WO2014162548A1 - Integrating sphere - Google Patents

Integrating sphere Download PDF

Info

Publication number
WO2014162548A1
WO2014162548A1 PCT/JP2013/060246 JP2013060246W WO2014162548A1 WO 2014162548 A1 WO2014162548 A1 WO 2014162548A1 JP 2013060246 W JP2013060246 W JP 2013060246W WO 2014162548 A1 WO2014162548 A1 WO 2014162548A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
light
integrating sphere
incident
light receiving
Prior art date
Application number
PCT/JP2013/060246
Other languages
French (fr)
Japanese (ja)
Inventor
望月 学
昭一 藤森
Original Assignee
パイオニア株式会社
株式会社パイオニアFa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 株式会社パイオニアFa filed Critical パイオニア株式会社
Priority to JP2015509799A priority Critical patent/JPWO2014162548A1/en
Priority to PCT/JP2013/060246 priority patent/WO2014162548A1/en
Publication of WO2014162548A1 publication Critical patent/WO2014162548A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0254Spectrometers, other than colorimeters, making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J2001/0481Preset integrating sphere or cavity

Definitions

  • the present invention relates to an integrating sphere used for measuring the characteristics of light.
  • Patent Document 1 discloses a colorimeter technique.
  • Patent Document 1 does not describe a configuration in which a light receiving unit that measures the amount of light and a wavelength measuring unit that measures the wavelength are provided.
  • a through hole is provided in the integrating sphere for each of the light receiving unit that measures the normal amount of light and the wavelength measuring unit that measures the wavelength. It is usual to provide it.
  • light that has entered the through hole for the light receiving unit that measures the amount of light and the wavelength measuring unit that measures the wavelength is not incident on the light receiving unit or the wavelength measuring unit due to reflection or the like, but is emitted again from the through hole. There is a possibility that proper measurement cannot be performed.
  • the present invention has been made in view of the above problems, and an example of the purpose thereof is that light incident on a through hole for a light receiving unit for measuring the amount of light and a wavelength measuring unit for measuring the wavelength is received by reflection or the like. It is to provide an integrating sphere that is not incident on the part or the wavelength measuring part and is not emitted again from the through hole.
  • the integrating sphere according to the first aspect of the present invention includes an integrating sphere main body having a spherical space therein, a first through hole for guiding measurement target light into the spherical space, and a light receiving unit for receiving the light in the spherical space.
  • a second through hole for guiding light to the light source, and a wavelength measuring unit for measuring the wavelength of light in addition to the light receiving unit is disposed in the second through hole.
  • the integrating sphere according to the second aspect of the present invention includes an integrating sphere main body having a spherical space therein, a first through hole for guiding measurement target light into the spherical space, and a light receiving unit for receiving the light in the spherical space.
  • a second through hole for guiding light to the side, and the side surface of the second through hole is formed so as to regularly reflect the incident light. It is formed in a truncated cone shape larger than the surface on the main body side.
  • FIG. 1 is an explanatory diagram of a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining the function of the integrating sphere 2.
  • FIG. 3 is an explanatory diagram of a comparative example.
  • the integrating sphere 2 has an integrating sphere body 3, a first through hole portion 31, and a second through hole portion 33.
  • the integrating sphere main body 3 has a spherical hollow space.
  • the integrating sphere body 3 is formed so that the integrating sphere inner surface 3a, which is the surface on the hollow space side, diffusely reflects (diffuse reflection).
  • the hollow space formed by the integrating sphere inner surface 3a of the integrating sphere main body 3 needs to be spherical, but the external shape does not necessarily have to be a sphere.
  • a first through hole portion 31 and a second through hole portion 33 are connected to the integrating sphere body 3.
  • a cylindrical hollow space is formed in the first through hole portion 31.
  • a first through hole 31 c is formed that penetrates from the outside of the first through hole portion 31 to the hollow space of the integrating sphere main body 3.
  • the integrating sphere 2 receives the light to be measured through the first through hole 31c of the first through hole 31.
  • this 1st through-hole part 31 is a cylindrical shape in this embodiment, it may be prismatic shape (triangular prism, quadrangular prism, pentagonal prism, or more prismatic shapes).
  • a cylindrical outer surface formed by the first through holes 31c is referred to as a first outer surface 31b.
  • the cylindrical inner surface (integral sphere body 3 side) formed by the first through hole 31c is referred to as a first inner surface 31a.
  • a cylindrical hollow space is formed in the second through-hole portion 33.
  • a second through hole 33 c is formed that penetrates from the outside of the second through hole portion 33 to the hollow space of the integrating sphere main body 3.
  • the integrating sphere 2 outputs the light to be measured through the second through hole 33c of the second through hole 33.
  • the light passing through the second through-hole portion 33 is obtained after the light passing through the first through-hole portion 31 is diffusely reflected at the integrating sphere inner surface 3a at least once. The reason for this will be described later in detail.
  • the second through-hole portion 33 has a cylindrical shape in this embodiment, but may have a prismatic shape (triangular prism, quadrangular prism, pentagonal prism, or more prismatic shapes).
  • a cylindrical outer surface formed by the second through hole 33c is referred to as a second outer surface 33b.
  • a cylindrical inner surface (integral sphere body 3 side) formed by the second through hole 33c is referred to as a second inner surface 33a.
  • the light receiving unit 7 and the wavelength measuring unit 9 are disposed in the second through hole 33c.
  • the light receiving unit 7 is used to measure the amount of light after being diffusely reflected by the integrating sphere body 3.
  • a photodetector may be used for the light receiving unit 7.
  • a CCD or the like may be used.
  • the wavelength measuring unit 9 is used to measure the wavelength of light after being diffusely reflected by the integrating sphere body 3.
  • the wavelength measuring unit 9 allows light to enter from the front end surface of the optical fiber, guide the light through the optical fiber, guide it to the wavelength measuring device, and actually measure the wavelength with the wavelength measuring device. good.
  • a light guide member may be further used at the tip of the optical fiber so that the light guide member first guides the light to the optical fiber and then guides it to the wavelength measuring device.
  • a member that reflects the inner surface of the cylindrical member may be used, or a member (for example, glass) that reflects the extended inner surface may be used.
  • the light guide member may be formed of a member that reflects the surface of a cylindrical or prismatic side surface.
  • the incident surface 9a of the wavelength measuring unit 9 is formed so as to protrude into the second through hole 33c.
  • the wavelength measuring unit 9 passes through the second through hole 33.
  • the angle between the light guide direction of the wavelength measuring unit 9 and the direction of the central axis of the second through hole 33c on the light receiving unit 7 side is ⁇ 1
  • the configuration is such that ⁇ 1 ⁇ 90 °.
  • the wavelength measuring unit 9 can more smoothly guide light to a part to be actually measured such as a spectroscope.
  • the integrating sphere 2 outputs diffused light (emitted from the second through hole 33c) by repeating diffuse reflection of the incident light (incident from the first through hole 31c). That is, the integrating sphere 2 can measure light in which the polarization, light distribution, wavelength, and the like of light in the direction of the measurement object 101 (for example, LED) are averaged.
