之间,如图3所示,即当用户站立在平衡车的站立区时,按钮接近用户的双脚内侧,用户将一只脚向另一只脚的方向移动,可以接触到按钮。
第一信号产生模块用于当左侧按钮被按下时,生成左转信息,并向控制系统输出左转信息。控制系统包括转向控制系统和自平衡控制系统,转向控制系统用于根据接收到的左转信息控制轮胎系统左转。
第一信号产生模块还用于当右侧按钮被按下时,生成右转信息,并向控制系统输出右转信息。控制系统用于根据接收到的右转信息控制轮胎系统右转。
用户控制装置203还可以包括行进速度控制模块,使得用户可以通过行进速度控制模块控制双轮电动平衡车的行进速度,行进速度控制模块的具体结构此处不做限定。
为了进一步实现用户对双轮电动平衡车的精细控制,脚部动作检测装置还可以包括第一动作参数模块,第一动作参数模块用于检测按钮被按下的程度信息,并根据程度信息生成转向角度信息,比如转向角度信息指示转角为45度。第一信号产生模块用于根据转向角度信息生成转向信息,比如转向信息指示:向左转,转角为45度。那么,转向控制系统根据接收到的转向信息控制轮胎系统左转45度。
第一动作参数模块检测的按钮被按下的程度信息可以包括按钮被按下的距离和/或压力,本实施例以程度信息为按钮被按下的距离为例进行说明。按钮底部可以通过弹簧固定于车体,按钮被按下的距离即为该弹簧的形变距离。第一动作参数模块可以包括红外传感器,第一动作参数模块通过红外传感器检测弹簧的形变距离d,比如得到形变距离d为0.5cm。之后,第一动作参数模块将得到的形变距离与预设角度阈值进行比较,比如预设角度阈值为:转向角度15度对应的形变距离范围为:0.2cm<d≤1.2cm;转向角度30度对应的形变距离范围为:1.2cm<d≤2.2cm;转向角度45度对应的形变距离范围为: 2.2cm<d≤3.2cm。那么第一动作参数模块生成角度信息,指示转角为15度。
优选的,车体202上还可以设置挡泥板2023,用以防止轮胎系统在旋转过程中将路面上的泥水等脏污溅到用户身上。车体202上还可以设置提手2024,具体位置可以为车体上表面,比如在车体的两个站立区中间的位置,还可以在车体的侧面,比如车体的前侧或者后侧,用以方便用户手持双轮电动平衡车。
需要说明的是,自平衡控制系统一般包括陀螺仪和加速度传感器,来检测车体姿态的变化,并利用伺服控制系统,精确地驱动电机进行相应的调整,以保持系统的平衡。
为了降低本发明双轮电动平衡车的成本,双轮电动平衡车的车体为一体式的车体,即两个踏板之间刚性连接,无法独立的转动,车体可以使用拉伸工艺制成的型材作为承力部件。如此,相比于车体为分体转动式、两个踏板之间通过轴承连接的方案,本方案通过车体一体式的设计,可以使得本发明两轮电动平衡车的各个系统的可容纳空间大大增加,如此,在车体收到外力挤压的同时,对内部系统有较好的缓冲保护作用,进而避免爆炸起火等不安全的事故发生。
请参阅图4,本发明实施例中双轮电动平衡车的另一个具体实施例包括:
二、脚部动作检测装置包括红外传感器。
双轮电动平衡车包括轮胎系统401、车体402、电源系统(图中未示出)、用户控制装置403和控制系统(图中未示出)。
轮胎系统401包括轮胎组件和两个轮毂马达,轮毂马达分别设置于车体的左右两侧。车体402包括站立区4021和非站立区4022,轮胎系统固定于车体402。电源系统用于提供电力。
用户控制装置403包括脚部动作检测装置,脚部动作检测装置包括第二信号产生模块(图中未示出)和红外传感器4031,红外传感器4031包括左侧红外传感器和右侧红外传感器,左侧红外传感器和右侧红外传感器分别设置于车体的左侧和右侧。红外传感器可以同时包括红外发射装置和红外接收装置。
第二信号产生模块用于当左侧红外传感器检测到用户脚跟抬起时,生成左转信息,并向控制系统输出左转信息。控制系统包括转向控制系统和自平衡控制系统,转向控制系统用于根据接收到的左转信息控制轮胎系统左转。
第二信号产生模块还用于当右侧红外传感器检测到用户脚跟抬起时,生成 右转信息,并向控制系统输出右转信息。转向控制系统用于根据接收到的右转信息控制轮胎系统右转。
为了进一步实现用户对双轮电动平衡车的精细控制,红外传感器4042还用于检测用户脚跟的抬起距离,脚部动作检测装置还可以包括第二动作参数模块,第二动作参数模块用于根据红外传感器检测到的抬起距离生成转向角度信息。第二信号产生模块用于根据转向角度信息生成转向信息。
优选的,车体402上还可以设置挡泥板4023,用以防止轮胎系统在旋转过程中将路面上的泥水等脏污溅到用户身上。车体402上还可以设置提手4024,具体位置可以为车体上表面,比如在车体的两个站立区中间的位置,还可以在车体的侧面,比如车体的前侧或者后侧,用以方便用户手持双轮电动平衡车。
