WO2017164382A1 - 球状黒鉛鋳鉄、それからなる鋳造物品及び自動車用構造部品、並びに球状黒鉛鋳鉄からなる鋳造物品の製造方法 - Google Patents

球状黒鉛鋳鉄、それからなる鋳造物品及び自動車用構造部品、並びに球状黒鉛鋳鉄からなる鋳造物品の製造方法 Download PDF

Info

Publication number
WO2017164382A1
WO2017164382A1 PCT/JP2017/012066 JP2017012066W WO2017164382A1 WO 2017164382 A1 WO2017164382 A1 WO 2017164382A1 JP 2017012066 W JP2017012066 W JP 2017012066W WO 2017164382 A1 WO2017164382 A1 WO 2017164382A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
cast iron
equivalent circle
circle diameter
spheroidal graphite
Prior art date
Application number
PCT/JP2017/012066
Other languages
English (en)
French (fr)
Inventor
麟 王
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201780018552.7A priority Critical patent/CN109072364B/zh
Priority to US16/084,333 priority patent/US20190071756A1/en
Priority to EP17770422.8A priority patent/EP3434799B1/en
Priority to JP2018507447A priority patent/JP6838603B2/ja
Priority to KR1020187029339A priority patent/KR102356486B1/ko
Publication of WO2017164382A1 publication Critical patent/WO2017164382A1/ja
Priority to US17/726,641 priority patent/US20220243308A1/en
Priority to US18/235,572 priority patent/US20230392237A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • C22C33/10Making cast-iron alloys including procedures for adding magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • the present invention relates to a spheroidal graphite cast iron, a cast article comprising the same and a structural part for automobiles, and a method for producing a cast article comprising spheroidal graphite cast iron.
  • US 5,205,856 when treated with a wire inoculant having powdered ferrosilicon and powdered magnesium silicide, the average particle size of spherical graphite is dramatically reduced and the number of graphite particles is 511 / Disclosed is spheroidal graphite cast iron increased from mm 2 to 1256 pieces / mm 2 (see Fig. 3). In this spheroidal graphite cast iron, the maximum diameter of spheroidal graphite is 32.5 ⁇ m, and spheroidal graphite having a diameter of 12.5 mm or less accounts for 90% or more.
  • 5,205,856 is thought to be intended to allow magnesium silicide contained in the wire inoculum to act as crystallization nuclei of graphite, but in order to increase the crystallization nuclei of graphite,
  • the metallic silicon derived from the ferrosilicon fed at the same time may remain in the cast article after solidification, and the ductility may be significantly impaired.
  • Torjorn Skaland "A new method for chill and shrinkage control in ladle treated ductile iron," Foundry Trade Journal, (UK), 2004, 178 (3620), p.396-p.400 (Hereinafter also referred to as REM) has been reported on the study of spheroidal graphite in a disk-shaped product made of spheroidal graphite cast iron cast treated with a spheroidizing agent containing magnesium ferrosilicon (6% Mg in 45% FeSi, Graphite is formed by spheroidizing treatment using a spheroidizing agent (substantially free of other RE components such as Ce) containing 0.5% La and 1.0% La in 1% Ca and 0.9% Al).
  • the present invention relates to spheroidal graphite cast iron having a higher proportion of fine graphite and superior mechanical properties, in particular toughness, to spheroidal graphite cast iron according to the prior art such as the above-mentioned prior art documents, cast articles comprising the same, and for automobiles It aims at providing the manufacturing method of the cast article which consists of a structural component and spheroidal graphite cast iron.
  • the spheroidal graphite cast iron of the present invention is a graphite grain observed in an arbitrary cross section (at least in 1 mm 2 ),
  • the number of graphite grains with an equivalent circle diameter of 5 ⁇ m or more is N (5-) (pieces / mm 2 )
  • the number of graphite grains with an equivalent circle diameter of 5 ⁇ m or more but less than 20 ⁇ m is N (5-20) (pieces / mm 2 )
  • a circle is a circle.
  • N (2-5) (pieces / mm 2 )
  • N (2-5) ⁇ 100 It is preferable to satisfy.
  • the spheroidal graphite cast iron of the present invention is N (5-20) / N (5-) ⁇ 0.65 It is preferable to satisfy.
  • the cast article of the present invention is made of the above spheroidal graphite cast iron.
  • the cast article is preferably an automotive structural part.
  • the method of the present invention has the following conditions: N (5-) ⁇ 250, N (5-20) / N (5-) ⁇ 0.6, and N (30-) / N (5-) ⁇ 0.2 [However, N (5-) , N (5-20) and N (30-) are graphite particles observed in any cross section (at least in 1 mm 2 ), each having an equivalent circle diameter of 5 ⁇ m or more.
  • the pressure is preferably 10 kPa to 50 kPa.
  • the spheroidal graphite cast iron of the present invention has a high proportion of fine graphite, contains graphite particles having a specific particle size distribution, and is excellent in mechanical properties, particularly toughness. Therefore, it is suitable for spheroidal graphite cast iron castings, especially structural parts for automobiles. It is.
  • the method of the present invention makes it possible to obtain spheroidal graphite cast iron having excellent mechanical properties, particularly toughness.
  • FIG. 1 is a cross-sectional view schematically showing a mold used in Example 1.
  • FIG. 3 is a cross-sectional view schematically showing a casting method performed in Example 1.
  • FIG. 1 is a schematic cross-sectional view of a spheroidal graphite cast iron casting of Example 1.
  • FIG. 2 is an optical micrograph of the microstructure of the spheroidal graphite cast iron casting of Example 1.
  • FIG. 2 is a graph showing the particle size distribution of spheroidal graphite observed in the cross section of the spheroidal graphite cast iron casting of Example 1.
  • FIG. 2 is a graph showing the particle size distribution of spheroidal graphite observed in the cross section of the spheroidal graphite cast iron casting of Example 1.
  • FIG. 6 is a graph showing the particle size distribution of spheroidal graphite observed in the cross section of the spheroidal graphite cast iron casting of Example 2.
  • 6 is a graph showing the particle size distribution of spheroidal graphite observed in the cross section of the spheroidal graphite cast iron casting of Example 2.
  • 6 is a graph showing the relationship between the cooling curve near the eutectic solidification temperature and the pressing period in Example 1 and Example 2.
  • 6 is a schematic diagram showing a cast article (spheroidized graphite cast iron) of Example 3.
  • FIG. 3 is an optical micrograph observing the microstructure of a spheroidal graphite cast iron casting of Example 3.
  • FIG. 6 is a graph showing the particle size distribution of spheroidal graphite observed in the cross section of the spheroidal graphite cast iron casting of Example 3.
  • 6 is a graph showing the particle size distribution of spheroidal graphite observed in the cross section of the spheroidal graphite cast iron casting of Example 3.
  • 2 is an optical micrograph observing the microstructure of a spheroidal graphite cast iron casting of Comparative Example 1.
  • 3 is a graph showing the particle size distribution of spheroidal graphite observed in the cross section of the spheroidal graphite cast iron casting of Comparative Example 1.
  • FIG. 3 is a graph showing the particle size distribution of spheroidal graphite observed in the cross section of the spheroidal graphite cast iron casting of Comparative Example 1.
  • 6 is a schematic diagram showing a cast article (spheroidized graphite cast iron) of Example 4.
  • FIG. 6 is a graph showing the particle size distribution of spheroidal graphite observed in the cross section of the spheroidal graphite cast iron casting of Example 4.
  • 6 is a graph showing the particle size distribution of spheroidal graphite observed in the cross section of the spheroidal graphite cast iron casting of Example 4.
  • the composition of the spheroidal graphite cast iron of the present invention is as follows. Any composition may be used as long as it can constitute a graphite-based austenitic cast iron product. For example, a composition containing 2 to 4.5% C, 0.8 to 6% Si, and 0.010 to 0.080% Mg in mass%, with the balance being Fe and inevitable impurity elements, or the composition having desired properties Examples thereof include a composition further containing an appropriate amount of elements, S, P, Mn, Cu, Cr, Ni, Mo, W and the like for obtaining.
  • the spheroidal graphite cast iron of the present invention has spheroidal graphite (graphite grains) having a particle size distribution specified as follows. That is, the particle size distribution of the graphite grains, any cross section cut, among the graphite grains observed in at least 1 mm 2, an equivalent circle diameter 5 ⁇ m or more the number of graphite grains N (5-) (pieces / mm 2 ), The number of graphite grains with an equivalent circle diameter of 5 ⁇ m or more and less than 20 ⁇ m is N (5-20) (pieces / mm 2 ), and the number of graphite grains with an equivalent circle diameter of 30 ⁇ m or more is N (30-) (pieces / mm 2 ). ) Satisfies N (5-) ⁇ 250, N (5-20) / N (5-) ⁇ 0.6, and N (30-) / N (5-) ⁇ 0.2.
  • the spheroidal graphite cast iron of the present invention has a relatively large number of graphite grains having an equivalent circle diameter of 5 ⁇ m or more (250 pieces / mm 2 or more) and relatively fine graphite grains (graphite grains having an equivalent circle diameter of 20 ⁇ m or less). Spheroidal graphite cast iron with a high ratio and a low ratio of relatively large graphite grains (graphite grains having an equivalent circle diameter of 30 ⁇ m or more). With such a configuration, a spheroidal graphite cast iron having excellent mechanical properties, particularly toughness, can be obtained. In particular, it is possible to further improve toughness by adopting this configuration in a thick cast article having a thickness of 40 mm or more when cast as-is.
  • the number N (5-) of graphite grains having an equivalent circle diameter of 5 ⁇ m or more is preferably 300 (pieces / mm 2 ) or more.
  • Circle equivalent diameter circle equivalent diameter to 5 ⁇ m or more the number of graphite grains is less than 20 ⁇ m or 5 ⁇ m number of graphite grains ratio N (5-20) / N (5- ) is preferably 0.65 or more, more preferably 0.70 (70% ) Or more, most preferably 0.75 (75%) or more.
  • the ratio N (30-) / N (5-) of the number of graphite grains having an equivalent circle diameter of 30 ⁇ m or more to the number of graphite grains having an equivalent circle diameter of 5 ⁇ m or more is preferably 0.15 (15%) or less, more preferably 0.10 ( 10%) or less.
  • the spheroidal graphite cast iron of the present invention preferably satisfies N (2-5) ⁇ 100 when the number of graphite grains having an equivalent circle diameter of 2 ⁇ m or more and less than 5 ⁇ m is N (2-5) (pieces / mm 2 ). .
  • N (2-5) is more preferably N (2-5) ⁇ 150, most preferably N (2-5) ⁇ 200.
  • the spheroidal graphite cast iron of the present invention has D max ⁇ 50.4 ⁇ m, where D max is the equivalent circle diameter of the largest graphite grain among the graphite grains observed in any cut section (at least in 1 mm 2 ). It is preferable to satisfy.
  • the spheroidal graphite cast iron of the present invention has N (5-10) (pieces / mm 2 ) number of graphite grains having an equivalent circle diameter of 5 ⁇ m or more and less than 10 ⁇ m, and N (15 -20) (pieces / mm 2 ), it is preferable that ⁇ 0.15 ⁇ (N (5-10) -N (15-20) ) / N (5-10) ⁇ 0.25 is satisfied.
  • other preferable features of the spheroidal graphite cast iron of the present invention are the number N (5-10) of graphite grains having an equivalent circle diameter of 5 ⁇ m or more and less than 10 ⁇ m and the graphite grains having an equivalent circle diameter of 15 ⁇ m or more and less than 20 ⁇ m in the cut cross section.
  • the quotient of the difference from the number N (15-20) and the number N (5-10) of graphite grains having an equivalent circle diameter of 5 ⁇ m or more and less than 10 ⁇ m is ⁇ 0.15 or more and 0.25 or less.
  • the spheroidal graphite cast iron of the present invention is a graphite particle having an equivalent circle diameter of 5 ⁇ m or more.
  • the equivalent circle diameter (60% particle diameter) of the graphite grains to be% is d60 ( ⁇ m)
  • d60 ⁇ 20 ⁇ m is satisfied.
  • the equivalent circle diameters of the graphite grains where the cumulative number of graphite grains is 70%, 80% and 90% of the number of graphite grains having an equivalent circle diameter of 5 ⁇ m or more are d70 ( ⁇ m), d80 ( ⁇ m) and d90 ( ⁇ m), respectively. ), It is preferable that d70 ⁇ 20 ⁇ m, d80 ⁇ 30 ⁇ m, and d90 ⁇ 35 ⁇ m.
  • the conditions represented by d60 ⁇ 20 ⁇ m and d80 ⁇ 30 ⁇ m are represented by the aforementioned N (5-20) / N (5-) ⁇ 0.6 and N (30-) / N (5-) ⁇ 0.2, respectively.
  • the conditions are substantially the same.
  • the spheroidal graphite cast iron of the present invention can be produced by the following method. An example of the manufacturing method of the present invention will be described below for each process.
  • Spheroidal graphite cast iron melt Spheroidal graphite cast iron melt
  • molten metal Spheroidal graphite cast iron molten metal
  • a spheroidizing agent containing Mg or the like in a molten iron alloy (hereinafter referred to as Motoyu) prepared by mixing steel scraps and return scraps and various auxiliary materials as raw materials so as to have a desired component composition, for example, Prepared by adding a predetermined amount of Fe-Si-Mg alloy.
  • the spheroidizing agent those containing an appropriate amount of REM and other trace elements as required can be used.
  • a sandwich method that is generally performed, a method of supplying a cored wire containing a spheroidizing agent into a ladle containing a hot water, and the like can be used.
  • the inoculation method consists of (a) inoculation in the ladle (hereinafter also referred to as primary inoculation) performed in the pouring ladle at the same time as the spheroidization treatment by the sandwich method, and (b) inoculation agent in the molten metal stream line during pouring.
  • Known methods such as pouring of pouring so as to be dissolved and (c) inoculation in a mold performed by previously inoculating an inoculum into the cavity of the mold can be used.
  • the inoculation methods (b) and (c) are inoculations performed after the primary inoculation, and are sometimes referred to as secondary inoculations.
  • a cast article made of spheroidal graphite cast iron of the present invention may be manufactured using a known method such as gravity casting, but the molten metal poured into a gas-permeable mold (hereinafter also referred to as a mold) eutectic solidifies. Before starting, it is preferable to perform a method of pressing the surface of the molten metal with a gas and solidifying the molten metal while allowing the gas to pass through the mold (hereinafter also referred to as an air supply and pressure method).
  • the air supply and pressure method By adopting the air supply and pressure method, the ratio of the number of coarse graphite particles is suppressed, and a spheroidal graphite cast iron having a high ratio of the number of fine graphite particles can be easily obtained.
  • the air supply and pressure method which is one of the preferred production methods of the present invention, will be described in detail.
  • an air sand mold, a shell mold, a self-hardening mold, or other commonly used breathable mold formed using other sand particles can be used.
  • a mold formed using ceramic particles, metal particles, or the like can be applied as long as necessary air permeability is ensured.
  • a mold using a material having no air permeability, such as a mold can be used as a gas permeable mold when a ventilation hole such as a vent hole is provided to provide air permeability.
  • a mold having almost no air permeability such as plaster can be used as a gas permeable mold by mixing a gas permeable material or by providing a part of the gas permeable material with sufficient air permeability.
  • air may be used from the viewpoint of cost, and non-oxidizing gas, for example, argon, nitrogen, carbon dioxide may be used from the viewpoint of preventing oxidation of the molten metal.
  • non-oxidizing gas for example, argon, nitrogen, carbon dioxide may be used from the viewpoint of preventing oxidation of the molten metal.
  • the gas can be pressed against the molten metal by supplying the gas from the gate into the mold.
  • the pressure of pressing with gas (hereinafter also referred to as pressing force) is preferably 1 kPa to 100 kPa. If it is less than 1 kPa, the effect of increasing the number of graphite grains is difficult to obtain.
  • a more preferable range of the pressing force is 10 kPa to 50 kPa, and more preferably 20 kPa to 40 kPa.
  • FIG. 1 is a graph illustrating the relationship between the cooling curve near the eutectic solidification temperature and the pressing period.
  • curve C is a cooling curve showing the relationship between the temperature T inside the cast article to be obtained and time t.
  • the eutectic solidification period is from the eutectic solidification start time t Es until the temperature T changes substantially constant with respect to the time t to the eutectic solidification end time t Ef (hereinafter also referred to as eutectic solidification time).
  • the surface (hereinafter, also referred to as molten metal surface.) In contact with the pressurized gas in the molten metal is poured into the mold temperature of the molten metal of as long a period at the eutectic solidification temperature T E above.
  • the melt temperature on the surface of the melt is equal to or lower than the melt temperature inside the cast article to be obtained, and the fluidity of the melt is better when the temperature is higher than the eutectic solidification temperature.
  • the value of dt pM is preferably as large as possible.
  • the value may be 0 or more, that is, 0 ⁇ dt pE / dt E.
  • 0 ⁇ dt pE / dt E ⁇ 1 that is, t pf ⁇ t Ef .
  • the tact for applying the air supply pressure method to the subsequent mold in the casting line in mass production can be shortened by ending the pressing at an early stage before completion of eutectic solidification of the entire cast article to be obtained.
  • the temperature of eutectic solidification and the start and end times of eutectic solidification may be measured by placing a thermocouple at a predetermined position in the mold and measuring it by a casting experiment or by solidification analysis by a computer. You may ask for. In mass production of the same product, the casting conditions can be regarded as almost the same, so it is not necessary to measure these values related to eutectic solidification each time.
  • the air supply gas passes through the inside of the air-permeable mold and is sequentially discharged out of the mold, so that the cooling of the mold is promoted.
  • the molten metal surface molten metal surface
  • solidification of the molten metal portion in contact with the mold is promoted, so that the solidified shell is quickly brought from the outer edge of the molten metal toward the inside. Easy to form.
  • the expansion pressure due to the crystallization of the spherical graphite is not directed to the outside due to the already formed solidified shell, but is directed to the inside, so that the shrinkage of the molten metal accompanying cooling is offset.
  • the generation of shrinkage nests is suppressed. This effect makes it easier to obtain a cast article having a high mechanical property, particularly a high impact value.
  • the pattern of the pressing force during the pressing period may be arbitrary, but if gas is supplied so that the pressing force increases monotonously from the start of pressing, the effect of suppressing the release of Mg in the molten metal to the outside of the molten metal and the cooling of the mold can be obtained. This is preferable because it is easily formed.