  • equation is materialized about the light quantity output with respect to the light quantity input at this time.
  • Output port area (second outer surface 33b of second through hole 33c) / total surface area inside integrating sphere ( (in the case of FIG. 1) 3a + 31a + 33a)
  • the tip of the probe 11 contacts the electrode of the measurement object 101 (for example, LED).
  • the probe 11 is used for supplying power to the measurement object 101 to emit light.
  • the probe 11 is not essential when the measurement object 101 does not require the probe 11 or the like.
  • the measurement object 101 may be separated from the first through hole 31c as shown in FIG. Furthermore, the measurement object 101 may be disposed inside the first through hole 31c.
  • FIG. 3A is a side cross-sectional view that is the same as FIG.
  • FIG. 3B is a cross-sectional view taken along the line BB in FIG.
  • a second through hole 33c for the light receiving unit 7 is formed as shown in FIG.
  • a third through hole 35c for the wavelength measuring unit 9 is formed.
  • the second through hole 33c and the third through hole 35c are formed at different positions, the light incident on the light receiving unit 7 and the light incident on the wavelength measuring unit 9 have different characteristics. There is a possibility that.
  • the second through hole 33c and the third through hole 35c are provided separately, the light incident on the integrating sphere 2 is dispersed, so that the light incident on the light receiving unit 7 and the wavelength measuring unit 9 The amount will decrease.
  • the light receiving unit 7 and the wavelength measuring unit 9 are formed in the same second through hole 33c, the light receiving unit 7 and the wavelength measuring unit 9 have the same characteristics. Can be measured.
  • the light receiving unit 7 and the wavelength measuring unit 9 are formed in the same second through hole 33c, it is possible to reduce the decrease in the light amount.
  • the inner peripheral surfaces (side surfaces) of the first through hole 31c and the second through hole 33c are formed so as to be diffusely reflected.
  • FIG. 4 is an explanatory diagram of the second embodiment.
  • the light reflected by the incident surface 9a of the wavelength measuring unit 9 returns to the inside of the integrating sphere body 3 from the second inner surface 33a of the second through hole 33c again without entering the light receiving unit 7.
  • the incident surface 9a is formed so as to contact the second through hole 33c.
  • ⁇ 2 90 °.
  • the configuration is such that ⁇ 1 ⁇ 90 °.
  • the shape of the second through hole 33c is a shape such as a truncated cone, ⁇ 2 may not be 90 °.
  • the wavelength measuring unit 9 may penetrate into the second through hole 33c.
  • FIG. 5 is an explanatory diagram of the third embodiment.
  • the inner peripheral surface (side surface) of the second through hole 33c is formed so as to be diffusely reflected.
  • a regular reflection material 33d for regular reflection is formed on the inner peripheral surface (side surface) of the second through hole. As a result, the light once incident on the second through hole 33c can be more reliably guided to the light receiving unit 7.
  • FIG. 6 is an explanatory diagram of the fourth embodiment.
  • the shape of the second through hole 33c is a simple columnar shape.
  • the shape of the second through hole 33c is a truncated cone shape as shown in FIG. It is said. More specifically, the surface of the truncated cone on the integrating sphere main body 3 side is formed to have a smaller area than the surface of the truncated cone on the light receiving unit 7 side. Since the fourth embodiment has such a truncated cone shape, the light once incident on the second through hole 33 c can be more reliably guided to the light receiving unit 7.
  • the inner peripheral surface of the second through hole 33c is formed so as to be regularly reflected.
  • the integrating sphere 2 of the present embodiment includes an integrating sphere main body 3 having a spherical space therein, a first through hole 31c for guiding measurement target light into the spherical space, and a light receiving unit 7 for receiving the light in the spherical space. And a second through hole 33c for guiding light to the second through hole 33c.
  • a wavelength measuring unit 9 for measuring the wavelength of light is disposed in the second through hole 33c. Since it has such a configuration, light that has entered the through hole for the light receiving unit for measuring the light amount and the wavelength measuring unit for measuring the wavelength does not enter the light receiving unit or the wavelength measuring unit due to reflection or the like. There is an effect that it is possible to provide an integrating sphere that is not emitted again from the hole.
  • the second through-hole 33c has a cylindrical shape
  • the wavelength measuring unit 9 has an incident surface 9a on which the light of the measurement object 101 is incident, and the incident surface 9a is second from the side surface of the second through-hole 33c. It arrange
  • the normal direction of the incident surface 9a is formed to have a predetermined angle with respect to the central axis of the second through hole 33c. Since it has such a structure, it becomes possible to reduce that the light incident on the incident surface 9a is reflected and emitted again from the second through hole 33c.
  • the light guide direction of the light incident on the wavelength measuring unit 9 from the incident surface 9a is formed to have a predetermined angle with respect to the central axis of the second through hole 33c. Since it has such a structure, it becomes possible to guide the light of a measuring object more smoothly.
  • the normal direction of the incident surface 9a is formed at right angles to the central axis of the second through hole 33c. Since it has such a configuration, it is also possible to provide the wavelength measuring unit 9 without hindering the light guide in the second through hole 33c.
  • the side surface of the second through hole 33c is formed so as to regularly reflect incident light. With such a configuration, it is possible to more reliably guide the light once incident on the second through hole 33c to the light receiving unit 7.
  • the second through hole 33c is formed in a truncated cone shape having a surface on the light receiving unit side larger than a surface on the integrating sphere main body side. Since it has such a structure, it becomes possible to guide the light once incident on the second through hole 33c to the light receiving unit 7 more reliably.
  • An integrating sphere body 3 having a spherical space therein, a first through hole 31c for guiding the measurement target light into the spherical space, and a second through for guiding the light in the spherical space to the light receiving unit 7
  • the side surface of the second through hole 33c is formed so as to regularly reflect incident light
  • the second through hole 33c has a surface on the light receiving unit 7 side on the surface of the integrating sphere body 3 side. It is formed in a larger truncated cone shape. Since it has such a configuration, light that has entered the through hole for the light receiving unit for measuring the light amount and the wavelength measuring unit for measuring the wavelength does not enter the light receiving unit or the wavelength measuring unit due to reflection or the like. There is an effect that it is possible to provide an integrating sphere that is not emitted again from the hole.
  • the integrating sphere inner surface 3a of the integrating sphere 2 is described as diffusely reflecting. However, the integrating sphere inner surface 3a may be regularly reflected.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is an integrating sphere in which light incident on a through-hole for a light receiving part for measuring a light quantity and a wavelength measuring part for measuring a wavelength is prevented from being emitted again from the through-hole without being incident on the light receiving part or the wavelength measuring part due to reflection or the like. An integrating sphere (2) comprises an integrating sphere body (3) having a spherical space therein, a first through-hole (31c) for guiding light to be measured into the spherical space, and a second through-hole (33c) for guiding the light in the spherical space to a light receiving part (7), and in the second through-hole (33c), a wavelength measuring part (9) for measuring the wavelength of the light is provided in addition to the light receiving part (7).

