WO2017163891A1 - Reflection characteristic measuring device and method of measuring reflection characteristic - Google Patents

Reflection characteristic measuring device and method of measuring reflection characteristic Download PDF

Info

Publication number
WO2017163891A1
WO2017163891A1 PCT/JP2017/009379 JP2017009379W WO2017163891A1 WO 2017163891 A1 WO2017163891 A1 WO 2017163891A1 JP 2017009379 W JP2017009379 W JP 2017009379W WO 2017163891 A1 WO2017163891 A1 WO 2017163891A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
opening
light
specimen
reflection characteristic
Prior art date
Application number
PCT/JP2017/009379
Other languages
French (fr)
Japanese (ja)
Inventor
久保 直樹
阿部 芳久
石田 耕一
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017163891A1 publication Critical patent/WO2017163891A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Definitions

  • the present invention relates to a reflection characteristic measuring apparatus and a method for measuring reflection characteristics.
  • a measurement unit that is called a mask plate or the like and is provided in a plate-like structure in which a sample opening is formed is applied to the sample.
  • the illumination light enters the internal space formed in the integrating sphere via the illumination opening formed in the integrating sphere, and the incident illumination light enters Are diffusely reflected on the diffuse reflection surface of the integrating sphere, and the diffusely reflected illumination light reaches the sample opening formed in the integrating sphere.
  • the reflected light generated by reflecting the illumination light reached by the sample at the sample opening is emitted from the internal space through the light receiving opening, and the emitted reflected light is received by the light receiving mechanism.
  • the light receiving mechanism outputs spectral data corresponding to the spectral intensity of the received reflected light. From the received light data, spectral reflectance, colorimetric values, and the like are derived.
  • the techniques described in Patent Documents 1 and 2 are examples.
  • a gap is formed between the outer surface of the sample and a substantially flat surface of the measurement unit, and external light enters from the gap, and the sample cannot be illuminated uniformly and measurement cannot be performed accurately.
  • This problem also occurs in a spectrocolorimeter that does not include an integrating sphere, and also occurs in reflection characteristic measuring devices other than the spectrocolorimeter.
  • the following invention is made to solve this problem.
  • the problem to be solved by the following invention is to enable accurate measurement of reflection characteristics even when the outer surface of a sample is a curved surface having a small radius of curvature.
  • the reflection characteristic measuring device includes an illumination mechanism and a light receiving mechanism.
  • the illumination mechanism includes a light source that emits illumination light and a sample opening in which a sample opening is formed.
  • the light receiving mechanism receives reflected light generated when the sample reflects illumination light at the sample opening, and outputs received light data corresponding to the intensity of the reflected light.
  • the sample opening has a flat surface and a concave surface.
  • the concave surface portion has a three-dimensional shape that matches the three-dimensional shape of the outer surface of the sample.
  • the sample opening is disposed in the concave surface portion.
  • the sample surface is less likely to be shaded, and there is no gap between the outer surface of the sample and the substantially flat surface of the measurement unit. In other words, the influence of external light is eliminated, and it is easy to irradiate the illumination light uniformly on the sample surface, so that the reflection characteristics can be measured accurately.
  • FIG. 1 is a block diagram showing the spectrocolorimeter of this embodiment.
  • the illumination mechanism 1004 includes a light emitting circuit 1014, a light source 1016, an integrating sphere 1018, and a sample opening 1020.
  • the light receiving mechanism 1006 includes a sample spectroscopic unit 1024.
  • the reference mechanism 1008 includes an optical fiber 1028 and a reference spectroscopic unit 1030.
  • the integrating sphere 1018 is a hollow body, and an internal space 1038 is formed in the integrating sphere 1018.
  • the internal space 1038 is defined by a spherical diffuse reflection surface 1042 included in the integrating sphere 1018.
  • the integrating sphere 1018 has an illumination opening 1046 and a light receiving opening 1048.
  • a sample opening 1050 is formed in the sample opening 1020.
  • the light emitting circuit 1014 supplies power to the light source 1016 according to control by the control unit 1010, and causes the light source 1016 to emit illumination light 1054.
  • the light source 1016 faces the illumination opening 1046, and emits illumination light 1054 when power is supplied from the light emitting circuit 1014.
  • the light source 1016 is preferably a Xe flash lamp.
  • the light source 1016 may be other than the Xe flash lamp.
  • the light source 1016 may be a light emitting diode or the like.
  • the diffuse reflection surface 1042 included in the integrating sphere 1018 is a surface coated with a white diffuse reflection paint having high diffusibility and high reflectance.
  • the white diffuse reflection paint includes white powder such as MgO and BaSO4.
  • the illumination opening 1046 is located at substantially the center between the lower end and the upper end of the integrating sphere 1018, communicates the internal space 1038 and the outside of the integrating sphere 1018, and serves as an incident port for the illumination light 1054.
  • the light receiving opening 1048 is in a direction inclined by 8 ° from the normal line 1062 of the sample surface from the lower end to the upper end of the integrating sphere 1018 when viewed from the sample opening 1050, and communicates the internal space 1038 with the outside of the integrating sphere 1018. , The output port of the reflected light 1056.
  • the sample opening 1020 is called a target mask, a mask plate or the like, and is attached to the lower end of the integrating sphere 1018.
  • the sample spectroscopic unit 1024 faces the light receiving opening 1048, is in a direction inclined by 8 ° from the normal 1062 of the sample surface when viewed from the sample opening 1050, receives the reflected light 1056, and splits the reflected light 1056. Light reception data corresponding to the intensity is transmitted to the control unit 1010.
  • the reflected light 1056 received by the sample spectroscopic unit 1024 is a component emitted in a direction inclined by 8 ° from the normal line 1062 of the sample surface.
  • optical fiber 1028 One end of the optical fiber 1028 is attached to the integrating sphere 1018, and the other end of the optical fiber 1028 is attached to the reference spectroscopic unit 1030.
  • the optical fiber 1028 guides the reference light 1058 that is a part of the illumination light 1054 propagating through the internal space 1038 from one end to the other end.
  • the reference spectroscopic unit 1030 receives the reference light 1058 and transmits received light data corresponding to the spectral intensity of the reference light 1058 to the control unit 1010.
  • the control unit 1010 is an embedded computer including a CPU and the like, and includes a storage unit, a measurement control unit, and an arithmetic processing unit.
  • the storage unit stores a control program that defines a control procedure to be performed when measurement is performed, and temporarily stores the light reception data received from the sample spectroscopic unit 1024 and the light reception data received from the reference spectroscopic unit 1030. To do.