需要说明的是,自平衡控制系统一般包括陀螺仪和加速度传感器,来检测车体姿态的变化,并利用伺服控制系统,精确地驱动电机进行相应的调整,以保持系统的平衡。
为了降低本发明双轮电动平衡车的成本,双轮电动平衡车的车体为一体式的车体,即两个踏板之间刚性连接,无法独立的转动,车体可以使用拉伸工艺制成的型材作为承力部件。如此,相比于车体为分体转动式、两个踏板之间通过轴承连接的方案,本方案通过车体一体式的设计,可以使得本发明两轮电动平衡车的各个系统的可容纳空间大大增加,如此,在车体收到外力挤压的同时,对内部系统有较好的缓冲保护作用,进而避免爆炸起火等不安全的事故发生。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种双轮电动平衡车,其特征在于,包括:
    轮胎系统、车体、电源系统、用户控制装置和控制系统;
    所述轮胎系统包括轮胎组件和两个轮毂马达,所述轮毂马达分别设置于所述车体的左右两侧;
    所述车体包括站立区和非站立区,所述轮胎系统固定于所述车体;
    所述电源系统用于提供电力;
    所述用户控制装置包括脚部动作检测装置,所述脚部动作检测装置用于检测用户脚部相对于所述站立区的预设动作的动作信息,并向所述控制系统输出与所述动作信息相应的转向信息;
    所述控制系统包括转向控制系统和自平衡控制系统,所述转向控制系统用于根据接收到的所述转向信息控制所述轮胎系统进行相应的转向。
  2. 根据权利要求1所述的双轮电动平衡车,其特征在于,所述脚部动作检测装置包括第一信号产生模块和按钮,所述按钮包括左侧按钮和右侧按钮,所述左侧按钮和所述右侧按钮分别设置于所述踏板的左侧非站立区和右侧非站立区;
    所述第一信号产生模块用于当所述左侧按钮被按下时,生成左转信息,并向所述控制系统输出所述左转信息;
    所述第一信号产生模块用于当所述右侧按钮被按下时,生成右转信息,并向所述控制系统输出所述右转信息。
  3. 根据权利要求1所述的双轮电动平衡车,其特征在于,所述脚部动作检测装置包括第二信号产生模块和红外传感器,所述红外传感器包括左侧红外传感器和右侧红外传感器,所述左侧红外传感器和所述右侧红外传感器分别设置于所述车体的左侧和右侧;
    所述第二信号产生模块用于当所述左侧红外传感器检测到用户脚跟抬起时,生成左转信息,并向所述控制系统输出所述左转信息;
    所述第二信号产生模块用于当所述右侧红外传感器检测到用户脚跟抬起时,生成右转信息,并向所述控制系统输出所述右转信息。
  4. 根据权利要求2所述的双轮电动平衡车,其特征在于,所述脚部动作检测装置还包括第一动作参数模块,所述第一动作参数模块用于检测所述按钮 被按下的程度信息,并根据所述程度信息生成转向角度信息;
    所述第一信号产生模块用于根据所述转向角度信息生成所述转向信息。
  5. 根据权利要求4所述的双轮电动平衡车,其特征在于,所述被按下的程度信息包括被按下的距离和/或压力。
  6. 根据权利要求3所述的双轮电动平衡车,其特征在于,所述红外传感器用于检测用户脚跟的抬起距离。
  7. 根据权利要求6所述的双轮电动平衡车,其特征在于,所述脚部动作检测装置还包括第二动作参数模块,所述第二动作参数模块用于根据所述抬起距离生成转向角度信息;
    所述第二信号产生模块用于根据所述转向角度信息生成所述转向信息。
  8. 根据权利要求1至7中任一项所述的双轮电动平衡车,其特征在于,所述自平衡控制系统包括陀螺仪和加速度传感器。
  9. 根据权利要求1至7中任一项所述的双轮电动平衡车,其特征在于,所述车体为一体式设计。
  10. 根据权利要求1至7中任一项所述的双轮电动平衡车,其特征在于,所述车体上设置有提手。
PCT/CN2016/078340 2016-04-01 2016-04-01 一种双轮电动平衡车 WO2017166296A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078340 WO2017166296A1 (zh) 2016-04-01 2016-04-01 一种双轮电动平衡车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078340 WO2017166296A1 (zh) 2016-04-01 2016-04-01 一种双轮电动平衡车