Description

積分球Integrating sphere
 本発明は、光の特性を測定するために用いられる積分球に関する。 The present invention relates to an integrating sphere used for measuring the characteristics of light.
 特許文献1には、測色計の技術が開示されている。 Patent Document 1 discloses a colorimeter technique.
特開昭64-86028号公報Japanese Unexamined Patent Publication No. 64-86028
 しかしながら、特許文献1に記載の装置においては、光量を測定する受光部と波長を測定する波長測定部とを設ける構成について記載されていない。
 そして、光量を測定する受光部と波長を測定する波長測定部を設ける場合には、通常光量を測定する受光部の為と波長を測定する波長測定部とのそれぞれに、積分球に貫通穴を設けることが通常である。
 また、光量を測定する受光部と波長を測定する波長測定部のための貫通穴に入射した光が、反射等によって受光部又は波長測定部に入射せずに、貫通穴から再度出射されてしまい適切な測定ができないおそれもある。
However, the apparatus described in Patent Document 1 does not describe a configuration in which a light receiving unit that measures the amount of light and a wavelength measuring unit that measures the wavelength are provided.
When providing a light receiving unit that measures the amount of light and a wavelength measuring unit that measures the wavelength, a through hole is provided in the integrating sphere for each of the light receiving unit that measures the normal amount of light and the wavelength measuring unit that measures the wavelength. It is usual to provide it.
In addition, light that has entered the through hole for the light receiving unit that measures the amount of light and the wavelength measuring unit that measures the wavelength is not incident on the light receiving unit or the wavelength measuring unit due to reflection or the like, but is emitted again from the through hole. There is a possibility that proper measurement cannot be performed.
 本発明は、上記課題に鑑みてなされたものであり、その目的の一例は、光量を測定する受光部と波長を測定する波長測定部のための貫通穴に入射した光が、反射等によって受光部又は波長測定部に入射せずに、貫通穴から再度出射されない積分球を提供することである。 The present invention has been made in view of the above problems, and an example of the purpose thereof is that light incident on a through hole for a light receiving unit for measuring the amount of light and a wavelength measuring unit for measuring the wavelength is received by reflection or the like. It is to provide an integrating sphere that is not incident on the part or the wavelength measuring part and is not emitted again from the through hole.
 本発明の第1の形態の積分球は、内部に球状空間を有する積分球本体と、測定対象光を球状空間内に導光するための第1貫通穴と、球状空間内の光を受光部へ導光するための第2貫通穴と、を有し、第2貫通穴には、受光部に加えて光の波長を測定するための波長測定部が配設される。 The integrating sphere according to the first aspect of the present invention includes an integrating sphere main body having a spherical space therein, a first through hole for guiding measurement target light into the spherical space, and a light receiving unit for receiving the light in the spherical space. A second through hole for guiding light to the light source, and a wavelength measuring unit for measuring the wavelength of light in addition to the light receiving unit is disposed in the second through hole.
 本発明の第2の形態の積分球は、内部に球状空間を有する積分球本体と、測定対象光を球状空間内に導光するための第1貫通穴と、球状空間内の光を受光部へ導光するための第2貫通穴と、を有し、第2貫通穴の側面は、入射した光を正反射するように形成され、第2貫通穴は、受光部側の面が積分球本体側の面よりも大きい円錐台形状に形成される。 The integrating sphere according to the second aspect of the present invention includes an integrating sphere main body having a spherical space therein, a first through hole for guiding measurement target light into the spherical space, and a light receiving unit for receiving the light in the spherical space. A second through hole for guiding light to the side, and the side surface of the second through hole is formed so as to regularly reflect the incident light. It is formed in a truncated cone shape larger than the surface on the main body side.
本発明の第1の実施形態の説明図である。It is explanatory drawing of the 1st Embodiment of this invention. 積分球の機能を説明する説明図である。It is explanatory drawing explaining the function of an integrating sphere. 比較例の説明図である。It is explanatory drawing of a comparative example. 第2の実施形態の説明図である。It is explanatory drawing of 2nd Embodiment. 第3の実施形態の説明図である。It is explanatory drawing of 3rd Embodiment. 第4の実施形態の説明図である。It is explanatory drawing of 4th Embodiment.
<第1の実施形態>
 図1は、本発明の第1の実施形態の説明図である。
 図2は、積分球2の機能を説明する説明図である。
 図3は、比較例の説明図である。
<First Embodiment>
FIG. 1 is an explanatory diagram of a first embodiment of the present invention.
FIG. 2 is an explanatory diagram for explaining the function of the integrating sphere 2.
FIG. 3 is an explanatory diagram of a comparative example.
 以下、本発明の第1の実施形態を、図1を用いて詳細に説明する。
 積分球2は、積分球本体3、第1貫通穴部31及び第2貫通穴部33を有している。
Hereinafter, the first embodiment of the present invention will be described in detail with reference to FIG.
The integrating sphere 2 has an integrating sphere body 3, a first through hole portion 31, and a second through hole portion 33.
 積分球本体3は、内部空間が球形状の中空空間を有している。
 この積分球本体3は、この中空空間側の表面である積分球内部表面3aが拡散反射(乱反射)をするように形成されている。
 なお、積分球本体3の積分球内部表面3aが形成する中空空間は球形状である必要があるが、外部形状は球である必要は必ずしも無い。
 この積分球本体3には、第1貫通穴部31及び第2貫通穴部33が接続されている。
The integrating sphere main body 3 has a spherical hollow space.
The integrating sphere body 3 is formed so that the integrating sphere inner surface 3a, which is the surface on the hollow space side, diffusely reflects (diffuse reflection).
The hollow space formed by the integrating sphere inner surface 3a of the integrating sphere main body 3 needs to be spherical, but the external shape does not necessarily have to be a sphere.
A first through hole portion 31 and a second through hole portion 33 are connected to the integrating sphere body 3.
 第1貫通穴部31には、円柱状の中空空間が形成されている。この中空空間を形成するために、第1貫通穴部31の外部から積分球本体3の中空空間まで貫通する第1貫通穴31cが形成されている。
 この第1貫通穴部31の第1貫通穴31cを通過して、積分球2は測定対象の光の入力を受ける。
 なお、この第1貫通穴部31は、この実施形態では円柱形状であるが、角柱形状(3角柱、4角柱、5角柱、及びそれ以上の角柱形状)であっても良い。
 さらになお、第1貫通穴31cにより形成される円柱形状の外側の面を第1外部面31bという。また、第1貫通穴31cにより形成される円柱形状の内側(積分球本体3側)の面を第1内部面31aという。
A cylindrical hollow space is formed in the first through hole portion 31. In order to form this hollow space, a first through hole 31 c is formed that penetrates from the outside of the first through hole portion 31 to the hollow space of the integrating sphere main body 3.
The integrating sphere 2 receives the light to be measured through the first through hole 31c of the first through hole 31.
In addition, although this 1st through-hole part 31 is a cylindrical shape in this embodiment, it may be prismatic shape (triangular prism, quadrangular prism, pentagonal prism, or more prismatic shapes).
