WO2017164083A1 - 金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法 - Google Patents

金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法 Download PDF

Info

Publication number
WO2017164083A1
WO2017164083A1 PCT/JP2017/010769 JP2017010769W WO2017164083A1 WO 2017164083 A1 WO2017164083 A1 WO 2017164083A1 JP 2017010769 W JP2017010769 W JP 2017010769W WO 2017164083 A1 WO2017164083 A1 WO 2017164083A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
titanium oxide
crystal structure
substituted
ray diffraction
Prior art date
Application number
PCT/JP2017/010769
Other languages
English (en)
French (fr)
Inventor
慎一 大越
優太 前野
義総 奈須
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to US16/086,956 priority Critical patent/US20190161359A1/en
Priority to JP2018507289A priority patent/JP7056843B2/ja
Publication of WO2017164083A1 publication Critical patent/WO2017164083A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3237Substoichiometric titanium oxides, e.g. Ti2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0018Diamagnetic or paramagnetic materials, i.e. materials with low susceptibility and no hysteresis

Definitions

  • the present invention relates to a metal-substituted titanium oxide and a method for producing a metal-substituted titanium oxide sintered body.
  • Ti 2 O 3 which is representative of an oxide containing Ti 3+ (hereinafter simply referred to as titanium oxide), is a phase transition material having various interesting physical properties, such as metal-insulator transition, It is known that a magnetic-antiferromagnetic transition occurs. Ti 2 O 3 is also known for infrared absorption, thermoelectric effect, magnetoelectric (ME) effect, etc. In addition, in recent years, magnetoresistance (MR) effect has also been found. Such various physical properties have been studied only in bulk bodies ( ⁇ m size) (see, for example, Non-Patent Document 1), and the mechanism is still unclear.
  • Titanium oxide composed of Ti 3 O 5 shown in Patent Document 1 has an unprecedented characteristic that it undergoes a phase transition from a crystal structure in a paramagnetic metal state to a crystal structure that is a nonmagnetic semiconductor when given pressure or light. In the future, it is conceivable to apply titanium oxide having such characteristics to various technical fields. Therefore, in recent years, it has been desired to develop a titanium oxide having a new composition that can be widely applied in various fields.
  • an object of the present invention is to propose a metal-substituted titanium oxide that has a composition other than that of conventional Ti 3 O 5 and can be used outside the conventional technical field, and a method for producing a metal-substituted titanium oxide sintered body.
  • the metal-substituted titanium oxide according to the present invention has a composition in which a part of Ti site of Ti 3 O 5 is substituted with any one of Mg, Mn, Al, V, and Nb. Even when the temperature is lower than [K], the crystal structure having the characteristics of a non-magnetic semiconductor does not undergo phase transition and maintains a paramagnetic metal state at all temperatures from 0 to 800 [K], and is given pressure or light. Thus, it is characterized by comprising a crystal structure that undergoes a phase transition to the crystal structure of the nonmagnetic semiconductor.
  • A is any one of Mg, Mn, Al, V, and Nb
  • a composition other than the conventional Ti 3 O 5 has the property that it can undergo a phase transition from a crystal structure of a paramagnetic metal state to a crystal structure of a non-magnetic semiconductor by applying pressure or light.
  • FIG. 3 is an SEM image showing a configuration of a metal-substituted titanium oxide sintered body made of metal-substituted titanium oxide in which a part of Ti site of Ti 3 O 5 is substituted with Mg.
  • FIG. 2A is a graph showing measurement results of X-ray diffraction patterns of a plurality of metal-substituted titanium oxides having different atomic ratios of Mg and Ti
  • FIG. 2B is a metal-substituted type to which Si as a standard material is added. It is a graph which shows the measurement result of the X-ray-diffraction pattern of a titanium oxide.
  • a part of Ti site of Ti 3 O 5 is a graph showing measurement results of X-ray diffraction pattern after the application of pressure to a sample consisting of a substituted metal-substituted type titanium oxide in Mg.
  • 3 is an SEM image showing a configuration of a metal-substituted titanium oxide sintered body made of metal-substituted titanium oxide in which a part of Ti site of Ti 3 O 5 is substituted with Mn.
  • FIG. 5A is a graph showing measurement results of X-ray diffraction patterns of a plurality of metal-substituted titanium oxides having different atomic ratios of Mn and Ti
  • FIG. 5B is a metal-substituted type to which Si as a standard material is added.
  • FIG. 7A is a graph showing measurement results of X-ray diffraction patterns of a plurality of metal-substituted titanium oxides having different atomic ratios of Al and Ti
  • FIG. 7B is a metal-substituted type to which Si as a standard material is added. It is a graph which shows the measurement result of the X-ray-diffraction pattern of a titanium oxide.
  • a part of Ti site of Ti 3 O 5 is a graph showing measurement results of X-ray diffraction pattern after the application of pressure to a sample consisting of a substituted metal-substituted titanium oxide Al.
  • Samples consisting of Mg x Ti (3-x) O 5 metal substituted type titanium oxide is a graph showing a measurement result of measuring the magnetized by SQUID.
  • Samples consisting of Mg x Ti (3-x) O 5 metal substituted type titanium oxide is a graph showing the results of examining the phase transition temperature of the crystal structure by DSC.
  • Samples consisting of Mn x Ti (3-x) O 5 metal substituted type titanium oxide is a graph showing the results of examining the phase transition temperature of the crystal structure by DSC.
  • Samples consisting of Al x Ti (3-x) O 5 metal substituted type titanium oxide is a graph showing the results of examining the phase transition temperature of the crystal structure by DSC.
  • the metal substitution type titanium oxide of the present invention is one of Ti sites of Ti 3 O 5 (hereinafter referred to as ⁇ -Ti 3 O 5 ) shown in Japanese Patent No. 5398025. Part is composed of ⁇ -Ti 3 O 5 type structure substituted with any one of Mg, Mn, Al, V, Nb, and all of 0 to 800 [K] as in ⁇ -Ti 3 O 5 Even when the temperature is 460 [K] or less, the monoclinic crystal structure maintaining the paramagnetic metal state (hereinafter, this crystal structure is also referred to as ⁇ phase) can be obtained.
  • a conventionally known bulk body made of Ti 3 O 5 (hereinafter referred to as a conventional crystal) has a temperature of about 460 [K] or less and ⁇ -Ti 3 O 5 in a paramagnetic metal state. Since the phase transition in the crystal structure of ⁇ -Ti 3 O 5 in the non-magnetic semiconductor from the crystal structure, X-rays diffracted at approximately 460 [K] following temperatures (XRD: X-ray diffraction) at beta-Ti 3 O Five X-ray diffraction peaks may appear. In contrast, ⁇ -Ti 3 O 5 shown in Japanese Patent No.
  • ⁇ -Ti 3 O 5 even in metal-substituted titanium oxide in which a part of Ti site of ⁇ -Ti 3 O 5 according to the present invention is substituted with any one of Mg, Mn, Al, V, and Nb. , A monoclinic crystal structure that maintains the paramagnetic metal state without phase transition to the crystal structure of ⁇ -Ti 3 O 5 , which is a nonmagnetic semiconductor, even at temperatures below about 460 [K] ( ⁇ Phase).
  • the metal-substituted titanium oxide of the present invention does not show the X-ray diffraction peak of non-magnetic semiconductor ⁇ -Ti 3 O 5 in X-ray diffraction even at a temperature of about 460 [K] or less.
  • ⁇ -Ti 3 O 5 since the occurrence of X-ray diffraction peak X-ray diffraction peaks of the different ⁇ -Ti 3 O 5 appears from about 460 [K] at temperatures below ⁇ -Ti 3 O 5 Similarly to the above, it can be a monoclinic crystal structure ( ⁇ phase) maintaining a paramagnetic metal state.
  • the metal-substituted titanium oxide when the temperature of the metal-substituted titanium oxide is raised from room temperature, for example, the crystal structure begins to transition from around 400 [K], and the X-ray diffraction shows that the paramagnetic metal state is tilted. An X-ray diffraction peak of orthorhombic ⁇ -Ti 3 O 5 appears, and can undergo phase transition to an orthorhombic crystal structure in the paramagnetic metal state at a temperature exceeding about 500 [K]. Thereby, the metal-substituted titanium oxide can maintain a paramagnetic metal state at all temperatures of 0 to 800 [K].
  • an X-ray diffraction peak of ⁇ -Ti 3 O 5 appears by X-ray diffraction
  • the crystal structure of the paramagnetic metal state is a nonmagnetic semiconductor. It can undergo a phase transition to a monoclinic crystal structure.
  • the metal-substituted titanium oxide having a monoclinic crystal structure in the same paramagnetic metal state as ⁇ -Ti 3 O 5 below about 460 [K] has a crystal structure belonging to the space group C2 / m and is heated.
  • the metal-substituted titanium oxide that has undergone phase transition to an orthorhombic crystal structure in the same paramagnetic metal state as ⁇ -Ti 3 O 5 has a crystal structure belonging to the space group Cmcm.
  • metal-substituted titanium oxide that has undergone phase transition to the same non-magnetic semiconductor crystal structure as ⁇ -Ti 3 O 5 by application of pressure or light has a crystal structure belonging to the space group C2 / m.
  • This metal-substituted titanium oxide is lower in magnetization than when the crystal structure in the paramagnetic metal state is 460 [K] or less by applying pressure or light when the crystal structure is in the paramagnetic metal state. It consists of a crystal structure that undergoes a phase transition to the crystal structure of magnetization.
  • such a metal-substituted titanium oxide has a composition of, for example, A x Ti (3-x) O 5 (A is any one of Mg, Mn, Al, V, and Nb).
  • A is any one of Mg, Mn, Al, V, and Nb.
  • a part of the Ti site of ⁇ -Ti 3 O 5 is substituted with any one of Mg, Mn, Al, V, and Nb. More specifically, 0 ⁇ x ⁇ 0.09 when A is Mg, 0 ⁇ x ⁇ 0.18 when A is any one of Mn, V, and Nb, and 0 ⁇ x ⁇ 0.51 when A is Al. It is desirable that
  • the metal-substituted titanium oxide according to the present invention can be produced as a metal-substituted titanium oxide sintered body.
  • a method for producing a metal-substituted titanium oxide sintered body comprising the metal-substituted titanium oxide of the present invention for example, Mg, Mn, and the like are dispersed in a dispersion in which nano-sized TiO 2 particles of 100 [nm] or less are dispersed.
  • a mixed solution is prepared by mixing a solution containing A of any one of Al, V, and Nb, and titanium oxide particles are generated in the mixed solution (generation step).
  • a precipitant such as ammonia water is mixed in the mixed solution.
  • a precursor powder composed of titanium oxide particles is extracted from the mixed solution, and the precursor powder is fired in a hydrogen atmosphere (firing step).
  • firing step for example, firing is performed at 900 to 1500 [° C.] in a hydrogen atmosphere of 0.05 to 0.9 [L / min].
  • a metal-substituted titanium oxide sintered body made of metal-substituted titanium oxide in which a part of Ti site of Ti 3 O 5 is replaced with any one of Mg, Mn, Al, V, and Nb can be manufactured.
  • the firing time is preferably 1 hour or longer.
  • the metal-substituted titanium oxide when A is Mg, Mn, Al, V, and Nb will be described in order.
  • FIG. 1 shows a metal made of metal-substituted titanium oxide in which part of Ti site in Ti 3 O 5 is replaced with Mg.
  • This is a SEM (Scanning Electron Microscope) image of a displacement-type titanium oxide sintered body.
  • the metal-replacement-type titanium oxide sintered body has, for example, a particle size of about 200 to 650 [nm] and a plurality of fine particles. It consists of a porous structure in which the bodies are bonded and the surface is formed in an uneven shape. The particle size was measured by analyzing the SEM image.
  • the surface of the metal-substituted titanium oxide sintered body is densely formed with a plurality of particles having irregular shapes and sizes in a spherical shape, a hemispherical shape, a semi-elliptical shape, a spherical crown shape, or a droplet shape.
  • irregularly-shaped dents with irregularities inside are formed, and a flake-shaped uneven shape or a coral reef-shaped uneven shape is formed.
  • the composition is substituted with Ti 4+ , for example, Mg x Ti (3-x) O 5 (0 ⁇ X ⁇ 0.09).
  • metal-substituted titanium oxide composed of Mg x Ti (3-x) O 5 does not undergo phase transition to the non-magnetic semiconductor ⁇ -Ti 3 O 5 crystal structure at a temperature of 460 [K] or less.
  • the paramagnetic metal state can be maintained at all temperatures up to 800 [K].
  • metal-substituted titanium oxide composed of Mg x Ti (3-x) O 5 is a monoclinic system in the paramagnetic metal state in which an X-ray diffraction peak of ⁇ -Ti 3 O 5 appears by X-ray diffraction.
  • the metal-substituted titanium oxide sintered body made of Mg x Ti (3-x) O 5 metal-substituted titanium oxide includes the above-mentioned “(1) Metal-substituted type of the present invention including firing conditions during production”. Since it can be manufactured according to the manufacturing method of “Overview of titanium oxide”, the description thereof is omitted here to avoid duplication of description.
  • a metal-substituted titanium oxide composed of Mg x Ti (3-x) O 5 is manufactured according to the manufacturing method described in “(1) Outline of metal-substituted titanium oxide of the present invention” described above.
  • the X-ray diffraction pattern of the manufactured and substituted titanium oxide was confirmed.
  • a sol-like dispersion obtained by mixing TiO 2 particles with an X-ray particle size of about 7 [nm] in an aqueous nitric acid solution at a concentration of 30 [wt%] (trade name “Ishihara Sangyo Co., Ltd.” STS-01 ”) was prepared.
  • each mixed solution is centrifuged, and after separating particles made of titanium oxide (TiO 2 ) and magnesium hydroxide (Mg (OH) 2 ) from the mixed solution, the particles are washed and dried to thereby obtain titanium oxide. And the particle
  • the precursor powder which is a collection of particles made of titanium oxide and magnesium hydroxide
  • a predetermined temperature (1100 ° C.) for a predetermined time (about 5 hours) in a hydrogen atmosphere (0.7 L / min).
  • particles made of titanium oxide and magnesium hydroxide reduce Ti 4+ by a reduction reaction with hydrogen, and a part of Ti 3 O 5 which is an oxide containing Ti 3+ is replaced with Mg.
  • a metal-substituted titanium oxide sintered body made of metal-substituted titanium oxide was produced.
  • TiO 2 0: 100 (atomic ratio) containing no Mg
  • Ti 3 O shown in Japanese Patent No. 5398025 A titanium oxide sintered body consisting of 5 was produced.
  • a sol-like dispersion obtained by mixing TiO 2 particles with an X-ray particle size of about 7 [nm] in an aqueous nitric acid solution at a concentration of 30 [wt%] (trade name “Ishihara Sangyo Co., Ltd.” STS-01 ”) was centrifuged to obtain particles made of titanium oxide (TiO 2 ), washed and dried, and the obtained precursor powder was fired under the same firing conditions as described above.
  • XRF X-ray Fluorescence
  • each sintered powder body, powder body made of titanium oxide sintered body of the Ti 3 O 5 (hereinafter, simply referred to as Ti 3 O 5 sintered powder body) and for, at room temperature, each X-ray diffraction
  • X-ray diffraction peaks are present at locations different from the X-ray diffraction peak of ⁇ -Ti 3 O 5 and the X-ray diffraction peak of ⁇ -Ti 3 O 5. It was confirmed that it appeared.
  • ⁇ -Ti 3 O 5 sintered powder body in which an X-ray diffraction peak appears at a location different from the X-ray diffraction peak of ⁇ -Ti 3 O 5 and the X-ray diffraction peak of ⁇ -Ti 3 O 5 The crystal structure is defined as 3 O 5 .
  • a Ti 3 O 5 sintered powder body having a crystal structure of ⁇ -Ti 3 O 5 maintains a paramagnetic metal state crystal structure even at a temperature of 460 [K] or less in Patent No. 5398025. It has been confirmed that the paramagnetic metal state is maintained at all temperatures up to 800 [K].
  • the X-ray diffraction pattern of the sintered powder body was compared with the X-ray diffraction pattern of the Ti 3 O 5 sintered powder body.
  • Si is used as a standard material indicating the reference of the X-ray diffraction peak
  • the results shown in FIG. 2B were obtained.
  • the metal-substituted titanium oxide composed of Mg x Ti (3-x) O 5 (0 ⁇ x ⁇ 0.09) has an X-ray diffraction peak of ⁇ -Ti 3 O 5 even when it is 460 [K] or less.
  • the X-ray diffraction peak of ⁇ -Ti 3 O 5 appeared without appearing, and it was confirmed that the paramagnetic metal state could be maintained.
  • a metal-substituted titanium oxide made of Mg x Ti (3-x) O 5 (0 ⁇ x ⁇ 0.09) can maintain a paramagnetic metal state at all temperatures of 0 to 800 [K].
  • the Ti 3 O 5 sintered powder body which is the same as that of Japanese Patent No. 5398025, has a diffraction angle of 21 degrees, 28 degrees, and 43 degrees by applying pressure. X-ray diffraction peaks appeared in each case.
  • This sample was irradiated with a 532 [nm] pulse laser beam (Nd 3+ YAG laser) of 1.1 ⁇ 10 -5 mJ m -2 pulse -1 and given a specific light intensity by the pulse laser beam.
  • Nd 3+ YAG laser Nd 3+ YAG laser
  • This sample is further irradiated with a 532 [nm] pulse laser beam (Nd 3+ YAG laser) of 1.1 ⁇ 10 ⁇ 5 mJ m ⁇ 2 pulse ⁇ 1, and a predetermined light is emitted from the pulse laser beam.
  • a 532 [nm] pulse laser beam Nd 3+ YAG laser
  • a predetermined light is emitted from the pulse laser beam.
  • TiO 2 particles and the Mg will prepare a mixed solution, which is contained in a predetermined amount, consisting TiO 2 and Mg in the mixed solution in the particles
  • a metal composed of metal-substituted titanium oxide in which part of the Ti site of Ti 3 O 5 is replaced with Mg by firing precursor powder composed of particles extracted from the mixed solution in a hydrogen atmosphere.
  • a substitutional titanium oxide sintered body can be produced.