  • N (5-20) (pieces / mm 2 ) the number of graphite grains with a diameter of 5 ⁇ m or more and less than 20 ⁇ m
  • N (30-) (pieces / mm 2 ) the number of graphite grains with a circle equivalent diameter of 30 ⁇ m or more is N (30-) (pieces / mm 2 )
  • N (5-) ⁇ 250, N (5-20) / N (5-) ⁇ 0.6, and N (30-) / N (5-) ⁇ 0.2 can be obtained.
  • the cumulative number of graphite grains is calculated when the number of graphite grains is integrated in ascending order of equivalent circle diameter.
  • Example 1 As a preferred embodiment of the present invention, an example manufactured by using a gravity casting method in combination with an air pressure method will be described with reference to the drawings. The present invention is not limited to this form.
  • FIG. 2 (a) shows the mold used in Example 1
  • FIG. 2 (b) shows the casting method of Example 1.
  • FIG. The mold 1 has a cavity 2 composed of a sprue part 3, a runner part 4, a feeder part 5 and a product part 6, and a CO 2 cured alkali phenol mold, which is a breathable mold made of silica sand as an aggregate. Using.
  • (casting) For casting, a method of carrying out an air feeding and pressurizing method was used in addition to a gravity casting method in which gravity casting was performed in an air atmosphere in which the outside of the mold 1 was at normal temperature and normal pressure. That is, as shown in FIG. 2 (a), from the pouring ladle 7 containing the above-described molten metal M, a volume of molten metal M that fills the product part 6 and the feeder part 5 is poured into the cavity 2 by gravity at 1365 ° C. As shown in FIG. 2 (b), a gas discharge section that discharges gas G generated from an air supply device (not shown) (air in the first embodiment, the same applies to the following embodiments), as shown in FIG.
  • FIG. 3 is a schematic cross-sectional view showing a spheroidal graphite cast iron casting 100, in which schematic dimensions are described.
  • the pressing force was measured using a pressure sensor (not shown) disposed in the gas flow path of the gas discharge unit 8.
  • FIG. 4 shows an optical micrograph of the corroded observation site.
  • Base 10 was composed of ferrite 10a and pearlite 10b.
  • the spherical graphite 11 contained spherical graphite 11a constituting a so-called bull's eye structure surrounded by the ferrite 10a, and spherical graphite 11b which is not a bull's eye, that is, its periphery is substantially only pearlite. Most of the spherical graphite 11b which is not such a bull's eye was fine with an equivalent circle diameter of 20 ⁇ m or less.
  • the obtained photographic data was subjected to image processing, and the number of spherical graphite and the equivalent circle diameter of each spherical graphite were determined. From the obtained results, the number of graphite grains per 1 mm 2 (hereinafter also referred to as the number of grains) (pieces / mm 2 ) was calculated, and the frequency distribution for each equivalent circle diameter range as shown in Table 2 was obtained. .
  • the equivalent circle diameter range is less than 2 ⁇ m, 2 ⁇ m or more and less than 5 ⁇ m, 5 ⁇ m or more and less than 10 ⁇ m,..., 45 ⁇ m or more and less than 50 ⁇ m (between 5 and 50 ⁇ m every 5 ⁇ m) and 50 ⁇ m or more.
  • measurement was performed using an image analysis apparatus (trade name “A Image-kun” manufactured by Asahi Kasei Engineering Co., Ltd.) (the same applies to other examples and comparative examples described below).
  • Table 2 shows the number N of spheroidal graphite contained in the spheroidal graphite cast iron of Example 1, a frequency F of 5 ⁇ m or more, a cumulative degree Cfa of 5 ⁇ m or more, and a reverse cumulative frequency Cfb for each equivalent circle diameter range.
  • FIG. 5 is a graph illustrating Table 2.
  • the notation indicating the range of the equivalent circle diameter is ⁇ x- '' is not less than x ( ⁇ m), and ⁇ -y '' is y ( ⁇ m).
  • xy means x ( ⁇ m) or more and less than y ( ⁇ m).
  • N (x-) is the number of grains with an equivalent circle diameter of x ( ⁇ m) or more (pieces / mm 2 ), and N (-y) is the number of grains with an equivalent circle diameter of less than y ( ⁇ m) (pieces / mm 2).
  • N (xy) is the circle equivalent diameter of x ([mu] m) or y ([mu] m) than a particle number (number / mm 2).
  • Cfa As frequency Cfa, Cfa (5-10) (%), Cfa (5-15) (%), Cfa (5-20) (%), ..., Cfa (5-60) (%) in ascending order It is expressed as Cfa (5-) (%).
  • the cumulative frequency in the range of each equivalent circle diameter when adding in descending order from the frequency F (50-) with an equivalent circle diameter of 50 ⁇ m or more is defined as Cfb (60-) (%), Cfb (55 -) (%), Cfb (50-) (%), ..., Cfb (10-) (%), Cfb (5-) (%).
  • the number of graphite grains N (5-20) (pieces / mm 2 ) less than 20 ⁇ m and the number of graphite grains N (30-) (pieces / mm 2 ) with an equivalent circle diameter of 30 ⁇ m or more was determined, and from these values, The ratio of the number N (5-20) of particles with an equivalent circle diameter of 5 ⁇ m to less than 20 ⁇ m to the number of particles N (5-) with an equivalent circle diameter of 5 ⁇ m or more: N (5-20) / N (5-) The ratio of the number of grains N (30-) of 30 ⁇ m or more to the number of grains N (5-) of equivalent circle diameter of 5 ⁇ m or more: N (30-) / N (5-) and the equivalent circle diameter of 5 ⁇ m or more but less than 10 ⁇ m The quotient of the difference between the number of graphite grains and the number of graphite grains with an equivalent circle diameter of 15 ⁇ m or more and less than 20 ⁇ m and the number of graphite grains with an equivalent circle diameter of 5
  • N (5-20) / N (5-) corresponds to the cumulative frequency from the equivalent circle diameter of 5 ⁇ m to less than 20 ⁇ m: Cfa (5-20) , and N (30-) / N (5- The value of ) corresponds to the reverse cumulative frequency Cfb (30-) up to a circle equivalent diameter of 30 ⁇ m or more.
  • Table 4 The results are shown in Table 4.
  • the number of equivalent graphite particles (pieces / mm 2 ) is integrated in ascending order of the equivalent circle diameter.
  • the cumulative number of graphite grains from 5 ⁇ m to a specific equivalent circle diameter ( ⁇ m) (hereinafter also simply referred to as the cumulative grain number or Nc.
  • the unit is the number of pieces / mm 2 ), and the equivalent circle diameter ( ⁇ m) and the cumulative graphite grain number ( Curve / mm 2 ) was obtained.
  • the cumulative value Cfa corresponding to each circle equivalent diameter is obtained by setting the maximum value of the number of accumulated graphite particles ( number of graphite particles N (5-) with an equivalent circle diameter of 5 ⁇ m or more) as 100%, and the equivalent circle diameter ( ⁇ m) and The relationship with cumulative frequency (%) was obtained.
  • the equivalent circle diameter when the cumulative frequency is n% is represented by dn (hereinafter also referred to as n% particle diameter).
  • the 60% particle diameter (d60) is the equivalent circle diameter of graphite grains in which the cumulative number of graphite grains is 60% of the number of graphite grains having an equivalent circle diameter of 5 ⁇ m or more.
  • d0 is expressed as the equivalent circle diameter corresponding to the smallest of the observed graphite grains having an equivalent circle diameter of 5 ⁇ m or more (the same applies to the following examples and comparative examples).
  • D100 is the maximum equivalent circle diameter D max of the graphite grains.
  • FIG. 6 is a graph in which the cumulative number of grains Nc and the cumulative frequency Cfa of 5 ⁇ m or more are plotted against the equivalent circle diameter values in Table 3.
  • the equivalent circle diameter on the horizontal axis is expressed in a common logarithmic scale (the same applies to the following examples and comparative examples).
  • Cfa is 20 to 50%, that is, the equivalent circle diameter d20 to d50 has a larger n% particle size than (Equation 1), and Cfa is in the range of 50% to 98% (Equation 1).
  • the n% particle size was smaller than that, and the Cfa was 99% or more and the n% particle size was larger than that of (Equation 1).
  • the particle size distribution of the spherical graphite follows the straight line shown in (Equation 1), that is, when the cumulative frequency Cfa is proportional to the logarithm of the equivalent circle diameter D, the growth of the spherical graphite is a diffusion phenomenon (diffusion-controlled). It is thought to mean that.
  • Test test A JIS Z 2241 No. 14A test piece was cut out from area B in Fig. 3, and tensile strength at normal temperature of product 106 in an as-cast condition using a tensile tester (Shimadzu AG-IS250kN) according to JIS Z 2241. Then, 0.2% proof stress and elongation at break were measured. The test results are shown in Table 8.
  • Example 2 The result of Example 2 manufactured by only the gravity casting method without using the air supply pressurizing method in combination with the above Example 1 is shown below.
  • Example 2 was produced under the same production conditions as Example 1 except that the air feeding and pressurizing method was not used.
  • Table 1 the component composition of the molten metal was the same as Example 1.
  • Table 5 shows the results of measuring the number N of grains, the frequency F of 5 ⁇ m or more, the cumulative degree Cfa of 5 ⁇ m or more, and the reverse cumulative frequency Cfb of the spheroidal graphite cast iron of Example 2.
  • FIG. 7 is a graph illustrating Table 5.
  • N (5-20) / N (5-) , N (30-) / N for spheroidal graphite contained in the spheroidal graphite cast iron of Example 2 (5-) and (N (5-10) -N (15-20) ) / N (5-10) were determined. The results are shown in Table 7.
  • Example 2 similarly to Example 1, the relationship between the equivalent circle diameter D and the cumulative number of grains Nc in Example 2 and the relationship between the equivalent circle diameter D and the cumulative frequency Cfa were determined. The results are shown in Table 6 and FIG. From Table 6, Table 7 shows the D max (d100) of spheroidal graphite contained in the spheroidal graphite cast iron of Example 2.
  • Example 2 When comparing the broken line represented by (Equation 1) shown in FIG. 8 and the relationship between the equivalent circle diameter D and Cfa of Example 2, Example 2 has 10% Cfa, that is, the equivalent circle diameter d10. To the extent, it almost agrees with (Equation 1), Cfa is 10-60%, that is, the range of equivalent circle diameter d10-d60 is n% larger than (Equation 1), Cfa is 60% -98% In the range, the n% particle diameter was smaller than that of (Formula 1), and Cfa was 99% or more, and the n% particle diameter was larger than that of (Formula 1).
  • Table 8 shows the results of the tensile test (tensile strength, 0.2% proof stress and elongation at break) and Charpy impact test of Example 2 in the as-cast state.
  • Example 2 Comparison of shrinkage nest
  • FIG. 9 is a graph showing a relationship between a cooling curve and a pressing period in the vicinity of the eutectic solidification temperature of Example 1 and Example 2 measured at a position in the vicinity of the part A in FIG.
  • the cooling curve C1 of Example 1 is indicated by a solid line
  • the cooling curve C2 of Example 2 is indicated by a broken line.
  • the region where the temperature T is substantially constant in the range of 1140 ° C. to 1160 ° C. with respect to time t is the eutectic solidification interval.
  • Example 1 had a eutectic solidification time of 20 s longer than Example 2.
  • Example 1 had a eutectic solidification time of 20 s longer than Example 2.
  • the reason for this is that in Example 1 in combination with the air supply and pressurization method, the saturation of Mg in the molten metal was increased by pressing with gas (air in Example 1), and the release of Mg out of the molten metal was suppressed. This is probably because more crystallization nuclei of spheroidal graphite such as MgO and MgS were formed.
  • the pressing time dt p of Example 1 was 120 s as shown in FIG.
  • Example 3 As a preferred embodiment of the present invention, another example manufactured by using a gravity casting method in combination with an air pressure method will be described with reference to the drawings.
  • Example 2 (Molten metal) In the same manner as in Example 1, the raw material was melted in a low frequency induction melting furnace to obtain 12000 kg of hot water. Then, in the same manner as in Example 1, in the bottom pocket of the pouring ladle, 1.1% by mass of spheronizing agent with respect to the main hot water, 0.2% by mass of the primary inoculum with respect to the main hot water, and 11 kg of punching Steel scraps were charged in order, 1800 kg of the obtained hot water was poured into the pouring ladle at 1520 ° C., and spheroidization treatment by the sandwich method and primary inoculation were performed simultaneously. The same spheroidizing agent and primary inoculant as those used in Example 1 were used.
  • a fresh sand mold which is a breathable mold, having the automobile structural component (support beam) shown in FIG. 10 as a cavity was used.
  • Example 2 For casting, the same method as in Example 1 was used, in addition to the gravity casting method in which gravity pouring was performed, and a method in which an air supply and pressure method was carried out.
  • Example 3 The microstructure of the cast article (nodular graphite cast iron) of Example 3 was observed in the same manner as in Example 1, and the particle size distribution of the spherical graphite was evaluated in the same manner as in Example 1. The observation position is in the vicinity of the thickness center of the part indicated by E in FIG. 10 (thickness 30 mm). The micrograph is shown in FIG. 11, and the number N of spheroidal graphite, the frequency F of 5 ⁇ m or more, the cumulative degree Cfa of 5 ⁇ m or more, and the reverse cumulative frequency Cfb are shown in Table 6.
  • FIG. 12 is a graph illustrating Table 10.
  • Example 2 Similarly to Example 1, from the particle size distribution shown in Table 10, N (5-20) / N (5-) , N (30-) / N for spheroidal graphite contained in the spheroidal graphite cast iron of Example 3 (5-) and (N (5-10) -N (15-20) ) / N (5-10) were determined. The results are shown in Table 12.
  • the particle size distribution represented by (Formula 2) is a distribution in which the proportion of finer graphite particles is higher than the particle size distribution represented by (Formula 1).
  • Example 3 The relationship between the equivalent circle diameter D and Cfa in Example 3 is that of the finer graphite particles compared to (Equation 2) showing a particle size distribution in which the proportion of fine graphite particles is higher than that of (Equation 1) shown by the broken line. The ratio was high. Comparing the alternate long and short dash line shown in (Equation 2) with the relationship between Cfa and D in Example 3, Example 3 is almost equal to (Equation 2) until Cfa is 30%, that is, up to about the equivalent circle diameter d30.
  • Cfa is 30 to 98%, that is, the range of equivalent circle diameter d30 to d98 is n% smaller than (Equation 2), Cfa is 99% or more, and n% particle diameter is larger than (Equation 2). It was.
  • Table 13 shows the results of the tensile test (tensile strength, 0.2% proof stress and elongation at break) and Charpy impact test of Example 3 in the as-cast state.
  • Comparative Example 1 The result of Comparative Example 1 manufactured by only gravity casting without using the air feeding and pressurizing method with respect to Example 3 described above is shown below. Comparative Example 1 was produced under the same production conditions as in Example 3 except that the air supply and pressurization method was not used. As shown in Table 9, the component composition of the molten metal was the same as in Example 3. The method for measuring the number of graphite grains and the particle diameter, the tensile test, and the Charpy impact test are the same as in Example 3.
  • Example 3 The microstructure of the cast article of Comparative Example 1 (nodular graphite cast iron) was observed in the same manner as in Example 3, and the particle size distribution of the spherical graphite was evaluated in the same manner as in Example 3. The observation position is the same as in Example 3.
  • the micrograph is shown in FIG. 14, and the number N of spheroidal graphite, the frequency F of 5 ⁇ m or more, the cumulative degree Cfa of 5 ⁇ m or more, and the reverse cumulative frequency Cfb are shown in Table 14.
  • FIG. 15 is a graph illustrating Table 14.
  • Example 3 the relationship between the equivalent circle diameter D and the cumulative number of grains Nc of Comparative Example 1 and the relationship between the equivalent circle diameter D and the cumulative frequency Cfa were determined.
  • Table 15 shows the results.
  • Table 16 shows the D max (d100) of spheroidal graphite contained in the spheroidal graphite cast iron of Comparative Example 1.
  • Comparative Example 1 when comparing the broken line indicated by (Formula 1) and the relationship between the equivalent circle diameter D and Cfa of Comparative Example 1, Comparative Example 1 has a Cfa of 25%, that is, a range of equivalent circle diameters d0 to d25. N% particle size was smaller than (Equation 1), but n% particle size was larger than (Equation 1) in the range of Cfa from 25% to 100%.
  • Example 4 As another preferred embodiment of the present invention, another example manufactured by using a gravity casting method in combination with an air pressure method will be described with reference to the drawings.
  • Example 4 a mold having a structural part for automobile (steering knuckle) shown in FIG. 17 as a cavity was used, and the mold material, the manufacturing method of the molten metal, the casting method, and the pressing force were the same as in Example 1.
  • Table 18 shows the results of measuring the number N of grains, the degree F of 5 ⁇ m or more, the degree of accumulation Cfa of 5 ⁇ m or more, and the inverse degree of accumulation Cfb of the spherical graphite of the cast article (spheroidal graphite cast iron) of Example 4.
  • FIG. 18 is a graph illustrating Table 18. The number of grains was measured in the vicinity of the thickness center of the 20 mm thick part indicated by H in FIG.
  • N (5-20) / N (5-) , N (30-) / N for spheroidal graphite contained in the spheroidal graphite cast iron of Example 4 (5-) and (N (5-10) -N (15-20) ) / N (5-10) were determined. The results are shown in Table 20.
  • Example 4 From FIG. 19, the relationship between equivalent circle diameter D and Cfa in Example 4 was such that the proportion of fine graphite particles was higher than the particle size distribution shown in (Formula 2). That is, when the one-dot chain line shown in (Expression 2) and the relationship between the equivalent circle diameter D and Cfa of Example 4 are compared, Example 4 has a Cfa of 97%, that is, over the range of equivalent circle diameters d0 to d97. The n% particle size was smaller than that of (Formula 2), the Cfa was 98% or more, and the n% particle size was larger than that of (Formula 2).
  • the spheroidal graphite cast iron of the present invention can be applied to various structural parts, but is particularly suitable for automobile structural parts because of its excellent toughness.
  • it can be applied to steering knuckles, crankshafts, support beams, connecting rods, brake bodies, brake brackets, shackles, spring brackets, turbine housings, carriers, differential cases, engine mount brackets, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