Furthermore, a cylindrical outer surface formed by the first through holes 31c is referred to as a first outer surface 31b. The cylindrical inner surface (integral sphere body 3 side) formed by the first through hole 31c is referred to as a first inner surface 31a.
 第2貫通穴部33には、円柱状の中空空間が形成されている。この中空空間を形成するために、第2貫通穴部33の外部から積分球本体3の中空空間まで貫通する第2貫通穴33cが形成されている。
 この第2貫通穴部33の第2貫通穴33cを通過して、積分球2は測定対象の光を出力する。
 ここで、第2貫通穴部33を通過する光は、第1貫通穴部31を通過した光が少なくとも1回は積分球内部表面3aで拡散反射をした後のものである。この理由については、詳細に後述する。
 なお、この第2貫通穴部33は、この実施形態では円柱形状であるが、角柱形状(3角柱、4角柱、5角柱、及びそれ以上の角柱形状)であっても良い。
 さらになお、第2貫通穴33cにより形成される円柱形状の外側の面を第2外部面33bという。また、第2貫通穴33cにより形成される円柱形状の内側(積分球本体3側)の面を第2内部面33aという。
A cylindrical hollow space is formed in the second through-hole portion 33. In order to form this hollow space, a second through hole 33 c is formed that penetrates from the outside of the second through hole portion 33 to the hollow space of the integrating sphere main body 3.
The integrating sphere 2 outputs the light to be measured through the second through hole 33c of the second through hole 33.
Here, the light passing through the second through-hole portion 33 is obtained after the light passing through the first through-hole portion 31 is diffusely reflected at the integrating sphere inner surface 3a at least once. The reason for this will be described later in detail.
The second through-hole portion 33 has a cylindrical shape in this embodiment, but may have a prismatic shape (triangular prism, quadrangular prism, pentagonal prism, or more prismatic shapes).
Furthermore, a cylindrical outer surface formed by the second through hole 33c is referred to as a second outer surface 33b. A cylindrical inner surface (integral sphere body 3 side) formed by the second through hole 33c is referred to as a second inner surface 33a.
 第2貫通穴33cには、受光部7と波長測定部9が配設される。
 受光部7は、積分球本体3によって拡散反射された後の光の光量を測定するために用いられる。例えば、受光部7はフォトディテクタが使用されていても良い。更に、CCD等が使用されても良い。
 波長測定部9は、積分球本体3によって拡散反射された後の光の波長を測定するために用いられる。
 なお、波長測定部9は、光ファイバの先端の面から光を入射させてこの光ファイバによって光を導光して波長測定装置に導いて、その波長測定装置によって実際に波長を測定しても良い。
 さらに、この光ファイバの先端に更に導光部材を使用して、この導光部材にまずは導光させその後光ファイバに導光し、その後波長測定装置に導光しても良い。導光部材としては、円筒状の部材の内表面を反射する部材を用いても良いし、延長上の内表面が反射するような部材(例えば、ガラス)によって形成しても良い。更に、導光部材は、円柱又は角柱形状の側面の表面が反射する部材によって形成しても良い。
The light receiving unit 7 and the wavelength measuring unit 9 are disposed in the second through hole 33c.
The light receiving unit 7 is used to measure the amount of light after being diffusely reflected by the integrating sphere body 3. For example, a photodetector may be used for the light receiving unit 7. Further, a CCD or the like may be used.
The wavelength measuring unit 9 is used to measure the wavelength of light after being diffusely reflected by the integrating sphere body 3.
The wavelength measuring unit 9 allows light to enter from the front end surface of the optical fiber, guide the light through the optical fiber, guide it to the wavelength measuring device, and actually measure the wavelength with the wavelength measuring device. good.
Further, a light guide member may be further used at the tip of the optical fiber so that the light guide member first guides the light to the optical fiber and then guides it to the wavelength measuring device. As the light guide member, a member that reflects the inner surface of the cylindrical member may be used, or a member (for example, glass) that reflects the extended inner surface may be used. Furthermore, the light guide member may be formed of a member that reflects the surface of a cylindrical or prismatic side surface.
 図1では、波長測定部9の入射面9aが第2貫通穴33c内部に突出する様に形成している。
 波長測定部9が第2貫通穴部33を貫通している。
 そして、波長測定部9の導光方向と、第2貫通穴33cの中心軸の受光部7側の方向との角度をθ1とした場合には、θ1<90°となるように構成する。
 これによって、波長測定部9はより分光器等の実際に測定する部分へ光をより円滑に導光する事ができる。
In FIG. 1, the incident surface 9a of the wavelength measuring unit 9 is formed so as to protrude into the second through hole 33c.
The wavelength measuring unit 9 passes through the second through hole 33.
When the angle between the light guide direction of the wavelength measuring unit 9 and the direction of the central axis of the second through hole 33c on the light receiving unit 7 side is θ1, the configuration is such that θ1 <90 °.
As a result, the wavelength measuring unit 9 can more smoothly guide light to a part to be actually measured such as a spectroscope.
 ここで、図2を用いて積分球2の機能について簡単に説明する。
 積分球2は、入射した光(第1貫通穴31cから入射)が拡散反射を繰り返すことによって、平均化した光を出力(第2貫通穴33cから出射)する。
 つまり、積分球2によって、測定対象物101(例えば、LED)の方向における光の偏光、配光、波長などが平均化された光を測定することが可能となる。
 なお、この時の入力された光量に対する出力される光量は、以下の式が成立する。
  出力される光量/入力された光量
     ∝ 出力口面積(第2貫通穴33cの第2外部面33b)/積分球内部の全表面積(=(図1の場合)3a+31a+33a)
Here, the function of the integrating sphere 2 will be briefly described with reference to FIG.
The integrating sphere 2 outputs diffused light (emitted from the second through hole 33c) by repeating diffuse reflection of the incident light (incident from the first through hole 31c).
That is, the integrating sphere 2 can measure light in which the polarization, light distribution, wavelength, and the like of light in the direction of the measurement object 101 (for example, LED) are averaged.
In addition, the following formula | equation is materialized about the light quantity output with respect to the light quantity input at this time.
Output light quantity / input light quantity ∝ Output port area (second outer surface 33b of second through hole 33c) / total surface area inside integrating sphere (= (in the case of FIG. 1) 3a + 31a + 33a)
 図1のように、第1貫通穴31cから、測定対象物101(LED)からの光が積分球2内部に導入される。 As shown in FIG. 1, light from the measurement object 101 (LED) is introduced into the integrating sphere 2 from the first through hole 31c.
 プローブ11の先端は測定対象物101(例えばLED)の電極に当接する。このプローブ11は、測定対象物101に電力を供給して発光させるために用いられる。
 もっとも、プローブ11は、測定対象物101がプローブ11を必要としない場合等には必須ではない。
 また、測定対象物101は、図1のように第1貫通穴31cから離間していても良い。さらに、測定対象物101は第1貫通穴31c内部に配置されていても良い。
The tip of the probe 11 contacts the electrode of the measurement object 101 (for example, LED). The probe 11 is used for supplying power to the measurement object 101 to emit light.
However, the probe 11 is not essential when the measurement object 101 does not require the probe 11 or the like.
Further, the measurement object 101 may be separated from the first through hole 31c as shown in FIG. Furthermore, the measurement object 101 may be disposed inside the first through hole 31c.
 光量及び波長を測定する場合には、通常、図3の比較例のような構成を有している。