  • the measurement control unit controls the light emitting circuit 1014, the sample spectroscopic unit 1024, and the reference spectroscopic unit 1030.
  • the arithmetic processing unit obtains the spectral reflectance of the sample 1072 from the received light data received from the sample spectroscopic unit 1024 and the received light data received from the reference spectroscopic unit 1030.
  • the emitted illumination light 1054 enters the internal space 1038 through the illumination opening 1046, and the incident illumination light 1054 is diffusely multiplexed and reflected by the diffuse reflection surface 1042.
  • the illumination light 1054 that is diffusely reflected and substantially uniform reaches the sample opening 1050.
  • the sample 1072 is uniformly diffused and illuminated from all directions by the substantially uniform illumination light 1054 in the sample opening 1050, and the substantially uniform illumination light 1054 is reflected to generate reflected light 1056.
  • the generated reflected light 1056 is emitted from the internal space 1038 via the light receiving opening 1048, and the emitted reflected light 1056 is received by the sample spectroscopic unit 1024. Therefore, in the spectrocolorimeter 1000, a d / 8 optical system that performs diffuse illumination and 8 ° light reception is configured.
  • FIGS. 2 and 3 are schematic views showing sample openings and samples provided in the spectrocolorimeter of this embodiment.
  • 2 and 3 are a perspective view and a cross-sectional view, respectively.
  • 4 and 5 are schematic views showing a conventional sample opening and a sample, respectively.
  • 4 and 5 are a perspective view and a cross-sectional view, respectively.
  • the sample opening 1020 shown in each of FIGS. 2 and 3 has a flat surface portion 1066 and a concave surface portion 1068.
  • the plane including the plane portion 1066 is preferably in contact with the spherical surface including the diffuse reflection surface 1042.
  • the concave surface portion 1068 is recessed in the direction from the flat surface portion 1066 toward the internal space 1038, and has a three-dimensional shape that matches the three-dimensional shape of the outer surface 1076 of the sample 1072.
  • the sample opening 1050 is exposed in the concave surface portion 1068.
  • the sample 1072 can be accommodated in the concave portion formed by the concave surface portion 1068, and the sample surface 1080 enters inside the spherical surface including the spherical diffuse reflection surface 1042.
  • the outer surface 1076 is a curved surface having a small curvature, but the sample surface 1080 is less likely to be shaded, and the sample surface 1080 is uniformly formed. Irradiation with the illumination light 1054 is facilitated, and the spectral reflectance can be accurately measured.
  • the flat surface portion 1088 is provided but the concave surface portion is not provided, and the sample surface 1080 has a spherical diffuse reflection surface 1042. It is outside the spherical surface that contains it.
  • the sample surface 1080 is likely to be shaded, and it is difficult to irradiate the illumination light 1054 uniformly on the sample surface 1080. Spectral reflectance cannot be measured.
  • a gap is formed between the sample surface 1080 and the flat portion 1088 of the measurement unit, and external light enters from the gap, and the sample cannot be illuminated uniformly and measurement cannot be performed accurately.
  • the sample 1072 has a round bar shape
  • the concave surface portion 1068 has a three-dimensional shape that matches the three-dimensional shape of the circumferential surface of the sample 1072. And has a round groove shape.
  • the three-dimensional shape of the concave surface portion 1068 is changed according to the three-dimensional shape of the outer surface of the sample 1072.
  • FIGS. 6, 7, 8, and 9 are schematic diagrams showing sample openings and samples. Each of FIGS. 6, 7, 8 and 9 is a perspective view.
  • the sample 1102 has a spherical shape
  • the concave surface portion 1104 has a three-dimensional shape that matches the three-dimensional shape of the spherical surface of the sample 1102.
  • the sample 1112 has a disk shape
  • the concave surface portion 1114 has a three-dimensional shape that matches the three-dimensional shape of the circumferential surface of the sample 1112.
  • the sample 1122 is a fountain pen, and the concave surface portion 1124 has a three-dimensional shape that matches the three-dimensional shape of the circumferential surface of the sample 1122.
  • the sample 1132 is a beverage can, and the concave surface 1134 has a three-dimensional shape that matches the three-dimensional shape of the circumferential surface of the sample 1132.
  • the sample opening is preferably detachable from the integrating sphere 1018.
  • FIG. 10 is a schematic diagram showing a sample opening.
  • FIG. 11 is a schematic diagram showing an integrating sphere and a sample opening.
  • FIG. 12 is a schematic diagram showing a sample opening.
  • FIG. 13 is a schematic diagram showing a sample opening.
  • FIG. 10 is a perspective view. Each of FIGS. 11, 12 and 13 is a cross-sectional view.
  • Positioning pin holes 1204 and 1206 are formed in the sample opening 1200 shown in each of FIGS.
  • the integrating sphere 1210 shown in each of FIGS. 11 and 12 includes positioning pins 1214 and 1216.
  • positioning pins 1214 and 1216 are inserted into the positioning pin holes 1204 and 1206, respectively, and the sample opening 1200 is integrated into the integrating sphere 1210. It is fixed to the lower end.
  • the positioning pins 1214 and 1216 are removed from the positioning pin holes 1204 and 1206, respectively, as shown in FIGS.
  • the sample opening is provided with, for example, a magnetic material, and is adsorbed and fixed by a magnetic force with the magnetic material provided at the lower end of the integrating sphere 1210.
  • the spectral reflectance can be measured for various samples by changing the sample opening according to the sample.
  • the sample openings 1020, 1100, 1110, 1120, 1130, and 1200 may be employed in a reflection characteristic measuring apparatus that measures reflection characteristics other than the spectrocolorimeter. For example, it may be employed in a multi-angle colorimeter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to measuring of a reflection characteristic, and the objective of the invention is to make shade less liable to form on a specimen surface, even if the outer surface of the specimen is a curved surface having a small curvature, and to eliminate the effects of external light, to facilitate uniform irradiation of illuminating light onto the specimen surface, and to make it possible to measure a reflection characteristic accurately, without a gap forming between the outer surface of the specimen and a substantially planar surface of a measuring portion. This reflection characteristic measuring device is provided with an illuminating mechanism and a light receiving mechanism. The illuminating mechanism is provided with a light source which emits illuminating light, and an opening portion for a specimen, in which a specimen opening is formed. The light receiving mechanism receives reflected light generated by the reflection of the illuminating light from the specimen in the specimen opening, and outputs received-light data corresponding to the intensity of the reflected light. The opening portion for the specimen includes a planar surface portion and a recessed surface portion. The recessed surface portion has a three-dimensional shape matching the three-dimensional shape of the outer surface of the specimen. The specimen opening is disposed in the recessed surface portion.