任意の断面(少なくとも1 mm2中)に観察される黒鉛粒のうち、 円相当径5μm以上の黒鉛粒数をN(5-)(個/mm2)、円相当径が5μm以上20μm未満の黒鉛粒数をN(5-20)(個/mm2)、及び円相当径が30μm以上の黒鉛粒数をN(30-)(個/mm2)とするとき、 N(5-)≧250、 N(5-20)/N(5-)≧0.6、及び N(30-)/N(5-)≦0.2 を満たすことを特徴とする球状黒鉛鋳鉄。

Description

球状黒鉛鋳鉄、それからなる鋳造物品及び自動車用構造部品、並びに球状黒鉛鋳鉄からなる鋳造物品の製造方法
 本発明は球状黒鉛鋳鉄、それからなる鋳造物品及び自動車用構造部品、並びに球状黒鉛鋳鉄からなる鋳造物品の製造方法に関するものである。
 球状黒鉛鋳鉄鋳物の機械的性質、特に靭性を向上させるために、晶出する球状黒鉛、特に微細な球状黒鉛を増加させることが重要である。
 例えば、US 5,205,856は、粉末状のフェロシリコンと粉末状のマグネシウム珪化物とを有するワイヤー接種剤で処理することにより、球状黒鉛の平均粒径が劇的に小さくなり、黒鉛粒数が511個/mm2から1256個/mm2に増加した球状黒鉛鋳鉄を開示している(Fig.3を参照)。この球状黒鉛鋳鉄は球状黒鉛の最大径が32.5μmであり、直径12.5 mm以下の球状黒鉛が90%以上を占めている。US 5,205,856に記載の発明は、ワイヤー接種剤中に含まれるマグネシウム珪化物を黒鉛の晶出核として作用させることを意図しているものと考えられるが、黒鉛の晶出核を増やすために溶湯量に対して過剰にフィードした場合などは、同時にフィードされたフェロシリコンに由来する金属シリコンが凝固後の鋳造物品に残留し、延性を著しく損ねてしまうおそれがある。
 Torjorn Skaland,"A new method for chill and shrinkage control in ladle treated ductile iron," Foundry Trade Journal,(英国),2004年,178巻(3620号),p.396-p.400は、種々のレアアース(以下、REMともいう。)を含有する球状化剤で処理した球状黒鉛鋳鉄鋳物からなる円板状製品の球状黒鉛についての研究を報告しており、マグネシウムフェロシリコン(45%FeSiに6%Mg, 1%Ca及び0.9%Alを含む)に0.5%La及び1.0%Laを含んだ球状化剤(他のRE成分すなわちCe等を実質的に含まない)を用いて球状化処理することにより、黒鉛粒数の増加、黒鉛粒の球状度の向上が見られ、さらに小粒径側に傾斜した非対称な粒径分布となることを開示している。しかしながら、0.5%La及び1.0%Laを含む球状化剤を用いた肉厚5 mmの鋳造品では、硬質のチル(共晶セメンタイト)が観察されたことが開示されており、肉厚5 mmの部位を含む自動車用構造部品に適用する場合には十分な延性が得られないおそれがある。
 本発明は、上記先行技術文献等の従来技術による球状黒鉛鋳鉄に対して、微細な黒鉛の占める割合がさらに高い、機械的性質、特に靭性に優れた球状黒鉛鋳鉄、それからなる鋳造物品及び自動車用構造部品、並びに球状黒鉛鋳鉄からなる鋳造物品の製造方法を提供することを目的としている。
 上記目的に鑑み鋭意研究の結果、本発明者等は、特定の粒径分布を有する黒鉛粒を含む球状黒鉛鋳鉄が、優れた機械的性質、特に優れた靭性を有することを見出し、本発明に想到した。
 すなわち、本発明の球状黒鉛鋳鉄は、任意の断面(少なくとも1 mm2中)に観察される黒鉛粒のうち、
円相当径5μm以上の黒鉛粒数をN(5-)(個/mm2)、円相当径が5μm以上20μm未満の黒鉛粒数をN(5-20)(個/mm2)、及び円相当径が30μm以上の黒鉛粒数をN(30-)(個/mm2)とするとき、
N(5-)≧250、
N(5-20)/N(5-)≧0.6、及び
N(30-)/N(5-)≦0.2
を満たす球状黒鉛鋳鉄である。
 円相当径が2μm以上5μm未満の黒鉛粒数をN(2-5)(個/mm2)とするとき、
N(2-5)≧100
を満たすのが好ましい。
 本発明の球状黒鉛鋳鉄は、
N(5-20)/N(5-)≧0.65
を満たすのが好ましい。
 最大の黒鉛粒の円相当径をDmaxとするとき、
Dmax≧50.4μm
を満たすのが好ましい。
 円相当径が5μm以上10μm未満の黒鉛粒数をN(5-10)(個/mm2)、円相当径が15μm以上20μm未満の黒鉛粒数をN(15-20)(個/mm2)とするとき、
-0.15≦(N(5-10)-N(15-20))/N(5-10)≦0.25
を満たすのが好ましい。
 本発明の鋳造物品は、前記球状黒鉛鋳鉄からなる。
 前記鋳造物品は自動車用構造部品であるのが好ましい。
 本発明の方法は、以下の条件:
N(5-)≧250、
N(5-20)/N(5-)≧0.6、及び
N(30-)/N(5-)≦0.2
[ただし、N(5-)、N(5-20)及びN(30-)は、それぞれ任意の断面(少なくとも1 mm2中)に観察される黒鉛粒のうち、円相当径が5μm以上の黒鉛粒数(個/mm2)、円相当径が5μm以上20μm未満の黒鉛粒数(個/mm2)、及び円相当径が30μm以上の黒鉛粒数(個/mm2)である。]
を満たす球状黒鉛鋳鉄からなる鋳造物品を製造する方法であって、
 通気性鋳型に注湯された溶湯が共晶凝固を開始する前に、前記溶湯の表面を圧力1 kPa~100 kPaでガスにより押圧し、前記鋳型内を前記ガスで通気させつつ前記溶湯を凝固させることを特徴とする。
 前記圧力は10 kPa~50 kPaであるのが好ましい。
 前記溶湯が共晶凝固を開始してから共晶凝固を終了するまでの時間をdtE、前記溶湯が共晶凝固を開始してから前記押圧を終了するまでの時間をdtpEとするとき、
0≦dtpE/dtE≦1
を満たすのが好ましい。
 本発明の球状黒鉛鋳鉄は、微細な黒鉛の割合が高く、特定の粒径分布を有する黒鉛粒を含み、機械的性質、特に靭性に優れるので、球状黒鉛鋳鉄鋳物、特に自動車用構造部品に好適である。また本発明の方法により、機械的性質、特に靭性に優れた球状黒鉛鋳鉄を得ることができる。
本発明の製造方法における共晶凝固温度付近の冷却曲線と押圧期間との関係を説明するグラフである。 実施例1で使用した鋳型を模式的に示す断面図である。 実施例1で行った鋳造方法を模式的に示す断面図である。 実施例1の球状黒鉛鋳鉄鋳物の模式断面図である。 実施例1の球状黒鉛鋳鉄鋳物のミクロ組織を観察した光学顕微鏡写真である。 実施例1の球状黒鉛鋳鉄鋳物断面に観察される球状黒鉛の粒径分布を示すグラフである。 実施例1の球状黒鉛鋳鉄鋳物断面に観察される球状黒鉛の粒径分布を示すグラフである。 実施例2の球状黒鉛鋳鉄鋳物断面に観察される球状黒鉛の粒径分布を示すグラフである。 実施例2の球状黒鉛鋳鉄鋳物断面に観察される球状黒鉛の粒径分布を示すグラフである。 実施例1及び実施例2の共晶凝固温度付近の冷却曲線と押圧期間との関係を示すグラフである。 実施例3の鋳造物品(球状黒鉛鋳鉄)を示す模式図である。 実施例3の球状黒鉛鋳鉄鋳物のミクロ組織を観察した光学顕微鏡写真である。 実施例3の球状黒鉛鋳鉄鋳物断面に観察される球状黒鉛の粒径分布を示すグラフである。 実施例3の球状黒鉛鋳鉄鋳物断面に観察される球状黒鉛の粒径分布を示すグラフである。 比較例1の球状黒鉛鋳鉄鋳物のミクロ組織を観察した光学顕微鏡写真である。 比較例1の球状黒鉛鋳鉄鋳物断面に観察される球状黒鉛の粒径分布を示すグラフである。 比較例1の球状黒鉛鋳鉄鋳物断面に観察される球状黒鉛の粒径分布を示すグラフである。 実施例4の鋳造物品(球状黒鉛鋳鉄)を示す模式図である。 実施例4の球状黒鉛鋳鉄鋳物断面に観察される球状黒鉛の粒径分布を示すグラフである。 実施例4の球状黒鉛鋳鉄鋳物断面に観察される球状黒鉛の粒径分布を示すグラフである。
[1]球状黒鉛鋳鉄
 本発明の球状黒鉛鋳鉄の成分組成は、JIS G 5502に規定の球状黒鉛鋳鉄品(FCD)、JIS G 5503に規定のオーステンパ球状黒鉛鋳鉄品、JIS G 5510に規定の球状黒鉛系のオーステナイト鋳鉄品などを構成可能な成分組成であればよい。例えば、質量%で、2~4.5%のC、0.8~6%のSi及び0.010~0.080%のMgを含み、残部がFe及び不可避的不純物元素からなる組成、又は前記組成に、所望の性質を得るための元素、S、P、Mn、Cu、Cr、Ni、Mo、W等をさらに適量含んだ組成が挙げられる。
 本発明の球状黒鉛鋳鉄は、以下のように規定する粒径分布を有する球状黒鉛(黒鉛粒)を有する。すなわち、黒鉛粒の粒径分布は、切断した任意の断面、少なくとも1 mm2中に観察される黒鉛粒のうち、円相当径5μm以上の黒鉛粒数をN(5-)(個/mm2)、円相当径が5μm以上20μm未満の黒鉛粒数をN(5-20)(個/mm2)、及び円相当径が30μm以上の黒鉛粒数をN(30-)(個/mm2)とするとき、N(5-)≧250、N(5-20)/N(5-)≧0.6、及びN(30-)/N(5-)≦0.2を満たす。
 すなわち、本発明の球状黒鉛鋳鉄は、円相当径5μm以上の黒鉛粒が比較的多く存在(250個/mm2以上)し、比較的細かい黒鉛粒(円相当径が20μm以下の黒鉛粒)の割合が高く、比較的大きな黒鉛粒(円相当径が30μm以上の黒鉛粒)の割合が低い球状黒鉛鋳鉄である。このような構成により、機械的性質、特に靭性に優れた球状黒鉛鋳鉄とすることができる。特に鋳放しで肉厚40 mm以上となる厚肉の鋳造物品においてこの構成とすることによって、さらに靭性の向上を図ることが可能となる。
 円相当径5μm以上の黒鉛粒数N(5-)は、好ましくは300(個/mm2)以上である。円相当径5μm以上の黒鉛粒数に対する円相当径が5μm以上20μm未満の黒鉛粒数の割合N(5-20)/N(5-)は、好ましくは0.65以上、より好ましくは0.70(70%)以上、最もより好ましくは0.75(75%)以上である。円相当径5μm以上の黒鉛粒数に対する円相当径が30μm以上の黒鉛粒数の割合N(30-)/N(5-)の値は好ましくは0.15(15%)以下、より好ましくは0.10(10%)以下である。
 本発明の球状黒鉛鋳鉄は、円相当径が2μm以上5μm未満の黒鉛粒数をN(2-5)(個/mm2)とするとき、N(2-5)≧100を満たすのが好ましい。このような極微細な黒鉛を多数有する構成は、靭性の向上にさらに寄与するので好ましい。N(2-5)は、より好ましくはN(2-5)≧150、最も好ましくはN(2-5)≧200である。
 本発明の球状黒鉛鋳鉄は、切断した任意の断面(少なくとも1 mm2中)に観察される黒鉛粒のうち、最大の黒鉛粒の円相当径をDmaxとするとき、Dmax≧50.4μmを満たすのが好ましい。最大の黒鉛粒の円相当径Dmaxが50.4μm以上となるような、例えば遅い冷却速度で凝固した球状黒鉛鋳鉄であっても、黒鉛粒が多く存在(250個/mm2以上)し、比較的細かい黒鉛粒(円相当径が20μm以下の黒鉛粒)の割合が高く、大きな黒鉛粒(円相当径が30μm以上の黒鉛粒)の割合が低い構成により、機械的性質、特に靭性に優れた球状黒鉛鋳鉄とすることができる。