  • the metal-substituted titanium oxide forming the metal-substituted titanium oxide sintered body does not undergo phase transition to a crystal structure having the characteristics of a nonmagnetic semiconductor even when the temperature is 460 [K] or less, and 0 to 800 [K].
  • a crystal structure that undergoes a phase transition to a nonmagnetic semiconductor can be obtained.
  • FIG. 4 shows a metal made of metal-substituted titanium oxide in which a part of Ti site in Ti 3 O 5 is replaced with Mn.
  • FIG. 5 is an SEM image of substitutional titanium oxide sintered body 1, and the metal substitutional titanium oxide sintered body has a particle size of, for example, about 250 to 1100 [nm], and a plurality of fine particle bodies are bonded together. And has a porous structure with a rugged surface. The particle size was measured by analyzing the SEM image.
  • the surface of the metal-substituted titanium oxide sintered body is densely formed with a plurality of particles having irregular shapes and sizes in a spherical shape, a hemispherical shape, a semi-elliptical shape, a spherical crown shape, or a droplet shape.
  • irregularly-shaped dents with irregularities inside are formed, and a flake-shaped uneven shape or a coral reef-shaped uneven shape is formed.
  • the composition is substituted with Ti 4+ , for example, Mn x Ti (3-x) O 5 (0 ⁇ X ⁇ 0.18).
  • the metal-substituted titanium oxide composed of Mn x Ti (3-x) O 5 does not undergo a phase transition to the crystal structure of ⁇ -Ti 3 O 5 which is a nonmagnetic semiconductor at a temperature of 460 [K] or less.
  • the paramagnetic metal state can be maintained at all temperatures up to 800 [K].
  • the metal-substituted titanium oxide composed of Mn x Ti (3-x) O 5 is a monoclinic system in the paramagnetic metal state in which an X-ray diffraction peak of ⁇ -Ti 3 O 5 appears by X-ray diffraction.
  • the metal-substituted titanium oxide sintered body made of Mn x Ti (3-x) O 5 metal-substituted titanium oxide includes the above-mentioned “(1) Metal-substituted type of the present invention including firing conditions at the time of manufacture”. Since it can be manufactured according to the manufacturing method of “Overview of titanium oxide”, the description thereof is omitted here to avoid duplication of description.
  • a metal-substituted titanium oxide composed of Mn x Ti (3-x) O 5 is manufactured according to the manufacturing method described in “(1) Outline of metal-substituted titanium oxide of the present invention” described above.
  • the X-ray diffraction pattern of the manufactured and substituted titanium oxide was confirmed.
  • a sol-like dispersion obtained by mixing TiO 2 particles with an X-ray particle size of about 7 [nm] in an aqueous nitric acid solution at a concentration of 30 [wt%] (trade name “Ishihara Sangyo Co., Ltd.” STS-01 ”) was prepared.
  • MnSO 4 .5H 2 O manganese sulfate
  • a precipitant ammonia water
  • each mixed solution is centrifuged, and particles composed of titanium oxide (TiO 2 ) and manganese hydroxide (Mn (OH) 2 ) are separated from the mixed solution, and then washed and dried to thereby obtain titanium oxide. And the particle
  • the precursor powder which is a collection of particles composed of titanium oxide and manganese hydroxide
  • a predetermined temperature 1050 ° C.
  • a predetermined time about 5 hours
  • a hydrogen atmosphere 0.7 L / min
  • particles made of titanium oxide and manganese hydroxide reduce Ti 4+ by a reduction reaction with hydrogen, and part of Ti 3 O 5 that is an oxide containing Ti 3+ is replaced with Mn.
  • a metal-substituted titanium oxide sintered body made of metal-substituted titanium oxide was produced.
  • a titanium oxide sintered body made of ⁇ -Ti 3 O 5 of Patent No. 5398025 described in “(2-1) Verification test” was also produced as a comparative example.
  • X-ray fluorescence (XRF) analysis was performed on the powder body (sintered powder body) made of a metal-substituted titanium oxide sintered body with different atomic ratios of Mn and Ti manufactured as described above. However, it was confirmed that no impure element was present.
  • Si is used as a standard material indicating the reference of the X-ray diffraction peak
  • Powder bodies made of metal-substituted titanium oxide sintered bodies with different atomic ratios of Mn and Ti, and powder bodies made of titanium oxide sintered bodies of Ti 3 O 5 for (Ti 3 O 5 sintered powder body), at room temperature in the same manner as described above, was measured X-ray diffraction pattern, respectively, the results shown in Figure 5B were obtained.
  • the metal-substituted titanium oxide composed of Mn x Ti (3-x) O 5 (0 ⁇ x ⁇ 0.18) has an X-ray diffraction peak of ⁇ -Ti 3 O 5 even if it becomes 460 [K] or less.
  • the X-ray diffraction peak of ⁇ -Ti 3 O 5 appeared without appearing, and it was confirmed that the paramagnetic metal state could be maintained.
  • a metal-substituted titanium oxide composed of Mn x Ti (3-x) O 5 (0 ⁇ x ⁇ 0.18) can maintain a paramagnetic metal state at all temperatures of 0 to 800 [K].
  • This sample was irradiated with a 532 [nm] pulse laser beam (Nd 3+ YAG laser) of 1.1 ⁇ 10 -5 mJ m -2 pulse -1 and given a specific light intensity by the pulse laser beam.
  • Nd 3+ YAG laser Nd 3+ YAG laser
  • the discolored portion of this sample was further irradiated with a 532 [nm] pulse laser beam (Nd 3+ YAG laser) of 1.7 ⁇ 10 ⁇ 6 mJ m ⁇ 2 pulse ⁇ 1 , and the pulse laser beam was used for As a result, it was confirmed that the portion irradiated with the pulsed laser beam was slightly discolored and the crystal structure had undergone a phase transition.
  • a 532 [nm] pulse laser beam Nd 3+ YAG laser
  • the irradiated part of this sample with pulsed laser light was further irradiated with 532 [nm] pulsed laser light (Nd 3+ YAG laser) of 1.1 ⁇ 10 -5 mJ m -2 pulse -1
  • 532 [nm] pulsed laser light Nd 3+ YAG laser
  • TiO 2 particles and the Mn is produced a mixed solution contained in the predetermined amount, consisting TiO 2 and Mn to the mixed solution in the particles
  • a metal composed of a metal-substituted titanium oxide in which a part of the Ti site of Ti 3 O 5 is replaced with Mn by firing a precursor powder composed of particles extracted from the mixed solution in a hydrogen atmosphere.
  • a substitutional titanium oxide sintered body can be produced.
  • the metal-substituted titanium oxide forming the metal-substituted titanium oxide sintered body does not undergo phase transition to a crystal structure having the characteristics of a nonmagnetic semiconductor even when the temperature is 460 [K] or less, and 0 to 800 [K].
  • a crystal structure that undergoes a phase transition to a nonmagnetic semiconductor can be obtained.
  • This metal-substituted titanium oxide has a composition in which one Ti 3+ of ⁇ -Ti 3 O 5 having a composition of Ti 3+ 2 Ti 4+ 0 5 is replaced with Al 3+ .
  • Al x Ti (3-x) O 5 (0 ⁇ X ⁇ 0.51).
  • the metal-substituted titanium oxide composed of Al x Ti (3-x) O 5 does not undergo phase transition to the non-magnetic semiconductor ⁇ -Ti 3 O 5 crystal structure at a temperature of 460 [K] or less.
  • the paramagnetic metal state can be maintained at all temperatures up to 800 [K].
  • the metal-substituted titanium oxide composed of Al x Ti (3-x) O 5 has a paramagnetic metal state crystal structure in which an X-ray diffraction peak of ⁇ -Ti 3 O 5 appears by X-ray diffraction.
  • an X-ray diffraction peak of ⁇ -Ti 3 O 5 appears by X-ray diffraction, and a phase transition from a crystal structure in a paramagnetic metal state to a crystal structure that is a nonmagnetic semiconductor can occur.
  • the metal-substituted titanium oxide sintered body 1 made of Al x Ti (3-x) O 5 metal-substituted titanium oxide includes the above-mentioned “(1) Metal-substituted metal of the present invention including firing conditions at the time of manufacture”. Since it can be manufactured in accordance with the manufacturing method of “Overview of Type Titanium Oxide”, its description is omitted here to avoid duplication of description.
  • a metal-substituted titanium oxide composed of Al x Ti (3-x) O 5 is manufactured in accordance with the manufacturing method of “(1) Outline of metal-substituted titanium oxide of the present invention” described above.
  • the X-ray diffraction pattern of the manufactured and substituted titanium oxide was confirmed.
  • a sol-like dispersion obtained by mixing TiO 2 particles with an X-ray particle size of about 7 [nm] in an aqueous nitric acid solution at a concentration of 30 [wt%] (trade name “Ishihara Sangyo Co., Ltd.” STS-01 ”) was prepared.
  • Al 2 (SO 4 ) 3 .16H 2 O aluminum sulfate
  • a precipitant ammonia water
  • each mixed solution is centrifuged, and particles made of titanium oxide (TiO 2 ) and aluminum hydroxide (Al (OH) 3 ) are separated from the mixed solution, and then washed and dried to thereby obtain titanium oxide. And the particle
  • the precursor powder which is a collection of particles composed of titanium oxide and aluminum hydroxide
  • particles made of titanium oxide and aluminum hydroxide reduce Ti 4+ by a reduction reaction with hydrogen, and a part of Ti 3 O 5 that is an oxide containing Ti 3+ is replaced with Al.
  • a metal-substituted titanium oxide sintered body made of metal-substituted titanium oxide was produced.
  • a titanium oxide sintered body made of ⁇ -Ti 3 O 5 of Patent No. 5398025 described in “(2-1) Verification test” was also produced as a comparative example.
  • Powder bodies made of metal-substituted titanium oxide sintered bodies with different atomic ratios of Al and Ti, and powder bodies made of titanium oxide sintered bodies of Ti 3 O 5 for (Ti 3 O 5 sintered powder body), at room temperature in the same manner as described above, was measured X-ray diffraction pattern, respectively, the results shown in Figure 7B were obtained.
  • the metal-substituted titanium oxide composed of Mn x Ti (3-x) O 5 (0 ⁇ x ⁇ 0.51) has an X-ray diffraction peak of ⁇ -Ti 3 O 5 even when it is 460 [K] or less.
  • the X-ray diffraction peak of ⁇ -Ti 3 O 5 appeared without appearing, and it was confirmed that the paramagnetic metal state could be maintained.
  • a metal-substituted titanium oxide made of Al x Ti (3-x) O 5 (0 ⁇ x ⁇ 0.51) can maintain a paramagnetic metal state at all temperatures of 0 to 800 [K].
  • This sample was irradiated with a 532 [nm] pulse laser beam (Nd 3+ YAG laser) of 1.1 ⁇ 10 -5 mJ m -2 pulse -1 and given a specific light intensity by the pulse laser beam.
  • Nd 3+ YAG laser Nd 3+ YAG laser
  • the discolored portion of this sample was further irradiated with a 532 [nm] pulse laser beam (Nd 3+ YAG laser) of 1.7 ⁇ 10 ⁇ 6 mJ m ⁇ 2 pulse ⁇ 1 , and the pulse laser beam was used for As a result, it was confirmed that the portion irradiated with the pulsed laser beam was slightly discolored and the crystal structure had undergone a phase transition.
  • a 532 [nm] pulse laser beam Nd 3+ YAG laser
  • This sample is further irradiated with a 532 [nm] pulse laser beam (Nd 3+ YAG laser) of 1.1 ⁇ 10 ⁇ 5 mJ m ⁇ 2 pulse ⁇ 1, and a predetermined light is emitted from the pulse laser beam.
  • a 532 [nm] pulse laser beam Nd 3+ YAG laser
  • a predetermined light is emitted from the pulse laser beam.
  • the TiO 2 particles and Al to prepare a mixed solution, which is contained in a predetermined amount, consisting TiO 2 and Al in the mixed solution in the particles
  • a metal composed of a metal-substituted titanium oxide in which a part of the Ti site of Ti 3 O 5 is replaced with Al
  • a substitutional titanium oxide sintered body can be produced.
  • the metal-substituted titanium oxide forming this metal-substituted titanium oxide sintered body does not undergo phase transition to a crystal structure having the characteristics of a nonmagnetic semiconductor even when the temperature is 460 [K] or less, and is 0 to 800 [K A paramagnetic metal state is maintained at all temperatures, and a crystal structure that undergoes a phase transition to a nonmagnetic semiconductor can be obtained by applying pressure or light.
  • This metal-substituted titanium oxide has a composition in which two Ti 3+ of ⁇ -Ti 3 O 5 composed of Ti 3+ 2 Ti 4+ 0 5 are replaced with V 2+ and Ti 4+. For example, it has a composition of V x Ti (3-x) O 5 (0 ⁇ X ⁇ 0.18).
  • the metal-substituted titanium oxide composed of V x Ti (3-x) O 5 does not undergo phase transition to the crystal structure of ⁇ -Ti 3 O 5 which is a nonmagnetic semiconductor at a temperature of 460 [K] or less.
  • the paramagnetic metal state can be maintained at all temperatures up to 800 [K].
  • the metal-substituted titanium oxide composed of V x Ti (3-x) O 5 has a paramagnetic metal state crystal structure in which an X-ray diffraction peak of ⁇ -Ti 3 O 5 appears in X-ray diffraction.
  • an X-ray diffraction peak of ⁇ -Ti 3 O 5 appears by X-ray diffraction, and a phase transition from a crystal structure of a paramagnetic metal state to a crystal structure of a nonmagnetic semiconductor can occur.
  • the metal-substituted titanium oxide sintered body 1 made of V x Ti (3-x) O 5 metal-substituted titanium oxide includes the above-mentioned “(1) Metal-substituted metal of the present invention including firing conditions at the time of manufacture”. Since it can be manufactured in accordance with the manufacturing method of “Overview of Type Titanium Oxide”, its description is omitted here to avoid duplication of description.
  • This metal-substituted titanium oxide has a composition in which one Ti 3+ of ⁇ -Ti 3 O 5 having a composition of Ti 3+ 2 Ti 4+ 0 5 is substituted with Nb 3+ , for example, Nb x It has a composition of Ti (3-x) O 5 (0 ⁇ X ⁇ 0.18).
  • the metal-substituted titanium oxide composed of Nb x Ti (3-x) O 5 does not undergo phase transition to the crystal structure of ⁇ -Ti 3 O 5 which is a nonmagnetic semiconductor at a temperature of 460 [K] or less.
  • the paramagnetic metal state can be maintained at all temperatures up to 800 [K].
  • the metal-substituted titanium oxide composed of Nb x Ti (3-x) O 5 has a paramagnetic metal state crystal structure in which an X-ray diffraction peak of ⁇ -Ti 3 O 5 appears in X-ray diffraction.
  • an X-ray diffraction peak of ⁇ -Ti 3 O 5 appears by X-ray diffraction, and a phase transition from a crystal structure of a paramagnetic metal state to a crystal structure of a nonmagnetic semiconductor can occur.
  • the metal-substituted titanium oxide sintered body 1 made of Nb x Ti (3-x) O 5 metal-substituted titanium oxide includes the above-mentioned “(1) Metal-substituted metal of the present invention including firing conditions at the time of manufacture”. Since it can be manufactured in accordance with the manufacturing method of “Overview of Type Titanium Oxide”, its description is omitted here to avoid duplication of description.
  • a crystal structure that undergoes a phase transition to a monoclinic system that is a nonmagnetic semiconductor can be obtained.
  • a metal-substituted titanium oxide sintered body made of Mg x Ti (3-x) O 5 metal-substituted titanium oxide having a different value of x is produced by the same production method as the “(2-1) verification test” described above. did. And the sintered powder body which consists of each metal substitution type titanium oxide sintered compact was prepared as a sample.
  • T 1/2 / K in the table in FIG. 9 indicates the magnetization between the magnetic susceptibility before the phase transition at 350 [K] and the magnetic susceptibility after the phase transition at 550 [K]. This is the temperature at which the rate is taken and indicates the phase transition temperature. From the measurement result of “T 1/2 / K”, it was confirmed that the phase transition temperature of the crystal structure decreased as the x value of Mg x Ti (3-x) O 5 increased.
  • the initial sintered powder body to which pressure was applied was a paramagnetic metal state when heated to over 460 [K] and then cooled down to 460 [K], as with the conventional Ti 3 O 5 sintered powder body It was confirmed that the crystal structure had a lower magnetization than the magnetization of the crystal structure.
  • These sintered powder bodies undergo phase transition to a crystal structure having a lower magnetization than the magnetization possessed when the crystal structure in the paramagnetic metal state is 460 [K] or less when pressure is applied.
  • the temperature of the peak top T top decreases as the x value of Mg x Ti (3-x) O 5 increases. From this change in the peak top T top , in the sintered powder body, increasing the x value of Mg x Ti (3-x) O 5 , that is, increasing the Mg content, the phase transition of the crystal structure It was confirmed that the temperature dropped.
  • Mn x Ti 3-x
  • a metal-substituted titanium oxide sintered body made of Mn x Ti (3-x) O 5 metal-substituted titanium oxide having a different value of x is manufactured by the same manufacturing method as the “(3-1) verification test” described above. did. And the sintered powder body which consists of each metal substitution type titanium oxide sintered compact was prepared as a sample.
  • the temperature of the peak top T top decreased as the value of x of Mn x Ti (3-x) O 5 increased. From such changes in the peak top T top , it was confirmed that in the sintered powder body, the phase transition temperature of the crystal structure was lowered by increasing the Mn content in Mn x Ti (3-x) O 5 . . Even in these sintered powder bodies, when a pressure was applied, the phase transitioned to a crystal structure having a lower magnetization than the magnetization possessed when the crystal structure in the paramagnetic metal state was 460 [K] or less.
  • a metal-substituted titanium oxide sintered body made of metal-substituted titanium oxide having a different x value of Al x Ti (3-x) O 5 is produced by the same production method as the “(4-1) verification test” described above. did. And the sintered powder body which consists of each metal substitution type titanium oxide sintered compact was prepared as a sample.
  • the temperature of the peak top T top decreases as the x value of Al x Ti (3-x) O 5 increases. From such changes in the peak top T top , it was confirmed that in the sintered powder body, the phase transition temperature of the crystal structure was lowered by increasing the Al content in Al x Ti (3-x) O 5 . . Even in these sintered powder bodies, when a pressure was applied, the phase transitioned to a crystal structure having a lower magnetization than the magnetization possessed when the crystal structure in the paramagnetic metal state was 460 [K] or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