Description

反射特性測定装置および反射特性を測定する方法Reflection characteristic measuring apparatus and method for measuring reflection characteristic
 本発明は、反射特性測定装置および反射特性を測定する方法に関する。 The present invention relates to a reflection characteristic measuring apparatus and a method for measuring reflection characteristics.
 拡散照明方式が採用された分光測色計において測色が行われる場合は、マスク板等と呼ばれ試料用開口が形成された板状の構造物に備えられる測定部が試料に当てられる。また、板状の構造物が試料に当てられている状態において、照明光が、積分球に形成された照明用開口を経由して積分球に形成された内部空間に入射し、入射した照明光が、積分球が有する拡散反射面に拡散反射され、拡散反射された照明光が、積分球に形成された試料用開口に到達する。また、試料用開口において試料が到達した照明光を反射することにより生成される反射光が、受光用開口を経由して内部空間から出射し、出射した反射光が、受光機構に受光される。受光機構は、受光した反射光の分光強度に対応する分光データを出力する。受光データからは、分光反射率、測色値等が導出される。特許文献1および2の各々に記載された技術は、その一例である。 When color measurement is performed in a spectrocolorimeter that employs a diffuse illumination method, a measurement unit that is called a mask plate or the like and is provided in a plate-like structure in which a sample opening is formed is applied to the sample. In addition, in a state where the plate-like structure is applied to the sample, the illumination light enters the internal space formed in the integrating sphere via the illumination opening formed in the integrating sphere, and the incident illumination light enters Are diffusely reflected on the diffuse reflection surface of the integrating sphere, and the diffusely reflected illumination light reaches the sample opening formed in the integrating sphere. In addition, the reflected light generated by reflecting the illumination light reached by the sample at the sample opening is emitted from the internal space through the light receiving opening, and the emitted reflected light is received by the light receiving mechanism. The light receiving mechanism outputs spectral data corresponding to the spectral intensity of the received reflected light. From the received light data, spectral reflectance, colorimetric values, and the like are derived. The techniques described in Patent Documents 1 and 2 are examples.
特表2007-515640号公報Special table 2007-515640 特開昭58-92920号公報JP 58-92920 A
 しかし、従来の分光測色計においては、例えば特許文献1がそうであるように、測定部が略平面になっており、試料が有する外面が小さな曲率半径を有する曲面である場合に、外面にシェードが生じやすく、外面に均一に照明光を照射することが困難であり、正確に分光スペクトルを測定できない。 However, in the conventional spectrocolorimeter, for example, as in Patent Document 1, when the measurement portion is substantially flat and the outer surface of the sample is a curved surface having a small curvature radius, Shades tend to occur, and it is difficult to uniformly illuminate the outer surface with illumination light, and the spectrum cannot be measured accurately.
 また、試料が有する外面と測定部の略平面に隙間が生じ、その隙間から外光が入り、試料が均一に照明できずに正確に測定が行えない。 In addition, a gap is formed between the outer surface of the sample and a substantially flat surface of the measurement unit, and external light enters from the gap, and the sample cannot be illuminated uniformly and measurement cannot be performed accurately.
 この問題は、積分球を備えない分光測色計においても生じ、分光測色計以外の反射特性測定装置においても生じる。 This problem also occurs in a spectrocolorimeter that does not include an integrating sphere, and also occurs in reflection characteristic measuring devices other than the spectrocolorimeter.
 下記の発明は、この問題を解決するためになされる。下記の発明が解決しようとする課題は、試料が有する外面が小さな曲率半径を有する曲面である場合でも、正確に反射特性を測定できるようにすることである。 The following invention is made to solve this problem. The problem to be solved by the following invention is to enable accurate measurement of reflection characteristics even when the outer surface of a sample is a curved surface having a small radius of curvature.
 反射特性測定装置は、照明機構および受光機構を備える。 The reflection characteristic measuring device includes an illumination mechanism and a light receiving mechanism.
 照明機構は、照明光を発光する光源および試料用開口が形成された試料用開口部を備える。 The illumination mechanism includes a light source that emits illumination light and a sample opening in which a sample opening is formed.
 受光機構は、試料用開口において試料が照明光を反射することにより生成される反射光を受光し、反射光の強度に対応する受光データを出力する。 The light receiving mechanism receives reflected light generated when the sample reflects illumination light at the sample opening, and outputs received light data corresponding to the intensity of the reflected light.
 試料用開口部は、平面および凹面部を有する。凹面部は、試料が有する外面の立体形状に適合する立体形状を有する。試料用開口は、凹面部に配置されている。 The sample opening has a flat surface and a concave surface. The concave surface portion has a three-dimensional shape that matches the three-dimensional shape of the outer surface of the sample. The sample opening is disposed in the concave surface portion.
 反射特性の測定において、試料が有する外面が小さな曲率半径を有する曲面である場合でも、試料面にシェードが生じにくくし、また、試料が有する外面と測定部の略平面に隙間が生じることがなく、外光の影響を排除し、試料面に均一に照明光を照射することを容易にし、正確に反射特性を測定できるようにすることである。 In the measurement of reflection characteristics, even when the outer surface of the sample is a curved surface having a small radius of curvature, the sample surface is less likely to be shaded, and there is no gap between the outer surface of the sample and the substantially flat surface of the measurement unit. In other words, the influence of external light is eliminated, and it is easy to irradiate the illumination light uniformly on the sample surface, so that the reflection characteristics can be measured accurately.