 本発明の球状黒鉛鋳鉄は、円相当径が5μm以上10μm未満の黒鉛粒数をN(5-10)(個/mm2)、円相当径が15μm以上20μm未満の黒鉛粒数をN(15-20)(個/mm2)とするとき、-0.15≦(N(5-10)-N(15-20))/N(5-10)≦0.25を満たすのが好ましい。すなわち、本発明の球状黒鉛鋳鉄の他の好ましい特徴は、切断した断面において、円相当径が5μm以上10μm未満の黒鉛粒数N(5-10)と円相当径が15μm以上20μm未満の黒鉛粒数N(15-20)との差と、円相当径が5μm以上10μm未満の黒鉛粒数N(5-10)との商が、-0.15以上、0.25以下である。つまり、円相当径5μm以上20μm未満の黒鉛をさらに5μm毎の範囲で区分したとき、粒径が小さい範囲(5μm以上、10μm未満)の黒鉛粒数と、粒径が大きい範囲(15μm以上、20μm未満)の黒鉛粒数との差が小さいことを意味する。特に鋳放しで肉厚50 mm以上となる厚肉の鋳造物品においてこの構成とすることによって、さらに靭性の向上を図ることが可能となる。
 本発明の球状黒鉛鋳鉄は、円相当径が5μm以上の黒鉛粒について、円相当径の昇順に黒鉛粒数を積算したときに、累積黒鉛粒数が円相当径5μm以上の黒鉛粒数の60%となる黒鉛粒の円相当径(60%粒子径)をd60(μm)とするとき、d60≦20μmを満たすのが好ましい。さらに、前記累積黒鉛粒数が円相当径5μm以上の黒鉛粒数の70%、80%及び90%となる黒鉛粒の円相当径をそれぞれをd70(μm)、d80(μm)及びd90(μm)とするとき、とするとき、d70≦20μm、d80≦30μm及びd90≦35μmを満たすのが好ましい。ここでd60≦20μm及びd80≦30μmで表される条件は、それぞれ前述のN(5-20)/N(5-)≧0.6及びN(30-)/N(5-)≦0.2で表される条件と実質的に同じである。
[2]製造方法
 本発明の球状黒鉛鋳鉄は以下の方法によって製造することができる。本発明の製造方法の一例を、以下に工程毎に説明する。
(球状黒鉛鋳鉄溶湯)
 球状黒鉛鋳鉄溶湯(以下、溶湯という。)は公知の製造方法で作製できる。すなわち所望の成分組成となるように、原材料として鋼屑や戻り屑、各種副資材を配合して溶製した溶融鉄合金(以下、元湯という。)に、Mg等を含む球状化剤、例えばFe-Si-Mg系合金を所定量添加して作製する。球状化剤としては、特にREM及び必要に応じてその他の微量元素を適量含んだものも使用できる。球状化処理は一般に広く行われているサンドイッチ法、球状化剤を収容したコアードワイヤーを元湯が収容された取鍋内に供給する方法などを用いることができる。
(接種)
 黒鉛粒数を増やす効果があるので、溶湯を鋳型に鋳込む際には接種を併せて行うのが好ましい。接種剤としては一般に使用されているFe-Si系合金を用いることができる。接種方法は、(a)サンドイッチ法による球状化処理と同時に注湯取鍋内で行う取鍋内接種(以下、一次接種ともいう。)、(b)注湯時に溶湯の流線に接種剤を溶け込ませるように添加する注湯流接種、(c)鋳型のキャビティ内に予め接種剤を装入して行う鋳型内接種などの公知の方法を用いることができる。ここで(b)及び(c)の接種方法は、一次接種の後に行う接種であり、二次接種ということがある。
(鋳造物品の製造方法)
 本発明の球状黒鉛鋳鉄からなる鋳造物品は、重力鋳造など公知の方法を用いて製造してもよいが、通気性鋳型(以下、鋳型ともいう。)に注湯された溶湯が共晶凝固を開始する前に、溶湯の表面をガスで押圧し、前記鋳型内を前記ガスで通気させつつ前記溶湯を凝固させる方法(以下、送気加圧法ともいう。)を併せて行うのが好ましい。送気加圧法を採用することにより、粗大な黒鉛の粒数の割合が抑制され、微細な黒鉛の粒数の割合が高い球状黒鉛鋳鉄を容易に得ることができる。以下、本発明の好ましい製造方法の一つである送気加圧法について詳細に述べる。
 鋳型としては、生砂型、シェル型、自硬性型又はその他の砂粒子を用いて造型された、一般に広く使用されている通気性鋳型を用いることができる。必要な通気性が確保されればセラミックス粒子、金属粒子等を用いて造型された鋳型も適用できる。さらに、金型のように全く通気性のない材料を用いた鋳型であっても、ベントホール等の通気孔を設けて通気性をもたせた場合には通気性鋳型として使用可能である。また石膏などのほとんど通気性のない鋳型でも、通気性材料を混在させる、又は部分的に通気性材料を用いて十分な通気性をもたせることによって通気性鋳型として使用可能である。
 送気するガスはコスト面からは空気を使用してもよく、溶湯の酸化防止という面からは非酸化性ガス、例えば、アルゴン、窒素、二酸化炭素を使用してもよい。ガスによる溶湯への押圧は、湯口より鋳型内にガスを供給して行うことができる。
 溶湯をガスで押圧することにより、球状化処理によって溶湯内に過飽和に溶解したMgの溶湯外への放出が抑制されるので、MgS、MgOなどの黒鉛の晶出核に与るMg化合物の増加を図ることができる。特にこの方法の優れた点は、ガスで押圧しない場合に比べて、粗大な黒鉛の割合を抑制し微細な黒鉛の割合を増やすことが容易となることである。ガスによる押圧の圧力(以下、押圧力ともいう。)は 1kPa~100 kPaであるのが好ましい。1 kPa未満であると黒鉛粒数を増加させる効果が得られにくい。また、100 kPaを超えると鋳型が壊れて溶湯が周囲に飛散しやすくなるなど、作業安全上好ましくない。より好ましい押圧力の範囲は10 kPa~50 kPa、さらに好ましくは20 kPa~40 kPaである。
 次に、押圧の開始から終了までの期間(以下、押圧期間ともいう。)と、得ようとする鋳造物品内部の共晶凝固の期間との関係を、図を参照しつつ説明する。図1は共晶凝固温度付近の冷却曲線と押圧期間との関係を説明するグラフである。図1において、曲線Cは得ようとする鋳造物品の内部の温度Tと時刻tとの関係を示す冷却曲線である。温度Tが時刻tに対してほぼ一定に推移する共晶凝固開始時刻tEsから共晶凝固終了時刻tEfまでが共晶凝固期間であり、その時間(以下、共晶凝固時間ともいう。)はdtE(=tEf-tEs)である。押圧開始時刻tp0から押圧終了時刻tpfまでを押圧期間とし、その時間(以下、押圧時間ともいう。)はdtp(=tpf-tp0)である。
 押圧開始の時期は、鋳型に注湯された溶湯の押圧ガスに接触する表面(以下、溶湯面ともいう。)の溶湯の温度が共晶凝固温度TE以上である期間であればよい。なお、一般に溶湯面の溶湯温度は、得ようとする鋳造物品内部の溶湯温度以下であり、共晶凝固温度よりも高い温度である方が溶湯の流動性が良好であるので、注湯完了後のできるだけ早い時期に溶湯面への押圧を開始するのが好ましい。つまり、図1においてtp0≦tEsであればよく、好ましくはtp0<tEsである。また、共晶凝固開始時刻tEs以前の押圧期間の時間をdtpM(=tEs-tp0)としたとき、dtpMの値はできるだけ大きい方が好ましい。
 一方、押圧を終了する時期は、得ようとする鋳造物品の共晶凝固の開始以後であればよく、得ようとする鋳造物品全体の共晶凝固が完了するまで押圧を継続する必要はない。つまり、図1において、共晶凝固開始時刻tEs以後の押圧期間の時間(以下、共晶凝固開始後の押圧時間ともいう。)をdtpE(=tpf-tEs)としたとき、0≦dtpE(すなわち、tEs≦tpf)であればよい。これを共晶凝固時間dtEに対する共晶凝固開始後の押圧時間dtpEの割合として示すと、その値は0以上、すなわち、0≦dtpE/dtEであればよい。好ましくは0≦dtpE/dtE≦1(つまり、tpf≦tEf)である。さらに好ましくは0≦dtpE/dtE≦1/2、最も好ましくは0≦dtpE/dtE≦1/4である。このように、得ようとする鋳造物品全体の共晶凝固完了以前の早い時期に押圧を終了させることにより、量産における鋳造ラインにおいて後続の鋳型に送気加圧法を適用するタクトを短縮できるので好ましい。なお、以上で説明した関係において、押圧時間dtp(=tpf-tp0)は0よりも大きい値であるので、tp0=tEs=tpfである場合は除く。
 共晶凝固の温度、並びに共晶凝固の開始及び終了の時期の計測は、鋳型内の所定の位置に熱電対を配し、鋳造実験等によって実測して求めてもよいし、コンピュータによる凝固解析によって求めてもよい。同じ製品の量産においては、鋳造条件はほとんど同じであるとみなせるので、共晶凝固に関係するこれらの値を都度計測する必要はない。
 押圧期間においては、送気ガスは通気性鋳型の内部を通過して鋳型外へと順次排出されていくので、鋳型の冷却が促進される。このことにより、送気ガスが直接接触する溶湯表面(溶湯面)だけでなく、鋳型と接触している溶湯部分の凝固も促進されるので、溶湯の外縁から内部に向かって凝固殻が早期に形成されやすい。そして、引き続いて進行する溶湯内部の凝固の際に、球状黒鉛の晶出による膨張の圧力は、既に形成された凝固殻によって外側には向かわず内側に向かうため、冷却に伴う溶湯の収縮を相殺して引け巣の発生が抑制される。この効果により、機械的性質、特に衝撃値の高い鋳造物品がより得やすくなる。
 押圧期間における押圧力のパターンは任意でよいが、押圧力が押圧開始から単調に増加するようにガスを送気すると、溶湯中のMgの溶湯外への放出抑制及び鋳型冷却の効果がより得られやすくなるので好ましい。
 本発明の製造方法により、任意の断面(少なくとも1 mm2中)に観察される黒鉛粒のうち、円相当径5μm以上の黒鉛粒数をN(5-)(個/mm2)、円相当径が5μm以上20μm未満の黒鉛粒数をN(5-20)(個/mm2)、及び円相当径が30μm以上の黒鉛粒数をN(30-)(個/mm2)とするとき、N(5-)≧250、N(5-20)/N(5-)≧0.6、及びN(30-)/N(5-)≦0.2を満たす球状黒鉛鋳鉄を得ることができる。
 また本発明の製造方法により、最大の黒鉛粒の円相当径をDmax、円相当径が5μm以上の黒鉛粒について、円相当径の昇順に黒鉛粒数を積算したときに累積黒鉛粒数が円相当径5μm以上の黒鉛粒数の60%となる黒鉛粒の円相当径をd60(μm)とするとき、50.4μm>Dmax≧15.9μm及びd60≦10.0μmを満たす球状黒鉛鋳鉄を得ることができる。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 本発明の好ましい実施形態として重力鋳造法に送気加圧法を併用して製造した一例を、図表を参照しつつ説明する。なお、本発明はこの形態に限定されるものではない。
(溶湯)
 原材料として、球状黒鉛鋳鉄の戻り屑、鋼屑、黒鉛粉、フェロシリコン、フェロマンガン、リン鉄、純銅及び硫化鉄を所定の配合比で高周波誘導溶解炉に装入して溶解し100 kgの元湯を得た。次いで、底部にポケットを有する注湯取鍋を予熱後、元湯に対し1.05質量%の球状化剤[REMを含有するFe-Si-Mg系合金(東洋電化工業(株)製TDCR-5)]を注湯取鍋のポケットに装入し、その上方に元湯に対して0.1質量%の一次接種剤[Fe-Si系合金(東洋電化工業(株)製 キャスロン75H)]を装入し、さらにその上方に1300 gの打抜き鋼屑をカバー材として装入し、高周波誘導溶解炉から元湯を1510℃で注湯取鍋内に出湯し、サンドイッチ法による球状化処理と一次接種とを同時に行った。次いで、鋳型に鋳込むために用いる注湯柄杓にも、前記柄杓に収容する溶湯に対してSi当量で0.20質量%の二次接種剤[粉末状Fe-Si系合金の接種剤(東洋電化(株)製ストリーム)]を加える二次接種を行った。実施例1の溶湯の成分組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(注)他の不純物元素を含む
(鋳型)
 図2(a)は実施例1で使用した鋳型を示し、図2(b)は実施例1の鋳造方法を示す。鋳型1は、湯口部3、湯道部4、押湯部5及び製品部6から構成されたキャビティ2を有し、けい砂を骨材とした通気性鋳型であるCO2硬化アルカリフェノール鋳型を用いた。
(鋳造)