圧力又は光が与えられることにより、常磁性金属状態の結晶構造から非磁性半導体の結晶構造に相転移し得るという特性を有しつつ、従来のTi3O5以外の組成とし、従来の技術分野以外でも利用可能な金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法を提案する。本発明では、460[K]以下になっても非磁性半導体の特性を有する結晶構造には相転移せずに、0~800[K]の全ての温度で常磁性金属状態を維持し、圧力又は光が与えられることにより、非磁性半導体の結晶構造に相転移する結晶構造からなり、Ti3O5のTiサイトの一部を、Mg,Mn,Al,V,Nbのいずれか1種で置換した組成でなる金属置換型酸化チタンを提供できる。

Description

金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法
 本発明は、金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法に関する。
例えばTi3+を含む酸化物(以下、これを単に酸化チタンと呼ぶ)の代表であるTi2O3は、種々の興味深い物性を有する相転移材料であり、例えば金属―絶縁体転移や、常磁性―反強磁性転移が起こることが知られている。また、Ti2O3は、赤外線吸収や、熱電効果、磁気電気(ME)効果等も知られており、加えて、近年、磁気抵抗(MR)効果も見出されている。このような、様々な物性は、バルク体(~μmサイズ)でのみ研究されており(例えば、非特許文献1参照)、そのメカニズムは未だ不明な部分も多い。 
一方、近年では、Ti3+を含むTi3O5からなるナノ微粒子(例えば100nmサイズ以下)についても研究が行われており、460[K]以下になっても非磁性半導体の特性を有するβ-Ti3O5には相転移せずに、0~800[K]の全ての温度で常磁性金属状態を維持したTi3O5からなる酸化チタンについても知られている(例えば、特許文献1参照)。
Hitoshi SATO,他,JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN Vol.75,No.5,May,2006,pp.053702/1-4
特許第5398025号公報
 特許文献1に示すTi3O5からなる酸化チタンは、圧力又は光が与えられることにより、常磁性金属状態の結晶構造から非磁性半導体である結晶構造に相転移する、という従来にない特性を有することから注目されており、今後、このような特性を有した酸化チタンを種々の技術分野に適用することも考えられる。そのため、近年では、種々の分野で幅広く適用し易い新たな組成の酸化チタンの開発が望まれている。
 そこで、本発明は以上の点を考慮してなされたもので、圧力又は光が与えられることにより、常磁性金属状態の結晶構造から非磁性半導体の結晶構造に相転移し得るという特性を有しつつ、従来のTi3O5以外の組成とし、従来の技術分野以外でも利用可能な金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法を提案することを目的とする。
 かかる課題を解決するため本発明による金属置換型酸化チタンは、Ti3O5のTiサイトの一部を、Mg,Mn,Al,V,Nbのいずれか1種で置換した組成からなり、460[K]以下になっても非磁性半導体の特性を有する結晶構造には相転移せずに、0~800[K]の全ての温度で常磁性金属状態を維持し、圧力又は光が与えられることにより、非磁性半導体の結晶構造に相転移する結晶構造からなることを特徴とする。
 また、本発明による金属置換型酸化チタン焼結体の製造方法は、TiO2粒子が分散した分散液に、A(AはMg,Mn,Al,V,Nbのいずれか1種)を含有した溶液を混合して混合溶液内にTiO2及び前記Aからなる粒子を生成する生成工程と、前記混合溶液内から抽出した粒子からなる前駆体粉末を水素雰囲気下で焼成し、Ti3O5のTiサイトの一部を、前記Aで置換した金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を製造する焼成工程とを備えることを特徴とする。
 本発明によれば、圧力又は光が与えられることにより、常磁性金属状態の結晶構造から非磁性半導体の結晶構造に相転移し得るという特性を有しつつ、従来のTi3O5以外の組成とし、従来の技術分野以外でも利用可能な金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法を提供できる。
Ti3O5のTiサイトの一部をMgで置換した金属置換型酸化チタンからなる金属置換型酸化チタン焼結体の構成を示すSEM画像である。 図2Aは、MgとTiの原子数比を変えた複数の金属置換型酸化チタンのX線回折パターンの測定結果を示すグラフであり、図2Bは、標準物質であるSiを添加した金属置換型酸化チタンのX線回折パターンの測定結果を示すグラフである。 Ti3O5のTiサイトの一部をMgで置換した金属置換型酸化チタンからなる試料に対して圧力を印加した後のX線回折パターンの測定結果を示すグラフである。 Ti3O5のTiサイトの一部をMnで置換した金属置換型酸化チタンからなる金属置換型酸化チタン焼結体の構成を示すSEM画像である。 図5Aは、MnとTiの原子数比を変えた複数の金属置換型酸化チタンのX線回折パターンの測定結果を示すグラフであり、図5Bは、標準物質であるSiを添加した金属置換型酸化チタンのX線回折パターンの測定結果を示すグラフである。 Ti3O5のTiサイトの一部をMnで置換した金属置換型酸化チタンからなる試料に対して圧力を印加した後のX線回折パターンの測定結果を示すグラフである。 図7Aは、AlとTiの原子数比を変えた複数の金属置換型酸化チタンのX線回折パターンの測定結果を示すグラフであり、図7Bは、標準物質であるSiを添加した金属置換型酸化チタンのX線回折パターンの測定結果を示すグラフである。 Ti3O5のTiサイトの一部をAlで置換した金属置換型酸化チタンからなる試料に対して圧力を印加した後のX線回折パターンの測定結果を示すグラフである。 MgxTi(3-x)O5の金属置換型酸化チタンからなる試料について、SQUIDにより磁化を測定した測定結果を示すグラフである。 MgxTi(3-x)O5の金属置換型酸化チタンからなる試料について、DSCにより結晶構造の相転移温度を調べた結果を示すグラフである。 MnxTi(3-x)O5の金属置換型酸化チタンからなる試料について、DSCにより結晶構造の相転移温度を調べた結果を示すグラフである。 AlxTi(3-x)O5の金属置換型酸化チタンからなる試料について、DSCにより結晶構造の相転移温度を調べた結果を示すグラフである。
 以下図面に基づいて本発明の実施の形態を詳述する。
 (1)本発明の金属置換型酸化チタンの概要
 本発明の金属置換型酸化チタンは、特許第5398025号で示すTi3O5(以下、λ-Ti3O5と呼ぶ)のTiサイトの一部を、Mg,Mn,Al,V,Nbのいずれか1種で置換したλ-Ti3O5型の構造からなり、λ-Ti3O5と同様に、0~800[K]の全ての温度で常磁性を示し、460[K]以下になっても、常磁性金属状態を維持した単斜晶系の結晶構造(以下、この結晶構造をλ相とも呼ぶ)となり得る。
 ところで、従来から知られているTi3O5からなるバルク体(以下、これを従来結晶と呼ぶ)は、約460[K]以下の温度で、常磁性金属状態のα-Ti3O5の結晶構造から非磁性半導体のβ-Ti3O5の結晶構造に相転移することから、約460[K]以下の温度でX線回折(XRD:X‐ray Diffraction)にてβ-Ti3O5のX線回折ピークが出現し得る。これに対して、特許第5398025号で示すλ-Ti3O5は、約460[K]以下の温度になっても非磁性半導体のβ-Ti3O5の結晶構造には相転移せずに、β-Ti3O5の結晶構造とは異なった常磁性金属状態を維持した単斜晶系の結晶構造(λ相)となり得る。
 本発明によるλ-Ti3O5のTiサイトの一部を、Mg,Mn,Al,V,Nbのいずれか1種で置換した金属置換型酸化チタンでも、λ-Ti3O5と同様に、約460[K]以下の温度になっても非磁性半導体のβ-Ti3O5の結晶構造には相転移せずに、常磁性金属状態を維持した単斜晶系の結晶構造(λ相)となり得る。すなわち、本発明の金属置換型酸化チタンは、約460[K]以下の温度になっても、X線回折にて、非磁性半導体のβ-Ti3O5のX線回折ピークが出現せず、β-Ti3O5とはX線回折ピークの出現箇所が異なるλ-Ti3O5のX線回折ピークが出現することから、約460[K]以下の温度でλ-Ti3O5と同様に常磁性金属状態を維持した単斜晶系の結晶構造(λ相)となり得る。
 また、この金属置換型酸化チタンは、例えば室温から温度を上げてゆくと、約400[K]を超えた辺りから結晶構造が相転移し始め、X線回折にて、常磁性金属状態の斜方晶系のα-Ti3O5のX線回折ピークが出現し、約500[K]を超えた温度で常磁性金属状態の斜方晶系の結晶構造に相転移し得る。これにより、この金属置換型酸化チタンは、0~800[K]の全ての温度で常磁性金属状態を維持し得る。
 これに加えて、この金属置換型酸化チタンは、λ-Ti3O5と同様に、例えばX線回折にてλ-Ti3O5のX線回折ピークが出現した常磁性金属状態の単斜晶系の結晶構造に対し、圧力又は光が与えられることにより、X線回折にてβ-Ti3O5のX線回折ピークが出現し、常磁性金属状態の結晶構造から非磁性半導体である単斜晶系の結晶構造に相転移し得る。なお、約460[K]以下でλ-Ti3O5と同じ常磁性金属状態の単斜晶系の結晶構造からなる金属置換型酸化チタンは、結晶構造が空間群C2/mに属し、加熱によりα-Ti3O5と同じ常磁性金属状態の斜方晶系の結晶構造に相転移した金属置換型酸化チタンは、結晶構造が空間群Cmcmに属する。また、圧力又は光が与えられることによりβ-Ti3O5と同じ非磁性半導体の結晶構造に相転移した金属置換型酸化チタンは、結晶構造が空間群C2/mに属する。
 この金属置換型酸化チタンは、常磁性金属状態の結晶構造のときに、圧力又は光が与えられることにより、常磁性金属状態の結晶構造が460[K]以下のときに有する磁化よりも、低い磁化の結晶構造に相転移する結晶構造からなる。
 具体的に、このような金属置換型酸化チタンは、例えば、AxTi(3-x)O5(AがMg,Mn,Al,V,Nbのいずれか1種)の組成を有しており、λ-Ti3O5のTiサイトの一部を、Mg,Mn,Al,V,Nbのいずれか1種で置換された構造を有する。より具体的には、AがMgのときは0<x≦0.09、AがMn,V,Nbのいずれか1種のときは0<x≦0.18、AがAlのときは0<x≦0.51であることが望ましい。
 ここで、本発明による金属置換型酸化チタンは金属置換型酸化チタン焼結体として製造することがきる。本発明の金属置換型酸化チタンからなる金属置換型酸化チタン焼結体の製造方法としては、例えば、100[nm]以下でなるナノサイズのTiO2粒子が分散した分散液に、Mg,Mn,Al,V,Nbのいずれか1種でなるAを含有した溶液を混合して混合溶液を作製し、当該混合溶液内に酸化チタン粒子を生成する(生成工程)。生成工程では、混合溶液にアンモニア水等の沈殿剤を混合する。また、この際、溶解させるAとTiとの原子数比が、例えば(A:Ti)=(0より上:100未満)~(10:90)に調整し、好ましくはAがMg,Mn,V,Nbのいずれか1種であるとき、(A:Ti)=(0より上:100未満)~(6:94)、AがAlのとき、(A:Ti)=(0より上:100未満)~(10:90)に調整する。
 次いで、この混合溶液内から酸化チタン粒子からなる前駆体粉末を抽出し、当該前駆体粉末を水素雰囲気下で焼成する(焼成工程)。焼成工程では、例えば0.05~0.9[L/min]の水素雰囲気下で、900~1500[℃]で焼成する。これにより、Ti3O5のTiサイトの一部を、Mg,Mn,Al,V,Nbのいずれか1種で置換した金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を製造できる。なお、焼成時間は、1時間以上が好ましい。以下、AがMg,Mn,Al,V,Nbのときにおける金属置換型酸化チタンについて、順番に説明する。
 (2)Ti3O5のTiサイトの一部をMgで置換した金属置換型酸化チタン
 図1は、Ti3O5のTiサイトの一部をMgで置換した金属置換型酸化チタンからなる金属置換型酸化チタン焼結体のSEM(Scanning Electron Microscope)画像であり、金属置換型酸化チタン焼結体は、例えば粒径が200~650[nm]程度の大きさでなり、複数の微細な粒子体が結合して表面が凹凸状に形成された多孔質構造からなる。なお、粒径の測定は、SEM画像の解析で行った。
 この場合、金属置換型酸化チタン焼結体の表面には、球状、半球状、半楕円状、球冠状、又は液滴状で不規則な形状や大きさでなる複数の粒子体が緻密に形成されており、凸状に形成された粒子体に加えて、内部が凹凸状に入り組んだ不規則な大きさの凹みも形成され、フレーク状の凹凸形状、又はサンゴ礁状の凹凸形状が形成されている。
 金属置換型酸化チタン焼結体を形成する金属置換型酸化チタンは、Ti3+ 2Ti4+05の組成でなるλ-Ti3O5のうち2つのTi3+を、Mg2+とTi4+とで置換した組成でなり、例えばMgxTi(3-x)O5(0<X≦0.09)の組成からなる。このMgxTi(3-x)O5からなる金属置換型酸化チタンも、λ-Ti3O5と同様に、460[K]以下の温度において、X線回折にてλ-Ti3O5のX線回折ピークが出現しており、常磁性金属状態を維持した単斜晶系の結晶構造となり得る。
 このようにMgxTi(3-x)O5からなる金属置換型酸化チタンは、460[K]以下の温度で非磁性半導体のβ-Ti3O5の結晶構造に相転移しないことから0~800[K]の全ての温度で常磁性金属状態を維持し得る。また、MgxTi(3-x)O5からなる金属置換型酸化チタンは、X線回折にてλ-Ti3O5のX線回折ピークが出現した常磁性金属状態の単斜晶系の結晶構造に対し、圧力又は光が与えられることにより、X線回折にてβ-Ti3O5のX線回折ピークが出現し、常磁性金属状態の結晶構造から非磁性半導体である単斜晶系の結晶構造に相転移し得る。
 なお、MgxTi(3-x)O5の金属置換型酸化チタンからなる金属置換型酸化チタン焼結体は、製造時の焼成条件を含め、上述した「(1)本発明の金属置換型酸化チタンの概要」の製造方法に従って製造できるため、ここでは説明の重複を避けるためその説明は省略する。
 (2-1)検証試験
 次に、MgxTi(3-x)O5からなる金属置換型酸化チタンを、上述した「(1)本発明の金属置換型酸化チタンの概要」の製造方法に従って製造し、金属置換型酸化チタンのX線回折パターンについて確認した。具体的には、X線粒径が約7[nm]程度のTiO2粒子を30[wt%]の濃度で硝酸水溶液に混入させたゾル状の分散液(石原産業株式会社製の商品名「STS-01」)を用意した。
 次いで、この分散液に酢酸マグネシウム(Mg(CH3COO)2・4H2O)を溶解し、均一になるように撹拌した後、沈殿剤(アンモニア水)を混合して混合溶液を生成した。この際、酢酸マグネシウムの量を調整し、混合溶液中のMgとTiとの原子数比をMg:Ti=2:98と、Mg:Ti=4:96と、Mg:Ti=6:94と、Mg:Ti=8:92と、Mg:Ti=10:90とした。
 次いで、各混合溶液を遠心分離し、酸化チタン(TiO2)及び水酸化マグネシウム(Mg(OH)2)からなる粒子を混合溶液から分離した後、これを洗浄して乾燥させることにより、酸化チタン及び水酸化マグネシウムからなる粒子を混合溶液から抽出して前駆体粉末を得た。
 次いで、酸化チタン及び水酸化マグネシウムからなる粒子の集まりである前駆体粉末を、水素雰囲気下(0.7L/min)において所定温度(1100℃)で所定時間(約5時間)、焼成処理した。この焼成処理により、酸化チタン及び水酸化マグネシウムからなる粒子は水素による還元反応により、Ti4+を還元し、Ti3+を含んだ酸化物であるTi3O5の一部がMgに置換された金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を生成した。
 また、これら混合溶液とは別に、別途、比較例として、Mgを含有していないMg:Ti=0:100(原子数比)の分散液を用いて、特許第5398025号に示したTi3O5からなる酸化チタン焼結体を生成した。具体的には、X線粒径が約7[nm]程度のTiO2粒子を30[wt%]の濃度で硝酸水溶液に混入させたゾル状の分散液(石原産業株式会社製の商品名「STS-01」)を遠心分離し、酸化チタン(TiO2)からなる粒子を得、これを洗浄して乾燥させた後、得られた前駆体粉末を上述した同じ焼成条件で焼成処理した。この焼成処理により、酸化チタンからなる粒子は水素による還元反応により、Ti4+を還元し、Ti3+を含んだ酸化物であるTi3O5からなる酸化チタン焼結体を生成した。これはTiサイトをMgで置換していない特許第5398025号のλ-Ti3O5である。