分光測色計を示すブロック図である。It is a block diagram which shows a spectral colorimeter. 試料用開口部および試料を示す斜視図である。It is a perspective view which shows the opening part for samples, and a sample. 試料用開口部および試料を示す断面図である。It is sectional drawing which shows the opening part for samples, and a sample. 従来の試料用開口部および試料を示す斜視図である。It is a perspective view which shows the opening part for a conventional sample, and a sample. 従来の試料用開口部および試料を示す断面図である。It is sectional drawing which shows the conventional sample opening part and a sample. 試料用開口部および試料を示す斜視図である。It is a perspective view which shows the opening part for samples, and a sample. 試料用開口部および試料を示す斜視図である。It is a perspective view which shows the opening part for samples, and a sample. 試料用開口部および試料を示す斜視図である。It is a perspective view which shows the opening part for samples, and a sample. 試料用開口部および試料を示す斜視図である。It is a perspective view which shows the opening part for samples, and a sample. 試料用開口部を示す斜視図である。It is a perspective view which shows the opening part for samples. 積分球および試料用開口部を示す断面図である。It is sectional drawing which shows an integrating sphere and the opening part for samples. 積分球を示す断面図である。It is sectional drawing which shows an integrating sphere. 試料用開口部を示す断面図である。It is sectional drawing which shows the opening part for samples.
 図1は、この実施形態の分光測色計を示すブロック図である。 FIG. 1 is a block diagram showing the spectrocolorimeter of this embodiment.
 図1に示される分光測色計1000は、照明機構1004、受光機構1006、参照機構1008および制御部1010を備える。照明機構1004は、発光回路1014、光源1016、積分球1018および試料用開口部1020を備える。受光機構1006は、試料用分光部1024を備える。参照機構1008は、光ファイバ1028および参照用分光部1030を備える。 1 includes an illumination mechanism 1004, a light receiving mechanism 1006, a reference mechanism 1008, and a control unit 1010. The spectrocolorimeter 1000 shown in FIG. The illumination mechanism 1004 includes a light emitting circuit 1014, a light source 1016, an integrating sphere 1018, and a sample opening 1020. The light receiving mechanism 1006 includes a sample spectroscopic unit 1024. The reference mechanism 1008 includes an optical fiber 1028 and a reference spectroscopic unit 1030.
 積分球1018は中空体であり、積分球1018には内部空間1038が形成される。内部空間1038は、積分球1018が有する球面状の拡散反射面1042に定義される。積分球1018には、照明用開口1046および受光用開口1048が形成される。 The integrating sphere 1018 is a hollow body, and an internal space 1038 is formed in the integrating sphere 1018. The internal space 1038 is defined by a spherical diffuse reflection surface 1042 included in the integrating sphere 1018. The integrating sphere 1018 has an illumination opening 1046 and a light receiving opening 1048.
 試料用開口部1020には、試料用開口1050が形成される。 A sample opening 1050 is formed in the sample opening 1020.
 発光回路1014は、制御部1010による制御にしたがって光源1016に電力を供給し、光源1016に照明光1054を発光させる。 The light emitting circuit 1014 supplies power to the light source 1016 according to control by the control unit 1010, and causes the light source 1016 to emit illumination light 1054.
 光源1016は、照明用開口1046に対向し、発光回路1014から電力が供給された場合に照明光1054を発光する。光源1016は、望ましくはXeフラッシュランプである。光源1016がXeフラッシュランプ以外であってもよい。例えば、光源1016が発光ダイオード等であってもよい。 The light source 1016 faces the illumination opening 1046, and emits illumination light 1054 when power is supplied from the light emitting circuit 1014. The light source 1016 is preferably a Xe flash lamp. The light source 1016 may be other than the Xe flash lamp. For example, the light source 1016 may be a light emitting diode or the like.
 積分球1018が有する拡散反射面1042は、高い拡散性および高い反射率を有する白色拡散反射塗料が塗布された面である。白色拡散反射塗料は、MgO,BaSO4等の白色粉末を含む。 The diffuse reflection surface 1042 included in the integrating sphere 1018 is a surface coated with a white diffuse reflection paint having high diffusibility and high reflectance. The white diffuse reflection paint includes white powder such as MgO and BaSO4.
 照明用開口1046は、積分球1018の下端と上端とのほぼ中央にあり、内部空間1038と積分球1018の外部とを連絡し、照明光1054の入射ポートになる。 The illumination opening 1046 is located at substantially the center between the lower end and the upper end of the integrating sphere 1018, communicates the internal space 1038 and the outside of the integrating sphere 1018, and serves as an incident port for the illumination light 1054.
 受光用開口1048は、試料用開口1050から見て積分球1018の下端から上端へ向かう試料面の法線1062から8°傾斜した方向にあり、内部空間1038と積分球1018の外部とを連絡し、反射光1056の出射ポートになる。 The light receiving opening 1048 is in a direction inclined by 8 ° from the normal line 1062 of the sample surface from the lower end to the upper end of the integrating sphere 1018 when viewed from the sample opening 1050, and communicates the internal space 1038 with the outside of the integrating sphere 1018. , The output port of the reflected light 1056.
 試料用開口部1020は、ターゲットマスク、マスク板等と呼ばれ、積分球1018の下端に装着される。 The sample opening 1020 is called a target mask, a mask plate or the like, and is attached to the lower end of the integrating sphere 1018.
 試料用分光部1024は、受光用開口1048に対向し、試料用開口1050から見て、試料面の法線1062から8°傾斜した方向にあり、反射光1056を受光し、反射光1056の分光強度に対応する受光データを制御部1010へ送信する。試料用分光部1024が受光する反射光1056は、試料面の法線1062から8°傾斜した方向に出射する成分である。 The sample spectroscopic unit 1024 faces the light receiving opening 1048, is in a direction inclined by 8 ° from the normal 1062 of the sample surface when viewed from the sample opening 1050, receives the reflected light 1056, and splits the reflected light 1056. Light reception data corresponding to the intensity is transmitted to the control unit 1010. The reflected light 1056 received by the sample spectroscopic unit 1024 is a component emitted in a direction inclined by 8 ° from the normal line 1062 of the sample surface.
 光ファイバ1028の一端は積分球1018に装着され、光ファイバ1028の他端は参照用分光部1030に装着される。光ファイバ1028は、内部空間1038を伝搬する照明光1054の一部である参照光1058を一端から他端へ導く。 One end of the optical fiber 1028 is attached to the integrating sphere 1018, and the other end of the optical fiber 1028 is attached to the reference spectroscopic unit 1030. The optical fiber 1028 guides the reference light 1058 that is a part of the illumination light 1054 propagating through the internal space 1038 from one end to the other end.