 なお、図3(a)は、図1と同じ側面断面図である。そして、図3(b)は、図3(a)において、B―B位置の断面図である。
When measuring the amount of light and the wavelength, it usually has a configuration as in the comparative example of FIG.
FIG. 3A is a side cross-sectional view that is the same as FIG. FIG. 3B is a cross-sectional view taken along the line BB in FIG.
 比較例では、図3のように、受光部7のための第2貫通穴33cが形成されている。それに加えて、比較例では、波長測定部9のための第3貫通穴35cが形成されている。
 比較例では、第2貫通穴33cと第3貫通穴35cとが異なる位置に形成されているため、受光部7へ入射する光と、波長測定部9へ入射する光とが異なる特性を有してしまう可能性がある。
 さらに、第2貫通穴33cと第3貫通穴35cとが別に設けられているため、積分球2に入射した光が、分散されてしまうため、受光部7及び波長測定部9に入射する光の量が減少してしまう。
 それに対して、第1の実施形態では、受光部7及び波長測定部9が同一の第2貫通穴33cに形成されていることから、受光部7及び波長測定部9は同一の特性を有する光を測定することが可能となる。
 また、第1の実施形態では、受光部7及び波長測定部9が同一の第2貫通穴33cに形成されていることから、光量の減少を少なくすることが可能となる。
 なお、第1の実施形態では、第1貫通穴31c及び第2貫通穴33cの内周面(側面)は拡散反射するように形成されている。
In the comparative example, a second through hole 33c for the light receiving unit 7 is formed as shown in FIG. In addition, in the comparative example, a third through hole 35c for the wavelength measuring unit 9 is formed.
In the comparative example, since the second through hole 33c and the third through hole 35c are formed at different positions, the light incident on the light receiving unit 7 and the light incident on the wavelength measuring unit 9 have different characteristics. There is a possibility that.
Furthermore, since the second through hole 33c and the third through hole 35c are provided separately, the light incident on the integrating sphere 2 is dispersed, so that the light incident on the light receiving unit 7 and the wavelength measuring unit 9 The amount will decrease.
On the other hand, in the first embodiment, since the light receiving unit 7 and the wavelength measuring unit 9 are formed in the same second through hole 33c, the light receiving unit 7 and the wavelength measuring unit 9 have the same characteristics. Can be measured.
In the first embodiment, since the light receiving unit 7 and the wavelength measuring unit 9 are formed in the same second through hole 33c, it is possible to reduce the decrease in the light amount.
In the first embodiment, the inner peripheral surfaces (side surfaces) of the first through hole 31c and the second through hole 33c are formed so as to be diffusely reflected.
<第2の実施形態>
 図4は、第2の実施形態の説明図である。
<Second Embodiment>
FIG. 4 is an explanatory diagram of the second embodiment.
 第1の実施形態では、波長測定部9の入射面9aによって反射した光が、受光部7に入射されずに、第2貫通穴33cの第2内部面33aから再び積分球本体3内部に戻ってしまう部分がわずかながら存在し得る。
 この影響をより低減する為に、第2の実施形態では、図4のように、入射面9aを第2貫通穴33cに当接するように形成している。
 これによって、受光部7による光量測定において、波長測定部9が悪影響を与えることを低減し、受光部7はより正確な測定値を得ることができる。
 具体的には、波長測定部9の入射面9aの法線方向と、第2貫通穴33cの中心軸の受光部側の方向との角度をθ2とした場合には、θ2=90°となるように構成する。そして、波長測定部9の導光方向と、第2貫通穴33cの中心軸の受光部7側の方向との角度をθ1とした場合には、θ1<90°となるように構成する。
 なお、第2貫通穴33cの形状が円錐台などの形状の場合には、θ2=90°でなくても良い。
 更に、波長測定部9は、第2貫通穴33cの内部に侵入していても良い。
In the first embodiment, the light reflected by the incident surface 9a of the wavelength measuring unit 9 returns to the inside of the integrating sphere body 3 from the second inner surface 33a of the second through hole 33c again without entering the light receiving unit 7. There may be a small part that ends up.
In order to further reduce this influence, in the second embodiment, as shown in FIG. 4, the incident surface 9a is formed so as to contact the second through hole 33c.
Thereby, in the light quantity measurement by the light receiving unit 7, it is possible to reduce the adverse effect of the wavelength measuring unit 9 and the light receiving unit 7 can obtain a more accurate measurement value.
Specifically, when the angle between the normal direction of the incident surface 9a of the wavelength measuring unit 9 and the direction of the central axis of the second through hole 33c on the light receiving unit side is θ2, θ2 = 90 °. Configure as follows. When the angle between the light guide direction of the wavelength measuring unit 9 and the direction of the central axis of the second through hole 33c on the light receiving unit 7 side is θ1, the configuration is such that θ1 <90 °.
When the shape of the second through hole 33c is a shape such as a truncated cone, θ2 may not be 90 °.
Furthermore, the wavelength measuring unit 9 may penetrate into the second through hole 33c.
<第3の実施形態>
 図5は、第3の実施形態の説明図である。
<Third Embodiment>
FIG. 5 is an explanatory diagram of the third embodiment.
 第1の実施形態及び第2の実施形態では、第2貫通穴33cの内周面(側面)は拡散反射するように形成されていた。
 しかし、拡散反射した場合には、第2貫通穴33c内部に入射した光が拡散反射によって、第2内部面33aから出射してしまうことが生じていた。
 そこで、第2貫通穴の内周面(側面)に、正反射する正反射材33dを形成する。
 これによって、一度第2貫通穴33cに入射した光をより確実に受光部7に導くことが可能となる。
In the first embodiment and the second embodiment, the inner peripheral surface (side surface) of the second through hole 33c is formed so as to be diffusely reflected.
However, in the case of diffuse reflection, light incident on the inside of the second through hole 33c is emitted from the second internal surface 33a due to diffuse reflection.
Therefore, a regular reflection material 33d for regular reflection is formed on the inner peripheral surface (side surface) of the second through hole.
As a result, the light once incident on the second through hole 33c can be more reliably guided to the light receiving unit 7.
<第4実施形態>
 図6は、第4の実施形態の説明図である。
<Fourth embodiment>
FIG. 6 is an explanatory diagram of the fourth embodiment.
 第3の実施形態では、第2貫通穴33cの形状は単なる円柱形状であった。
 しかし、第2貫通穴33cに入射した光が第2内部面33aから出射しないようにするために、第4の実施形態では、図6のように、第2貫通穴33cの形状を円錐台形状としている。
 より具体的には、積分球本体3側の円錐台の面は、受光部7側の円錐台の面よりも小さい面積となるように形成している。
 第4の実施形態ではこのような円錐台形状を有するため、一度、第2貫通穴33cに入射した光をより確実に受光部7に導くことが可能となる。
 なお、この第4の実施形態でも、第2貫通穴33cの内周面は正反射するように形成されている。
In the third embodiment, the shape of the second through hole 33c is a simple columnar shape.
However, in order to prevent the light incident on the second through hole 33c from being emitted from the second inner surface 33a, in the fourth embodiment, the shape of the second through hole 33c is a truncated cone shape as shown in FIG. It is said.
More specifically, the surface of the truncated cone on the integrating sphere main body 3 side is formed to have a smaller area than the surface of the truncated cone on the light receiving unit 7 side.
Since the fourth embodiment has such a truncated cone shape, the light once incident on the second through hole 33 c can be more reliably guided to the light receiving unit 7.