 このようにして製造した、MgとTiの原子数比が異なる金属置換型酸化チタン焼結体からなる粉末体(以下、単に焼結粉末体と呼ぶ)についてX線蛍光(XRF:X-ray Fluorescence)分析を行ったところ、不純元素が存在していないことが確認できた。また、製造過程でMg:Ti=2:98に調整した混合溶液から製造された金属置換型酸化チタン焼結体は、X線蛍光分析によって、Mg:Ti=1:99となり、MgxTi(3-x)O5(x=0.03)になることが確認できた。
 また、製造過程でMg:Ti=4:96に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Mg:Ti=2:98となり、MgxTi(3-x)O5(x=0.07)になることが確認でき、さらに、製造過程でMg:Ti=6:94に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Mg:Ti=3:97となり、MgxTi(3-x)O5(x=0.09)になることが確認できた。
 そして、製造過程でMg:Ti=8:92に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Mg:Ti=4:96となり、MgxTi(3-x)O5(x=0.12)になることが確認でき、また、製造過程でMg:Ti=10:90に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Mg:Ti=5:95となり、MgxTi(3-x)O5(x=0.14)になることが確認できた。以下、xの値を用いて各焼結粉末体を区別して説明する。
 次に、各焼結粉末体と、Ti3O5の酸化チタン焼結体からなる粉末体(以下、単にTi3O5焼結粉末体と呼ぶ)とについて、室温にて、それぞれX線回折パターンを測定したところ、図2Aに示すような結果が得られた。図2Aは、横軸に回折角を示し、縦軸にX線回折強度を示しており、TiサイトをMgで置換していない特許第5398025号で示すTi3O5のX線回折パターンを「x=0」で示す。
 図2Aに示すように、Ti3O5焼結粉末体では、α-Ti3O5のX線回折ピークやβ-Ti3O5のX線回折ピークとは異なる箇所にX線回折ピークが出現していることが確認できた。なお、ここではα-Ti3O5のX線回折ピークやβ-Ti3O5のX線回折ピークとは異なる箇所にX線回折ピークが現れるTi3O5焼結粉末体についてλ-Ti3O5の結晶構造であると規定する。また、λ-Ti3O5の結晶構造を有するTi3O5焼結粉末体は、特許第5398025号にて、460[K]以下の温度でも常磁性金属状態の結晶構造を維持し、0~800[K]の全ての温度で常磁性金属状態を維持することが確認されている。
 次に、焼結粉末体のX線回折パターンと、Ti3O5焼結粉末体のX線回折パターンとを比較した。Ti3O5焼結粉末体(x=0)のX線回折パターンには、例えば、32度~33度周辺の回折角を見ると、2つのX線回折ピークが出現している。一方、x=0.03とした焼結粉末体のX線回折パターンと、x=0.07とした焼結粉末体のX線回折パターンでは、同様に32度~33度周辺の回折角を見ると、λ-Ti3O5と比較してX線回折ピークの高さが低いものの2つのX線回折ピークが出現していることが確認できた。
 また、x=0.09とした焼結粉末体のX線回折パターンでは、同様に32度~33度周辺の回折角を見ると、Ti3O5焼結粉末体のときのような明確な谷部が確認できないものの、台形状となり僅かに2つのX線回折ピークが出現していることが確認できた。このことから、x=0.03、x=0.07、及びx=0.09とした焼結粉末体は、Ti3O5焼結粉末体におけるλ-Ti3O5の結晶構造と同じ結晶構造を有することが確認できた。また、x=0.03、x=0.07、及びx=0.09とした焼結粉末体には、α-Ti3O5のX線回折ピークやβ-Ti3O5のX線回折ピークが出現しておらず、α-Ti3O5及びβ-Ti3O5の結晶構造ではないことも確認できた。
 一方、比較例となるx=0.12とした焼結粉末体のX線回折パターンと、同じく比較例となるx=0.14とした焼結粉末体のX線回折パターンは、同様に32度~33度周辺の回折角を見ると、Ti3O5焼結粉末体とは異なり、鋭い1つのX線回折ピークが出現していることが確認できた。そのため、x=0.12及びx=0.14とした焼結粉末体は、Ti3O5焼結粉末体と結晶構造が異なっており、Ti3O5焼結粉末体のようなλ-Ti3O5の結晶構造ではないことが確認できた。
 次に、X線回折装置の誤差によるX線回折ピークのズレ等を確認するために、X線回折ピークの基準を示す標準物質としてSiを、上述したx=0.03、x=0.07、x=0.09、x=0.12、x=0.14の焼結粉末体と、x=0のTi3O5焼結粉末体とに物理的に混合した。
 このようにして製造した、MgとTiの原子数比が異なる金属置換型酸化チタン焼結体からなる各粉末体(焼結粉末体)と、Ti3O5の酸化チタン焼結体からなる粉末体(Ti3O5焼結粉末体)とについて、上述と同様に室温にて、それぞれX線回折パターンを測定したところ、図2Bに示すような結果が得られた。
 図2Bからも、x=0.03、x=0.07、及びx=0.09とした焼結粉末体は、X線回折ピークの箇所から、焼結粉末体におけるλ-Ti3O5と同様の結晶構造からなることが確認できた。特に、x=0.09とした焼結粉末体については、32度~33度周辺の回折角を見ると、λ-Ti3O5と比較してX線回折ピークの高さが低いものの、図2Aよりも鋭い2つのX線回折ピークが出現していることが確認できた。以上より、x=0.03、x=0.07、及びx=0.09の焼結粉末体は、非磁性半導体のβ-Ti3O5の結晶構造でなく、Ti3O5焼結粉末体と同じ常磁性金属状態のλ-Ti3O5の結晶構造を有することから、460[K]以下の温度でも常磁性金属状態の結晶構造を維持することが確認できた。
 以上により、MgxTi(3-x)O5(0<x≦0.09)からなる金属置換型酸化チタンは、460[K]以下になってもβ-Ti3O5のX線回折ピークが出現せずに、λ-Ti3O5のX線回折ピークが出現し、常磁性金属状態を維持し得ることが確認できた。なお、MgxTi(3-x)O5(0<x≦0.09)からなる金属置換型酸化チタンについては、0~800[K]の全ての温度で常磁性金属状態を維持し得る。
 次に、MgとTiの原子数比が異なる焼結粉末体と、Ti3O5焼結粉末体とについて、図2Aに示したX線回折パターンからRietveld(リートベルト)解析を行い、格子定数を調べたところ、x=0.03~0.14においてβ[°]についてもMgの含有量に対して負の相関があった。なお、x=0.03、x=0.07、及びx=0.09とした焼結粉末体は、結晶構造が空間群C2/mに属する。
 次にMgとTiの原子数比が異なる焼結粉末体と、Ti3O5焼結粉末体とに対して、5mmφのペレットが成型可能なIR用錠剤整形機にて、40[kN]の圧力(~2[GPa])を印加し、圧力解放後、X線回折パターンを調べたところ、図3に示すような結果が得られた。
 図3に示すように、x=0.03、x=0.07、及びx=0.09とした焼結粉末体は、圧力印加後、Ti3O5焼結粉末体と同じ箇所に特徴的なX線回折ピークが出現していることから、Ti3O5焼結粉末体と同じ結晶構造となることが確認できた。ここで、特許第5398025号と同じであるTi3O5焼結粉末体には、図3に示したように、圧力が印加されることにより、21度、28度、43度の回折角にそれぞれX線回折ピークが現れた。これらのX線回折ピークはβ-Ti3O5の(201)面、(003)面、(204)面に相当した。このことから、Ti3O5焼結粉末体には、β-Ti3O5のX線回折ピークが出現し、λ-Ti3O5の結晶構造からβ-Ti3O5の結晶構造に相転移していることが確認できた。
 そして、x=0.03、x=0.07とした焼結粉末体においても、Ti3O5焼結粉末体と同様に、圧力が印加されることにより、β-Ti3O5のX線回折ピークが出現し、λ-Ti3O5の結晶構造からβ-Ti3O5の結晶構造に相転移していることが確認できた。また、x=0.09とした焼結粉末体についても、β-Ti3O5のX線回折ピークが出現していることが確認でき、結晶構造が相転移していることを確認した。以上より、x=0.03、x=0.07、及びx=0.09とした焼結粉末体は、圧力を与えることにより、常磁性金属状態のλ-Ti3O5の結晶構造から、非磁性半導体に相転移する結晶構造からなることが確認できた。
 次に、x=0.07とした焼結粉末体を用いてペレットを作製し、ペレットに水ガラスをかけて光照射の対象とする試料を作製した後、試料に対してレーザ光を照射し、試料の表面の状態を確認した。この試料に対し1.1×10-5 mJ m-2 pulse-1の532[nm]のパルスレーザ光(Nd3+ YAG レーザ)を照射し、当該パルスレーザ光により所定の光強度を与えた箇所について観察したところ、パルスレーザ光の照射箇所が変色して結晶構造が相転移していることが確認できた。
 また、試料の変色箇所に対して、さらに1.7×10-6 mJ m-2 pulse-1の532[nm]のパルスレーザ光(Nd3+ YAG レーザ)を照射し、当該パルスレーザ光により所定の光強度を与えた箇所について観察したところ、パルスレーザ光の照射箇所が僅かだが変色して結晶構造が相転移していることが確認できた。
 この試料の照射箇所に対して、さらに1.1×10-5 mJ m-2 pulse-1の532[nm]のパルスレーザ光(Nd3+ YAG レーザ)を照射し、当該パルスレーザ光により所定の光強度を与えた箇所について観察したところ、パルスレーザ光の照射箇所が、再び変色して結晶構造が相転移していることが確認できた。このように、x=0.07の焼結粉末体は、光の照射によっても結晶構造が相転移することが確認できた。
 (2-2)作用及び効果
 以上の構成において、本発明では、TiO2粒子とMgとが所定の含有量で含有された混合溶液を作製し、当該混合溶液内にTiO2及びMgからなる粒子を生成し、混合溶液内から抽出した粒子からなる前駆体粉末を水素雰囲気下で焼成することで、Ti3O5のTiサイトの一部を、Mgで置換した金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を製造できる。
 金属置換型酸化チタン焼結体を形成する金属置換型酸化チタンは、460[K]以下になっても非磁性半導体の特性を有する結晶構造には相転移せずに、0~800[K]の全ての温度で常磁性金属状態を維持し、圧力又は光が与えられることにより、非磁性半導体に相転移する結晶構造となり得る。このように本発明では、圧力又は光が与えられることにより、常磁性金属状態の結晶構造から非磁性半導体の結晶構造に相転移し得るという特性を有しつつ、従来のTi3O5以外の組成とし、従来の技術分野以外でも利用可能な金属置換型酸化チタンを提供できる。
 (3)Ti3O5のTiサイトの一部をMnで置換した金属置換型酸化チタン
 図4は、Ti3O5のTiサイトの一部をMnで置換した金属置換型酸化チタンからなる金属置換型酸化チタン焼結体1のSEM画像であり、金属置換型酸化チタン焼結体は、例えば粒径が250~1100[nm]程度の大きさでなり、複数の微細な粒子体が結合して表面が凹凸状に形成された多孔質構造からなる。なお、粒径の測定は、SEM画像の解析で行った。
 この場合、金属置換型酸化チタン焼結体の表面には、球状、半球状、半楕円状、球冠状、又は液滴状で不規則な形状や大きさでなる複数の粒子体が緻密に形成されており、凸状に形成された粒子体に加えて、内部が凹凸状に入り組んだ不規則な大きさの凹みも形成され、フレーク状の凹凸形状、又はサンゴ礁状の凹凸形状が形成されている。
 金属置換型酸化チタン焼結体を形成する金属置換型酸化チタンは、Ti3+ 2Ti4+05の組成でなるλ-Ti3O5のうち2つのTi3+を、Mn2+とTi4+とで置換した組成でなり、例えばMnxTi(3-x)O5(0<X≦0.18)の組成からなる。このMnxTi(3-x)O5からなる金属置換型酸化チタンも、λ-Ti3O5と同様に、460[K]以下の温度において、X線回折にてλ-Ti3O5のX線回折ピークが出現しており、常磁性金属状態を維持した単斜晶系の結晶構造となり得る。
 このようにMnxTi(3-x)O5からなる金属置換型酸化チタンは、460[K]以下の温度で非磁性半導体のβ-Ti3O5の結晶構造に相転移しないことから0~800[K]の全ての温度で常磁性金属状態を維持し得る。また、MnxTi(3-x)O5からなる金属置換型酸化チタンは、X線回折にてλ-Ti3O5のX線回折ピークが出現した常磁性金属状態の単斜晶系の結晶構造に対し、圧力又は光が与えられることにより、X線回折にてβ-Ti3O5のX線回折ピークが出現し、常磁性金属状態の結晶構造から非磁性半導体である単斜晶系の結晶構造に相転移し得る。
 なお、MnxTi(3-x)O5の金属置換型酸化チタンからなる金属置換型酸化チタン焼結体は、製造時の焼成条件を含め、上述した「(1)本発明の金属置換型酸化チタンの概要」の製造方法に従って製造できるため、ここでは説明の重複を避けるためその説明は省略する。
 (3-1)検証試験
 次に、MnxTi(3-x)O5からなる金属置換型酸化チタンを、上述した「(1)本発明の金属置換型酸化チタンの概要」の製造方法に従って製造し、金属置換型酸化チタンのX線回折パターンについて確認した。具体的には、X線粒径が約7[nm]程度のTiO2粒子を30[wt%]の濃度で硝酸水溶液に混入させたゾル状の分散液(石原産業株式会社製の商品名「STS-01」)を用意した。
 次いで、この分散液に硫酸マンガン(MnSO4・5H2O)を溶解し、均一になるように撹拌した後、沈殿剤(アンモニア水)を混合して混合溶液を生成した。この際、硫酸マンガンの量を調整し、混合溶液中のMnとTiとの原子数比をMn:Ti=2:98と、Mn:Ti=4:96と、Mn:Ti=6:94と、Mn:Ti=8:92と、Mn:Ti=10:90とした。
 次いで、各混合溶液を遠心分離し、酸化チタン(TiO2)及び水酸化マンガン(Mn(OH)2)からなる粒子を混合溶液から分離した後、これを洗浄して乾燥させることにより、酸化チタン及び水酸化マグネシウムからなる粒子を混合溶液から抽出して前駆体粉末を得た。
 次いで、酸化チタン及び水酸化マンガンからなる粒子の集まりである前駆体粉末を、水素雰囲気下(0.7L/min)において所定温度(1050℃)で所定時間(約5時間)、焼成処理した。この焼成処理により、酸化チタン及び水酸化マンガンからなる粒子は水素による還元反応により、Ti4+を還元し、Ti3+を含んだ酸化物であるTi3O5の一部がMnに置換された金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を生成した。また、これら混合溶液とは別に、別途、比較例として、「(2-1)検証試験」で説明した特許第5398025号のλ-Ti3O5からなる酸化チタン焼結体も生成した。
 このようにして製造した、MnとTiの原子数比が異なる金属置換型酸化チタン焼結体からなる粉末体(焼結粉末体)についてX線蛍光(XRF:X-ray Fluorescence)分析を行ったところ、不純元素が存在していないことが確認できた。また、製造過程でMn:Ti=2:98に調整した混合溶液から製造された金属置換型酸化チタン焼結体は、X線蛍光分析によって、Mn:Ti=3:97となり、MnxTi(3-x)O5(x=0.08)になることが確認できた。
 また、製造過程でMn:Ti=4:96に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Mn:Ti=4:96となり、MnxTi(3-x)O5(x=0.13)になることが確認でき、さらに、製造過程でMn:Ti=6:94に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Mn:Ti=6:94となり、MnxTi(3-x)O5(x=0.18)になることが確認できた。
 そして、製造過程でMn:Ti=8:92に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Mn:Ti=8:92となり、MnxTi(3-x)O5(x=0.25)になることが確認でき、また、製造過程でMn:Ti=10:90に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Mn:Ti=10:90となり、MnxTi(3-x)O5(x=0.30)になることが確認できた。以下、xの値を用いて各焼結粉末体を区別して説明する。
 次に、各焼結粉末体と、Ti3O5の酸化チタン焼結体からなる粉末体(Ti3O5焼結粉末体)とについて、室温にて、それぞれX線回折パターンを測定したところ、図5Aに示すような結果が得られた。図5Aは、横軸に回折角を示し、縦軸にX線回折強度を示しており、TiサイトをMnで置換していない特許第5398025号で示すTi3O5のX線回折パターンを「x=0」で示す。
 焼結粉末体のX線回折パターンと、Ti3O5焼結粉末体のX線回折パターンとを比較したところ、図5Aに示すように、Ti3O5焼結粉末体(x=0)のX線回折パターンには、例えば、32度~33度周辺の回折角を見ると、2つのX線回折ピークが出現している。一方、x=0.08と、x=0.13と、x=0.18の焼結粉末体の各X線回折パターンには、同様に32度~33度周辺の回折角を見ると、λ-Ti3O5と比較してX線回折ピークの高さが低いものの2つのX線回折ピークが出現していることが確認できた。
 このことから、x=0.08、x=0.13、及びx=0.18の焼結粉末体は、Ti3O5焼結粉末体におけるλ-Ti3O5の結晶構造と同じ結晶構造を有することが確認できた。また、x=0.08、x=0.13、及びx=0.18の焼結粉末体には、α-Ti3O5のX線回折ピークやβ-Ti3O5のX線回折ピークが出現しておらず、α-Ti3O5及びβ-Ti3O5の結晶構造ではないことも確認できた。
 一方、比較例となるx=0.25とした焼結粉末体のX線回折パターンと、同じく比較例となるx=0.30とした焼結粉末体のX線回折パターンは、同様に32度~33度周辺の回折角を見ると、Ti3O5焼結粉末体とは異なり、鋭い1つのX線回折ピークが出現していることが確認できた。そのため、x=0.25とx=0.30の焼結粉末体は、Ti3O5焼結粉末体と結晶構造が異なっており、Ti3O5焼結粉末体のようなλ-Ti3O5の結晶構造ではないことが確認できた。
 次に、X線回折装置の誤差によるX線回折ピークのズレ等を確認するために、X線回折ピークの基準を示す標準物質としてSiを、上述したx=0.08、x=0.13、x=0.18、x=0.25、x=0.30の焼結粉末体と、x=0のTi3O5焼結粉末体とに物理的に混合した。
 このようにして製造した、MnとTiの原子数比が異なる金属置換型酸化チタン焼結体からなる粉末体(焼結粉末体)や、Ti3O5の酸化チタン焼結体からなる粉末体(Ti3O5焼結粉末体)について、上述と同様に室温にて、それぞれX線回折パターンを測定したところ、図5Bに示すような結果が得られた。
 図5Bからも、x=0.08、x=0.13、及びx=0.18とした焼結粉末体は、X線回折ピークの箇所から、焼結粉末体におけるλ-Ti3O5の結晶構造を含んだ結晶構造からなることが確認できた。以上より、x=0.08、x=0.13、及びx=0.18とした焼結粉末体は、非磁性半導体のβ-Ti3O5の結晶構造でなく、Ti3O5焼結粉末体と同じ常磁性金属状態のλ-Ti3O5の結晶構造を有することから、460[K]以下の温度でも常磁性金属状態の結晶構造を維持することが確認できた。
 以上により、MnxTi(3-x)O5(0<x≦0.18)からなる金属置換型酸化チタンは、460[K]以下になってもβ-Ti3O5のX線回折ピークが出現せずに、λ-Ti3O5のX線回折ピークが出現し、常磁性金属状態を維持し得ることが確認できた。なお、MnxTi(3-x)O5(0<x≦0.18)からなる金属置換型酸化チタンについては、0~800[K]の全ての温度で常磁性金属状態を維持し得る。
 次に、MnとTiの原子数比が異なる焼結粉末体と、Ti3O5焼結粉末体とについて、図5Aに示したX線回折パターンからRietveld(リートベルト)解析を行い、格子定数を調べたところ、x=0.08~0.30においてβ[°]についてMnの含有量に対して負の相関があった。なお、x=0.08、x=0.13、及びx=0.18の焼結粉末体は、結晶構造が空間群C2/mに属する。
 次にMnとTiの原子数比が異なる焼結粉末体と、Ti3O5焼結粉末体とに対して、5mmφのペレットが成型可能なIR用錠剤整形機にて、40[kN]の圧力(~2[GPa])を印加し、圧力解放後、X線回折パターンを調べたところ、図6に示すような結果が得られた。図6に示すように、x=0.08、x=0.13、及びx=0.18の焼結粉末体は、圧力印加後、Ti3O5焼結粉末体と同じ箇所に特徴的なX線回折ピークが出現していることから、Ti3O5焼結粉末体と同じ結晶構造となることが確認できた。
 また、x=0.08、x=0.13とした焼結粉末体においては、特許第5398025号と同じであるTi3O5焼結粉末体と同様に、圧力が印加されることにより、21度、28度、43度の回折角にそれぞれX線回折ピークが現れた。このことから、x=0.08及びx=0.13の焼結粉末体は、Ti3O5焼結粉末体と同様に、圧力が印加されることにより、λ-Ti3O5の結晶構造からβ-Ti3O5の結晶構造に相転移していることが確認できた。
 x=0.18とした焼結粉末体についても、β-Ti3O5のX線回折ピークが出現していることが確認でき、結晶構造が相転移していることを確認した。以上より、x=0.08、x=0.13、及びx=0.18の焼結粉末体は、圧力を与えることにより、常磁性金属状態のλ-Ti3O5の結晶構造から、非磁性半導体の結晶構造に相転移する結晶構造からなることが確認できた。
 次に、x=0.13の焼結粉末体を用いてペレットを作製し、ペレットに水ガラスをかけて光照射の対象とする試料を作製した後、試料に対してレーザ光を照射し、試料の表面の状態を確認した。この試料に対し1.1×10-5 mJ m-2 pulse-1の532[nm]のパルスレーザ光(Nd3+ YAG レーザ)を照射し、当該パルスレーザ光により所定の光強度を与えた箇所について観察したところ、パルスレーザ光の照射箇所が変色して結晶構造が相転移していることが確認できた。
 また、この試料の変色箇所に対して、さらに1.7×10-6 mJ m-2 pulse-1の532[nm]のパルスレーザ光(Nd3+ YAG レーザ)を照射し、当該パルスレーザ光により所定の光強度を与えた箇所について観察したところ、パルスレーザ光の照射箇所が僅かだが変色して結晶構造が相転移していることが確認できた。
 この試料におけるパルスレーザ光の照射箇所に対して、さらに1.1×10-5 mJ m-2 pulse-1の532[nm]のパルスレーザ光(Nd3+ YAG レーザ)を照射し、当該パルスレーザ光により所定の光強度を与えた箇所について観察したところ、パルスレーザ光の照射箇所が、再び変色して結晶構造が相転移していることが確認できた。このように、x=0.08の焼結粉末体は、光の照射によっても、結晶構造が相転移することが確認できた。
 (3-2)作用及び効果
 以上の構成において、本発明では、TiO2粒子とMnとが所定の含有量で含有された混合溶液を作製し、当該混合溶液内にTiO2及びMnからなる粒子を生成し、混合溶液内から抽出した粒子からなる前駆体粉末を水素雰囲気下で焼成することで、Ti3O5のTiサイトの一部を、Mnで置換した金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を製造できる。
 金属置換型酸化チタン焼結体を形成する金属置換型酸化チタンは、460[K]以下になっても非磁性半導体の特性を有する結晶構造には相転移せずに、0~800[K]の全ての温度で常磁性金属状態を維持し、圧力又は光が与えられることにより、非磁性半導体に相転移する結晶構造となり得る。このように本発明では、圧力又は光が与えられることにより、常磁性金属状態の結晶構造から非磁性半導体の結晶構造に相転移し得るという特性を有しつつ、従来のTi3O5以外の組成とし、従来の技術分野以外でも利用可能な金属置換型酸化チタンを提供できる。
 (4)Ti3O5のTiサイトの一部をAlで置換した金属置換型酸化チタン
 次に、Ti3O5のTiサイトの一部をAlで置換した金属置換型酸化チタンについて説明する。この金属置換型酸化チタンは、Ti3+ 2Ti4+05の組成でなるλ-Ti3O5のうち1つのTi3+を、Al3+で置換した組成でなり、例えばAlxTi(3-x)O5(0<X≦0.51)の組成からなる。このAlxTi(3-x)O5からなる金属置換型酸化チタンも、λ-Ti3O5と同様に、460[K]以下の温度において、X線回折にてλ-Ti3O5のX線回折ピークが出現しており、常磁性金属状態を維持した単斜晶系の結晶構造となり得る。
 このようにAlxTi(3-x)O5からなる金属置換型酸化チタンは、460[K]以下の温度で非磁性半導体のβ-Ti3O5の結晶構造に相転移しないことから0~800[K]の全ての温度で常磁性金属状態を維持し得る。また、AlxTi(3-x)O5からなる金属置換型酸化チタンは、X線回折にてλ-Ti3O5のX線回折ピークが出現した常磁性金属状態の結晶構造に対し、圧力又は光が与えられることにより、X線回折にてβ-Ti3O5のX線回折ピークが出現し、常磁性金属状態の結晶構造から非磁性半導体である結晶構造に相転移し得る。
 なお、AlxTi(3-x)O5の金属置換型酸化チタンからなる金属置換型酸化チタン焼結体1は、製造時の焼成条件を含め、上述した「(1)本発明の金属置換型酸化チタンの概要」の製造方法に従って製造できるため、ここでは説明の重複を避けるためその説明は省略する。
 (4-1)検証試験
 次に、AlxTi(3-x)O5からなる金属置換型酸化チタンを、上述した「(1)本発明の金属置換型酸化チタンの概要」の製造方法に従って製造し、金属置換型酸化チタンのX線回折パターンについて確認した。具体的には、X線粒径が約7[nm]程度のTiO2粒子を30[wt%]の濃度で硝酸水溶液に混入させたゾル状の分散液(石原産業株式会社製の商品名「STS-01」)を用意した。
 次いで、この分散液に硫酸アルミニウム(Al2(SO4)3・16H2O)を溶解し、均一になるように撹拌した後、沈殿剤(アンモニア水)を混合して混合溶液を生成した。この際、硫酸アルミニウムの量を調整し、混合溶液中のAlとTiとの原子数比をAl:Ti=2:98と、Al:Ti=4:96と、Al:Ti=6:94と、Al:Ti=8:92と、Al:Ti=10:90とした。
 次いで、各混合溶液を遠心分離し、酸化チタン(TiO2)及び水酸化アルミニウム(Al(OH)3)からなる粒子を混合溶液から分離した後、これを洗浄して乾燥させることにより、酸化チタン及び水酸化アルミニウムからなる粒子を混合溶液から抽出して前駆体粉末を得た。
 次いで、酸化チタン及び水酸化アルミニウムからなる粒子の集まりである前駆体粉末を、水素雰囲気下(0.7L/min)において所定温度(1100℃)で所定時間(約5時間)、焼成処理した。この焼成処理により、酸化チタン及び水酸化アルミニウムからなる粒子は水素による還元反応により、Ti4+を還元し、Ti3+を含んだ酸化物であるTi3O5の一部がAlに置換された金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を生成した。また、これら混合溶液とは別に、別途、比較例として、「(2-1)検証試験」で説明した特許第5398025号のλ-Ti3O5からなる酸化チタン焼結体も生成した。
 このようにして製造した、AlとTiの原子数比が異なる金属置換型酸化チタン焼結体からなる粉末体(焼結粉末体)についてX線蛍光(XRF:X-ray Fluorescence)分析を行ったところ、不純元素が存在していないことが確認できた。また、製造過程でAl:Ti=2:98に調整した混合溶液から製造された金属置換型酸化チタン焼結体は、X線蛍光分析によって、Al:Ti=4:96となり、AlxTi(3-x)O5(x=0.13)になることが確認できた。
 また、製造過程でAl:Ti=4:96に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Al:Ti=8:92となり、AlxTi(3-x)O5(x=0.24)になることが確認でき、さらに、製造過程でAl:Ti=6:94に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Al:Ti=11:89となり、AlxTi(3-x)O5(x=0.33)になることが確認できた。
 そして、製造過程でAl:Ti=8:92に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Al:Ti=15:85となり、AlxTi(3-x)O5(x=0.44)になることが確認でき、また、製造過程でAl:Ti=10:90に調整した混合溶液から製造した金属置換型酸化チタン焼結体は、X線蛍光分析によって、Al:Ti=17:83となり、AlxTi(3-x)O5(x=0.51)になることが確認できた。以下、xの値を用いて各焼結粉末体を区別して説明する。
 次に、各焼結粉末体と、Ti3O5の酸化チタン焼結体からなる粉末体(Ti3O5焼結粉末体)とについて、室温にて、それぞれX線回折パターンを測定したところ、図7Aに示すような結果が得られた。図7Aは、横軸に回折角を示し、縦軸にX線回折強度を示しており、TiサイトをAlで置換していない特許第5398025号で示すTi3O5のX線回折パターンを「x=0」で示す。
 焼結粉末体のX線回折パターンと、Ti3O5焼結粉末体のX線回折パターンとを比較したところ、 図7Aに示すように、Ti3O5焼結粉末体(x=0)のX線回折パターンには、例えば、32度~33度周辺の回折角を見ると、2つのX線回折ピークが出現している。一方、x=0.13、x=0.24、x=0.33、x=0.44の焼結粉末体の各X線回折パターンには、同様に32度~33度周辺の回折角を見ると、λ-Ti3O5と比較してX線回折ピークの高さが低いものの2つのX線回折ピークが出現していることが確認できた。
 また、x=0.51の焼結粉末体のX線回折パターンでは、同様に32度~33度周辺の回折角を見ると、Ti3O5焼結粉末体のときのような明確な谷部が確認できないものの、台形状で僅かに2つのX線回折ピークが出現していることが確認できた。このことから、x=0.13、x=0.24、x=0.33、x=0.44、x=0.51の各焼結粉末体は、Ti3O5焼結粉末体におけるλ-Ti3O5の結晶構造と同じ結晶構造を有することが確認できた。また、x=0.13、x=0.24、x=0.33、x=0.44、及びx=0.51の各焼結粉末体には、α-Ti3O5のX線回折ピークやβ-Ti3O5のX線回折ピークが出現しておらず、α-Ti3O5及びβ-Ti3O5の結晶構造ではないことも確認できた。
 次に、X線回折装置の誤差によるX線回折ピークのズレ等を確認するために、X線回折ピークの基準を示す標準物質としてSiを、上述したx=0.13、x=0.24、x=0.33、x=0.44、x=0.51の焼結粉末体と、x=0のTi3O5焼結粉末体とに物理的に混合した。
 このようにして製造した、AlとTiの原子数比が異なる金属置換型酸化チタン焼結体からなる粉末体(焼結粉末体)や、Ti3O5の酸化チタン焼結体からなる粉末体(Ti3O5焼結粉末体)について、上述と同様に室温にて、それぞれX線回折パターンを測定したところ、図7Bに示すような結果が得られた。
 図7Bからも、x=0.13、x=0.24、x=0.33、x=0.44、x=0.51の各焼結粉末体は、X線回折ピークの箇所から、焼結粉末体におけるλ-Ti3O5の結晶構造を含んだ結晶構造からなることが確認できた。特に、x=0.51の焼結粉末体については、32度~33度周辺の回折角を見ると、図7Aよりも鋭い2つのX線回折ピークが出現していることが確認できた。以上より、x=0.13、x=0.24、x=0.33、x=0.44、x=0.51の焼結粉末体は、非磁性半導体のβ-Ti3O5の結晶構造でなく、Ti3O5焼結粉末体と同じ常磁性金属状態のλ-Ti3O5の結晶構造を有することから、460[K]以下の温度でも常磁性金属状態の結晶構造を維持することが確認できた。
 以上により、MnxTi(3-x)O5(0<x≦0.51)からなる金属置換型酸化チタンは、460[K]以下になってもβ-Ti3O5のX線回折ピークが出現せずに、λ-Ti3O5のX線回折ピークが出現し、常磁性金属状態を維持し得ることが確認できた。なお、AlxTi(3-x)O5(0<x≦0.51)からなる金属置換型酸化チタンについては、0~800[K]の全ての温度で常磁性金属状態を維持し得る。
 次に、AlとTiの原子数比が異なる焼結粉末体と、Ti3O5焼結粉末体とについて、図7Aに示したX線回折パターンからRietveld(リートベルト)解析を行い、格子定数を調べたところ、x=0.03~0.51においてβ[°]についてAlの含有量に対して負の相関があった。なお、x=0.13、x=0.24、 x=0.33、x=0.44、及びx=0.51の焼結粉末体は、結晶構造が空間群C2/mに属する。
 次にAlとTiの原子数比が異なる焼結粉末体と、Ti3O5焼結粉末体とに対して、5mmφのペレットが成型可能なIR用錠剤整形機にて、40[kN]の圧力(~2[GPa])を印加し、圧力解放後、X線回折パターンを調べたところ、図8に示すような結果が得られた。図8に示すように、x=0.13、x=0.24、x=0.33、x=0.44、及びx=0.51の各焼結粉末体は、圧力印加後、Ti3O5焼結粉末体と同じ箇所に特徴的なX線回折ピークが出現していることから、Ti3O5焼結粉末体と同じ結晶構造となることが確認できた。
 また、x=0.13、x=0.24、及びx=0.33の焼結粉末体においては、特許第5398025号と同じであるTi3O5焼結粉末体と同様に、圧力が印加されることにより、21度、28度、43度の回折角にそれぞれX線回折ピークが現れた。このことから、x=0.13、x=0.24、及びx=0.33の各焼結粉末体は、Ti3O5焼結粉末体と同様に、圧力が印加されることにより、λ-Ti3O5の結晶構造からβ-Ti3O5の結晶構造に相転移していることが確認できた。
 さらに、x=0.44及びx=0.51の焼結粉末体についても、β-Ti3O5のX線回折ピークが出現していることが確認でき、結晶構造が相転移していることを確認した。以上より、x=0.13、x=0.24、x=0.33、x=0.44、及びx=0.51の各焼結粉末体は、圧力を与えることにより、常磁性金属状態のλ-Ti3O5の結晶構造から、非磁性半導体に相転移する結晶構造からなることが確認できた。
 次に、x=0.24の焼結粉末体を用いてペレットを作製し、ペレットに水ガラスをかけて光照射の対象とする試料を作製した後、試料に対してレーザ光を照射し、試料の表面の状態を確認した。この試料に対し1.1×10-5 mJ m-2 pulse-1の532[nm]のパルスレーザ光(Nd3+ YAG レーザ)を照射し、当該パルスレーザ光により所定の光強度を与えた箇所について観察したところ、パルスレーザ光の照射箇所が変色して結晶構造が相転移していることが確認できた。
 また、この試料の変色箇所に対して、さらに1.7×10-6 mJ m-2 pulse-1の532[nm]のパルスレーザ光(Nd3+ YAG レーザ)を照射し、当該パルスレーザ光により所定の光強度を与えた箇所について観察したところ、パルスレーザ光の照射箇所が僅かだが変色して結晶構造が相転移していることが確認できた。
 この試料の照射箇所に対して、さらに1.1×10-5 mJ m-2 pulse-1の532[nm]のパルスレーザ光(Nd3+ YAG レーザ)を照射し、当該パルスレーザ光により所定の光強度を与えた箇所について観察したところ、パルスレーザ光の照射箇所が、再び変色して結晶構造が相転移していることが確認できた。このように、x=0.24の焼結粉末体は、光の照射によって、結晶構造が相転移することが確認できた。
 (4-2)作用及び効果
 以上の構成において、本発明では、TiO2粒子とAlとが所定の含有量で含有された混合溶液を作製し、当該混合溶液内にTiO2及びAlからなる粒子を生成し、混合溶液内から抽出した粒子からなる前駆体粉末を水素雰囲気下で焼成することで、Ti3O5のTiサイトの一部を、Alで置換した金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を製造できる。
 この金属置換型酸化チタン焼結体を形成する金属置換型酸化チタンは、460[K]以下になっても非磁性半導体の特性を有する結晶構造には相転移せずに、0~800[K]の全ての温度で常磁性金属状態を維持し、圧力又は光が与えられることにより、非磁性半導体に相転移する結晶構造となり得る。このように本発明では、圧力又は光が与えられることにより、常磁性金属状態の結晶構造から非磁性半導体の結晶構造に相転移し得るという特性を有しつつ、従来のTi3O5以外の組成とし、従来の技術分野以外でも利用可能な金属置換型酸化チタンを提供できる。
 (5)Ti3O5のTiサイトの一部をVで置換した金属置換型酸化チタン
 次に、Ti3O5のTiサイトの一部をVで置換した金属置換型酸化チタンについて説明する。この金属置換型酸化チタンは、Ti3+ 2Ti4+05の組成でなるλ-Ti3O5のうち2つのTi3+を、V2+とTi4+とで置換した組成でなり、例えばVxTi(3-x)O5(0<X≦0.18)の組成からなる。このVxTi(3-x)O5からなる金属置換型酸化チタンも、λ-Ti3O5と同様に、460[K]以下の温度において、X線回折にてλ-Ti3O5のX線回折ピークが出現し、常磁性金属状態を維持した単斜晶系の結晶構造となり得る。
 このようにVxTi(3-x)O5からなる金属置換型酸化チタンは、460[K]以下の温度で非磁性半導体のβ-Ti3O5の結晶構造に相転移しないことから0~800[K]の全ての温度で常磁性金属状態を維持し得る。また、VxTi(3-x)O5からなる金属置換型酸化チタンは、X線回折にてλ-Ti3O5のX線回折ピークが出現した常磁性金属状態の結晶構造に対し、圧力又は光が与えられることにより、X線回折にてβ-Ti3O5のX線回折ピークが出現し、常磁性金属状態の結晶構造から非磁性半導体の結晶構造に相転移し得る。
 なお、VxTi(3-x)O5の金属置換型酸化チタンからなる金属置換型酸化チタン焼結体1は、製造時の焼成条件を含め、上述した「(1)本発明の金属置換型酸化チタンの概要」の製造方法に従って製造できるため、ここでは説明の重複を避けるためその説明は省略する。なお、製造時における混合溶液内でのVとTiとの原子数比は、(V:Ti)=(0より上:100未満)~(6:94)であることが望ましい。
 以上のように、Ti3O5のTiサイトの一部をVで置換した金属置換型酸化チタンでも、460[K]以下になっても非磁性半導体の特性を有する結晶構造には相転移せずに、0~800[K]の全ての温度で常磁性金属状態を維持し、圧力又は光が与えられることにより、非磁性半導体である単斜晶系に相転移する結晶構造となり得る。このように本発明では、圧力又は光が与えられることにより、常磁性金属状態の結晶構造から非磁性半導体の結晶構造に相転移し得るという特性を有しつつ、従来のTi3O5以外の組成とし、従来の技術分野以外でも利用可能な金属置換型酸化チタンを提供できる。
 (6)Ti3O5のTiサイトの一部をNbで置換した金属置換型酸化チタン
 次に、Ti3O5のTiサイトの一部をNbで置換した金属置換型酸化チタンについて説明する。この金属置換型酸化チタンは、Ti3+ 2Ti4+05の組成でなるλ-Ti3O5のうち1つのTi3+を、Nb3+とで置換した組成でなり、例えばNbxTi(3-x)O5(0<X≦0.18)の組成からなる。このNbxTi(3-x)O5からなる金属置換型酸化チタンも、λ-Ti3O5と同様に、460[K]以下の温度において、X線回折にてλ-Ti3O5のX線回折ピークが出現し、常磁性金属状態を維持した単斜晶系の結晶構造となり得る。
 このようにNbxTi(3-x)O5からなる金属置換型酸化チタンは、460[K]以下の温度で非磁性半導体のβ-Ti3O5の結晶構造に相転移しないことから0~800[K]の全ての温度で常磁性金属状態を維持し得る。また、NbxTi(3-x)O5からなる金属置換型酸化チタンは、X線回折にてλ-Ti3O5のX線回折ピークが出現した常磁性金属状態の結晶構造に対し、圧力又は光が与えられることにより、X線回折にてβ-Ti3O5のX線回折ピークが出現し、常磁性金属状態の結晶構造から非磁性半導体の結晶構造に相転移し得る。
 なお、NbxTi(3-x)O5の金属置換型酸化チタンからなる金属置換型酸化チタン焼結体1は、製造時の焼成条件を含め、上述した「(1)本発明の金属置換型酸化チタンの概要」の製造方法に従って製造できるため、ここでは説明の重複を避けるためその説明は省略する。なお、製造時における混合溶液内でのNbとTiとの原子数比は、(Nb:Ti)=(0より上:100未満)~(6:94)であることが望ましい。
 以上のように、Ti3O5のTiサイトの一部をNbで置換した金属置換型酸化チタンでも、460[K]以下になっても非磁性半導体の特性を有する結晶構造には相転移せずに、0~800[K]の全ての温度で常磁性金属状態を維持し、圧力又は光が与えられることにより、非磁性半導体である単斜晶系に相転移する結晶構造となり得る。このように本発明では、圧力又は光が与えられることにより、常磁性金属状態の結晶構造から非磁性半導体の結晶構造に相転移し得るという特性を有しつつ、従来のTi3O5以外の組成とし、従来の技術分野以外でも利用可能な金属置換型酸化チタンを提供できる。
 (7)MgxTi(3-x)O5(x=0.005、x=0.009、x=0.017及びx=0.034)の金属置換型酸化チタンに関する検証試験
 ここでは、上述した「(2)Ti3O5のTiサイトの一部をMgで置換した金属置換型酸化チタン」について、xの値を変えて、SQUID(Superconducting quantum interference device)により磁化を測定し、また、DSC(Differential scanning calorimetry)により結晶構造の相転移温度を調べた。上述した「(2-1)検証試験」と同じ製造方法によって、xの値が異なるMgxTi(3-x)O5の金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を製造した。そして、各金属置換型酸化チタン焼結体からなる焼結粉末体を試料として用意した。
 具体的には、MgxTi(3-x)O5において、xの値がx=0.005、x=0.009、x=0.017及びx=0.034となった金属置換型酸化チタンからなる金属置換型酸化チタン焼結体の焼結粉末体をそれぞれ用意した。また、比較例として、上述した「(2-1)検証試験」と同様に、x=0のTi3O5焼結粉末体(特許第5398025号で示すλ-Ti3O5からなる焼結粉末体)も用意した。
 この検証試験では、MgxTi(3-x)O5(x=0.005、x=0.009、x=0.017又はx=0.034)からなる金属置換型酸化チタン焼結体の焼結粉末体と、Ti3O5焼結粉末体とに対して、それぞれ600[MPa](80[kN]、10[min])で圧力を与えて、13[mmφ]の試料を作製した。そして、これら試料について、SQUIDによりそれぞれ磁化を計測しながら、300[K]から600[K]まで温度を上げていった。その後、これら試料について、SQUIDにより磁化を計測しながら、600[K]から300[K]まで温度を下げていった。その結果、図9に示すような結果が得られた。
 図9から、昇温前の圧力を与えた焼結粉末体は、MgxTi(3-x)O5のxの値が上がるに従って磁化が高くなることが確認できた。MgxTi(3-x)O5(x=0.005、x=0.009、x=0.017又はx=0.034)からなる金属置換型酸化チタン焼結体の焼結粉末体では、圧力が与えられたことで、いずれも磁化が10[emu g-1]以下となっていた。MgxTi(3-x)O5(x=0.005、x=0.009、x=0.017又はx=0.034)の焼結粉末体は、300[K]から600[K]に温度を上げてゆくと、Ti3O5焼結粉末体と同様に、所定の温度になると、磁化が急激に上がり、結晶構造が相転移することが確認できた。
 図9中にある表の「T1/2/K」は、350[K]における結晶構造が相転移する前の磁化率と、550[K]における相転移した後の磁化率の中間の磁化率をとる温度であり、相転移温度を示す。「T1/2/K」の計測結果から、MgxTi(3-x)O5のxの値が上がるに従って、結晶構造の相転移温度が低下することが確認できた。
 MgxTi(3-x)O5のxの値がx=0.005、x=0.009、x=0.017又はx=0.034の焼結粉末体は、600[K]から300[K]に温度を下げていっても、Ti3O5焼結粉末体と同様に、昇温後の高い磁化をそのまま維持しており、このことから460[K]以下になっても非磁性半導体の特性を有する結晶構造には相転移しないことが確認できた。よって、これら焼結粉末体は、磁化がTi3O5焼結粉末体と同じような挙動を示すことから、Ti3O5焼結粉末体と同様、0~800[K]の全ての温度範囲でパウリ常磁性であり、常磁性金属状態が保たれていると言える。
 なお、図9では、600[K]までの磁化しか調べていないが、従来のTi3O5焼結粉末体と同様、少なくとも500[K]以上から磁化の急激な変化がないため、600[K]よりも上の800[K]でも常磁性金属状態が保たれ得る。また、300[K]までの磁化しか調べていないが、急激な磁化の変化がないため、300[K]未満でも常磁性金属状態が保たれ得る。
 圧力を与えた初期の焼結粉末体は、従来のTi3O5焼結粉末体と同様、460[K]超に加熱された後に460[K]以下に降温されたときの常磁性金属状態の結晶構造の磁化よりも、低い磁化の結晶構造であったことが確認できた。これら焼結粉末体は、圧力が与えられることにより、常磁性金属状態の結晶構造が460[K]以下のときに有する磁化よりも、低い磁化の結晶構造に相転移するものである。
 次に、これらx=0.005、x=0.009、x=0.017又はx=0.034の焼結粉末体と、Ti3O5焼結粉末体とについて、上記同様に圧力を与えた後に350[K]から550[K]に温度を上げてゆき、DSCにより結晶構造の相転移温度を調べたところ、図10に示すような結果が得られた。図10に示すように、焼結粉末体では、従来のTi3O5焼結粉末体と同様に、それぞれピークが観測された。
 そして、MgxTi(3-x)O5のxの値が上がるに従ってピークトップTtopの温度が下がってゆくことを確認した。このようなピークトップTtopの変化から、焼結粉末体では、MgxTi(3-x)O5のxの値を上げること、すなわちMgの含有量を増やすことで、結晶構造の相転移温度が下がることが確認できた。
 (8)MnxTi(3-x)O5(x=0.015、x=0.028、及びx=0.034)の金属置換型酸化チタンにおける結晶構造の相転移温度
 ここでは、上述した「(3)Ti3O5のTiサイトの一部をMnで置換した金属置換型酸化チタン」について、xの値をx=0.015、x=0.028、及びx=0.034と変えて、DSCにより結晶構造の相転移温度を調べた。上述した「(3-1)検証試験」と同じ製造方法によって、xの値が異なるMnxTi(3-x)O5の金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を製造した。そして、各金属置換型酸化チタン焼結体からなる焼結粉末体を試料として用意した。
 これらx=0.015、x=0.028、又はx=0.034の焼結粉末体と、Ti3O5焼結粉末体とに対して、それぞれ2[GPa](40[kN]、10[min])で圧力を与えて、5[mmφ]の試料を作製した。そして、これら試料について、350[K]から550~650[K]に温度を上げてゆき、DSCにより結晶構造の相転移温度を調べたところ、図11に示すような結果が得られた。図11に示すように、焼結粉末体では、従来のTi3O5焼結粉末体と同様に、それぞれピークが観測された。
 MnxTi(3-x)O5のxの値が上がるに従ってピークトップTtopの温度が下がってゆくことを確認した。このようなピークトップTtopの変化から、焼結粉末体では、MnxTi(3-x)O5においてMnの含有量を増やすことで、結晶構造の相転移温度が下がることが確認できた。なお、これら焼結粉末体でも、圧力が与えられることにより、常磁性金属状態の結晶構造が460[K]以下のときに有する磁化よりも、低い磁化の結晶構造に相転移していた。
 (9)AlxTi(3-x)O5(x=0.004、x=0.007、及びx=0.023)の金属置換型酸化チタンにおける結晶構造の相転移温度
 ここでは、上述した「(4)Ti3O5のTiサイトの一部をAlで置換した金属置換型酸化チタン」について、xの値をx=0.004、x=0.007、及びx=0.023と変えて、DSCにより結晶構造の相転移温度を調べた。上述した「(4-1)検証試験」と同じ製造方法によって、AlxTi(3-x)O5のxの値が異なる金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を製造した。そして、各金属置換型酸化チタン焼結体からなる焼結粉末体を試料として用意した。
 これらx=0.004、x=0.007、又はx=0.023の焼結粉末体と、Ti3O5焼結粉末体とに対して、それぞれ600[MPa](80[kN]、10[min])で圧力を与えて、13[mmφ]の試料を作製した。そして、これら試料について、350[K]から550[K]に温度を上げてゆき、DSCにより結晶構造の相転移温度を調べたところ、図12に示すような結果が得られた。図12に示すように、焼結粉末体では、従来のTi3O5焼結粉末体と同様に、それぞれピークが観測された。
 そして、AlxTi(3-x)O5のxの値が上がるに従ってピークトップTtopの温度が下がってゆくことを確認した。このようなピークトップTtopの変化から、焼結粉末体では、AlxTi(3-x)O5においてAlの含有量を増やすことで、結晶構造の相転移温度が下がることが確認できた。なお、これら焼結粉末体でも、圧力が与えられることにより、常磁性金属状態の結晶構造が460[K]以下のときに有する磁化よりも、低い磁化の結晶構造に相転移していた。

Claims (11)

  1.  Ti3O5のTiサイトの一部を、Mg,Mn,Al,V,Nbのいずれか1種で置換した組成からなり、
     460[K]以下になっても非磁性半導体の特性を有する結晶構造には相転移せずに、0~800[K]の全ての温度で常磁性金属状態を維持し、圧力又は光が与えられることにより、非磁性半導体の結晶構造に相転移する結晶構造からなる
     ことを特徴とする金属置換型酸化チタン。
  2.  AxTi(3-x)O5からなり、AがMgであり、xが、0<x≦0.09である
     ことを特徴とする請求項1に記載の金属置換型酸化チタン。
  3.  AxTi(3-x)O5からなり、AがMn,V,Nbのいずれか1種であり、xが0<x≦0.18である
     ことを特徴とする請求項1に記載の金属置換型酸化チタン。
  4.  AxTi(3-x)O5からなり、AがAlであり、xが0<x≦0.51である
     ことを特徴とする請求項1に記載の金属置換型酸化チタン。
  5.  前記圧力又は前記光が与えられる前の前記常磁性金属状態を維持した結晶構造には、X線回折にてβ-Ti3O5のX線回折ピークが出現していない
     ことを特徴とする請求項1~4のいずれか1項に記載の金属置換型酸化チタン。
  6.  前記圧力又は前記光が与えられることにより、非磁性半導体に相転移した結晶構造には、X線回折にて前記β-Ti3O5のX線回折ピークが出現する
     ことを特徴とする請求項1~5のいずれか1項に記載の金属置換型酸化チタン。
  7.  前記圧力又は前記光が与えられることにより、非磁性半導体に相転移した結晶構造は、前記常磁性金属状態の結晶構造が460[K]以下のときに有する磁化よりも低い磁化となる
     ことを特徴とする請求項1~6のいずれか1項に記載の金属置換型酸化チタン。
  8.  TiO2粒子が分散した分散液に、A(AはMg,Mn,Al,V,Nbのいずれか1種)を含有した溶液を混合して、混合溶液内にTiO2及び前記Aからなる粒子を生成する生成工程と、
     前記混合溶液内から抽出した粒子からなる前駆体粉末を水素雰囲気下で焼成し、Ti3O5のTiサイトの一部を、前記Aで置換した金属置換型酸化チタンからなる金属置換型酸化チタン焼結体を製造する焼成工程と
     を備えることを特徴とする金属置換型酸化チタン焼結体の製造方法。
  9.  前記生成工程では、
     Aが、Mg,Mn,V,Nbのいずれか1種であるとき、前記混合溶液内での前記AとTiとの原子数比がA:Ti=0より上:100未満~6:94である
     ことを特徴とする請求項8に記載の金属置換型酸化チタン焼結体の製造方法。
  10.  前記生成工程では、
     AがAlであるとき、前記混合溶液内での前記AとTiとの原子数比がA:Ti=0より上:100未満~10:90である
     ことを特徴とする請求項8に記載の金属置換型酸化チタン焼結体の製造方法。
  11.  前記焼成工程は、0.05~0.9[L/min]の水素雰囲気下で、900~1500[℃]で焼成する
     ことを特徴とする請求項8~10のいずれか1項に記載の金属置換型酸化チタン焼結体の製造方法。
PCT/JP2017/010769 2016-03-22 2017-03-16 金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法 WO2017164083A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/086,956 US20190161359A1 (en) 2016-03-22 2017-03-16 Metal-substituted titanium oxide, and method for producing metal-substituted titanium oxide sintered body
JP2018507289A JP7056843B2 (ja) 2016-03-22 2017-03-16 金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-056848 2016-03-22
JP2016056848 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017164083A1 true WO2017164083A1 (ja) 2017-09-28