 参照用分光部1030は、参照光1058を受光し、参照光1058の分光強度に対応する受光データを制御部1010へ送信する。 The reference spectroscopic unit 1030 receives the reference light 1058 and transmits received light data corresponding to the spectral intensity of the reference light 1058 to the control unit 1010.
 制御部1010は、CPU等を備える組み込みコンピューターであり、記憶部、測定制御部および演算処理部を備える。記憶部は、測定が行われる場合に行われる制御の手順を定義する制御プログラムを記憶し、試料用分光部1024から受信した受光データおよび参照用分光部1030から受信した受光データを一時的に記憶する。測定制御部は、発光回路1014、試料用分光部1024および参照用分光部1030を制御する。演算処理部は、試料用分光部1024から受信した受光データおよび参照用分光部1030から受信した受光データから試料1072の分光反射率を求める。 The control unit 1010 is an embedded computer including a CPU and the like, and includes a storage unit, a measurement control unit, and an arithmetic processing unit. The storage unit stores a control program that defines a control procedure to be performed when measurement is performed, and temporarily stores the light reception data received from the sample spectroscopic unit 1024 and the light reception data received from the reference spectroscopic unit 1030. To do. The measurement control unit controls the light emitting circuit 1014, the sample spectroscopic unit 1024, and the reference spectroscopic unit 1030. The arithmetic processing unit obtains the spectral reflectance of the sample 1072 from the received light data received from the sample spectroscopic unit 1024 and the received light data received from the reference spectroscopic unit 1030.
 光源1016が照明光1054を発光した場合は、発光された照明光1054が、照明用開口1046を経由して内部空間1038に入射し、入射した照明光1054が拡散反射面1042に拡散多重反射され、拡散多重反射されほぼ均一になった照明光1054が試料用開口1050に到達する。このため、試料1072は、試料用開口1050において、ほぼ均一になった照明光1054によりあらゆる方向から均等に拡散照明され、ほぼ均一になった照明光1054を反射することにより、反射光1056を生成する。生成された反射光1056は、受光用開口1048を経由して内部空間1038から出射し、出射した反射光1056は、試料用分光部1024に受光される。したがって、分光測色計1000においては、拡散照明および8°受光が行われるd/8光学系が構成されている。 When the light source 1016 emits the illumination light 1054, the emitted illumination light 1054 enters the internal space 1038 through the illumination opening 1046, and the incident illumination light 1054 is diffusely multiplexed and reflected by the diffuse reflection surface 1042. The illumination light 1054 that is diffusely reflected and substantially uniform reaches the sample opening 1050. For this reason, the sample 1072 is uniformly diffused and illuminated from all directions by the substantially uniform illumination light 1054 in the sample opening 1050, and the substantially uniform illumination light 1054 is reflected to generate reflected light 1056. To do. The generated reflected light 1056 is emitted from the internal space 1038 via the light receiving opening 1048, and the emitted reflected light 1056 is received by the sample spectroscopic unit 1024. Therefore, in the spectrocolorimeter 1000, a d / 8 optical system that performs diffuse illumination and 8 ° light reception is configured.
 図2および3の各々は、この実施形態の分光測色計が備える試料用開口部および試料を示す模式図である。図2および3は、それぞれ斜視図および断面図である。図4および5の各々は、従来の試料用開口部および試料を示す模式図である。図4および5は、それぞれ斜視図および断面図である。 FIGS. 2 and 3 are schematic views showing sample openings and samples provided in the spectrocolorimeter of this embodiment. 2 and 3 are a perspective view and a cross-sectional view, respectively. 4 and 5 are schematic views showing a conventional sample opening and a sample, respectively. 4 and 5 are a perspective view and a cross-sectional view, respectively.
 図2および3の各々に示される試料用開口部1020は、平面部1066および凹面部1068を有する。平面部1066を含む平面は、図1に示されるように、望ましくは拡散反射面1042を含む球面に接する。凹面部1068は、平面部1066から内部空間1038へ向かう方向に窪んでおり、試料1072が有する外面1076の立体形状に適合する立体形状を有する。凹面部1068には、試料用開口1050が露出する。 The sample opening 1020 shown in each of FIGS. 2 and 3 has a flat surface portion 1066 and a concave surface portion 1068. As shown in FIG. 1, the plane including the plane portion 1066 is preferably in contact with the spherical surface including the diffuse reflection surface 1042. The concave surface portion 1068 is recessed in the direction from the flat surface portion 1066 toward the internal space 1038, and has a three-dimensional shape that matches the three-dimensional shape of the outer surface 1076 of the sample 1072. The sample opening 1050 is exposed in the concave surface portion 1068.
 これにより、凹面部1068により形成される凹部に試料1072を収容でき、試料面1080が球面状の拡散反射面1042を含む球面より内側に入る。試料面1080が球面状の拡散反射面1042を含む球面より内側に入った場合は、外面1076が小さな曲率を有する曲面であるが、試料面1080にシェードが生じにくくなり、試料面1080に均一に照明光1054を照射することが容易になり、正確に分光反射率を測定できる。 Thereby, the sample 1072 can be accommodated in the concave portion formed by the concave surface portion 1068, and the sample surface 1080 enters inside the spherical surface including the spherical diffuse reflection surface 1042. When the sample surface 1080 enters the inside of the spherical surface including the spherical diffuse reflection surface 1042, the outer surface 1076 is a curved surface having a small curvature, but the sample surface 1080 is less likely to be shaded, and the sample surface 1080 is uniformly formed. Irradiation with the illumination light 1054 is facilitated, and the spectral reflectance can be accurately measured.
 これに対して、図4および5の各々に示される従来の試料用開口部1084においては、平面部1088が備えられるが凹面部が備えられず、試料面1080が球面状の拡散反射面1042を含む球面より外側にある。試料面1080が球面状の拡散反射面1042を含む球面より外側にある場合は、試料面1080にシェードが生じやすくなり、試料面1080に均一に照明光1054を照射することが困難になり、正確に分光反射率を測定できない。 On the other hand, in the conventional sample opening 1084 shown in each of FIGS. 4 and 5, the flat surface portion 1088 is provided but the concave surface portion is not provided, and the sample surface 1080 has a spherical diffuse reflection surface 1042. It is outside the spherical surface that contains it. When the sample surface 1080 is outside the spherical surface including the spherical diffuse reflection surface 1042, the sample surface 1080 is likely to be shaded, and it is difficult to irradiate the illumination light 1054 uniformly on the sample surface 1080. Spectral reflectance cannot be measured.