In the fourth embodiment, the inner peripheral surface of the second through hole 33c is formed so as to be regularly reflected.
<実施形態の構成及び効果>
 本実施形態の積分球2は、内部に球状空間を有する積分球本体3と、測定対象光を球状空間内に導光するための第1貫通穴31cと、球状空間内の光を受光部7へ導光するための第2貫通穴33cと、を有し、第2貫通穴33cには、受光部7に加えて光の波長を測定するための波長測定部9が配設される。
 このような構成を有することから、光量を測定する受光部と波長を測定する波長測定部のための貫通穴に入射した光が、反射等によって受光部又は波長測定部に入射せずに、貫通穴から再度出射されない積分球を提供することが可能となるという効果がある。
<Configuration and Effect of Embodiment>
The integrating sphere 2 of the present embodiment includes an integrating sphere main body 3 having a spherical space therein, a first through hole 31c for guiding measurement target light into the spherical space, and a light receiving unit 7 for receiving the light in the spherical space. And a second through hole 33c for guiding light to the second through hole 33c. In addition to the light receiving unit 7, a wavelength measuring unit 9 for measuring the wavelength of light is disposed in the second through hole 33c.
Since it has such a configuration, light that has entered the through hole for the light receiving unit for measuring the light amount and the wavelength measuring unit for measuring the wavelength does not enter the light receiving unit or the wavelength measuring unit due to reflection or the like. There is an effect that it is possible to provide an integrating sphere that is not emitted again from the hole.
 第2貫通穴33cは円柱形状を有し、波長測定部9は、測定対象物101の光が入射する入射面9aを有し、入射面9aは、第2貫通穴33cの側面部から第2貫通穴33cに当接するように、又は、第2貫通穴33cの側面部から第2貫通穴33cの内部空間内に位置するように、配設される。
 このような構成を有することから、受光部7の受光面積を縮小すること無く、波長測定部9を配設することが可能となる。
The second through-hole 33c has a cylindrical shape, the wavelength measuring unit 9 has an incident surface 9a on which the light of the measurement object 101 is incident, and the incident surface 9a is second from the side surface of the second through-hole 33c. It arrange | positions so that it may contact | abut to the through-hole 33c, or it may be located in the internal space of the 2nd through-hole 33c from the side part of the 2nd through-hole 33c.
With this configuration, the wavelength measuring unit 9 can be disposed without reducing the light receiving area of the light receiving unit 7.
 入射面9aの法線方向は、第2貫通穴33cの中心軸に対して、所定の角度を有するように形成される。
 このような構成を有することから、入射面9aに入射した光が反射して、第2貫通穴33cから再度出射することを低減することが可能となる。
The normal direction of the incident surface 9a is formed to have a predetermined angle with respect to the central axis of the second through hole 33c.
Since it has such a structure, it becomes possible to reduce that the light incident on the incident surface 9a is reflected and emitted again from the second through hole 33c.
 入射面9aから波長測定部9に入射した光の導光方向は、第2貫通穴33cの中心軸に対して、所定の角度を有するように形成される。
 このような構成を有することから、より円滑に測定対象の光を導光することが可能となる。
The light guide direction of the light incident on the wavelength measuring unit 9 from the incident surface 9a is formed to have a predetermined angle with respect to the central axis of the second through hole 33c.
Since it has such a structure, it becomes possible to guide the light of a measuring object more smoothly.
 入射面9aの法線方向は、第2貫通穴33cの中心軸に対して、直角に形成される。
 このような構成を有することから、第2貫通穴33c内の光の導光を妨げずに波長測定部9を設けることも可能となる。
The normal direction of the incident surface 9a is formed at right angles to the central axis of the second through hole 33c.
Since it has such a configuration, it is also possible to provide the wavelength measuring unit 9 without hindering the light guide in the second through hole 33c.
 第2貫通穴33c側面は、入射した光を正反射するように形成される。
 このような構成を有することから、一度第2貫通穴33cに入射した光をより確実に受光部7に導くことが可能となる。
The side surface of the second through hole 33c is formed so as to regularly reflect incident light.
With such a configuration, it is possible to more reliably guide the light once incident on the second through hole 33c to the light receiving unit 7.
 第2貫通穴33cは、前記受光部側の面が前記積分球本体側の面よりも大きい円錐台形状に形成される。
 このような構成を有することから、一度第2貫通穴33cに入射した光をさらに確実に受光部7に導くことが可能となる。
The second through hole 33c is formed in a truncated cone shape having a surface on the light receiving unit side larger than a surface on the integrating sphere main body side.
Since it has such a structure, it becomes possible to guide the light once incident on the second through hole 33c to the light receiving unit 7 more reliably.
 内部に球状空間を有する積分球本体3と、測定対象光を球状空間内に導光するための第1貫通穴31cと、球状空間内の光を受光部7へ導光するための第2貫通穴33cと、を有し、第2貫通穴33cの側面は、入射した光を正反射するように形成され、第2貫通穴33cは、受光部7側の面が積分球本体3側の面よりも大きい円錐台形状に形成される。
 このような構成を有することから、光量を測定する受光部と波長を測定する波長測定部のための貫通穴に入射した光が、反射等によって受光部又は波長測定部に入射せずに、貫通穴から再度出射されない積分球を提供することが可能となるという効果がある。
An integrating sphere body 3 having a spherical space therein, a first through hole 31c for guiding the measurement target light into the spherical space, and a second through for guiding the light in the spherical space to the light receiving unit 7 And the side surface of the second through hole 33c is formed so as to regularly reflect incident light, and the second through hole 33c has a surface on the light receiving unit 7 side on the surface of the integrating sphere body 3 side. It is formed in a larger truncated cone shape.
Since it has such a configuration, light that has entered the through hole for the light receiving unit for measuring the light amount and the wavelength measuring unit for measuring the wavelength does not enter the light receiving unit or the wavelength measuring unit due to reflection or the like. There is an effect that it is possible to provide an integrating sphere that is not emitted again from the hole.
 なお、積分球2の積分球内部表面3aは、拡散反射をするものについて記載した。しかし、積分球内部表面3aについて、正反射するものであってもよい。 Note that the integrating sphere inner surface 3a of the integrating sphere 2 is described as diffusely reflecting. However, the integrating sphere inner surface 3a may be regularly reflected.
  1   光特性測定装置
  2   積分球
  3   積分球本体
  3a  積分球内部表面
  5   導光部構成部材
  7   受光部
  9   波長測定部
  9a  入射面
  31  第1貫通穴部
  31c 第1貫通穴
  33  第2貫通穴部
  33c 第2貫通穴
  101 測定対象物
DESCRIPTION OF SYMBOLS 1 Optical characteristic measuring apparatus 2 Integrating sphere 3 Integrating sphere main body 3a Integral sphere inner surface 5 Light guide part constituent member 7 Light receiving part 9 Wavelength measuring part 9a Incident surface 31 First through hole part 31c First through hole 33 Second through hole part 33c Second through hole 101 Object to be measured