Family

ID=59900253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010769 WO2017164083A1 (ja) 2016-03-22 2017-03-16 金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法

Country Status (3)

Country Link
US (1) US20190161359A1 (ja)
JP (1) JP7056843B2 (ja)
WO (1) WO2017164083A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177062A1 (ja) * 2018-03-16 2019-09-19 パナソニックIpマネジメント株式会社 五酸化三チタン系材料、五酸化三チタン系材料の相転移温度の制御方法、吸熱方法、五酸化三チタン系材料の変換方法、センサ素子、蓄電池管理システム、及び五酸化三チタン系材料の製造方法
US20200024150A1 (en) * 2017-03-30 2020-01-23 Panasonic Intellectual Property Management Co., Ltd. Time-dependent element, physical property temporal change prediction device, and electric circuit breaker
JP2021008389A (ja) * 2019-07-02 2021-01-28 パナソニックIpマネジメント株式会社 五酸化三チタン系材料、蓄放熱デバイス、熱管理システム、及び五酸化三チタン系材料の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064575A1 (ja) * 2008-12-04 2010-06-10 国立大学法人東京大学 酸化チタン粒子、その製造方法、磁気メモリ及び電荷蓄積型メモリ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064575A1 (ja) * 2008-12-04 2010-06-10 国立大学法人東京大学 酸化チタン粒子、その製造方法、磁気メモリ及び電荷蓄積型メモリ

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GREY, I. E. ET AL.: "Phase Equilibria and Structural Studies on the Solid Solution MgTi2O5-Ti3O5", JOURNAL OF SOLID STATE CHEMISTRY, vol. 113, no. 1, 1994, pages 62 - 73, XP055602318, ISSN: 0022-4596 *
LEKANOVA, T. L. ET AL.: "Interactions in the Al2TiO5-Ti2O3 System", RUSSIAN JOURNAL OF APPLIED CHEMISTRY, vol. 78, no. 8, 2005, pages 1223 - 1228, XP019299750, ISSN: 1070-4272 *
MULLER-BUSCHBAUM, H. ET AL.: "Magnetische Eigenschaften von Ti3-xMxO5-Phasen (M=V3+, Cr3+, Nb4+)", ZEITSCHRIFT FÜER ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 545, 1987, pages 134 - 142, ISSN: 0044-2313 *
MULLER-BUSCHBAUM, H. ET AL.: "Weitere magnetische Untersuchungen an Ti3-xMxO5-Phasen (M=Al3+, Fe2+, Mn2+, Mg2+) mit einem Beitrag uber CrTi2O5", ZEITSCHRIFT FÜER ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 558, 1988, pages 28 - 34, ISSN: 0044-2313 *
ONODA, MASASHIGE ET AL.: "Phase transitions and the doping effect in Ti3O5", JOURNAL OF PHYSICS: CONDENSED MATTER, vol. 10, no. 31, 1998, pages 7003 - 7013, XP0002674382, ISSN: 0953-8984 *
STEINER, HERMANN-J. ET AL.: "Phase Relationships and Electrical Properties of Ti3O5, CrTi2O5 and the Pseudobrookite-type Systems MgxTi3-xO5 and LixTi3-xO5", JOURNAL OF MATERIALS CHEMISTRY, vol. 2, no. 12, 1992, pages 1249 - 1256, XP055602322, ISSN: 0959-9428 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200024150A1 (en) * 2017-03-30 2020-01-23 Panasonic Intellectual Property Management Co., Ltd. Time-dependent element, physical property temporal change prediction device, and electric circuit breaker
WO2019177062A1 (ja) * 2018-03-16 2019-09-19 パナソニックIpマネジメント株式会社 五酸化三チタン系材料、五酸化三チタン系材料の相転移温度の制御方法、吸熱方法、五酸化三チタン系材料の変換方法、センサ素子、蓄電池管理システム、及び五酸化三チタン系材料の製造方法
JP2021008389A (ja) * 2019-07-02 2021-01-28 パナソニックIpマネジメント株式会社 五酸化三チタン系材料、蓄放熱デバイス、熱管理システム、及び五酸化三チタン系材料の製造方法
JP7442117B2 (ja) 2019-07-02 2024-03-04 パナソニックIpマネジメント株式会社 五酸化三チタン系材料、蓄放熱デバイス、熱管理システム、及び五酸化三チタン系材料の製造方法

Also Published As

Publication number Publication date
JP7056843B2 (ja) 2022-04-19
JPWO2017164083A1 (ja) 2019-02-07
US20190161359A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
Majumder et al. A comparative study on the structural, optical and magnetic properties of Fe 3 O 4 and Fe 3 O 4@ SiO 2 core–shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors
JP6010181B2 (ja) 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体
JP5966064B1 (ja) 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP6676493B2 (ja) 鉄系酸化物磁性粒子粉の製造方法
Rohilla et al. Investigations on structural and magnetic properties of cobalt ferrite/silica nanocomposites prepared by the coprecipitation method
Saura-Múzquiz et al. Improved performance of SrFe 12 O 19 bulk magnets through bottom-up nanostructuring
Patange et al. Morphology-controlled synthesis of monodispersed graphitic carbon coated core/shell structured Ni/NiO nanoparticles with enhanced magnetoresistance
Ateia et al. The impact of Ni substitution on the structural and magnetic properties of Mg nano-ferrite
WO2017164083A1 (ja) 金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法
WO2016047559A1 (ja) 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
Hwang et al. Synthesis and magnetic properties of La3+-Co2+ substituted strontium ferrite particles using modified spray pyrolysis–calcination method
Nguyen et al. Crystal structure, optical and magnetic properties of PrFeO3 nanoparticles prepared by modified co-precipitation method
Arango et al. Mechanochemical synthesis and characterization of nanocrystalline Ni1-xCoxFe2O4 (0≤ x≤ 1) ferrites
Gencer et al. Production of LaCaMnO_3 Composite by Ball Milling
Moravvej-Farshi et al. Influence of different milling time on synthesized Ni–Zn ferrite properties by mechanical alloying method
Dippong et al. Effect of heat-treatment temperature and zinc addition on magnetostructural and surface properties of manganese nanoferrite prepared by an ecofriendly sol–gel synthesis
Morozov et al. Levitation-jet synthesis of In-O nanoparticles with room-temperature ferromagnetic properties
Tembhurne et al. Cation distribution of Ni2+ and Mg2+ ions improve structure and magnetic properties of spinel ferrites
El ttayef Abbas A recent study of the structural properties between of Mn-Zn-Fe2O4 and Mn-Zn-Fe2O4/TiO2 nanocomposite
Chandar et al. INFLUENCE OF ANNEALING TEMPERATURE ON STRUCTURAL AND MORPHOLOGICAL PROPERTIES OF MANGANESE OXIDE (Mn 2 O 3).
Shabani et al. Polyethylene glycol coated NiFe2O4 nanoparticles produced by solution plasma method for biomedical applications
Haq et al. Literature Review: Synthesis Methods of NiFe2O4 Nanoparticles for Aqueous Battery Applications
Lwin et al. Effect of Fe deficiency on structural and magnetic properties in low temperature synthesized Mg-Mn Ferrite
RU2566140C1 (ru) Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель
Bushkova et al. Sol-gel synthesis, structure and optical properties of nickel-manganese ferrites

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507289

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770125

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770125

Country of ref document: EP

Kind code of ref document: A1