 また、試料面1080と測定部の平面部1088に隙間が生じ、その隙間から外光が入り、試料が均一に照明できずに正確に測定が行えない。 In addition, a gap is formed between the sample surface 1080 and the flat portion 1088 of the measurement unit, and external light enters from the gap, and the sample cannot be illuminated uniformly and measurement cannot be performed accurately.
 図2および3の各々に示される試料用開口部1020および試料1072においては、試料1072が、丸棒状であり、凹面部1068が、試料1072が有する円周面の立体形状に適合する立体形状を有し、丸溝形状を有する。しかし、凹面部1068が有する立体形状は、試料1072が有する外面の立体形状に応じて変更される。 In the sample opening 1020 and the sample 1072 shown in each of FIGS. 2 and 3, the sample 1072 has a round bar shape, and the concave surface portion 1068 has a three-dimensional shape that matches the three-dimensional shape of the circumferential surface of the sample 1072. And has a round groove shape. However, the three-dimensional shape of the concave surface portion 1068 is changed according to the three-dimensional shape of the outer surface of the sample 1072.
 図6,7,8および9の各々は、試料用開口部および試料を示す模式図である。図6,7,8および9の各々は、斜視図である。 6, 7, 8, and 9 are schematic diagrams showing sample openings and samples. Each of FIGS. 6, 7, 8 and 9 is a perspective view.
 図6に示される試料用開口部1100および試料1102においては、試料1102が球状であり、凹面部1104が、試料1102が有する球面の立体形状に適合する立体形状を有する。 In the sample opening 1100 and the sample 1102 shown in FIG. 6, the sample 1102 has a spherical shape, and the concave surface portion 1104 has a three-dimensional shape that matches the three-dimensional shape of the spherical surface of the sample 1102.
 図7に示される試料用開口部1110および試料1112においては、試料1112が円板状であり、凹面部1114が、試料1112が有する円周面の立体形状に適合する立体形状を有する。 In the sample opening 1110 and the sample 1112 shown in FIG. 7, the sample 1112 has a disk shape, and the concave surface portion 1114 has a three-dimensional shape that matches the three-dimensional shape of the circumferential surface of the sample 1112.
 図8に示される試料用開口部1120および試料1122においては、試料1122が万年筆であり、凹面部1124が試料1122が有する円周面の立体形状に適合する立体形状を有する。 In the sample opening 1120 and the sample 1122 shown in FIG. 8, the sample 1122 is a fountain pen, and the concave surface portion 1124 has a three-dimensional shape that matches the three-dimensional shape of the circumferential surface of the sample 1122.
 図9に示される試料用開口部1130および試料1132においては、試料1132が飲料缶であり、凹面部1134が試料1132が有する円周面の立体形状に適合する立体形状を有する。 In the sample opening 1130 and the sample 1132 shown in FIG. 9, the sample 1132 is a beverage can, and the concave surface 1134 has a three-dimensional shape that matches the three-dimensional shape of the circumferential surface of the sample 1132.
 試料用開口部は、望ましくは、積分球1018に対して着脱可能である。 The sample opening is preferably detachable from the integrating sphere 1018.
 図10は、試料用開口部を示す模式図である。図11は、積分球および試料用開口部を示す模式図である。図12は、試料用開口部を示す模式図である。図13は、試料用開口部を示す模式図である。図10は、斜視図である。図11、12および13の各々は、断面図である。 FIG. 10 is a schematic diagram showing a sample opening. FIG. 11 is a schematic diagram showing an integrating sphere and a sample opening. FIG. 12 is a schematic diagram showing a sample opening. FIG. 13 is a schematic diagram showing a sample opening. FIG. 10 is a perspective view. Each of FIGS. 11, 12 and 13 is a cross-sectional view.
 図10,11および13の各々に示される試料用開口部1200には、位置決め用ピン孔1204および1206が形成されている。図11および12の各々に示される積分球1210は、位置決めピン1214および1216を備える。試料用開口部1200が積分球1210に装着される場合は、図11に示されるように、位置決めピン1214および1216がそれぞれ位置決めピン孔1204および1206に挿入され、試料用開口部1200が積分球1210の下端に固定される。試料用開口部1200が積分球1210から取り外される場合は、図12および13に示されるように、位置決めピン1214および1216がそれぞれ位置決め用ピン孔1204および1206から抜去される。 Positioning pin holes 1204 and 1206 are formed in the sample opening 1200 shown in each of FIGS. The integrating sphere 1210 shown in each of FIGS. 11 and 12 includes positioning pins 1214 and 1216. When the sample opening 1200 is attached to the integrating sphere 1210, as shown in FIG. 11, positioning pins 1214 and 1216 are inserted into the positioning pin holes 1204 and 1206, respectively, and the sample opening 1200 is integrated into the integrating sphere 1210. It is fixed to the lower end. When the sample opening 1200 is removed from the integrating sphere 1210, the positioning pins 1214 and 1216 are removed from the positioning pin holes 1204 and 1206, respectively, as shown in FIGS.
 試料用開口部には例えば磁性体が備えられ、同じく積分球1210の下端に備えられた磁性体との磁力で吸着固定される。 The sample opening is provided with, for example, a magnetic material, and is adsorbed and fixed by a magnetic force with the magnetic material provided at the lower end of the integrating sphere 1210.
 試料用開口部が積分球に対して着脱可能である場合は、試料に応じて試料用開口部を変更することにより、様々な試料について分光反射率を測定できる。 When the sample opening is detachable from the integrating sphere, the spectral reflectance can be measured for various samples by changing the sample opening according to the sample.
 試料用開口部1020,1100,1110,1120,1130,1200が、分光測色計以外の反射特性を測定する反射特性測定装置において採用されてもよい。例えば、マルチアングル測色計において採用されてもよい。 The sample openings 1020, 1100, 1110, 1120, 1130, and 1200 may be employed in a reflection characteristic measuring apparatus that measures reflection characteristics other than the spectrocolorimeter. For example, it may be employed in a multi-angle colorimeter.
 1000 分光測色計
 1004 照明機構
 1006 受光機構
 1020,1100,1110,1120,1130,1200 試料用開口部
 1050 試料用開口
 1066 平面部
 1068,1104,1114,1124,1134 凹面部
1000 Spectral Colorimeter 1004 Illumination Mechanism 1006 Light Receiving Mechanism 1020, 1100, 1110, 1120, 1130, 1200 Sample Opening 1050 Sample Opening 1066 Flat Surface 1068, 1104, 1114, 1124, 1134 Concave Surface