Claims (8)

  1.  内部に球状空間を有する積分球本体と、
     測定対象光を前記球状空間内に導光するための第1貫通穴と、
     前記球状空間内の光を受光部へ導光するための第2貫通穴と、
     を有し、
     前記第2貫通穴には、前記受光部に加えて光の波長を測定するための波長測定部が配設される
     積分球。
    An integrating sphere body having a spherical space inside;
    A first through hole for guiding measurement target light into the spherical space;
    A second through hole for guiding the light in the spherical space to the light receiving unit;
    Have
    The second through hole is provided with a wavelength measuring unit for measuring the wavelength of light in addition to the light receiving unit.
  2.  前記第2貫通穴は円柱形状を有し、
     前記波長測定部は、測定対象の光が入射する入射面を有し、
     前記入射面は、
      前記第2貫通穴の側面部から前記第2貫通穴に当接するように、
     又は、
      前記第2貫通穴の側面部から前記第2貫通穴の内部空間内に位置するように、
     配設される
     請求項1に記載の積分球。
    The second through hole has a cylindrical shape;
    The wavelength measuring unit has an incident surface on which light to be measured is incident,
    The incident surface is
    In contact with the second through hole from the side surface of the second through hole,
    Or
    In order to be located in the internal space of the second through hole from the side surface portion of the second through hole,
    The integrating sphere according to claim 1 disposed.
  3.  前記入射面の法線方向は、前記第2貫通穴の中心軸に対して、所定の角度を有するように形成される
     請求項2に記載の積分球。
    The integrating sphere according to claim 2, wherein the normal direction of the incident surface is formed to have a predetermined angle with respect to a central axis of the second through hole.
  4.  前記入射面から前記波長測定部に入射した光の導光方向は、前記第2貫通穴の中心軸に対して、所定の角度を有するように形成される
     請求項3に記載の積分球。
    The integrating sphere according to claim 3, wherein a light guide direction of light incident on the wavelength measurement unit from the incident surface is formed to have a predetermined angle with respect to a central axis of the second through hole.
  5.  前記入射面の法線方向は、前記第2貫通穴の中心軸に対して、直角に形成される
     請求項4に記載の積分球。
    The integrating sphere according to claim 4, wherein a normal direction of the incident surface is formed at a right angle to a central axis of the second through hole.
  6.  前記第2貫通穴の側面は、入射した光を正反射するように形成される
     請求項1に記載の積分球。
    The integrating sphere according to claim 1, wherein a side surface of the second through hole is formed so as to regularly reflect incident light.
  7.  前記第2貫通穴は、前記受光部側の面が前記積分球本体側の面よりも大きい円錐台形状に形成される
     請求項6に記載の積分球。
    The integrating sphere according to claim 6, wherein the second through hole is formed in a truncated cone shape having a surface on the light receiving unit side larger than a surface on the integrating sphere main body side.
  8.  内部に球状空間を有する積分球本体と、
     測定対象光を前記球状空間内に導光するための第1貫通穴と、
     前記球状空間内の光を受光部へ導光するための第2貫通穴と、
     を有し、
     前記第2貫通穴の側面は、入射した光を正反射するように形成され、
     前記第2貫通穴は、前記受光部側の面が前記積分球本体側の面よりも大きい円錐台形状に形成される
     積分球。
    An integrating sphere body having a spherical space inside;
    A first through hole for guiding measurement target light into the spherical space;
    A second through hole for guiding the light in the spherical space to the light receiving unit;
    Have
    The side surface of the second through hole is formed so as to regularly reflect incident light,
    The second through hole is formed as a truncated cone having a surface on the light receiving unit side larger than a surface on the integrating sphere main body side.
PCT/JP2013/060246 2013-04-03 2013-04-03 Integrating sphere WO2014162548A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015509799A JPWO2014162548A1 (en) 2013-04-03 2013-04-03 Integrating sphere
PCT/JP2013/060246 WO2014162548A1 (en) 2013-04-03 2013-04-03 Integrating sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060246 WO2014162548A1 (en) 2013-04-03 2013-04-03 Integrating sphere

Publications (1)

Publication Number Publication Date
WO2014162548A1 true WO2014162548A1 (en) 2014-10-09

Family

ID=51657880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060246 WO2014162548A1 (en) 2013-04-03 2013-04-03 Integrating sphere

Country Status (2)

Country Link
JP (1) JPWO2014162548A1 (en)
WO (1) WO2014162548A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459215A (en) * 2018-12-27 2019-03-12 北京航天长征飞行器研究所 Device for extraterrestrial target distance field optics feature measurement
TWI702379B (en) * 2015-10-02 2020-08-21 晶元光電股份有限公司 Testing apparatus for light-emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162634A (en) * 1989-11-20 1991-07-12 Sanyo Electric Co Ltd Method for measuring external quantum efficiency of light source
JP2002206967A (en) * 2001-01-11 2002-07-26 Minolta Co Ltd Photometer and colorimeter
JP2007198983A (en) * 2006-01-27 2007-08-09 Hamamatsu Photonics Kk Adapter for integrating sphere, and photodetection device equipped therewith

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547820Y2 (en) * 1975-02-04 1979-04-11
JPH03210437A (en) * 1989-11-02 1991-09-13 Terumo Corp Infrared sensor and its manufacture
JPWO2012073346A1 (en) * 2010-11-30 2014-05-19 パイオニア株式会社 Light receiving module for light emitting diode element and inspection device for light emitting diode element
JP2012159457A (en) * 2011-02-02 2012-08-23 Unitec Co Ltd Integrating sphere device and light measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162634A (en) * 1989-11-20 1991-07-12 Sanyo Electric Co Ltd Method for measuring external quantum efficiency of light source
JP2002206967A (en) * 2001-01-11 2002-07-26 Minolta Co Ltd Photometer and colorimeter
JP2007198983A (en) * 2006-01-27 2007-08-09 Hamamatsu Photonics Kk Adapter for integrating sphere, and photodetection device equipped therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702379B (en) * 2015-10-02 2020-08-21 晶元光電股份有限公司 Testing apparatus for light-emitting device
CN109459215A (en) * 2018-12-27 2019-03-12 北京航天长征飞行器研究所 Device for extraterrestrial target distance field optics feature measurement

Also Published As

Publication number Publication date
JPWO2014162548A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US10697761B2 (en) Method and system for simultaneous measurement of strain and temperature utilizing dual core fiber
CN105116557A (en) Light splitting slice, laser coaxial range finder and application thereof
JP6185864B2 (en) Integrating sphere
JP2007526468A (en) Optical measuring head
CN107567594B (en) Device for testing a sample that can be excited by means of electromagnetic radiation, and beam splitter
US20180259551A1 (en) Fiber-Optic Accelerometer
JP2017053762A5 (en)
EP3067686B1 (en) Transmission probe, system and immersion transmission measurement method
TW202334616A (en) Optical measurement devices, optical devices and user devices
JP2010511146A (en) Optical pressure sensor having at least two optical fibers
KR20130012588A (en) Optical system for measurement, luminance meter using the optical system, color luminance meter, and color meter
CN205067877U (en) Divide slide and coaxial distancer of laser thereof
WO2014162548A1 (en) Integrating sphere
JP7415923B2 (en) Photometric device
JP2007198883A (en) Spectral measuring instrument by optical fiber probe
US20150147030A1 (en) Optical coupling lens
WO2014162547A1 (en) Optical characteristic measuring instrument
KR100781968B1 (en) Variable light-path gas density sensor
CN210119290U (en) Measuring light source and measuring device for detecting absolute reflectance spectrum of sample
KR102676195B1 (en) Optical fiber in-line temperature sensor and apparatus for measuring temperature using the sensor
JP2006145373A (en) Multi-angle colorimeter, lighting device, and light-receiving apparatus
US6846085B2 (en) Mitigating the effects of miniaturizing integrating spheres for fiber optic measurement
CN109596050A (en) Sensing head
JP2014074628A (en) Photometric device
JP2019002721A (en) Confocal displacement meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509799

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881161

Country of ref document: EP

Kind code of ref document: A1