 鋳造は、鋳型1の外部を常温及び常圧とした大気雰囲気中において重力注湯する重力鋳造法に、さらに送気加圧法を実施する方法を用いた。すなわち、図2(a)に示すように、前述の溶湯Mを収容した注湯取鍋7から、製品部6と押湯部5とを満たす体積の溶湯Mをキャビティ2に1365℃で重力注湯し、次いで図2(b)に示すように、不図示の送気装置から発生させるガスG(実施例1では空気、以下に示す実施例についても同様である。)を吐出するガス吐出部8を湯口部3に嵌め合せた後、ガスGを送気してキャビティ2内の溶湯面Sを押圧した。押圧力は25 kPaであり、送気開始から25 kPaに到達するまでの時間は2 s、押圧時間は120 sであった。溶湯Mの凝固後、図3に示すような、押湯105部分と製品106部分とが連結した状態の球状黒鉛鋳鉄鋳物100を鋳型1より取り出した。図3は、球状黒鉛鋳鉄鋳物100を示す模式断面図であり、概略寸法が記載されている。なお、押圧力はガス吐出部8のガス流路内に配置した不図示の圧力センサーを用いて計測した。
(ミクロ組織)
 鋳放し状態における実施例1の球状黒鉛鋳鉄鋳物100の断面を腐食させ、そのミクロ組織を光学顕微鏡で観察した。観察部位は図3におけるAで示す部位の近傍であり、この部位を通り底面に平行な断面の直径は53.3 mmと算出できるので観察部位の肉厚は53.3 mmである。腐食させた観察部位の光学顕微鏡写真を図4に示す。基地10はフェライト10aとパーライト10bから構成されていた。球状黒鉛11は、フェライト10aで囲繞された、いわゆるブルスアイ組織を構成する球状黒鉛11aと、ブルスアイでない、つまりその周囲がほぼパーライトのみである球状黒鉛11bとを含んでいた。このようなブルスアイでない球状黒鉛11bはそのほとんどが円相当径20μm以下の微細なものであった。
(円相当径及び粒数の測定方法)
 球状黒鉛鋳鉄に含まれる球状黒鉛(黒鉛粒とも言う)の定量測定は、球状黒鉛鋳鉄の断面の組織を光学顕微鏡で観察することによって行った。図3のAで示す部位の近傍を切断することによって得られた任意の断面を光学顕微鏡で100倍の倍率で観察し、合計で1.0 mm2以上の面積となるよう複数の視野の写真を撮影した。実際の測定は、1視野あたり0.37 mm2に相当する画像を5視野分観察して行った(合計面積:0.37 mm2×5=1.85 mm2)。円相当径及び粒数の測定を行うための光学顕微鏡の観察は、基地と黒鉛粒とが明確に識別できるように、観察面を腐食させずに行った。
 得られた写真データを画像処理し、球状黒鉛の数と各球状黒鉛の円相当径を求めた。得られた結果から、1 mm2あたりの黒鉛粒数(以下、粒数ともいう。)(個/mm2)を算出し、表2に示すような円相当径範囲ごとの度数分布を求めた。なお前記円相当径範囲は、2μm未満、2μm以上5μm未満、5μm以上10μm未満、・・・、45μm以上50μm未満(5~50μmの間については5μmごと)及び50μm以上である。実施例1では、画像解析装置(旭化成エンジニアリング社製、商品名「A像くん」)を用いて測定した(以下に示す他の実施例及び比較例についても同様である。)。
 実施例1の球状黒鉛鋳鉄に含まれる球状黒鉛の粒数N、5μm以上度数F、5μm以上累積度Cfa、及び逆累積度数Cfbを円相当径の範囲ごとに表2に示す。図5は表2を図示したグラフである。ここで、表2及び図5等に記載したように、本発明においては、円相当径の範囲を示す表記は、「x-」はx(μm)以上、「-y」はy(μm)未満、「x-y」はx(μm)以上y(μm)未満を意味する。また、N(x-)は円相当径がx(μm)以上の粒数(個/mm2)、N(-y)は円相当径がy(μm)未満の粒数(個/mm2)、N(x-y)は円相当径がx(μm)以上y(μm)未満の粒数(個/mm2)を意味する。そして、円相当径が5μm以上の各円相当径範囲の粒数N(x-y)が円相当径5μm以上の粒数N(5-)に占める割合、すなわちN(x-y)/N(5-)を5μm以上度数FとしてF(x-y)(%)と表記する。また、円相当径5μm以上10μm未満の度数F(5-10)から円相当径50μm以上の度数F(50-)まで昇順に加算したときの各円相当径の範囲における累積度数を5μm以上累積度数Cfaとして、昇順にCfa(5-10)(%)、Cfa(5-15)(%)、Cfa(5-20)(%)、・・・、Cfa(5-60)(%)、Cfa(5-)(%)のように表記する。また、円相当径50μm以上の度数F(50-)から降順に加算していくときの各円相当径の範囲における累積度数を逆累積度数CfbとしてCfb(60-)(%)、Cfb(55-)(%)、Cfb(50-)(%)、・・・、Cfb(10-)(%)、Cfb(5-)(%)のように表記する。
Figure JPOXMLDOC01-appb-T000002
 表2に示す粒径分布から、実施例1の球状黒鉛鋳鉄に含まれる球状黒鉛について、円相当径が5μm以上の黒鉛粒数N(5-)(個/mm2)、円相当径が5μm以上20μm未満の黒鉛粒数N(5-20)(個/mm2)、及び円相当径が30μm以上の黒鉛粒数N(30-)(個/mm2)を求め、これらの値から、円相当径5μm以上20μm未満の粒数N(5-20)が円相当径5μm以上の粒数N(5-)に占める割合:N(5-20)/N(5-)、円相当径30μm以上の粒数N(30-)が、円相当径5μm以上の粒数N(5-)に占める割合:N(30-)/N(5-)、及び円相当径が5μm以上10μm未満の黒鉛粒数と円相当径が15μm以上20μm未満の黒鉛粒数との差と、円相当径が5μm以上10μm未満の黒鉛粒数との商:(N(5-10)-N(15-20))/N(5-10)を求めた。ここで、N(5-20)/N(5-)の値は円相当径5μm以上20μm未満までの累積度数:Cfa(5-20)に相当し、N(30-)/N(5-)の値は円相当径30μm以上までの逆累積度数:Cfb(30-)に相当する。結果を表4に示す。
 さらに、実施例1の球状黒鉛鋳鉄に含まれる球状黒鉛のうち、円相当径が5μm以上の黒鉛粒について、円相当径の昇順に黒鉛粒数(個/mm2)を積算して円相当径5μmから特定の円相当径(μm)までの累積黒鉛粒数(以下、単に累積粒数又はNcともいう。単位は個/mm2)を求め、円相当径(μm)と累積黒鉛粒数(個/mm2)との関係を示す曲線を得た。さらに、累積黒鉛粒数の最大値(円相当径が5μm以上の黒鉛粒数N(5-))を100%として各円相当径に対応する累積度数Cfaを求め、円相当径(μm)と累積度数(%)との関係を求めた。累積度数がn%における円相当径をdn(以下、n%粒子径ともいう。)で表す。例えば、60%粒子径(d60)は、累積黒鉛粒数が円相当径5μm以上の黒鉛粒数の60%となる黒鉛粒の円相当径である。
 ここで、「d0」は観察された円相当径5μm以上の黒鉛粒のうちの最小のものに相当する円相当径として表記する(以下の実施例及び比較例についても同じである。)。また、「d100」は最大の黒鉛粒の円相当径Dmaxである。
 結果を表3及び図6に示す。図6は表3の円相当径の値に対して、累積粒数Nc及び5μm以上累積度数Cfaをプロットしたグラフである。横軸の円相当径は常用対数スケールで表した(以下の実施例及び比較例についても同様である。)。図6において、例えば円相当径D=20μmにおけるCfaは、表2及び図5で示したCfa(15-20)に実質的に同じである。表3から、実施例1の球状黒鉛鋳鉄に含まれる球状黒鉛のDmax(d100)を表4に抜き出して示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 図6中の破線は、座標点(D,Cfa)=(5,0)及び(20,60)を通る直線、すなわち(式1):
Cfa=a・log10D+b [ただし、a=0.997、b=-0.697]で表される線である。(式1)で表される破線とCfa=100%との交点の円相当径Dの値は50.4μmである。(式1)で表される破線と、実施例1の円相当径DとCfaとの関係とを比較すると、実施例1は、Cfaが20%、すなわち円相当径d20程度までは(式1)にほぼ一致し、Cfaが20~50%、すなわち円相当径d20~d50の範囲は(式1)よりもn%粒子径が大きく、Cfaが50%~98%の範囲では(式1)よりもn%粒子径が小さく、Cfaが99%以上で(式1)よりもn%粒子径が大きかった。ここで、球状黒鉛の粒径分布が(式1)で示す直線に従う、つまり累積度数Cfaが円相当径Dの対数に比例する関係となる場合は、球状黒鉛の成長が拡散現象(拡散律速)であることを意味すると考えられる。
 しかし一方、実施例1ではDmax(=d100)は73.2μmであり、(式1)におけるCfa=100のときの円相当径Dの値:50.4μmよりも大きい値であった。このことは、d100の黒鉛粒は(式1)で示される物理状態で黒鉛が拡散して成長したものではないことを示している。例えば、黒鉛の拡散がより速い状態、例えば凝固が緩やかな状態において成長したものと考えられる。
(引張試験)
 図3の領域BからJIS Z 2241の14A号試験片を切り出し採取し、JIS Z 2241に従って、引張試験機(島津製作所製AG-IS250kN)を用いて鋳放し状態における製品106の常温での引張強さ、0.2%耐力及び破断伸びを測定した。試験結果を表8に示す。
(シャルピー衝撃試験)
 図3の領域Bから長さ55 mm×高さ10 mm×幅10 mmのシャルピー衝撃試験用の平滑ノッチなし試験片を採取し、衝撃試験機(前川試験機製製作所製シャルピー式300CR)を用いて、JIS Z 2242に従って、鋳放し状態における製品106のシャルピー衝撃値を測定した。試験温度は-30℃とした。試験結果を表8に示す。
[実施例2]
 上述の実施例1に対し、送気加圧法を併用せずに重力鋳造法のみで作製した実施例2の結果を以下に示す。実施例2は送気加圧法を用いなかった以外は上記実施例1と同様の製造条件で製造したものであり、表1に示すとおり、溶湯の成分組成は実施例1と同じである。ミクロ組織の観察方法、黒鉛粒数及び粒径の測定方法、引張試験及びシャルピー衝撃試験の方法も実施例1と同様である。
 実施例2の球状黒鉛鋳鉄の球状黒鉛について、粒数N、5μm以上度数F、5μm以上累積度Cfa、及び逆累積度数Cfbを測定した結果を表5に示す。図7は表5を図示したグラフである。
Figure JPOXMLDOC01-appb-T000005
 実施例1と同様に、表5に示す粒径分布から、実施例2の球状黒鉛鋳鉄に含まれる球状黒鉛ついて、N(5-20)/N(5-)、N(30-)/N(5-)及び(N(5-10)-N(15-20))/N(5-10)を求めた。結果を表7に示す。
 さらに、実施例1と同様に、実施例2の円相当径Dと累積粒数Ncの関係、及び円相当径Dと累積度数Cfaとの関係を求めた。結果を表6及び図8に示す。表6から、実施例2の球状黒鉛鋳鉄に含まれる球状黒鉛のDmax(d100)を表7に抜き出して示した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 図8中に示した(式1)で表される破線と、実施例2の円相当径DとCfaとの関係とを比較すると、実施例2は、Cfaが10%、すなわち円相当径d10程度までは(式1)にほぼ一致し、Cfaが10~60%、すなわち円相当径d10~d60の範囲は(式1)よりもn%粒子径が大きく、Cfaが60%~98%の範囲では(式1)よりn%粒子径が小さく、Cfaが99%以上で(式1)よりもn%粒子径が大きかった。
(引張試験、シャルピー衝撃試験)
 表8に実施例2の鋳放し状態における引張試験(引張強さ、0.2%耐力及び破断伸び)及びシャルピー衝撃試験の結果を示す。
Figure JPOXMLDOC01-appb-T000008
(引け巣の比較)
 ミクロ組織観察において実施例1と実施例2の引け巣の発生程度を比較したところ、実施例1では引け巣はほとんど観察されなかったが、実施例2では若干数の引け巣(ミクロポロシティ)が観察された。
(共晶凝固時間)
 図9は図2の部位A近傍の位置で測定した実施例1と実施例2の共晶凝固温度付近の冷却曲線と押圧期間との関係を示すグラフである。実施例1の冷却曲線C1を実線で示し、実施例2の冷却曲線C2を破線で示す。いずれも、時刻tに対して温度Tが1140℃~1160℃の範囲でほぼ一定に推移している領域が共晶凝固の区間である。図9では、共晶凝固時間の比較のために、冷却曲線C1及び冷却曲線C2の共晶凝固が開始した時刻tEsをt=65 sの時点に揃え、重ねて描画したものである。実施例1及び実施例2の共晶凝固終了の時刻は、いずれも温度T=1135℃に低下した時点とし、それぞれt1Ef及びt2Efとすると、t1Ef=415 s及びt2Ef=395 sであった。これより、実施例1の共晶凝固時間dt1Eは、dt1E=t1Ef-tEs=415 s-65 s=350 sであり、実施例2の共晶凝固時間dt2Eは、dt2E=t2Ef-tEs=395 s-65 s=330 sであった。すなわち、実施例1の方が、実施例2よりも共晶凝固時間が20 s長かった。この理由は、送気加圧法を併用した実施例1では、ガス(実施例1では空気)による押圧によって溶湯中のMgの飽和度が増大し、Mgの溶湯外への放出が抑制されたことによって、MgO、MgSなどの球状黒鉛の晶出核がより多く形成されたことによるものと考えられる。
(共晶凝固期間と送気加圧終了時期との関係)
 実施例1の押圧時間dtpは、図9に示したように120 sであった。押圧開始時刻tp0はt=5 sの時点であり、押圧完了時刻tpfはt=125 sの時点であった。共晶凝固開始時刻tEs=65 sを基準とした場合の、共晶凝固開始後の押圧時間dtpEは、dtpE=tpf-tEs=60 sであった。したがって、実施例1の共晶凝固時間dt1Eに対する共晶凝固開始後押圧時間dtpEの割合は、dtpE/dt1E=0.171、すなわち1/5.8であった。
[実施例3]
 本発明の好ましい実施形態として重力鋳造法に送気加圧法を併用して製造した他の一例を、図表を参照しつつ説明する。
(溶湯)
 実施例1と同様にして、原材料を低周波誘導溶解炉で溶解して12000 kgの元湯を得た。次いで、実施例1と同様にして、注湯取鍋の底部のポケットに、元湯に対し1.1質量%の球状化剤、元湯に対して0.2質量%の一次接種剤、及び11 kgの打抜き鋼屑を順に装入し、得られた元湯1800 kgを1520℃で前記注湯取鍋内に出湯し、サンドイッチ法による球状化処理と一次接種とを同時に行った。球状化剤及び一次接種剤は実施例1で使用したものと同じものを使用した。次いで鋳型の湯口に向けて鋳込む際に、目標注湯重量に対してSi当量で0.1質量%の二次接種剤[粉末状Fe-Si系合金の接種剤(東洋電化(株)製ストリーム)]を加える二次接種を行った。実施例3の溶湯の成分組成を表9に示す。
Figure JPOXMLDOC01-appb-T000009
(注)他の不純物元素を含む
(鋳型)
 鋳型として、図10に示す自動車用構造部品(サポートビーム)をキャビティとして有する、通気性鋳型である生砂型を使用した。
(鋳造)
 鋳造は、実施例1と同様に、重力注湯する重力鋳造法に、さらに送気加圧法を実施する方法を用いた。重力注湯は1400℃で行い、キャビティ内の溶湯面を押圧する押圧力は35 kPaであった。押圧開始時刻tp0=10 s、押圧完了時刻tpf=190 sであったので、押圧時間dtpは180 sであった。また、共晶凝固開始時刻tEs=35 s、共晶凝固終了時刻tEf=350 sであったので共晶凝固時間dtE=315 sであり、共晶凝固開始後の押圧時間dtpE(=tpf-tEs)=155 sであった。したがって、実施例2の共晶凝固時間dtEに対する共晶凝固開始後の押圧時間dtpEの割合は、dtpE/dtE=0.492、すなわち1/2.0であった。
(ミクロ組織)
 実施例3の鋳造物品(球状黒鉛鋳鉄)のミクロ組織を実施例1と同様にして観察し、球状黒鉛の粒径分布を実施例1と同様に評価した。観察位置は図10にEで示す部位(肉厚30 mm)の肉厚中心近傍である。その顕微鏡写真を図11に示し、球状黒鉛の粒数N、5μm以上度数F、5μm以上累積度Cfa、及び逆累積度数Cfbを表6に示す。図12は表10を図示したグラフである。
Figure JPOXMLDOC01-appb-T000010
 実施例1と同様に、表10に示す粒径分布から、実施例3の球状黒鉛鋳鉄に含まれる球状黒鉛ついて、N(5-20)/N(5-)、N(30-)/N(5-)及び(N(5-10)-N(15-20))/N(5-10)を求めた。結果を表12に示す。
 さらに、実施例1と同様に、実施例3の円相当径Dと累積粒数Ncの関係、及び円相当径Dと累積度数Cfaとの関係を求めた。結果を表11及び図13に示す。表11から、実施例3の球状黒鉛鋳鉄に含まれる球状黒鉛のDmax(d100)を表12に抜き出して示した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 図13は、(式1)で表される破線に加えて、(式2):Cfa=c・log10D+d [ただし、c=1.993、b=-1.393]で表される一点鎖線を記載した。(式2)は、座標点(D,Cfa)=(5,0)及び(10,60)を通る直線であり、この直線とCfa=100%との交点の円相当径Dの値は15.9μmである。(式2)で表される粒径分布は、(式1)で表される粒径分布に比べてより微細な黒鉛粒の割合が高い分布であると言える。実施例3の円相当径DとCfaとの関係は、破線で示す(式1)より微細な黒鉛粒の割合が高い粒径分布を示す(式2)と比べてもさらに微細な黒鉛粒の割合が高いものであった。(式2)で示す一点鎖線と、実施例3のCfaとDとの関係とを比較すると、実施例3は、Cfaが30%、すなわち円相当径d30程度までは(式2)にほぼ一致し、Cfaが30~98%、すなわち円相当径d30~d98の範囲は(式2)よりもn%粒子径が小さく、Cfaが99%以上で(式2)よりもn%粒子径が大きかった。
(引張試験、シャルピー衝撃試験)
 表13に実施例3の鋳放し状態における引張試験(引張強さ、0.2%耐力及び破断伸び)及びシャルピー衝撃試験の結果を示す。
Figure JPOXMLDOC01-appb-T000013
 [比較例1]
 上述の実施例3に対し、送気加圧法を併用せずに重力鋳造のみで作製した比較例1の結果を以下に示す。比較例1は送気加圧法を用いなかった以外は上記実施例3と同様の製造条件で製造したものであり、表9に示すとおり、溶湯の成分組成は実施例3と同じである。黒鉛粒数及び粒径の測定方法、引張試験及びシャルピー衝撃試験の方法も実施例3と同様である。
(ミクロ組織)
 比較例1の鋳造物品(球状黒鉛鋳鉄)のミクロ組織を実施例3と同様にして観察し、球状黒鉛の粒径分布を実施例3と同様に評価した。観察位置は実施例3と同様である。その顕微鏡写真を図14に示し、球状黒鉛の粒数N、5μm以上度数F、5μm以上累積度Cfa、及び逆累積度数Cfbを表14に示す。図15は表14を図示したグラフである。
Figure JPOXMLDOC01-appb-T000014
 実施例3と同様に、表14に示す粒径分布から、比較例1の球状黒鉛鋳鉄に含まれる球状黒鉛ついて、N(5-20)/N(5-)、N(30-)/N(5-)及び(N(5-10)-N(15-20))/N(5-10)を求めた。結果を表16に示す。
 さらに、実施例3と同様に、比較例1の円相当径Dと累積粒数Ncの関係、及び円相当径Dと累積度数Cfaとの関係を求めた。結果を表15及び図16に示す。表15から、比較例1の球状黒鉛鋳鉄に含まれる球状黒鉛のDmax(d100)を表16に抜き出して示した。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 図16において、(式1)で示す破線と、比較例1の円相当径DとCfaとの関係とを比較すると、比較例1は、Cfaが25%、すなわち円相当径d0~d25の範囲は(式1)よりもn%粒子径が小さいが、Cfaが25%~100%の範囲では(式1)よりn%粒子径が大きかった。
(引張試験、シャルピー衝撃試験)
 表13に比較例1の鋳放し状態における引張試験(引張強さ、0.2%耐力及び破断伸び)及びシャルピー衝撃試験の結果を示す。
[実施例4]
 本発明の好ましい実施形態として重力鋳造法に送気加圧法を併用して製造した別の他の一例を、図表を参照しつつ説明する。
 実施例4は、図17に示す自動車用構造部品(ステアリングナックル)をキャビティとして有する鋳型を使用し、鋳型の材料及び溶湯の製造方法、並びに鋳造方法及び押圧力は実施例1と同様とした。実施例4では表17に示す成分組成を有する溶湯を使用し、また、押圧開始時刻tp0=6 s、押圧完了時刻tpf=96 sであったので、押圧時間dtp=90 sであった。共晶凝固開始時刻tEs=25 s、共晶凝固終了時刻tEf=160 sであったので、共晶凝固時間dtE=135 sであり、共晶凝固開始後の押圧時間dtpE(=tpf-tEs)=71 sであった。したがって、実施例3の共晶凝固時間dtEに対する共晶凝固開始後の押圧時間dtpEの割合は、dtpE/dt1E=0.526、すなわち1/1.9であった。
Figure JPOXMLDOC01-appb-T000017
(注)他の不純物元素を含む
 実施例4の鋳造物品(球状黒鉛鋳鉄)の球状黒鉛について、粒数N、5μm以上度数F、5μm以上累積度Cfa、及び逆累積度数Cfbを測定した結果を表18に示す。図18は表18を図示したグラフである。なお粒数の測定は図17のHで示す肉厚20 mmの部位の肉厚中心近傍で行った。
Figure JPOXMLDOC01-appb-T000018
 実施例1と同様に、表18に示す粒径分布から、実施例4の球状黒鉛鋳鉄に含まれる球状黒鉛ついて、N(5-20)/N(5-)、N(30-)/N(5-)及び(N(5-10)-N(15-20))/N(5-10)を求めた。結果を表20に示す。
 さらに、実施例1と同様に、実施例4の円相当径Dと累積粒数Ncの関係、及び円相当径Dと累積度数Cfaとの関係を求めた。結果を表19及び図19に示す。表19から、実施例4の球状黒鉛鋳鉄に含まれる球状黒鉛のDmax(d100)を表20に抜き出して示した。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 図19から、実施例4の円相当径DとCfaとの関係は、(式2)で示される粒径分布よりも微細な黒鉛粒の割合が高いものであった。つまり、(式2)で示す一点鎖線と、実施例4の円相当径DとCfaとの関係とを比較すると、実施例4は、Cfaが97%、すなわち円相当径d0~d97の範囲にわたって(式2)よりもn%粒子径が小さく、Cfaが98%以上で(式2)よりもn%粒子径が大きかった。
 本発明の球状黒鉛鋳鉄は様々な構造用部品に適用可能であるが、特に靭性に優れるので自動車用構造部品に好適である。例えば、ステアリングナックル、クランクシャフト、サポートビーム、コネクティングロッド、ブレーキボディ、ブレーキブラケット、シャックル、スプリングブラケット、タービンハウジング、キャリア、デフケース、エンジンマウントブラケット等に適用可能である。

Claims (10)

  1.  任意の断面(少なくとも1 mm2中)に観察される黒鉛粒のうち、
    円相当径5μm以上の黒鉛粒数をN(5-)(個/mm2)、円相当径が5μm以上20μm未満の黒鉛粒数をN(5-20)(個/mm2)、及び円相当径が30μm以上の黒鉛粒数をN(30-)(個/mm2)とするとき、
    N(5-)≧250、
    N(5-20)/N(5-)≧0.6、及び
    N(30-)/N(5-)≦0.2
    を満たすことを特徴とする球状黒鉛鋳鉄。
  2.  請求項1に記載の球状黒鉛鋳鉄において、
    円相当径が2μm以上5μm未満の黒鉛粒数をN(2-5)(個/mm2)とするとき、
    N(2-5)≧100
    を満たす球状黒鉛鋳鉄。
  3.  請求項1又は2に記載の球状黒鉛鋳鉄において、
    N(5-20)/N(5-)≧0.65
    を満たす球状黒鉛鋳鉄。
  4.  請求項1~3のいずれかに記載の球状黒鉛鋳鉄において、
    最大の黒鉛粒の円相当径をDmaxとするとき、
    Dmax≧50.4μm
    を満たす球状黒鉛鋳鉄。
  5.  請求項1~4のいずれかに記載の球状黒鉛鋳鉄において、
    円相当径が5μm以上10μm未満の黒鉛粒数をN(5-10)(個/mm2)、円相当径が15μm以上20μm未満の黒鉛粒数をN(15-20)(個/mm2)とするとき、
    -0.15≦(N(5-10)-N(15-20))/N(5-10)≦0.25
    を満たす球状黒鉛鋳鉄。
  6.  請求項1~5のいずれかに記載の球状黒鉛鋳鉄からなる鋳造物品。
  7.  前記鋳造物品は自動車用構造部品である請求項7に記載の鋳造物品。
  8.  以下の条件:
    N(5-)≧250、
    N(5-20)/N(5-)≧0.6、及び
    N(30-)/N(5-)≦0.2
    [ただし、N(5-)、N(5-20)及びN(30-)は、それぞれ任意の断面(少なくとも1 mm2中)に観察される黒鉛粒のうち、円相当径が5μm以上の黒鉛粒数(個/mm2)、円相当径が5μm以上20μm未満の黒鉛粒数(個/mm2)、及び円相当径が30μm以上の黒鉛粒数(個/mm2)である。]
    を満たす球状黒鉛鋳鉄からなる鋳造物品を製造する方法であって、
     通気性鋳型に注湯された溶湯が共晶凝固を開始する前に、前記溶湯の表面を圧力1 kPa~100 kPaでガスにより押圧し、前記鋳型内を前記ガスで通気させつつ前記溶湯を凝固させることを特徴とする鋳造物品の製造方法。
  9.  請求項8に記載の鋳造物品の製造方法において、
    前記圧力が10 kPa~50 kPaであることを特徴とする鋳造物品の製造方法。
  10.  請求項8又は9に記載の鋳造物品の製造方法において、
    前記溶湯が共晶凝固を開始してから共晶凝固を終了するまでの時間をdtE、前記溶湯が共晶凝固を開始してから前記押圧を終了するまでの時間をdtpEとするとき、
    0≦dtpE/dtE≦1
    を満たすことを特徴とする鋳造物品の製造方法。
PCT/JP2017/012066 2016-03-24 2017-03-24 球状黒鉛鋳鉄、それからなる鋳造物品及び自動車用構造部品、並びに球状黒鉛鋳鉄からなる鋳造物品の製造方法 WO2017164382A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201780018552.7A CN109072364B (zh) 2016-03-24 2017-03-24 用于制备球墨铸铁制品的方法
US16/084,333 US20190071756A1 (en) 2016-03-24 2017-03-24 Spheroidal graphite cast iron, cast article and automobile structure part made thereof, and method for producing spheroidal graphite cast iron article
EP17770422.8A EP3434799B1 (en) 2016-03-24 2017-03-24 Method for manufacturing cast article comprising spherical graphite cast iron
JP2018507447A JP6838603B2 (ja) 2016-03-24 2017-03-24 球状黒鉛鋳鉄、それからなる鋳造物品及び自動車用構造部品、並びに球状黒鉛鋳鉄からなる鋳造物品の製造方法
KR1020187029339A KR102356486B1 (ko) 2016-03-24 2017-03-24 구상 흑연 주철, 그로부터 이루어지는 주조 물품 및 자동차용 구조 부품, 및 구상 흑연 주철로 이루어지는 주조 물품의 제조 방법
US17/726,641 US20220243308A1 (en) 2016-03-24 2022-04-22 Spheroidal graphite cast iron, cast article and automobile structure part made thereof, and method for producing spheroidal graphite cast iron article
US18/235,572 US20230392237A1 (en) 2016-03-24 2023-08-18 Spheroidal graphite cast iron, cast article and automobile structure part made thereof, and method for producing spheroidal graphite cast iron article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-059963 2016-03-24
JP2016059963 2016-03-24

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/084,333 A-371-Of-International US20190071756A1 (en) 2016-03-24 2017-03-24 Spheroidal graphite cast iron, cast article and automobile structure part made thereof, and method for producing spheroidal graphite cast iron article
US17/726,641 Division US20220243308A1 (en) 2016-03-24 2022-04-22 Spheroidal graphite cast iron, cast article and automobile structure part made thereof, and method for producing spheroidal graphite cast iron article
US18/235,572 Division US20230392237A1 (en) 2016-03-24 2023-08-18 Spheroidal graphite cast iron, cast article and automobile structure part made thereof, and method for producing spheroidal graphite cast iron article

Publications (1)

Publication Number Publication Date
WO2017164382A1 true WO2017164382A1 (ja) 2017-09-28

Family

ID=59899576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012066 WO2017164382A1 (ja) 2016-03-24 2017-03-24 球状黒鉛鋳鉄、それからなる鋳造物品及び自動車用構造部品、並びに球状黒鉛鋳鉄からなる鋳造物品の製造方法

Country Status (6)

Country Link
US (3) US20190071756A1 (ja)
EP (1) EP3434799B1 (ja)
JP (1) JP6838603B2 (ja)
KR (1) KR102356486B1 (ja)
CN (1) CN109072364B (ja)
WO (1) WO2017164382A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057943B (zh) * 2019-12-31 2022-04-01 中钢集团邢台机械轧辊有限公司 一种复合轧辊芯部球磨铸铁的球化剂加入方法
CN117850503B (zh) * 2024-03-07 2024-05-14 山东中力高压阀门股份有限公司 一种浇筑球化控温的检测控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137665A (ja) * 1984-12-08 1986-06-25 Ngk Insulators Ltd 成形用金型の加圧鋳造方法
JPS64246A (en) * 1987-03-09 1989-01-05 Hitachi Metals Ltd Spheroidal graphite cast iron
US5205856A (en) 1991-02-14 1993-04-27 Skw Trostberg Aktiengesellschaft Inoculation wire
JPH10317093A (ja) * 1997-05-19 1998-12-02 Toyota Motor Corp 高剛性球状黒鉛鋳鉄及びその製造方法
JP2001347357A (ja) * 2000-06-06 2001-12-18 Suzuki Motor Corp 球状黒鉛鋳鉄部材及びその製造方法
JP2007000881A (ja) * 2005-06-22 2007-01-11 Kitagawa Iron Works Co Ltd ダクタイル鋳鉄の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232649A (ja) * 1983-06-15 1984-12-27 Ngk Insulators Ltd プラスチツク成形用鋳造金型
JPH0626751B2 (ja) * 1984-11-13 1994-04-13 トヨタ自動車株式会社 微細球状黒鉛を有する鋳鉄材料の製造方法
FR2667613B1 (fr) * 1990-10-09 1992-12-31 Nord Inst Ind Procede d'extraction du zinc present dans la fonte liquide, moyens en vue de la mise en óoeuvre du procede et produits ainsi obtenus.
US5161604A (en) * 1992-03-26 1992-11-10 General Motors Corporation Differential pressure, countergravity casting with alloyant reaction chamber
US6126713A (en) * 1996-10-24 2000-10-03 Hitachi Metals, Ltd. Additive for use in producing spheroidal graphite cast iron
US7081150B2 (en) * 2002-11-07 2006-07-25 Loper Jr Carl R Additive for inoculation of cast iron and method
CN1751134B (zh) * 2003-02-12 2010-09-08 新日本制铁株式会社 加工性优异的铸铁片及其制造方法
PL2471960T3 (pl) * 2010-12-30 2014-11-28 Infun S A Sposób wytwarzania części z żeliwa oraz część z żeliwa w ten sposób otrzymywana
CN104024450B (zh) * 2011-12-28 2017-03-29 日立金属株式会社 强度和韧性优异的球状石墨铸铁及其制造方法
CN103205625B (zh) * 2013-04-17 2016-06-01 辽宁华岳精工有限公司 一种高强韧等温淬火球铁及其生产方法和应用
KR102178655B1 (ko) * 2013-06-20 2020-11-13 히타치 긴조쿠 가부시키가이샤 주조 물품의 제조 방법
JP5655115B1 (ja) * 2013-06-28 2015-01-14 株式会社リケン 球状黒鉛鋳鉄
US9950363B2 (en) * 2013-09-30 2018-04-24 Hitachi Metals, Ltd. Casting apparatus and method for producing castings using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137665A (ja) * 1984-12-08 1986-06-25 Ngk Insulators Ltd 成形用金型の加圧鋳造方法
JPS64246A (en) * 1987-03-09 1989-01-05 Hitachi Metals Ltd Spheroidal graphite cast iron
US5205856A (en) 1991-02-14 1993-04-27 Skw Trostberg Aktiengesellschaft Inoculation wire
JPH10317093A (ja) * 1997-05-19 1998-12-02 Toyota Motor Corp 高剛性球状黒鉛鋳鉄及びその製造方法
JP2001347357A (ja) * 2000-06-06 2001-12-18 Suzuki Motor Corp 球状黒鉛鋳鉄部材及びその製造方法
JP2007000881A (ja) * 2005-06-22 2007-01-11 Kitagawa Iron Works Co Ltd ダクタイル鋳鉄の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TORJORN SKALAND: "A New Method For Chill And Shrinkage Control in Ladle Treated Ductile Iron", FOUNDRY TRADE JOURNAL (UK, vol. 178, no. 3620, 2004, pages 396 - 400

Also Published As

Publication number Publication date
EP3434799A4 (en) 2019-08-07
CN109072364B (zh) 2021-03-09
KR20180125510A (ko) 2018-11-23
US20190071756A1 (en) 2019-03-07
EP3434799B1 (en) 2020-07-08
EP3434799A1 (en) 2019-01-30
US20230392237A1 (en) 2023-12-07
US20220243308A1 (en) 2022-08-04
JP6838603B2 (ja) 2021-03-03
JPWO2017164382A1 (ja) 2019-02-07
CN109072364A (zh) 2018-12-21
KR102356486B1 (ko) 2022-01-26

Similar Documents

Publication Publication Date Title
CN105283571B (zh) 球状石墨铸铁
CN110029267B (zh) 球墨铸铁
US20230392237A1 (en) Spheroidal graphite cast iron, cast article and automobile structure part made thereof, and method for producing spheroidal graphite cast iron article
JP2011105993A (ja) 球状黒鉛鋳鉄管およびその製造方法
WO2017017989A1 (ja) 鋳鋼部材
JP4918384B2 (ja) 球状黒鉛鋳鉄鋳物の製造方法
WO2015059641A2 (en) Differential apparatus component, differential apparatus therewith and manufacturing method thereof
JP2634707B2 (ja) 球状黒鉛鋳鉄の製造方法
JP5475380B2 (ja) オーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物
JP2007327083A (ja) 球状黒鉛鋳鉄及びその製造方法
JP4963444B2 (ja) 球状黒鉛鋳鉄部材
KR102539284B1 (ko) 내가스 결함성에 우수한 구상흑연주철
JP3648158B2 (ja) 球状黒鉛鋳鉄
WO2023243726A1 (ja) オーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP2005256088A (ja) 球状黒鉛鋳鉄部材
JP2020002402A (ja) 球状黒鉛鋳鉄
CN113795604B (zh) 球墨铸铁和球墨铸铁的制造方法、以及车辆底盘用部件
JP2006104561A (ja) 高温疲労特性に優れた耐熱性Al基合金
JP2021017601A (ja) 球状黒鉛鋳鉄材及びスクロール部材
JP2006122917A (ja) 鋳鉄方法及び鋳鉄製品
JP2011162825A (ja) フェライト系球状黒鉛鋳鉄及びその製造方法、並びにこれを用いた自動車の排気系部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507447

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187029339

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017770422

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770422

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770422

Country of ref document: EP

Kind code of ref document: A1