Claims (5)

  1.  照明光を発光する光源および試料用開口が形成された試料用開口部を備え、前記試料用開口部が平面部および凹面部を有し、前記凹面部が試料の外面の立体形状に適合する立体形状を有し、前記試料用開口が前記凹面部に配置されている照明機構と、
     前記試料用開口において前記試料が前記照明光を反射することにより生成される反射光を受光し、前記反射光の強度に対応する受光データを出力する受光機構と、
    を備える反射特性測定装置。
    A light source that emits illumination light and a sample opening having a sample opening formed therein, the sample opening having a flat surface portion and a concave surface portion, and the concave surface portion conforming to the three-dimensional shape of the outer surface of the sample An illumination mechanism having a shape, wherein the sample opening is disposed in the concave surface portion;
    A light receiving mechanism that receives reflected light generated by the sample reflecting the illumination light at the sample opening, and outputs received light data corresponding to the intensity of the reflected light;
    A reflection characteristic measuring apparatus comprising:
  2.  前記照明機構は、
     照明用開口および受光用開口が形成され、内部空間が形成され、前記内部空間を定義する球面状の拡散反射面を有し、前記照明光が前記照明用開口を経由して前記内部空間に入射し前記拡散反射面に拡散多重反射され前記試料用開口に到達するように配置され、前記反射光が前記受光用開口を経由して前記内部空間から出射し前記受光機構に受光されるように配置される積分球
    をさらに備え、
     前記平面部は、前記拡散反射面を含む球面に接し、
     前記凹面部は、前記平面部から前記内部空間へ向かう方向に窪んでいる
    請求項1の反射特性測定装置。
    The illumination mechanism is
    An illumination opening and a light receiving opening are formed, an internal space is formed, a spherical diffuse reflection surface defining the internal space is provided, and the illumination light is incident on the internal space through the illumination opening It is arranged so that it is diffusely reflected by the diffuse reflection surface and reaches the sample opening, and the reflected light is emitted from the internal space via the light receiving opening and received by the light receiving mechanism. Further comprising an integrating sphere,
    The plane portion is in contact with a spherical surface including the diffuse reflection surface;
    The reflection characteristic measuring apparatus according to claim 1, wherein the concave portion is recessed in a direction from the flat portion toward the internal space.
  3.  前記試料用開口部は、前記積分球に対して着脱可能である
    請求項2の反射特性測定装置。
    The reflection characteristic measuring apparatus according to claim 2, wherein the sample opening is detachable from the integrating sphere.
  4.  前記凹面部は、溝形状を有する
    請求項1から3までのいずれかの反射特性測定装置。
    4. The reflection characteristic measuring apparatus according to claim 1, wherein the concave surface portion has a groove shape.
  5.  請求項1から4までのいずれかの反射特性測定装置を準備する工程と、
     前記試料を準備する工程と、
     前記反射特性測定装置を用いて前記試料の反射特性を測定する工程と、
    を備える反射特性を測定する方法。
    Preparing a reflection characteristic measuring apparatus according to any one of claims 1 to 4,
    Preparing the sample;
    Measuring the reflection characteristics of the sample using the reflection characteristic measuring device;
    A method for measuring reflection characteristics comprising:
PCT/JP2017/009379 2016-03-24 2017-03-09 Reflection characteristic measuring device and method of measuring reflection characteristic WO2017163891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-059384 2016-03-24
JP2016059384 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017163891A1 true WO2017163891A1 (en) 2017-09-28