Publications (1)

Publication Number Publication Date
WO2017166296A1 true WO2017166296A1 (zh) 2017-10-05

Family

ID=59962476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078340 WO2017166296A1 (zh) 2016-04-01 2016-04-01 一种双轮电动平衡车

Country Status (1)

Country Link
WO (1) WO2017166296A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107757795A (zh) * 2017-11-21 2018-03-06 南阳师范学院 一种基于myRIO平台的自平衡小车控制系统及方法
CN113978589A (zh) * 2021-12-15 2022-01-28 山东陀螺电子科技股份有限公司 一种自平衡无人单车
CN115056900A (zh) * 2022-06-22 2022-09-16 南通大学 一种使用红外紧急制动系统的新型平衡车及工作方法
CN115320765A (zh) * 2021-12-03 2022-11-11 钭俊龙 一种可单脚操控和双脚操控的两轮电动平衡车及操作方法
CN115384671A (zh) * 2021-12-03 2022-11-25 钭俊龙 一种可单脚操控的两轮电动平衡车及操作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981733B2 (ja) * 2003-09-17 2007-09-26 独立行政法人産業技術総合研究所 平行2輪乗用台車
CN201165299Y (zh) * 2007-11-19 2008-12-17 宋宇宁 自平衡电动车
CN103600801A (zh) * 2013-10-17 2014-02-26 上海交通大学 基于红外传感器的转向控制系统及其自平衡两轮车

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981733B2 (ja) * 2003-09-17 2007-09-26 独立行政法人産業技術総合研究所 平行2輪乗用台車
CN201165299Y (zh) * 2007-11-19 2008-12-17 宋宇宁 自平衡电动车
CN103600801A (zh) * 2013-10-17 2014-02-26 上海交通大学 基于红外传感器的转向控制系统及其自平衡两轮车

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107757795A (zh) * 2017-11-21 2018-03-06 南阳师范学院 一种基于myRIO平台的自平衡小车控制系统及方法
CN115320765A (zh) * 2021-12-03 2022-11-11 钭俊龙 一种可单脚操控和双脚操控的两轮电动平衡车及操作方法
CN115384671A (zh) * 2021-12-03 2022-11-25 钭俊龙 一种可单脚操控的两轮电动平衡车及操作方法
CN115320765B (zh) * 2021-12-03 2024-05-03 钭俊龙 一种可单脚操控和双脚操控的两轮电动平衡车及操作方法
CN115384671B (zh) * 2021-12-03 2024-05-03 钭俊龙 一种可单脚操控的两轮电动平衡车及操作方法
CN113978589A (zh) * 2021-12-15 2022-01-28 山东陀螺电子科技股份有限公司 一种自平衡无人单车
CN115056900A (zh) * 2022-06-22 2022-09-16 南通大学 一种使用红外紧急制动系统的新型平衡车及工作方法

Similar Documents

Publication Publication Date Title
US10144478B2 (en) Pressure control steering
WO2017166296A1 (zh) 一种双轮电动平衡车
KR102428624B1 (ko) 관련된 응용들에 상호 참조하는 전자세 인간-기계 상호 작용 차량
JP5470507B1 (ja) 一人乗り移動機器
JP4577442B2 (ja) 走行装置及びその制御方法
US8862301B2 (en) Inverted pendulum type vehicle
US9317039B2 (en) Inverted pendulum type vehicle
WO2017081523A1 (en) Self-balancing single wheel board with anti-fall and brake safety systems
JP6464283B2 (ja) 一人乗り移動機器
JP2004359094A (ja) 重心移動により操舵可能な車両
US20140297125A1 (en) Inverted pendulum type vehicle
JP2007336785A (ja) 走行装置及びその制御方法
CN205345206U (zh) 一种以检测压力差值来实现转弯的两轮电动平衡车
US8949010B2 (en) Inverted pendulum type vehicle
US9139224B2 (en) Inverted pendulum type vehicle
EP3728008B1 (en) Tilting motor vehicle with three or four wheels and method for safely blocking the tilting movements of a tilting motor vehicle with three or four wheels
CN206288143U (zh) 脚控平衡车
JP5927032B2 (ja) 倒立振子型車両
JP6589122B2 (ja) 一人乗り移動機器
JP6011372B2 (ja) 同軸二輪車及びその制御方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896075

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896075

Country of ref document: EP

Kind code of ref document: A1