Family

ID=59901221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009379 WO2017163891A1 (en) 2016-03-24 2017-03-09 Reflection characteristic measuring device and method of measuring reflection characteristic

Country Status (1)

Country Link
WO (1) WO2017163891A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892920A (en) * 1981-11-30 1983-06-02 Karuniyuu Kogaku Kogyo Kk Measuring device for diamond color
JPH1194729A (en) * 1997-09-17 1999-04-09 Shimadzu Corp Spectrophotometer
JP2007086031A (en) * 2005-09-26 2007-04-05 Hamamatsu Photonics Kk Photodetection device and implement for sample holder
JP2015057591A (en) * 2013-08-09 2015-03-26 株式会社島津製作所 Analytic method and analyzer for concentration of suspended matter in suspension liquid
JP2016033467A (en) * 2014-07-31 2016-03-10 株式会社島津製作所 Analysis method and device of lipid amount and/or moisture content in high viscous solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892920A (en) * 1981-11-30 1983-06-02 Karuniyuu Kogaku Kogyo Kk Measuring device for diamond color
JPH1194729A (en) * 1997-09-17 1999-04-09 Shimadzu Corp Spectrophotometer
JP2007086031A (en) * 2005-09-26 2007-04-05 Hamamatsu Photonics Kk Photodetection device and implement for sample holder
JP2015057591A (en) * 2013-08-09 2015-03-26 株式会社島津製作所 Analytic method and analyzer for concentration of suspended matter in suspension liquid
JP2016033467A (en) * 2014-07-31 2016-03-10 株式会社島津製作所 Analysis method and device of lipid amount and/or moisture content in high viscous solution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUJI KOYANAGI: "Sekibunkyu, Hikari Gijutsu Yogo Jiten", OPTRONICS-SHA, 21 November 2005 (2005-11-21), pages 185 - 186 *

Similar Documents

Publication Publication Date Title
US8072607B2 (en) Measuring device for measuring optical properties of transparent substrates
EP2653854B1 (en) Optical measuring system and calibration method
US8390803B2 (en) Calibration device and optical characteristic measuring system using the same
WO2014130857A1 (en) A device for evaluation of fluids using electromagnetic energy
JP6185864B2 (en) Integrating sphere
US10082462B2 (en) Optical element, transmission probe, sample container, optical device, and immersion transmission measurement method
US10180352B2 (en) Measuring light source, and measuring system for detecting a reflection spectrum
CN202101836U (en) Light intensity, visual angle and scattering distribution function measurement system based on imaging ball
CN106415243B (en) Surface property measuring apparatus
JP2015045618A (en) Colorimeter
WO2017163891A1 (en) Reflection characteristic measuring device and method of measuring reflection characteristic
JPH02114151A (en) Refractometer having aperture distribution depending upon refractive index
WO2011142123A1 (en) Light sources, illumination optical system and reflection property measurement apparatus
JP6588083B2 (en) Aiming system and method
WO2014162548A1 (en) Integrating sphere
JP6924561B2 (en) Reference white plate unit for near-infrared interaction spectroscopy measurement and reference spectral intensity acquisition method for near-infrared interaction spectroscopy
WO2005106410A1 (en) Point light source and optical device comprising same
JP2015224881A (en) Light radiation mechanism, lighting mechanism and reflection characteristic measurement device
US20110109908A1 (en) Detection apparatus
TWM432031U (en) Integrating sphere
Kelley et al. Reflection measurements and uncertainties using sampling spheres on flat, convex, and concave displays
JP2015215296A (en) Surface characteristic measuring device
JP2014020927A (en) Device for measuring transmittance of light guiding fiber and method for measuring transmittance of light guiding fiber
WO2016093130A1 (en) Illumination device and reflection characteristics measurement device
JP2016218000A (en) Set of integrating sphere and mask, colorimetry device and mask

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769936

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP