JP7415923B2 - Photometric device - Google Patents

Photometric device Download PDF

Info

Publication number
JP7415923B2
JP7415923B2 JP2020530897A JP2020530897A JP7415923B2 JP 7415923 B2 JP7415923 B2 JP 7415923B2 JP 2020530897 A JP2020530897 A JP 2020530897A JP 2020530897 A JP2020530897 A JP 2020530897A JP 7415923 B2 JP7415923 B2 JP 7415923B2
Authority
JP
Japan
Prior art keywords
light
guide member
side end
light guide
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020530897A
Other languages
Japanese (ja)
Other versions
JPWO2020017118A1 (en
Inventor
通 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2020017118A1 publication Critical patent/JPWO2020017118A1/en
Application granted granted Critical
Publication of JP7415923B2 publication Critical patent/JP7415923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/502Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0214Constructional arrangements for removing stray light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Description

本発明は、被測定光源の特性を測定する測光装置に関し、特に、被測定光源から出射される光の輝度や色度を測定する色彩輝度計などの測光装置に関する。 The present invention relates to a photometric device that measures the characteristics of a light source to be measured, and particularly to a photometric device such as a color luminance meter that measures the brightness and chromaticity of light emitted from the light source to be measured.

色彩輝度計などの測光装置では、色を測定するために、測定光を3つに分割して各センサで受光する。測定光を3つに分割する手段として、例えば特許文献1では、多数本の光ファイバーを束ねた導光体が提案されている。この導光体は、測定光の入射側が1本のファイバー束にまとめられ、出射側が3本のファイバー束に分割されて構成されている。上記3本のファイバー束の端面から出射される光は、それぞれ、赤(R)、緑(G)、青(B)の光を透過させる特性を有するフィルタを介して受光素子に入射する。 In a photometric device such as a color luminance meter, in order to measure color, measurement light is divided into three parts and received by each sensor. As a means for dividing measurement light into three parts, for example, Patent Document 1 proposes a light guide in which a large number of optical fibers are bundled. This light guide is configured such that the incident side of the measurement light is combined into one fiber bundle, and the output side is divided into three fiber bundles. The light emitted from the end faces of the three fiber bundles enters the light-receiving element through filters that have the characteristic of transmitting red (R), green (G), and blue (B) light, respectively.

上記多数本の光ファイバーは、測定光の入射側の端面に結像した像形成光束の結像位置関係が擬似的にランダムとなるように束ねられて形成される。これにより、光出射側の3本のファイバー束の端面から出射されて各受光素子に入射する像形成光束が擬似的にランダムに混合されるため、像形成光束の光量ムラが軽減される。 The plurality of optical fibers are formed in a bundle so that the image forming positional relationship of the image forming light beam formed on the end face on the incident side of the measurement light is pseudo-random. As a result, the image-forming light beams emitted from the end faces of the three fiber bundles on the light-emitting side and incident on each light-receiving element are mixed in a pseudo-random manner, so that unevenness in the amount of image-forming light beams is reduced.

特開2010-2255号公報(請求項1、4、段落〔0001〕、〔0023〕~〔0028〕、図1~図3等参照)JP 2010-2255 A (see claims 1 and 4, paragraphs [0001], [0023] to [0028], FIGS. 1 to 3, etc.)

ところで、測光装置による色の測定は、測定対象物(被測定光源)の被測定面に測光装置を接触させ、または非接触で近づけ、被測定面の所定の領域から所定の角度範囲で出射された光を測光装置で受光することによって行われる。このとき、被測定面の発光強度(発光輝度)に、発光位置および発光角度によるムラ(位置ムラ、角度ムラ)があると、その影響を測光装置側でも受ける。そして、測光装置側で、上記影響を受けて測定感度の位置ムラおよび角度ムラが大きくなると、測定する位置および測定する角度の違いによって測定値の差(測定誤差)が大きくなる。なお、測定感度の位置ムラとは、被測定光源の被測定面の異なる位置から同じ方向(例えば上記面に垂直な方向)に出射される各光について、測定感度が異なることを指す。また、測定感度の角度ムラとは、被測定光源の被測定面の同じ位置から異なる方向に出射される各光について、測定感度が異なることを指す。したがって、色の測定にあたっては、測定する位置および測定する角度の違いによる測定誤差を小さくするために、被測定光源の発光強度の位置ムラおよび角度ムラの影響を受けにくくして、測定感度の位置ムラおよび角度ムラを低減することが必要となる。 By the way, when measuring color using a photometric device, the photometric device is brought into contact with the surface to be measured of the object to be measured (the light source to be measured), or brought close to the surface without contact, and the light is emitted from a predetermined area of the surface to be measured within a predetermined angular range. This is done by receiving the reflected light with a photometric device. At this time, if there is any unevenness (positional unevenness, angular unevenness) in the light emission intensity (emission brightness) of the surface to be measured due to the light emission position and the light emission angle, the photometric device will also be affected by this. When the positional and angular unevenness of measurement sensitivity increases on the photometric device side due to the above-mentioned influence, the difference in measured values (measurement error) increases due to the difference in the measuring position and measuring angle. Note that the positional unevenness in measurement sensitivity refers to the difference in measurement sensitivity for each light emitted from different positions on the surface to be measured of the light source to be measured in the same direction (for example, a direction perpendicular to the surface). Furthermore, the angular nonuniformity of measurement sensitivity refers to the fact that the measurement sensitivity differs for each light emitted in different directions from the same position on the surface to be measured of the light source to be measured. Therefore, when measuring color, in order to reduce measurement errors due to differences in the measurement position and measurement angle, the position of measurement sensitivity is It is necessary to reduce unevenness and angle unevenness.

上記した特許文献1では、多数本のファイバーを束ねた導光体を用いて測定光を導光するようにしているが、光量ムラを減らして測定誤差を小さくするために、各ファイバーをランダムに編み込むことが必要となり、高コストである。また、ファイバーの充填具合、曲げの状態、応力の状態等の制御が難しいため、被測定光源の発光強度の位置ムラおよび角度ムラの影響を受けにくくするような導光体の設計が困難であり、結果として、測定感度の位置ムラおよび角度ムラを低減することが困難となる。 In the above-mentioned Patent Document 1, the measurement light is guided using a light guide made by bundling a large number of fibers, but in order to reduce unevenness in light intensity and measurement errors, each fiber is randomly connected. It requires braiding, which is expensive. Furthermore, since it is difficult to control the filling condition, bending condition, stress condition, etc. of the fibers, it is difficult to design a light guide that is less susceptible to the effects of positional and angular unevenness in the emission intensity of the light source to be measured. As a result, it becomes difficult to reduce positional and angular variations in measurement sensitivity.

本発明は、上記の問題点を解決するためになされたもので、その目的は、安価な導光部材を用いた構成で、被測定光源の発光強度の位置ムラおよび角度ムラの影響を受けにくくすることができ、これによって、測定感度の位置ムラおよび角度ムラを低減することができる測光装置を提供することにある。 The present invention has been made in order to solve the above problems, and its purpose is to provide a configuration using an inexpensive light guiding member, which is less susceptible to the effects of positional and angular unevenness in the emission intensity of the light source to be measured. The object of the present invention is to provide a photometric device that can reduce positional and angular variations in measurement sensitivity.

本発明の一側面に係る測光装置は、光入射側端面および光出射側端面が多角形状である、多角柱または多角錐台の導光部材と、被測定光源の像を、前記導光部材の前記光入射側端面に形成する対物光学系と、前記被測定光源から前記対物光学系を介して前記導光部材に入射し、前記導光部材の前記光出射側端面から出射される光を受光する受光部とを備え、前記受光部は、特性の異なる複数のセンサを有して、前記導光部材の前記光出射側端面の直後に配置され、または、前記導光部材の前記光出射側端面と前記受光部の受光面とが共役となるように、前記導光部材の前記光出射側端面との間にリレー光学系を介して配置されている。 A photometric device according to one aspect of the present invention includes a light guide member in the form of a polygonal prism or a truncated polygonal pyramid, whose end face on the light incidence side and the end face on the light output side are polygonal, and an image of the light source to be measured is transmitted to the light guide member. an objective optical system formed on the light-incidence side end face; and a light receiving unit that receives light that enters the light guide member from the light source to be measured through the objective optical system and exits from the light-emission side end face of the light guide member. and a light receiving section, the light receiving section having a plurality of sensors having different characteristics and disposed immediately after the light exit side end surface of the light guide member, or the light receiving section having a plurality of sensors having different characteristics, A relay optical system is disposed between the light-emitting side end surface of the light guide member and the light-emitting side end surface of the light guide member so that the end surface and the light-receiving surface of the light-receiving section are conjugate.

被測定光源から出射される光を、対物光学系と導光部材と(必要に応じてリレー光学系と)を介して受光部に導く構成において、導光部材は、単純な多角柱または多角錐台の形状であるため、複数本のファイバーをランダムに編み込んで導光する従来の導光体に比べて、構成が簡単であり、安価である。また、多角柱または多角錐台の形状の導光部材に入射する被測定光源からの光は、導光部材への入射角度に応じた回数だけ導光部材の側面(光入射側端面および光出射側端面以外の面)で全反射されて導光され、受光部に入射する。このため、受光部の各センサは、被測定光源の被測定面の様々な位置から出射された光および被測定面から様々な角度で出射された光が混合された光を受光することになる。その結果、被測定光源の被測定面の発光強度(発光輝度)に位置ムラおよび角度ムラがあっても、受光部側でその影響を受けにくくすることができ、これによって、測定感度の位置ムラおよび角度ムラを低減することが可能となる。 In the configuration in which the light emitted from the light source to be measured is guided to the light receiving section via the objective optical system and the light guide member (and the relay optical system as necessary), the light guide member is a simple polygonal prism or polygonal pyramid. Because it has a table shape, it has a simpler structure and is cheaper than a conventional light guide that guides light by randomly weaving multiple fibers. In addition, the light from the light source to be measured that enters the light guide member in the shape of a polygonal prism or truncated polygonal pyramid is incident on the sides of the light guide member (the light incident side end face and the light output The light is totally reflected by surfaces other than the side end surfaces), is guided, and enters the light receiving section. Therefore, each sensor in the light receiving section receives a mixture of light emitted from various positions on the surface to be measured of the light source to be measured and light emitted from the surface to be measured at various angles. . As a result, even if there are positional and angular irregularities in the emission intensity (emission luminance) of the light source to be measured on the surface to be measured, the light receiving section can be made less susceptible to the effects, and this makes it possible to reduce the influence of positional and angular variations in the measurement sensitivity. It is also possible to reduce angular irregularities.

本発明の実施の一形態および実施例1の測光装置の概略の構成を示す説明図である。1 is an explanatory diagram showing a schematic configuration of a photometric device according to an embodiment and Example 1 of the present invention; FIG. 上記測光装置の導光部材の一構成例を示す斜視図である。FIG. 2 is a perspective view showing an example of the configuration of a light guide member of the photometric device. 上記導光部材の他の構成例を示す斜視図である。It is a perspective view which shows the other example of a structure of the said light guide member. 上記導光部材のさらに他の構成例を示す斜視図である。It is a perspective view showing still another example of composition of the above-mentioned light guide member. 上記導光部材のさらに他の構成例を示す斜視図である。It is a perspective view showing still another example of composition of the above-mentioned light guide member. 図2Aの導光部材の光入射側端面を測定範囲規制絞り側から見たときの状態を模式的に示す平面図である。FIG. 3 is a plan view schematically showing the light incident side end face of the light guide member in FIG. 2A when viewed from the measurement range regulating aperture side. 上記測光装置の受光部の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a light receiving section of the photometric device. 上記受光部の構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of the light receiving section. 上記導光部材の内部で導光される光線の光路を模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing the optical path of a light beam guided inside the light guide member. 図2Dの導光部材の内部で導光される光線の光路を展開して示した説明図である。2D is an explanatory diagram showing an expanded optical path of a light beam guided inside the light guide member of FIG. 2D. FIG. 図2Bの導光部材の光入射側端面を測定範囲規制絞り側から見たときの状態を模式的に示す平面図である。FIG. 3 is a plan view schematically showing the light incident side end face of the light guide member in FIG. 2B when viewed from the measurement range regulating aperture side. 図2Bの導光部材を用いた場合の受光部の平面形状を模式的に示す平面図である。FIG. 3 is a plan view schematically showing the planar shape of a light receiving section when the light guide member of FIG. 2B is used. 図2Cの導光部材の光入射側端面を測定範囲規制絞り側から見たときの状態を模式的に示す平面図である。FIG. 2C is a plan view schematically showing the light incident side end face of the light guide member in FIG. 2C when viewed from the measurement range regulating aperture side. 図2Cの導光部材を用いた場合の受光部の平面形状を模式的に示す平面図である。FIG. 2C is a plan view schematically showing the planar shape of the light receiving section when the light guide member of FIG. 2C is used. 実施例2の測光装置の概略の構成を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing the general configuration of a photometric device according to a second embodiment. 実施例3の測光装置の概略の構成を模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing the general configuration of a photometric device of Example 3. 実施例4の測光装置の概略の構成を模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing the general configuration of a photometric device of Example 4. 実施例5の測光装置の概略の構成を模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing the general configuration of a photometric device of Example 5. 実施例6の測光装置の概略の構成を模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing the general configuration of a photometric device of Example 6. 実施例7の測光装置の概略の構成を模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing the general configuration of a photometric device of Example 7. 実施例8の測光装置の概略の構成を模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing the general configuration of a photometric device of Example 8. 実施例9の測光装置の概略の構成を模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing the general configuration of a photometric device of Example 9. FIG. 比較例1の測光装置の概略の構成を模式的に示す説明図である。2 is an explanatory diagram schematically showing the general configuration of a photometric device of Comparative Example 1. FIG. 測定感度の空間分布および角度分布のシミュレーション結果の一例を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing an example of simulation results of spatial distribution and angular distribution of measurement sensitivity. 被測定光源の座標系を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing a coordinate system of a light source to be measured. 比較例1の4つのセンサの1つであるセンサA’での測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。3 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in sensor A', which is one of the four sensors of Comparative Example 1. FIG. 比較例1の4つのセンサの1つであるセンサB’での測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。3 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in sensor B', which is one of the four sensors of Comparative Example 1. FIG. 比較例1の4つのセンサの1つであるセンサC’での測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。3 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in sensor C', which is one of the four sensors of Comparative Example 1. FIG. 比較例1の4つのセンサの1つであるセンサD’での測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。3 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in sensor D', which is one of the four sensors of Comparative Example 1. FIG. 実施例1の4つのセンサの1つであるセンサAでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。3 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in sensor A, which is one of the four sensors of Example 1. FIG. 実施例1の4つのセンサの1つであるセンサBでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。3 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in sensor B, which is one of the four sensors of Example 1. FIG. 実施例1の4つのセンサの1つであるセンサCでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。3 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in sensor C, which is one of the four sensors of Example 1. FIG. 実施例1の4つのセンサの1つであるセンサDでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。3 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in sensor D, which is one of the four sensors of Example 1. FIG. 実施例2の任意のセンサでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。FIG. 7 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in an arbitrary sensor of Example 2; 実施例3の任意のセンサでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。FIG. 7 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in an arbitrary sensor of Example 3; 実施例4の任意のセンサでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。FIG. 7 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in an arbitrary sensor of Example 4. 実施例5の任意のセンサでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。12 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in an arbitrary sensor of Example 5. FIG. 実施例6の任意のセンサでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。FIG. 7 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in an arbitrary sensor of Example 6. 実施例7の任意のセンサでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。FIG. 7 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in an arbitrary sensor of Example 7; 実施例8の任意のセンサでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。FIG. 12 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in an arbitrary sensor of Example 8. 実施例9の任意のセンサでの測定感度の空間分布および角度分布をシミュレーションした結果を示す説明図である。12 is an explanatory diagram showing the results of simulating the spatial distribution and angular distribution of measurement sensitivity in an arbitrary sensor of Example 9. FIG.

本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。図1は、本実施形態(実施例1)の測光装置1の概略の構成を示す説明図である。測光装置1は、導光部材2と、対物光学系3と、リレー光学系4と、受光部5とを有して構成されている。上記の測光装置1の構成では、被測定光源LSの被測定面LS0から出射された光を、対物光学系3を介して導光部材2に導き、導光部材2の内部で導光した後、リレー光学系4を介して受光部5に導く。以下、測光装置1を構成する各部材について説明する。An embodiment of the present invention will be described below based on the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of a photometric device 1 of this embodiment (Example 1). The photometric device 1 includes a light guiding member 2, an objective optical system 3, a relay optical system 4, and a light receiving section 5. In the configuration of the photometer 1 described above, the light emitted from the surface to be measured LS0 of the light source LS to be measured is guided to the light guide member 2 via the objective optical system 3, and the light is guided inside the light guide member 2. Thereafter, the light is guided to the light receiving section 5 via the relay optical system 4. Each member constituting the photometric device 1 will be explained below.

(導光部材)
図2Aは、導光部材2の一構成例を示す斜視図である。導光部材2は、光入射側端面2aおよび光出射側端面2bを有し、光入射側端面2aから内部に入射した光を導光して光出射側端面2bから出射する光学素子であり、本実施形態では、ガラス製の中実(中身が詰まった)ロッドで構成されている。本実施形態では、導光部材2は、光入射側端面2aおよび光出射側端面2bが同じ大きさの四角形(例えば正方形)である四角柱の形状であるが、この形状に限定されるわけではない。
(Light guide member)
FIG. 2A is a perspective view showing an example of the configuration of the light guide member 2. FIG. The light guide member 2 is an optical element that has a light incident side end surface 2a and a light output side end surface 2b, and guides the light incident inside from the light incident side end surface 2a and outputs it from the light output side end surface 2b. In this embodiment, it is comprised of a solid (filled) rod made of glass. In the present embodiment, the light guide member 2 has a quadrangular prism shape in which the light incident side end surface 2a and the light exit side end surface 2b are quadrilaterals (for example, squares) of the same size, but the shape is not limited to this. do not have.

図2Bは、導光部材2の他の構成例を示す斜視図である。また、図2Cは、導光部材2のさらに他の構成例を示す斜視図である。これらの図に示すように、導光部材2は、光入射側端面2aおよび光出射側端面2bが同じ大きさの三角形(例えば正三角形)である三角柱の形状や、光入射側端面2aおよび光出射側端面2bが同じ大きさの六角形(例えば正六角形)である六角柱の形状などであってもよい。つまり、導光部材2は、光入射側端面2aおよび光出射側端面2bが同じ大きさの多角形である多角柱の形状であってもよい。 FIG. 2B is a perspective view showing another example of the structure of the light guide member 2. Moreover, FIG. 2C is a perspective view showing still another example of the structure of the light guide member 2. As shown in these figures, the light guide member 2 has a triangular prism shape in which the light incident side end surface 2a and the light output side end surface 2b are triangles of the same size (e.g., an equilateral triangle), or the light incident side end surface 2a and the light The output side end surface 2b may be in the shape of a hexagonal prism, which is a hexagon (for example, a regular hexagon) of the same size. That is, the light guide member 2 may have a polygonal prism shape in which the light incident side end surface 2a and the light exit side end surface 2b are polygons of the same size.

また、図2Dは、導光部材2のさらに他の構成例を示す斜視図である。同図に示すように、導光部材2は、光入射側端面2aおよび光出射側端面2bが異なる大きさの四角形である四角錐台の形状であってもよい。その他、図示はしないが、光入射側端面2aおよび光出射側端面2bが異なる大きさの三角形である三角錐台の形状、光入射側端面2aおよび光出射側端面2bが異なる大きさの六角形である六角錐台の形状であってもよい。つまり、導光部材2は、光入射側端面2aおよび光出射側端面2bが異なる大きさの多角形である多角錐台の形状であってもよい。 Moreover, FIG. 2D is a perspective view showing still another example of the structure of the light guide member 2. As shown in the figure, the light guide member 2 may have a truncated quadrangular pyramid shape in which the light incident side end surface 2a and the light exit side end surface 2b are squares of different sizes. Other shapes, although not shown, include a truncated triangular pyramid shape in which the light input side end surface 2a and the light output side end surface 2b are triangles of different sizes, and a hexagonal shape in which the light input side end surface 2a and the light output side end surface 2b are different sizes. It may be in the shape of a hexagonal truncated pyramid. In other words, the light guide member 2 may have the shape of a truncated polygonal pyramid in which the light incident side end surface 2a and the light exit side end surface 2b are polygons of different sizes.

導光部材2が上記した多角柱または多角錐台形状であることにより、導光部材2の内部に光入射側端面2aを介して入射した光は、光入射側端面2aに対する入射角度に応じた回数だけ、導光部材2の側面2c(導光部材2における空気との界面)で全反射して導光され、光出射側端面2bから出射される。なお、側面2cは、光入射側端面2aおよび光出射側端面2bを連結する面であり、光入射側端面2aおよび光出射側端面2bを構成する多角形の頂点(または辺)の数だけ設けられる。 Since the light guide member 2 has the above-described polygonal prism or truncated polygonal pyramid shape, the light that enters the inside of the light guide member 2 via the light incident side end surface 2a has an angle of incidence with respect to the light incident side end surface 2a. The light is totally reflected and guided by the side surface 2c of the light guide member 2 (the interface with the air in the light guide member 2) a number of times, and is emitted from the light output side end surface 2b. Note that the side surface 2c is a surface that connects the light input side end surface 2a and the light output side end surface 2b, and is provided in the same number as the vertices (or sides) of the polygon forming the light input side end surface 2a and the light output side end surface 2b. It will be done.

なお、例えば、光入射側端面2aの中心(光入射側端面2aと対物光学系3の光軸との交点)に垂直またはそれに近い角度で入射する光については、導光部材2の内部に光入射側端面2aを介して入射した後、側面2cで全反射されずに導光されて光出射側端面2bから出射される。したがって、上記の「入射角度に応じた回数」には、0回も含まれる。 Note that, for example, for light incident at an angle perpendicular to or close to the center of the light-incidence end surface 2a (the intersection of the light-incidence end surface 2a and the optical axis of the objective optical system 3), the light enters the inside of the light guide member 2. After entering through the incident side end surface 2a, the light is guided without being totally reflected on the side surface 2c and is emitted from the light output side end surface 2b. Therefore, the above-mentioned "number of times depending on the angle of incidence" includes zero times.

なお、導光部材2は、例えば断面が多角形の中空のパイプ(ライトパイプ)で構成されてもよい。この場合、パイプの内面に金属からなる反射膜を形成することにより、導光部材2に入射した光をその内面(反射膜)で反射させて導光することができる。また、導光部材2を構成する材料は、ガラスには限定されず、アクリルなどの透明樹脂であってもよい。 Note that the light guide member 2 may be formed of, for example, a hollow pipe (light pipe) having a polygonal cross section. In this case, by forming a reflective film made of metal on the inner surface of the pipe, the light incident on the light guide member 2 can be reflected by the inner surface (reflective film) and guided. Further, the material constituting the light guide member 2 is not limited to glass, and may be a transparent resin such as acrylic.

(対物光学系)
対物光学系3は、被測定光源LSの像を、導光部材2の光入射側端面2aに縮小形成する光学系である。この対物光学系3は、被測定光源LS側に位置する前側レンズ系31と、導光部材2側に位置する後側レンズ系32と、被測定光源LSの1点から出射される光の広がり角を規制する絞りAP1(測定角規制絞り)と、被測定光源LSの測定範囲を規制する絞りAP2(測定範囲規制絞り、視野絞り)とを有して構成されている。
(Objective optical system)
The objective optical system 3 is an optical system that reduces and forms an image of the light source LS to be measured on the light incident side end surface 2a of the light guide member 2. The objective optical system 3 includes a front lens system 31 located on the side of the light source to be measured LS, a rear lens system 32 located on the side of the light guide member 2, and a spread of light emitted from one point of the light source LS to be measured. It is configured with an aperture AP1 (measurement angle regulating aperture) that regulates the angle, and an aperture AP2 (measurement range regulating aperture, field aperture) that regulates the measurement range of the light source LS to be measured.

対物レンズ系3の配置により、被測定光源LSの被測定面LS0と導光部材2の光入射側端面2aとは、共役な関係となっている。すなわち、被測定光源LSの被測定面LS0上のある点から出射された光は、導光部材2の光入射側端面2aのある点に集光する。本実施形態では、前側レンズ系31は、2枚のレンズで構成されており、後側レンズ系32は、3枚のレンズで構成されているが、上記の共役な関係を実現できる構成であればよく、前側レンズ系31および後側レンズ系32のレンズの枚数は特に限定されない。Due to the arrangement of the objective lens system 3, the measured surface LS0 of the measured light source LS and the light incident side end surface 2a of the light guide member 2 have a conjugate relationship. That is, light emitted from a certain point on the surface to be measured LS 0 of the light source LS to be measured is focused on a certain point on the light incident side end surface 2 a of the light guide member 2 . In this embodiment, the front lens system 31 is composed of two lenses, and the rear lens system 32 is composed of three lenses, but any configuration that can realize the above conjugate relationship may be used. The number of lenses in the front lens system 31 and the rear lens system 32 is not particularly limited.

絞りAP1は、前側レンズ系31の後側焦点位置に配置されている。絞りAP1(開口部)の面内の各点は、被測定光源LSの被測定面LS0での光の出射角度に対応している。絞りAP1の配置により、被測定面LS0から出射される光の測定角度(出射角度)を過不足なく適切に規制し、測定したい角度範囲の光だけを測定することが可能となる。なお、本実施形態では、絞りAP1の開口部の形状は円形であるが、矩形であってもよいし、他の形状であってもよい。The aperture AP1 is arranged at the rear focal position of the front lens system 31. Each point in the plane of the aperture AP1 (aperture) corresponds to the light emission angle at the measured surface LS0 of the measured light source LS. By arranging the aperture AP1, it is possible to appropriately regulate the measurement angle (output angle) of the light emitted from the surface to be measured LS0 without excess or deficiency, and to measure only the light within the angular range desired to be measured. In addition, in this embodiment, the shape of the opening of the aperture AP1 is circular, but it may be rectangular or may have another shape.

絞りAP2は、導光部材2の光入射側端面2aの直前に配置されている。絞りAP2(開口部)の面内の各点は、被測定光源LSの被測定面LS0上の各点に対応している。絞りAP2の配置により、被測定光源LSの測定範囲(測定領域)を過不足なく適切に規制し、測定したい範囲の光だけを測定することが可能となる。The aperture AP2 is arranged immediately in front of the light incident side end surface 2a of the light guide member 2. Each point within the plane of the aperture AP2 (aperture) corresponds to each point on the measured surface LS0 of the measured light source LS. By arranging the aperture AP2, it is possible to appropriately regulate the measurement range (measurement area) of the light source LS to be measured without excess or deficiency, and to measure only the light in the range to be measured.

図3は、図2Aの導光部材2の光入射側端面2aを絞りAP2側から見たときの状態を模式的に示している。本実施形態では、絞りAP2の開口部AP2aは、円形であり、その直径は、導光部材2の光入射側端面2aの内接円の直径よりも若干小さく設定されている。なお、絞りAP2の開口部AP2aは、矩形であってもよいし、他の形状であってもよい。また、絞りAP2の配置を省略することも可能である。この場合、被測定光源LSの被測定面LS0の測定範囲は、導光部材2の光入射側端面2aの形状と相似になる。FIG. 3 schematically shows the light incident side end surface 2a of the light guide member 2 in FIG. 2A when viewed from the aperture AP2 side. In this embodiment, the aperture AP2a of the aperture AP2 is circular, and its diameter is set to be slightly smaller than the diameter of the inscribed circle of the light incident side end surface 2a of the light guide member 2. Note that the opening AP2a of the aperture AP2 may be rectangular or may have another shape. Furthermore, it is also possible to omit the arrangement of the aperture AP2. In this case, the measurement range of the surface to be measured LS 0 of the light source LS to be measured becomes similar to the shape of the light incident side end surface 2 a of the light guide member 2 .

(リレー光学系)
リレー光学系4は、導光部材2の光出射側端面2bと受光部5の受光面5aとが共役となるように、導光部材2の光出射側端面2bから出射される光を受光部5に導く光学系である。つまり、リレー光学系4の配置により、導光部材2の光出射側端面2b上のある点から出射された光は、受光部5の受光面5aのある点に集光し、導光部材2の光出射側端面2bの像が、受光部5の受光面5aに拡大結像される。本実施形態では、リレー光学系4は、4枚のレンズで構成されているが、上記の共役関係を実現できる構成であればよく、リレー光学系4のレンズの枚数は特に限定されない。
(Relay optical system)
The relay optical system 4 transmits the light emitted from the light output side end surface 2b of the light guide member 2 to the light receiving section so that the light output side end surface 2b of the light guide member 2 and the light receiving surface 5a of the light receiving section 5 are conjugate. This is an optical system that leads to 5. That is, due to the arrangement of the relay optical system 4, the light emitted from a certain point on the light-emitting side end surface 2b of the light guide member 2 is focused on a certain point on the light-receiving surface 5a of the light-receiving section 5, and An image of the light-emitting side end surface 2b is enlarged and formed on the light-receiving surface 5a of the light-receiving section 5. In this embodiment, the relay optical system 4 is composed of four lenses, but the number of lenses in the relay optical system 4 is not particularly limited as long as it can realize the above conjugate relationship.

(受光部)
受光部5は、被測定光源LSから対物光学系3を介して導光部材2に入射し、導光部材2の光出射側端面2bから出射される光を受光する。この受光部5は、特性の異なる複数のセンサ51で構成されている。本実施形態では、受光部5の複数のセンサ51は、それぞれ、等色関数X、Y、Zに対応する測定感度を有している。以下、受光部5の構成についてより詳細に説明する。
(Light receiving section)
The light receiving section 5 receives light that enters the light guide member 2 from the light source LS to be measured via the objective optical system 3 and is emitted from the light output side end surface 2b of the light guide member 2. This light receiving section 5 is composed of a plurality of sensors 51 having different characteristics. In this embodiment, the plurality of sensors 51 of the light receiving section 5 each have a measurement sensitivity corresponding to the color matching functions X, Y, and Z. The configuration of the light receiving section 5 will be explained in more detail below.

図4は、受光部5の構成を示す平面図であり、図5は、受光部5の構成を示す断面図である。受光部5は、4つのセンサ51(51a~51d)を有している。各センサ51は、受光素子52と、光学フィルタ53とで構成されている。各受光素子52は、例えばシリコンフォトダイオードで構成されており、光の受光量に応じた電気信号が後段の電気回路(図示せず)に出力される。各受光素子52の受光面5aは、正方形または長方形であり、1つの四角形の四隅にそれぞれ位置している。このことから、受光部5の複数のセンサ51は、1つの四角形の四隅にそれぞれ位置する四角形の受光面5aを有していると言うことができる。なお、各受光面5aは、四角形以外の多角形(例えば三角形)であってもよいし、円形であってもよい。 4 is a plan view showing the configuration of the light receiving section 5, and FIG. 5 is a sectional view showing the structure of the light receiving section 5. As shown in FIG. The light receiving section 5 has four sensors 51 (51a to 51d). Each sensor 51 includes a light receiving element 52 and an optical filter 53. Each light-receiving element 52 is composed of, for example, a silicon photodiode, and outputs an electric signal corresponding to the amount of light received to a subsequent electric circuit (not shown). The light-receiving surface 5a of each light-receiving element 52 is square or rectangular, and is located at each of the four corners of one quadrangle. From this, it can be said that the plurality of sensors 51 of the light receiving section 5 have rectangular light receiving surfaces 5a located at the four corners of one rectangle, respectively. Note that each light-receiving surface 5a may be a polygon other than a quadrangle (for example, a triangle), or may be circular.

各センサ51の光学フィルタ53は、所定の波長域の光を透過させる光学特性を有しており、受光素子52よりも大きいサイズで形成されて、受光素子52の光入射側に配置されている。本実施形態では、4つのセンサ51のうち、3つのセンサ51(例えばセンサ51a~51c)の光学フィルタ53は、それぞれ、等色関数X、Y、Zに対応する波長域の光を透過させる光学フィルタ53X、53Y、53Zで構成されている。これにより、上記3つのセンサ51は、それぞれ、等色関数X、Y、Zに対応する測定感度を有することになる。上記3つのセンサ51の光学フィルタ53X、53Y、53Zをそれぞれ透過した光は、対応する受光素子52で受光される。各受光素子52から出力される電気信号を電気回路で処理することにより、色や輝度を測定することができる。 The optical filter 53 of each sensor 51 has an optical property of transmitting light in a predetermined wavelength range, is formed in a larger size than the light receiving element 52, and is arranged on the light incident side of the light receiving element 52. . In this embodiment, the optical filters 53 of three of the four sensors 51 (for example, sensors 51a to 51c) are optical filters that transmit light in wavelength ranges corresponding to the color matching functions X, Y, and Z. It is composed of filters 53X, 53Y, and 53Z. As a result, the three sensors 51 have measurement sensitivities corresponding to the color matching functions X, Y, and Z, respectively. The light transmitted through the optical filters 53X, 53Y, and 53Z of the three sensors 51 is received by the corresponding light receiving element 52. Color and brightness can be measured by processing electrical signals output from each light receiving element 52 using an electrical circuit.

つまり、受光部5の複数のセンサ51が、それぞれ、等色関数X、Y、Zに対応する測定感度を有していることにより、各センサ51(各受光素子52)から出力される電気信号(XYZの3刺激値に対応)に基づいて、電気回路にて、赤(R)、緑(G)、青(B)の各色の比率を求めたり、輝度(例えば(R+G+B)/3)を求めることが可能となる。これにより、色や輝度を求める色彩輝度計(測色計)を実現することが可能となる。 That is, since the plurality of sensors 51 of the light receiving section 5 each have a measurement sensitivity corresponding to the color matching functions X, Y, and Z, the electric signal output from each sensor 51 (each light receiving element 52) (corresponding to the tristimulus values of It becomes possible to ask for it. This makes it possible to realize a colorimeter (colorimeter) that measures color and brightness.

また、上記4つのセンサ51のうちで残りのセンサ51(例えばセンサ51d)の光学フィルタ53は、等色関数Yに対応する波長域の光を透過させる光学フィルタ53Yで構成されている。上記光学フィルタ53Yを透過した光を受光する受光素子52は、例えばフリッカ検出用の電気回路と接続されている。これにより、上記受光素子52から出力される電気信号に基づき、フリッカを検出することが可能となる。 Further, the optical filter 53 of the remaining sensor 51 (for example, the sensor 51d) among the four sensors 51 described above is constituted by an optical filter 53Y that transmits light in a wavelength range corresponding to the color matching function Y. The light receiving element 52 that receives the light transmitted through the optical filter 53Y is connected to, for example, an electric circuit for flicker detection. This makes it possible to detect flicker based on the electrical signal output from the light receiving element 52.

なお、2つの光学フィルタ53Yのうちの一方を、例えば赤外線を透過させる光学フィルタで構成してもよい。この場合、4種類の光学フィルタ53が配置されるため、4種類の光学特性を同時に測定することが可能となる。 Note that one of the two optical filters 53Y may be configured with, for example, an optical filter that transmits infrared rays. In this case, since four types of optical filters 53 are arranged, four types of optical characteristics can be measured simultaneously.

本実施形態では、4つの光学フィルタ53のうち、3つの光学フィルタ53X、53Y、53Zの光学特性が互いに異なっているが、少なくとも2つの光学フィルタ53の特性が互いに異なっていればよい(複数の光学フィルタ53の全てが同じ特性となっていなければよい)。受光部5の複数のセンサ51が、それぞれ、受光面5aが正方形または長方形である受光素子52と、受光素子52の光入射側に配置される光学フィルタ53とを含み、光学フィルタ53の少なくとも2つの特性が互いに異なっていることで、図4のように、複数の特性のセンサ51を簡易にまとめて配置することが可能となる。 In this embodiment, the optical characteristics of the three optical filters 53X, 53Y, and 53Z among the four optical filters 53 are different from each other, but it is sufficient that the characteristics of at least two optical filters 53 are different from each other ( It is sufficient that all the optical filters 53 do not have the same characteristics). Each of the plurality of sensors 51 of the light receiving section 5 includes a light receiving element 52 whose light receiving surface 5a is square or rectangular, and an optical filter 53 disposed on the light incident side of the light receiving element 52, and at least two of the optical filters 53 are arranged on the light incident side of the light receiving element 52. Since the two characteristics are different from each other, it becomes possible to easily arrange sensors 51 having a plurality of characteristics together, as shown in FIG.

各センサ51は、受光素子52よりも光入射側に光学フィルタ53が位置し、かつ、受光素子52および光学フィルタ53が間隙を介して配置されるように、保持部材54の凹部54aに収容されて保持される。凹部54aは、光学フィルタ53の配置側から受光素子52の配置側に向かって開口径が段階的に狭くなる階段状の形状であり、これによって、光学フィルタ53および受光素子52を上記の位置関係となるように凹部54a内に収容することができる。 Each sensor 51 is housed in the recess 54a of the holding member 54 such that the optical filter 53 is located on the light incident side of the light receiving element 52, and the light receiving element 52 and the optical filter 53 are arranged with a gap between them. is retained. The recess 54a has a step-like shape in which the aperture diameter gradually narrows from the side where the optical filter 53 is arranged to the side where the light receiving element 52 is arranged. It can be accommodated in the recess 54a so that it becomes.

上記の保持部材54は、隣り合って位置するセンサ51を区切る遮光壁を兼ねている。つまり、隣り合う2つのセンサ51の間に保持部材54が遮光壁として存在するため、隣り合う一方のセンサ51の光学フィルタ53を通過した光が、隣り合う他方のセンサ51の受光素子52に入射することが防止され、測定誤差を低減することが可能となる。 The holding member 54 described above also serves as a light shielding wall that partitions the sensors 51 located adjacent to each other. In other words, since the holding member 54 exists as a light shielding wall between two adjacent sensors 51, the light that has passed through the optical filter 53 of one adjacent sensor 51 enters the light receiving element 52 of the other adjacent sensor 51. This makes it possible to reduce measurement errors.

また、本実施形態のように、複数のセンサ51(光学フィルタ53および受光素子52)を並べて保持部材54で保持する構成では、複数のセンサ51の配置領域が広がる。しかし、リレー光学系4により、導光部材2の光出射側端面2bの像が受光面5aに拡大結像されるため、複数のセンサ51を保持部材54で保持する構成であっても、各センサ51に対して十分な広さの照明範囲を確保することが可能となる。 Further, in the configuration in which a plurality of sensors 51 (optical filter 53 and light receiving element 52) are arranged and held by the holding member 54 as in this embodiment, the arrangement area of the plurality of sensors 51 is expanded. However, since the image of the light-emitting end surface 2b of the light guide member 2 is enlarged and formed on the light-receiving surface 5a by the relay optical system 4, even if a plurality of sensors 51 are held by the holding member 54, each It becomes possible to secure a sufficiently wide illumination range for the sensor 51.

また、図4に示すように、導光部材2の光出射側端面2bから出射される光が受光部5を照射するときの照射範囲Rは、受光部5の複数のセンサ51の各受光範囲、つまり、各受光素子52の受光面5aを全て包含している。これにより、光学系の組み立て時の誤差(各部品の位置や傾きのズレ)や、環境変化(温度変化、湿度変化、振動、衝撃等)による光学系の変化等によって、各受光面5aに対して照射範囲R(導光部材2の光出射側端面2bの像の結像範囲)の位置がずれても、受光量(測定値)の変化が小さくなるため、安定した測定が可能となる。 Further, as shown in FIG. 4, the irradiation range R when the light emitted from the light emitting side end surface 2b of the light guide member 2 irradiates the light receiving section 5 is the light receiving range of each of the plurality of sensors 51 of the light receiving section 5. In other words, all the light receiving surfaces 5a of each light receiving element 52 are included. As a result, errors in assembling the optical system (discrepancies in the position and inclination of each component) and changes in the optical system due to environmental changes (temperature changes, humidity changes, vibrations, shocks, etc.) Even if the position of the irradiation range R (the imaging range of the image of the light-emitting end surface 2b of the light guide member 2) shifts, the change in the amount of received light (measured value) becomes small, so stable measurement is possible.

特に、本実施形態では、導光部材2の光入射側端面2aおよび光出射側端面2bは、四角形であり(図2A参照)、受光部5の複数のセンサ51は、1つの四角形の四隅にそれぞれ位置する四角形の受光面5aを有している。これにより、導光部材2の光出射側端面2bから出射される光を、受光部5の必要な範囲(各受光面5a)に効率良く導くことができる。したがって、光の利用効率が上がるため(照明光の大部分を受光できるため)、S/N(Signal-to-Noise)比の高い測定が可能となる。 In particular, in this embodiment, the light incident side end surface 2a and the light exit side end surface 2b of the light guide member 2 are square (see FIG. 2A), and the plurality of sensors 51 of the light receiving section 5 are arranged at the four corners of one square. Each has a rectangular light-receiving surface 5a located thereon. Thereby, the light emitted from the light-emitting side end surface 2b of the light guide member 2 can be efficiently guided to the required range (each light-receiving surface 5a) of the light-receiving section 5. Therefore, since the light utilization efficiency increases (because most of the illumination light can be received), measurement with a high S/N (Signal-to-Noise) ratio becomes possible.

また、上記した光学フィルタ53としては、ガラス基板に干渉膜を形成した干渉膜フィルタを用いることが可能である。干渉膜フィルタを用いた場合、干渉膜に対する光線の入射角によって分光透過率が変化するが、本実施形態では、リレー光学系4により、導光部材2の光出射側端面2bの像が受光面5aに拡大結像されることで、各センサ51への光線の入射角が小さくなる。これにより、干渉膜フィルタにおける光線入射角による分光透過率の変化を低減することができる。 Further, as the optical filter 53 described above, it is possible to use an interference film filter in which an interference film is formed on a glass substrate. When an interference film filter is used, the spectral transmittance changes depending on the incident angle of the light beam to the interference film, but in this embodiment, the relay optical system 4 allows the image of the light-emitting side end surface 2b of the light guide member 2 to be adjusted to the light-receiving surface. By forming an enlarged image on 5a, the angle of incidence of the light beam on each sensor 51 becomes smaller. This makes it possible to reduce changes in spectral transmittance due to the angle of incidence of light in the interference film filter.

なお、光学フィルタ53として、特定の波長域の光を吸収する色ガラスフィルタ、広い波長域の光を減光させるND(Neutral Density)フィルタ、直線偏光板、波長板等を用いることも可能である。また、1つの受光素子52の光入射側に、複数の光学フィルタ53を配置してもよい。 Note that as the optical filter 53, it is also possible to use a colored glass filter that absorbs light in a specific wavelength range, an ND (neutral density) filter that attenuates light in a wide wavelength range, a linear polarizer, a wavelength plate, etc. . Further, a plurality of optical filters 53 may be arranged on the light incident side of one light receiving element 52.

なお、光学フィルタ53は、全て同じフィルタで構成されてもよい。ただし、この場合、複数のセンサ51で特性を異ならせるために、受光素子52として異なるセンサを用いる必要がある。例えば、可視光用のシリコンフォトダイオードと、赤外光用のInGaAsフォトダイオードとを組み合わせて用いたり、高感度測定が可能な受光素子と、高速測定が可能な受光素子とを組み合わせて用いることにより、同じ光学フィルタ53を用いながら多様な光学特性を同時に測定することが可能となる。 Note that all the optical filters 53 may be composed of the same filter. However, in this case, in order to make the characteristics of the plurality of sensors 51 different, it is necessary to use different sensors as the light receiving elements 52. For example, by using a combination of a silicon photodiode for visible light and an InGaAs photodiode for infrared light, or by using a combination of a light-receiving element capable of high-sensitivity measurement and a light-receiving element capable of high-speed measurement. , it becomes possible to simultaneously measure various optical characteristics while using the same optical filter 53.

なお、受光部5を構成するセンサ51の数は、本実施形態の4個には限定されない。例えば、センサ51を9個用いて3行3列で配置したり、16個用いて4行4列で配置するなど、より多くのセンサ51を用いて適切に配置することにより、より多くの光学特性を同時に測定することも可能である。 Note that the number of sensors 51 constituting the light receiving section 5 is not limited to four in this embodiment. For example, by using more sensors 51 and arranging them appropriately, such as using 9 sensors 51 and arranging them in 3 rows and 3 columns, or using 16 sensors 51 and arranging them in 4 rows and 4 columns, more optical It is also possible to measure properties simultaneously.

(導光部材による測定感度の位置ムラおよび角度ムラの低減効果について)
次に、本実施形態の導光部材2を用いることにより、測定感度の位置ムラおよび角度ムラを低減できる効果について説明する。
(Regarding the effect of reducing positional and angular variations in measurement sensitivity due to the light guiding member)
Next, the effect of reducing positional and angular variations in measurement sensitivity by using the light guide member 2 of this embodiment will be described.

本実施形態のように、多角柱または多角錐台の形状の導光部材2を用いた構成では、上述したように、被測定光源LSから出射されて導光部材2の内部に入射した光は、光入射側端面2aでの入射角度に応じた回数だけ、導光部材2の側面2cで全反射を繰り返し、光出射側端面2bから出射される。この構成では、光出射側端面2bのある1点を考えると、上記1点が、導光部材2の光入射側端面2aの様々な点からの光で照明されていることになる。また、被測定光源LSの被測定面LS0と導光部材2の光入射側端面2aとが対物光学系3によって共役であり、導光部材2の光出射側端面2bと受光部5の受光面5aとがリレー光学系4によって共役であることから、結局、被測定光源LSの様々な点からの光が、導光部材2を介して受光部5の各センサ51を照明することになる。すなわち、被測定光源LSの被測定面LS0の発光強度(輝度)に位置ムラがあっても、各センサ51は、被測定面LS0の様々な位置の光が導光部材2によって混合された光を受光することで、被測定面LS0における位置ムラの影響を受けにくくなる。これにより、各センサ51において、測定感度の位置ムラを低減することができ、安定した測定が可能となる。In the configuration using the light guide member 2 in the shape of a polygonal prism or a truncated polygonal pyramid as in this embodiment, as described above, the light emitted from the light source to be measured LS and incident on the inside of the light guide member 2 is , total reflection is repeated on the side surface 2c of the light guide member 2 a number of times corresponding to the incident angle on the light incident side end surface 2a, and the light is emitted from the light output side end surface 2b. In this configuration, considering one point on the light-emitting end surface 2b, that one point is illuminated by light from various points on the light-incoming end surface 2a of the light guide member 2. Furthermore, the surface to be measured LS 0 of the light source LS to be measured and the light incident side end surface 2 a of the light guide member 2 are conjugated by the objective optical system 3 , and the light output side end surface 2 b of the light guide member 2 and the light receiving part 5 are conjugated. Since the surface 5a is conjugate with the relay optical system 4, light from various points of the light source LS to be measured will eventually illuminate each sensor 51 of the light receiving section 5 via the light guide member 2. . That is, even if there is a positional unevenness in the emission intensity (brightness) of the measured light source LS on the measured surface LS 0 , each sensor 51 can detect that the light from various positions on the measured surface LS 0 is mixed by the light guide member 2 . By receiving the reflected light, it becomes less susceptible to the influence of positional unevenness on the surface to be measured LS 0 . Thereby, in each sensor 51, positional unevenness in measurement sensitivity can be reduced, and stable measurement is possible.

また、多角柱または多角錐台の形状の導光部材2を用いた構成では、被測定光源LSから出射される光の出射角度に応じて、導光部材2の光入射側端面2aに入射する角度が変わる。光入射側端面2aを介して導光部材2の内部に入射した光は、その角度に応じた回数だけ、導光部材2の側面2cで全反射を繰り返し、光出射側端面2bの様々な位置(導光部材2への入射角度に応じた位置)に到達することになる。したがって、上記と同様に光出射側端面2bのある1点を考えると、上記1点は様々な角度の光で照明されていることになる。被測定光源LSからの光の出射角度は、導光部材2の光入射側端面2aにおける光の入射角度と対応しており、導光部材2の光出射側端面2bと受光部5の受光面5aとが共役であることから、結局、被測定光源LSから様々な角度で出射された光が、導光部材2を介して受光部5の各センサ51を照明することになる。すなわち、被測定光源LSの被測定面LS0の発光強度(輝度)に角度ムラがあっても、各センサ51は、被測定面LS0から出射された様々な角度の光が導光部材2によって混合された光を受光することで、被測定面LS0における角度ムラの影響を受けにくくなる。これにより、各センサ51において、測定感度の角度ムラを低減することができ、安定した測定が可能となる。In addition, in a configuration using the light guide member 2 in the shape of a polygonal prism or a truncated polygonal pyramid, the light that is emitted from the light source LS to be measured is incident on the light incident side end surface 2a of the light guide member 2 depending on the emission angle. The angle changes. The light that enters the inside of the light guide member 2 via the light incident side end face 2a is totally reflected on the side face 2c of the light guide member 2 a number of times corresponding to the angle, and is reflected at various positions on the light output side end face 2b. (a position corresponding to the angle of incidence on the light guide member 2). Therefore, similarly to the above, if we consider one point on the light-emitting end surface 2b, the one point will be illuminated with light from various angles. The emission angle of the light from the light source LS to be measured corresponds to the incident angle of the light at the light-incidence side end surface 2a of the light guide member 2, and the light-emission side end surface 2b of the light guide member 2 and the light-receiving surface of the light-receiving section 5. 5a is conjugate, the light emitted from the light source LS to be measured at various angles will eventually illuminate each sensor 51 of the light receiving section 5 via the light guide member 2. In other words, even if there is angular unevenness in the emission intensity (luminance) of the surface to be measured LS 0 of the light source LS to be measured, each sensor 51 allows the light emitted from the surface to be measured LS 0 at various angles to reach the light guide member 2. By receiving the mixed light, it becomes less susceptible to the influence of angular unevenness on the surface to be measured LS 0 . Thereby, in each sensor 51, angular unevenness in measurement sensitivity can be reduced, allowing stable measurement.

しかも、導光部材2は、単純な多角柱または多角錐台の形状であるため(図2A~図2D参照)、複数本のファイバーをランダムに編み込んで導光する従来の導光体に比べて、構成が簡単であり、安価である。したがって、安価な導光部材2を用いた簡単な構成で、測定感度の位置ムラおよび角度ムラを低減する効果を得ることができる。特に、本実施形態では、上述したように、特性の異なる複数のセンサ51を受光部5が有していることにより、色や輝度を測定することができるため、そのような色や輝度の測定を行う色彩輝度計において上述の効果を得ることができる。 Furthermore, since the light guide member 2 has a simple polygonal prism or truncated polygonal pyramid shape (see FIGS. 2A to 2D), it is more difficult to use than conventional light guides that guide light by randomly weaving multiple fibers. , the configuration is simple, and the cost is low. Therefore, with a simple configuration using the inexpensive light guide member 2, it is possible to obtain the effect of reducing positional and angular variations in measurement sensitivity. In particular, in this embodiment, as described above, since the light receiving section 5 has a plurality of sensors 51 with different characteristics, color and brightness can be measured. The above-mentioned effects can be obtained in a color luminance meter that performs the following.

また、図6は、導光部材2の内部で導光される光線の光路を模式的に示す説明図である。対物光学系3(図1参照)によって、被測定光源LSの被測定面LS0の像を、導光部材2の光入射側端面2aに縮小結像させることにより、細い導光部材2(光入射側端面2aの内接円の直径D1および光出射側端面2bの内接円の直径D2が小さい導光部材)を用いることが可能となり、かつ、被測定光源LSから出射される光の出射角度よりも、導光部材2の光入射側端面2aにおける光の入射角度θが大きくなる(したがって、導光部材2の内部での屈折角θPも大きくなる)。図6より、光入射側端面2aにおける光の入射角度θが大きいほど(屈折角θPが大きいほど)、または、直径D1およびD2が小さいほど、導光部材2の内部に入射した光の側面2cでの反射回数は増加することがわかる。Further, FIG. 6 is an explanatory diagram schematically showing the optical path of the light beam guided inside the light guide member 2. As shown in FIG. The objective optical system 3 (see FIG. 1) reduces and forms the image of the surface to be measured LS0 of the light source LS to be measured on the light incident side end surface 2a of the light guide member 2. This makes it possible to use a light guide member in which the diameter D 1 of the inscribed circle of the entrance side end surface 2a and the diameter D 2 of the inscribed circle of the light output side end surface 2b are small, and the light emitted from the light source LS to be measured is The incident angle θ of the light at the light incident side end surface 2a of the light guide member 2 becomes larger than the output angle of the light guide member 2 (therefore, the refraction angle θ P inside the light guide member 2 also becomes larger). From FIG. 6, it can be seen that the larger the incident angle θ of the light at the light incident side end surface 2a (the larger the refraction angle θ P ), or the smaller the diameters D 1 and D 2 , the more light that has entered the inside of the light guide member 2. It can be seen that the number of reflections on the side surface 2c increases.

本実施形態では、D1=D2であり、被測定光源LSから出射されて導光部材2の光入射側端面2aに入射する光線のうち、光軸AXとのなす角度θが最大となる光線LTが、導光部材2の側面2cで反射する、おおよその回数は、
(LtanθP)/D1、または(LtanθP)/D2
で表される。ただし、nPを導光部材2の屈折率としたとき、屈折角θPは、nPsinθP=sinθを満足する角度である。また、上記の光軸AXは、導光部材2の光入射側端面2aの内接円の中心と、光出射側端面2bの内接円の中心とを結ぶ軸であって、対物光学系3およびリレー光学系4の光軸と同軸とする。
In this embodiment, D 1 =D 2 , and among the light rays emitted from the light source to be measured LS and incident on the light incident side end surface 2a of the light guide member 2, the angle θ formed with the optical axis AX is the maximum. The approximate number of times the light beam LT is reflected by the side surface 2c of the light guide member 2 is:
(Ltanθ P )/D 1 or (Ltanθ P )/D 2
It is expressed as However, when n P is the refractive index of the light guide member 2, the refraction angle θ P is an angle that satisfies n P sin θ P =sin θ. The optical axis AX is an axis that connects the center of the inscribed circle of the light incident side end surface 2a of the light guide member 2 and the center of the inscribed circle of the light exit side end surface 2b, and is and coaxial with the optical axis of the relay optical system 4.

前述のように、本実施形態の構成では、導光部材2の光出射側端面2aのある1点を考えたときに、上記1点は、被測定光源LSから出射された様々な角度の光で照明されていることになり、被測定光源LSの角度ムラの影響を低減することができる。導光部材2の内部で光線が反射されると、光線の角度が反転するため、光線の反射回数が増えると、より様々な角度の光で上記の1点が照明されることになる。このため、より効果的に、被測定光源LSの角度ムラの影響を低減して、測定感度の角度ムラを低減することができ、より安定した測定が可能となる。 As described above, in the configuration of the present embodiment, when considering one point on the light-emitting side end surface 2a of the light guide member 2, the one point is the light emitted from the light source LS to be measured at various angles. Therefore, the influence of angular unevenness of the light source LS to be measured can be reduced. When the light beam is reflected inside the light guide member 2, the angle of the light beam is reversed, so as the number of reflections of the light beam increases, the above-mentioned one point will be illuminated with light from more various angles. Therefore, it is possible to more effectively reduce the influence of the angular unevenness of the light source LS to be measured, thereby reducing the angular unevenness of the measurement sensitivity, and more stable measurement is possible.

また、導光部材2での反射回数を一定としたとき、屈折角θPが大きく、D1またはD2が小さいほど、導光部材2の光軸AX方向の長さLを小さくすることができる。この場合、測光装置1の小型化が可能となる。Furthermore, when the number of reflections on the light guide member 2 is constant, the larger the refraction angle θ P and the smaller D 1 or D 2 , the smaller the length L of the light guide member 2 in the optical axis AX direction. can. In this case, the photometric device 1 can be made smaller.

(多角錐台の導光部材を用いたときの反射回数について)
図7は、導光部材2として、図2Dで示した多角錐台形状の導光部材2を用いたときの、導光部材2の内部で導光される光線の光路を展開して示した説明図である。上記の導光部材2では、光入射側端面2aおよび光出射側端面2bの形状は正方形であるが、光出射側端面2bの面積が光入射側端面2aの面積よりも大きい。このような多角錐台の導光部材2を用いた場合、導光部材2の光出射側端面2bの直後に受光部5を配置しても(リレー光学系4を介在させなくても)、導光部材2の光出射側端面2bから出射される光を受光部5全体に導くことができる。このように、導光部材2の光出射側端面2bの直後に受光部5を配置して、リレー光学系4の配置を省略することにより、安価な測光装置1を実現することが可能となる。
(About the number of reflections when using a truncated polygonal pyramidal light guide member)
FIG. 7 shows an expanded view of the optical path of the light beam guided inside the light guide member 2 when the light guide member 2 having the shape of a truncated polygonal pyramid shown in FIG. 2D is used as the light guide member 2. It is an explanatory diagram. In the light guide member 2 described above, the light incident side end surface 2a and the light exit side end surface 2b have a square shape, but the area of the light exit side end surface 2b is larger than the area of the light incident side end surface 2a. When using such a truncated polygonal pyramidal light guide member 2, even if the light receiving section 5 is placed immediately after the light output side end surface 2b of the light guide member 2 (without intervening the relay optical system 4), The light emitted from the light emitting side end surface 2b of the light guiding member 2 can be guided to the entire light receiving section 5. In this way, by arranging the light receiving section 5 immediately after the light emitting end surface 2b of the light guide member 2 and omitting the arrangement of the relay optical system 4, it is possible to realize an inexpensive photometric device 1. .

ここで、多角錐台の形状の導光部材2を用いたときに内部で導光される光の反射回数については、以下のように考えることができる。すなわち、多角錐台形状の導光部材2を用いた場合、被測定光源LSから出射されて導光部材2の光入射側端面2aに入射する光線のうち、光軸AXとのなす角度θが最大となる光線LTが、導光部材2の側面2cで反射する、おおよその回数は、α/βで表される。ただし、図7において、αは、点Aと点Oとを結ぶ直線と、光軸AXとのなす角度(°)であり、βは、光軸AXを含む断面における導光部材2の側面2cと光軸AXとのなす角度の2倍の角度(°)である。ここで、点Oは、光軸AXを含む断面において、導光部材2の側面2cを延長したときに光軸AXと交わる点を指し、点Aは、光線LTが導光部材2の光入射側端面2aで屈折した後の光線(光軸AXとなす角はθP)を延長した直線(破線LP)と、中心が点Oで半径L0の円とが交わる点である。具体的には、αおよびβは、以下の関係式を満足する角度となる。すなわち、
0sinα={L-L0(1-cosα)}tanθP
tan(β/2)=(D2-D1)/2L
0=D2L/(D2-D1
PsinθP=sinθ
であり、
:導光部材2の光軸AX方向の長さ(mm)
θ :導光部材2の光入射側端面2aの中心に入射する光線と光入射側端面2aの法線とのなす角度の最大値(°)
1:導光部材2の光入射側端面2aの内接円の直径(mm)
2:導光部材2の光出射側端面2bの内接円の直径(mm)
P:導光部材2の屈折率
である。
Here, when using the light guide member 2 having the shape of a truncated polygonal pyramid, the number of reflections of the light guided inside can be considered as follows. That is, when using the light guide member 2 having a truncated polygonal pyramid shape, the angle θ with the optical axis AX of the light rays emitted from the light source LS to be measured and incident on the light incident side end surface 2a of the light guide member 2 is The approximate number of times the maximum light ray LT is reflected by the side surface 2c of the light guide member 2 is expressed as α/β. However, in FIG. 7, α is the angle (°) between the straight line connecting points A and O and the optical axis AX, and β is the side surface 2c of the light guide member 2 in the cross section including the optical axis AX. The angle (°) is twice the angle formed by the optical axis AX and the optical axis AX. Here, point O refers to the point where the side surface 2c of the light guide member 2 intersects with the optical axis AX when the side surface 2c of the light guide member 2 is extended in the cross section including the optical axis AX, and the point A is the point where the light ray LT enters the light guide member 2. The ray after being refracted at the side end surface 2a (the angle with the optical axis AX is θ)P) with a straight line (dashed line LP) whose center is point O and radius L0This is the point where the circles intersect. Specifically, α and β are angles that satisfy the following relational expression. That is,
L0sin α={L−L0(1-cosα)}tanθP
tan(β/2)=(D2-D1)/2L
L0=D2L/(D2-D1)
nPsin θP= sin θ
and
L : Length of light guide member 2 in optical axis AX direction (mm)
θ : Maximum value (°) of the angle between the light ray that enters the center of the light incident side end surface 2a of the light guide member 2 and the normal line of the light incident side end surface 2a.
D1: Diameter of the inscribed circle of the light incident side end surface 2a of the light guide member 2 (mm)
D2: Diameter of the inscribed circle of the light-emitting side end surface 2b of the light guide member 2 (mm)
nP: refractive index of light guide member 2
It is.

α/β>1であれば、つまり、光線LTの導光部材2の側面2cでの反射回数が少なくとも1回あれば、光線LTを側面2cで反射させることで、被測定面LS0の様々な位置から出射される光、および被測定面LS0から様々な角度で出射される光を導光部材2で混合することができる。したがって、被測定光源LSの位置ムラおよび角度ムラの影響を低減して、測定感度の位置ムラおよび角度ムラを低減することができる。特に、α/β>2であることが、光線LTを側面2cで複数回反射させて、被測定光源LSの位置ムラおよび角度ムラの影響を確実に低減し、測定感度の位置ムラおよび角度ムラを確実に低減できるため、望ましい。なお、本実施形態の効果をさらに確実に得る観点では、後述する実施例の結果より、α/β>4であることがより望ましく、α/β>7であることがより一層望ましく、α/β>10であることがさらに望ましい。If α/β>1, that is, if the number of reflections of the light beam LT on the side surface 2c of the light guide member 2 is at least one time, by reflecting the light beam LT on the side surface 2c, various variations of the surface to be measured LS0 can be achieved. The light guide member 2 can mix the light emitted from a certain position and the light emitted from the measurement surface LS 0 at various angles. Therefore, it is possible to reduce the influence of the positional unevenness and angular unevenness of the light source LS to be measured, and to reduce the positional unevenness and angular unevenness of the measurement sensitivity. In particular, α/β>2 allows the light beam LT to be reflected multiple times on the side surface 2c, thereby reliably reducing the influence of positional and angular unevenness of the light source LS to be measured, and reducing the positional and angular unevenness of measurement sensitivity. This is desirable because it can reliably reduce In addition, from the viewpoint of obtaining the effects of this embodiment more reliably, from the results of the examples described later, it is more desirable that α/β>4, it is even more desirable that α/β>7, and It is further desirable that β>10.

なお、α≪1、β≪1の場合、
α≒(L/L0)tanθP={(D2-D1)/D2}/tanθP
β≒(D2-D1)/L
となり、
α/β≒(LtanθP)/D2
となる。つまり、この場合、α/βは、上述したD1=D2の場合の、おおよその反射回数と一致する。
In addition, in the case of α≪1, β≪1,
α≒(L/L 0 ) tanθ P = {(D 2 - D 1 )/D 2 }/tanθ P
β≒(D 2 - D 1 )/L
Then,
α/β≒(Ltanθ P )/D 2
becomes. That is, in this case, α/β roughly matches the number of reflections in the case of D 1 =D 2 described above.

(導光部材の他の形状と受光部との関係)
図8は、図2Bで示した三角柱状の導光部材2を用いたときに、その光入射側端面2aを絞りAP2側から見たときの状態を模式的に示している。同図のように、三角柱状の導光部材2を用いた場合でも、絞りAP2の円形の開口部AP2aの大きさは、導光部材2の光入射側端面2aの内接円よりも若干小さく設定されればよい。
(Relationship between other shapes of the light guiding member and the light receiving part)
FIG. 8 schematically shows a state in which the light incident side end surface 2a is viewed from the aperture AP2 side when the triangular prism-shaped light guide member 2 shown in FIG. 2B is used. As shown in the figure, even when the triangular prism-shaped light guide member 2 is used, the size of the circular opening AP2a of the aperture AP2 is slightly smaller than the inscribed circle of the light incident side end surface 2a of the light guide member 2. It only needs to be set.

図9は、図2Bの導光部材2を用いた場合の受光部5の平面形状を模式的に示している。受光部5は、平面視で円形の3つのセンサ51(51a~51c)で構成され、各センサ51が、1つの正三角形の各頂点に対応して位置するように配置されていてもよい。導光部材2の光出射側端面2bの形状が正三角形であるため、導光部材2の光出射側端面2bから出射される光が受光部5を照射するときの照射範囲Rも、受光部5の3つのセンサ51の各受光範囲を全て包含する正三角形状となる。 FIG. 9 schematically shows the planar shape of the light receiving section 5 when the light guide member 2 of FIG. 2B is used. The light receiving section 5 is composed of three circular sensors 51 (51a to 51c) in plan view, and each sensor 51 may be arranged to correspond to each vertex of one equilateral triangle. Since the light emitting side end surface 2b of the light guide member 2 has an equilateral triangular shape, the irradiation range R when the light emitted from the light emitting side end surface 2b of the light guide member 2 irradiates the light receiving section 5 also extends to the light receiving section. It has an equilateral triangular shape that includes all the light receiving ranges of the three sensors 51 of No. 5.

図10は、図2Cで示した六角柱状の導光部材2を用いたときに、その光入射側端面2aを絞りAP2側から見たときの状態を模式的に示している。同図のように、六角柱状の導光部材2を用いた場合でも、絞りAP2の円形の開口部AP2aの大きさは、導光部材2の光入射側端面2aの内接円よりも若干小さく設定されればよい。 FIG. 10 schematically shows a state in which the light incident side end surface 2a is viewed from the aperture AP2 side when the hexagonal columnar light guide member 2 shown in FIG. 2C is used. As shown in the figure, even when a hexagonal columnar light guide member 2 is used, the size of the circular opening AP2a of the aperture AP2 is slightly smaller than the inscribed circle of the light incident side end surface 2a of the light guide member 2. It only needs to be set.

図11は、図2Cの導光部材2を用いた場合の受光部5の平面形状を模式的に示している。受光部5は、平面視で正方形または長方形の7つのセンサ51(51a~51g)で構成され、各センサ51が、1つの正六角形の各頂点および中心に対応して位置するように配置されていてもよい。導光部材2の光出射側端面2bの形状が正六角形であるため、導光部材2の光出射側端面2bから出射される光が受光部5を照射するときの照射範囲Rも、受光部5の7つのセンサ51の各受光範囲を全て包含する正六角形状となる。 FIG. 11 schematically shows the planar shape of the light receiving section 5 when the light guide member 2 of FIG. 2C is used. The light receiving unit 5 is composed of seven sensors 51 (51a to 51g) that are square or rectangular in plan view, and each sensor 51 is arranged so as to correspond to each vertex and center of one regular hexagon. You can. Since the shape of the light emitting side end surface 2b of the light guide member 2 is a regular hexagon, the irradiation range R when the light emitted from the light emitting side end surface 2b of the light guide member 2 irradiates the light receiving section 5 is also the same as the light receiving section. It has a regular hexagonal shape that includes all the light receiving ranges of the seven sensors 51 of No. 5.

(実施例)
次に、本発明の具体的な実施例について、実施例1~9として説明する。また、各実施例との比較のため、比較例についても併せて説明する。なお、実施例9は、本発明の単なる参考例であり、本発明の範囲には属さないものである。
(Example)
Next, specific examples of the present invention will be described as Examples 1 to 9. Further, for comparison with each example, a comparative example will also be described. Note that Example 9 is merely a reference example of the present invention and does not fall within the scope of the present invention.

図12~図19は、それぞれ実施例2~9の測光装置1の概略の構成を模式的に示している。また、図20は、比較例1の測光装置1’の概略の構成を模式的に示している。なお、実施例1の測光装置1の構成は、図1で示した通りである。なお、図1、図12~図20では、便宜的に、各測光装置のスケールを調整して図示している(スケールは同一ではない)。 FIGS. 12 to 19 schematically show the general configuration of the photometric device 1 of Examples 2 to 9, respectively. Further, FIG. 20 schematically shows the general configuration of the photometric device 1' of Comparative Example 1. Note that the configuration of the photometric device 1 of Example 1 is as shown in FIG. 1. Note that in FIGS. 1 and 12 to 20, the scales of each photometric device are adjusted for convenience (the scales are not the same).

実施例2の測光装置1は、実施例1の測光装置1に比べて、射出瞳の位置が被測定光源LS側にずれており、それ以外は、実施例1の測光装置1と同様の構成である。ここで、射出瞳の位置とは、絞りAP1によって形成される像の位置を指す。 The photometric device 1 of the second embodiment has the same configuration as the photometric device 1 of the first embodiment, except that the exit pupil position is shifted toward the light source to be measured LS compared to the photometric device 1 of the first embodiment. It is. Here, the position of the exit pupil refers to the position of the image formed by the aperture AP1.

実施例3の測光装置1は、実施例2の測光装置1に比べて、射出瞳の位置が被測定光源LS側にずれており、それ以外は、実施例2の測光装置1と同様の構成である。実施例4の測光装置1は、実施例1の測光装置1に比べて、射出瞳の位置が受光部5側にずれており、それ以外は、実施例1の測光装置1と同様の構成である。 The photometric device 1 of the third embodiment has the same configuration as the photometric device 1 of the second embodiment, except that the position of the exit pupil is shifted toward the light source to be measured LS compared to the photometric device 1 of the second embodiment. It is. The photometric device 1 of Example 4 has the same configuration as the photometric device 1 of Example 1, except that the position of the exit pupil is shifted toward the light receiving section 5 side compared to the photometric device 1 of Example 1. be.

実施例5の測光装置1は、実施例1の測光装置1に比べて、導光部材2の光軸方向の長さを増大させ、導光部材2の内部に入射する光線の側面2cでの反射回数(α/β)を増大させた以外は、実施例1の測光装置1と同様の構成である。 In the photometric device 1 of the fifth embodiment, the length of the light guide member 2 in the optical axis direction is increased compared to the photometer 1 of the first embodiment, and the length of the light beam incident on the inside of the light guide member 2 at the side surface 2c is increased. The configuration is the same as that of the photometric device 1 of Example 1 except that the number of reflections (α/β) is increased.

実施例6の測光装置1は、実施例1の測光装置1の四角柱状の導光部材2を、四角錐台の導光部材2(図2D参照)に置き換え、リレー光学系4を配置せずに、導光部材2の光出射側端面2bの直後に受光部5を配置した以外は、実施例1の測光装置1と同様の構成である。 In the photometric device 1 of Example 6, the quadrangular prism-shaped light guide member 2 of the photometric device 1 of Example 1 is replaced with a truncated quadrangular pyramid light guide member 2 (see FIG. 2D), and the relay optical system 4 is not disposed. The structure is the same as that of the photometric device 1 of Example 1, except that the light receiving section 5 is disposed immediately after the light emitting end surface 2b of the light guide member 2.

実施例7の測光装置1は、実施例1の測光装置1の四角柱状の導光部材2を、三角柱状の導光部材2(図2B参照)に置き換え、4つの四角形状のセンサ51を有する受光部5の代わりに、3つの円形のセンサ51を有する受光部5(図9参照)を用いた以外は、実施例1の測光装置1と同様の構成である。実施例8の測光装置1は、実施例1の測光装置1の四角柱状の導光部材2を、六角柱状の導光部材2(図2C参照)に置き換え、4つの四角形状のセンサ51を有する受光部5の代わりに、7つの四角形状のセンサ51を有する受光部5(図11参照)を用いた以外は、実施例1の測光装置1と同様の構成である。 The photometric device 1 of Example 7 replaces the quadrangular prism-shaped light guide member 2 of the photometric device 1 of Example 1 with a triangular prism-shaped light guide member 2 (see FIG. 2B), and has four quadrangular sensors 51. The configuration is the same as that of the photometric device 1 of Example 1, except that the light receiving section 5 (see FIG. 9) having three circular sensors 51 is used instead of the light receiving section 5. The photometric device 1 of Example 8 replaces the quadrangular prism-shaped light guide member 2 of the photometric device 1 of Example 1 with a hexagonal prism-shaped light guide member 2 (see FIG. 2C), and has four quadrangular sensors 51. The configuration is the same as that of the photometric device 1 of Example 1, except that the light receiving section 5 (see FIG. 11) having seven rectangular sensors 51 is used instead of the light receiving section 5.

実施例9の測光装置1は、実施例1の測光装置1に比べて、導光部材2の光軸方向の長さを短くし、導光部材2の内部に入射する光線の側面2cでの反射回数(α/β)を減少させた以外は、実施例1の測光装置1と同様の構成である。 The photometric device 1 of Example 9 has a shorter length of the light guiding member 2 in the optical axis direction than that of the photometric device 1 of Example 1, and the length of the light beam entering the inside of the light guiding member 2 on the side surface 2c is reduced. The configuration is the same as that of the photometric device 1 of Example 1 except that the number of reflections (α/β) is reduced.

比較例1の測光装置1’は、実施例1の測光装置1において、導光部材2の配置を省略した以外は、実施例1の測光装置1と同様の構成である。 The photometric device 1' of Comparative Example 1 has the same configuration as the photometric device 1 of Example 1, except that the arrangement of the light guide member 2 is omitted.

表1は、実施例1~9および比較例1における各パラメータを示している。 Table 1 shows each parameter in Examples 1 to 9 and Comparative Example 1.

Figure 0007415923000001
Figure 0007415923000001

(評価)
各実施例1~9、比較例1の構成による効果を確認するために、受光部5の少なくとも1つのセンサ51での測定感度の空間分布および角度分布をシミュレーションした。測定感度の空間分布および角度分布のシミュレーションは、被測定光源LSの被測定面LS0が、一様な完全拡散面光源とした場合に、被測定面LS0の各位置から出射される光がどの程度受光素子に到達するか、および被測定面LS0から各方向に出射される光がどの程度受光素子に到達するかを、光学ソフトウェアを用いてシミュレーションしたものである。例えば図21は、1つのセンサ51での測定感度の空間分布および角度分布のシミュレーション結果の一例を模式的に示している。これらの分布において、白色部は、相対的に測定感度が高く、黒色部は、相対的に測定感度が低いことを表している。
(evaluation)
In order to confirm the effects of the configurations of Examples 1 to 9 and Comparative Example 1, the spatial distribution and angular distribution of measurement sensitivity in at least one sensor 51 of the light receiving section 5 were simulated. In the simulation of the spatial distribution and angular distribution of measurement sensitivity, when the surface to be measured LS 0 of the light source LS to be measured is a uniform and completely diffuse surface light source, the light emitted from each position of the surface to be measured LS 0 is calculated as follows. Optical software is used to simulate how much light reaches the light receiving element and how much light emitted in each direction from the surface to be measured LS 0 reaches the light receiving element. For example, FIG. 21 schematically shows an example of simulation results of the spatial distribution and angular distribution of measurement sensitivity in one sensor 51. In these distributions, white parts represent relatively high measurement sensitivity, and black parts represent relatively low measurement sensitivity.

また、図22は、被測定光源LS(被測定面LS0)の座標系を模式的に示している。図21で示した測定感度の空間分布の水平方向(x方向)の位置および垂直方向(y方向)の位置は、被測定面LS0内の水平方向(X方向)の位置および垂直方向(Y方向)の位置とそれぞれ対応している。また、測定感度の角度分布の水平方向の角度(θx)および垂直方向の角度(θy)は、被測定面LS0の法線(Z方向)に対する出射光線の水平方向(X方向)の角度(θX)および垂直方向(Y方向)の角度(θY)とそれぞれ対応している。Further, FIG. 22 schematically shows the coordinate system of the light source LS to be measured (surface to be measured LS 0 ). The horizontal (x direction) and vertical (y) positions of the spatial distribution of measurement sensitivity shown in FIG. 21 are the horizontal (X) and vertical (Y direction). In addition , the horizontal angle (θx) and vertical angle (θy) of the angular distribution of measurement sensitivity are the horizontal direction (X direction) angle ( θX) and an angle (θY) in the vertical direction (Y direction), respectively.

図23~図26は、比較例1の4つのセンサ51(ここでは、センサA’、センサB’、センサC’、センサD’と称する)での測定感度の空間分布および角度分布をシミュレーションした結果を示している。なお、上記センサA’、センサB’、センサC’、センサD’は、図4のセンサ51a、センサ51b、センサ51c、センサ51dにそれぞれ対応している。これらの図より、比較例1では、センサA’~D ’の間で測定感度の空間分布が非常に不均一であることがわかる。 23 to 26 show simulations of the spatial distribution and angular distribution of measurement sensitivity in the four sensors 51 (herein referred to as sensor A', sensor B', sensor C', and sensor D') of Comparative Example 1. Showing results. Note that the sensor A', sensor B', sensor C', and sensor D' correspond to the sensor 51a, sensor 51b, sensor 51c, and sensor 51d in FIG. 4, respectively. From these figures, it can be seen that in Comparative Example 1, the spatial distribution of measurement sensitivity is extremely non-uniform between sensors A' to D'.

これに対して、図27~図30は、実施例1の受光部5の4つのセンサ51(ここでは、センサA、センサB、センサC、センサDと称する)での測定感度の空間分布および角度分布をシミュレーションした結果を示している。なお、上記のセンサA、センサB、センサC、センサDは、図4のセンサ51a、センサ51b、センサ51c、センサ51dにそれぞれ対応している。これらの図より、センサA~Dの間で、測定感度の空間分布として同じような分布が得られており、また、測定感度の角度分布についても同じような分布が得られていることがわかる。したがって、実施例1では、複数のセンサ間で、測定感度の空間分布および角度分布を同時に均一にできることがわかる。 In contrast, FIGS. 27 to 30 show the spatial distribution and measurement sensitivity of the four sensors 51 (herein referred to as sensor A, sensor B, sensor C, and sensor D) of the light receiving section 5 of the first embodiment. It shows the results of simulating the angular distribution. Note that the above-mentioned sensor A, sensor B, sensor C, and sensor D correspond to the sensor 51a, sensor 51b, sensor 51c, and sensor 51d in FIG. 4, respectively. From these figures, it can be seen that a similar spatial distribution of measurement sensitivity is obtained between sensors A to D, and a similar distribution is obtained for the angular distribution of measurement sensitivity. . Therefore, it can be seen that in Example 1, the spatial distribution and angular distribution of measurement sensitivity can be made uniform at the same time among a plurality of sensors.

また、図31~図38は、実施例2~9の受光部5を構成する複数のセンサ51の中の任意のセンサ(ここではセンサAとする)での測定感度の空間分布および角度分布をシミュレーションした結果を示している。なお、上記のセンサAは、図4のセンサ51a(実施例2~6、9)、図9のセンサ51a(実施例7)、または図11のセンサ51a(実施例8)に対応している。実施例2~9についても、実施例1と同様に、測定感度の空間分布は、測定範囲内でほぼ均一となっている。導光部材2の配置により、実施例1~9の各センサ51は、測定感度分布の重みで平均化された光量を受光することになるため、被測定光源LSの被測定面LS0の発光強度(輝度)に位置ムラがあっても、受光部5では、上記位置ムラの影響を低減して安定した測定を行うことが可能となる。Furthermore, FIGS. 31 to 38 show the spatial distribution and angular distribution of the measurement sensitivity of an arbitrary sensor (here, sensor A) among the plurality of sensors 51 constituting the light receiving section 5 of Examples 2 to 9. The results of the simulation are shown. Note that the above sensor A corresponds to the sensor 51a in FIG. 4 (Examples 2 to 6, 9), the sensor 51a in FIG. 9 (Example 7), or the sensor 51a in FIG. 11 (Example 8). . In Examples 2 to 9, as in Example 1, the spatial distribution of measurement sensitivity is approximately uniform within the measurement range. Due to the arrangement of the light guide member 2, each sensor 51 of Examples 1 to 9 receives the light amount averaged by the weight of the measurement sensitivity distribution, so that the light emission from the surface to be measured LS 0 of the light source LS to be measured is Even if there is positional unevenness in intensity (luminance), the light receiving section 5 can reduce the influence of the positional unevenness and perform stable measurements.

また、実施例1~9において、測定感度の角度分布に関しては、実施例により程度の差はあるが、どの実施例においても、測定範囲内の広い範囲に感度分布を持っている。導光部材2の配置により、実施例1~9の各センサ51は、測定感度分布の重みで平均化された光量を受光することになるため、被測定光源LSの被測定面LS0の発光強度(輝度)に角度ムラがあっても、受光部5では上記角度ムラの影響を低減して安定した測定を行うことが可能となる。Further, in Examples 1 to 9, the angular distribution of the measurement sensitivity varies to a degree depending on the embodiment, but all the embodiments have a sensitivity distribution over a wide range within the measurement range. Due to the arrangement of the light guide member 2, each sensor 51 of Examples 1 to 9 receives the light amount averaged by the weight of the measurement sensitivity distribution, so that the light emission from the surface to be measured LS 0 of the light source LS to be measured is Even if there is angular unevenness in intensity (brightness), the light receiving section 5 can reduce the influence of the angular unevenness and perform stable measurements.

以上で示した各実施例1~9のシミュレーション結果から分かるように、測定感度の空間分布および角度分布は、導光部材2の長さLおよび射出瞳位置によって変化する。したがって、導光部材2の長さLや射出瞳位置を調整することにより、所望の測定感度の均一性をもつ測光装置1を設計することが可能となる。 As can be seen from the simulation results of Examples 1 to 9 shown above, the spatial distribution and angular distribution of measurement sensitivity vary depending on the length L of the light guide member 2 and the exit pupil position. Therefore, by adjusting the length L of the light guide member 2 and the exit pupil position, it is possible to design the photometric device 1 having desired uniformity of measurement sensitivity.

〔その他〕
以上で説明した本実施形態の測光装置は、以下のように表現されてもよい。
〔others〕
The photometric device of this embodiment described above may be expressed as follows.

本実施形態の測光装置は、光入射側端面および光出射側端面が多角形状である、多角柱または多角錐台の導光部材と、被測定光源の像を、前記導光部材の前記光入射側端面に形成する対物光学系と、前記被測定光源から前記対物光学系を介して前記導光部材に入射し、前記導光部材の前記光出射側端面から出射される光を受光する受光部とを備え、前記受光部は、特性の異なる複数のセンサを有して、前記導光部材の前記光出射側端面の直後に配置され、または、前記導光部材の前記光出射側端面と前記受光部の受光面とが共役となるように、前記導光部材の前記光出射側端面との間にリレー光学系を介して配置されている。 The photometric device of the present embodiment includes a light guide member in the form of a polygonal prism or a truncated polygonal pyramid, whose end face on the light incidence side and the end face on the light output side are polygonal, and an image of the light source to be measured is transferred to the light guide member at the light incidence side of the light guide member. an objective optical system formed on a side end surface; and a light receiving section that receives light that enters the light guide member from the light source to be measured via the objective optical system and is emitted from the light output side end surface of the light guide member. and the light receiving section has a plurality of sensors having different characteristics and is disposed immediately after the light emitting side end surface of the light guide member, or the light receiving section has a plurality of sensors having different characteristics, or A relay optical system is disposed between the light guide member and the light output side end surface of the light guide member so that the light receiving surface of the light receiver is conjugate with the light receiving surface of the light receiver.

上記の測光装置において、前記対物光学系は、前記被測定光源側に位置する前側レンズ系と、前記導光部材側に位置する後側レンズ系と、前記被測定光源の1点から出射される光の広がり角を規制する絞りとを含み、前記絞りは、前記前側レンズ系の後側焦点位置に配置されていてもよい。 In the above photometric device, the objective optical system includes a front lens system located on the side of the light source to be measured, a rear lens system located on the side of the light guide member, and a light source emitted from one point of the light source to be measured. A diaphragm that regulates a spread angle of light may be included, and the diaphragm may be disposed at a rear focal position of the front lens system.

上記の測光装置は、
α/β>2
を満足していることが望ましい。ただし、
0sinα={L-L0(1-cosα)}tanθP
tan(β/2)=(D2-D1)/2L
0=D2L/(D2-D1
PsinθP=sinθ
であり、
:前記導光部材の光軸方向の長さ(mm)
θ :前記導光部材の光入射側端面の中心に入射する光線と前記光入射側端面の法線とのなす角度の最大値(°)
1:前記導光部材の光入射側端面の内接円の直径(mm)
2:前記導光部材の光出射側端面の内接円の直径(mm)
P:前記導光部材の屈折率
であり、D1=D2の場合、
α/β=Ltanθp/D2>2
である。
The above photometric device is
α/β>2
It is desirable that you satisfy the following. however,
L0sin α={L−L0(1-cosα)}tanθP
tan(β/2)=(D2-D1)/2L
L0=D2L/(D2-D1)
nPsinθP= sin θ
and
L : Length of the light guide member in the optical axis direction (mm)
θ : The maximum value (°) of the angle between the light ray incident on the center of the light-incidence side end face of the light guide member and the normal line of the light-incidence side end face.
D1: Diameter (mm) of the inscribed circle of the light incident side end surface of the light guide member
D2: Diameter (mm) of the inscribed circle of the light-emitting side end surface of the light guide member
nP: refractive index of the light guide member
and D1=D2in the case of,
α/β=Ltanθp/D2>2
It is.

上記の測光装置において、前記受光部の前記複数のセンサは、それぞれ、受光面が正方形または長方形である受光素子と、前記受光素子の光入射側に配置される光学フィルタとを含み、前記光学フィルタの少なくとも2つは、特性が互いに異なっていてもよい。 In the above photometric device, each of the plurality of sensors of the light receiving section includes a light receiving element having a square or rectangular light receiving surface, and an optical filter disposed on a light incident side of the light receiving element, and the optical filter At least two of them may have different characteristics.

上記の測光装置において、前記導光部材の前記光出射側端面から出射される光が前記受光部を照射するときの照射範囲は、前記受光部の前記複数のセンサの各受光範囲を全て包含してもよい。 In the above photometric device, the irradiation range when the light emitted from the light emitting side end face of the light guide member irradiates the light receiving section includes all the light receiving ranges of the plurality of sensors of the light receiving section. You can.

上記の測光装置において、前記受光部の前記複数のセンサは、それぞれ、等色関数X、Y、Zに対応する測定感度を有していてもよい。 In the above photometric device, each of the plurality of sensors of the light receiving section may have a measurement sensitivity corresponding to color matching functions X, Y, and Z.

上記の測光装置において、前記導光部材の前記光入射側端面および前記光出射側端面は、四角形であり、前記受光部の複数のセンサは、1つの四角形の四隅にそれぞれ位置する四角形の受光面を有していてもよい。 In the above-mentioned photometric device, the light-incidence side end face and the light-output side end face of the light guide member are square, and the plurality of sensors of the light-receiving section are each arranged on a square light-receiving surface located at each of the four corners of one square. It may have.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。 Although the embodiments of the present invention have been described above, the scope of the present invention is not limited thereto, and various modifications can be made without departing from the gist of the invention.

本発明は、例えば色彩輝度計に利用可能である。 INDUSTRIAL APPLICATION This invention can be utilized for a color luminance meter, for example.

1 測光装置
2 導光部材
2a 光入射側端面
2b 光出射側端面
2c 側面
3 対物光学系
4 リレー光学系
5 受光部
5a 受光面
31 前側レンズ系
32 後側レンズ系
51 センサ
52 受光素子
53 光学フィルタ
AP1 絞り
LS 被測定光源
1 Photometer 2 Light guide member 2a Light incident end face 2b Light exit end face 2c Side face 3 Objective optical system 4 Relay optical system 5 Light receiving section 5a Light receiving surface 31 Front lens system 32 Rear lens system 51 Sensor 52 Light receiving element 53 Optical filter AP1 Aperture LS Measured light source

Claims (7)

光入射側端面および光出射側端面が多角形状である、多角柱または多角錐台の導光部材と、
被測定光源の像を、前記導光部材の前記光入射側端面に形成する対物光学系と、
前記被測定光源から前記対物光学系を介して前記導光部材に入射し、前記導光部材の前記光出射側端面から出射される光を受光する受光部とを備え、
前記受光部は、特性の異なる複数のセンサを有して、前記導光部材の前記光出射側端面の直後に配置され、または、前記導光部材の前記光出射側端面と前記受光部の受光面とが共役となるように、前記導光部材の前記光出射側端面との間にリレー光学系を介して配置されており、
α/β>2
を満足する、測光装置;
ただし、
0sinα={L-L0(1-cosα)}tanθP
tan(β/2)=(D2-D1)/2L
0=D2L/(D2-D1
PsinθP=sinθ
であり、
:前記導光部材の光軸方向の長さ(mm)
θ :前記導光部材の光入射側端面の中心に入射する光線と前記光入射側端面の法線とのなす角度の最大値(°)
1:前記導光部材の光入射側端面の内接円の直径(mm)
2:前記導光部材の光出射側端面の内接円の直径(mm)
P:前記導光部材の屈折率
であり、D1=D2の場合、
α/β=Ltanθp/D2>2
である。
a polygonal prism or truncated polygonal pyramid light guide member whose light incident side end face and light exit side end face are polygonal;
an objective optical system that forms an image of the light source to be measured on the light incident side end surface of the light guide member;
a light receiving section that receives light that enters the light guide member from the light source to be measured via the objective optical system and is emitted from the light output side end surface of the light guide member;
The light receiving section has a plurality of sensors having different characteristics and is disposed immediately after the light emitting side end surface of the light guide member, or the light receiving section has a plurality of sensors having different characteristics, and is disposed immediately after the light emitting side end surface of the light guiding member and the light receiving section. disposed via a relay optical system between the light-emitting side end surface of the light guide member so that the light-emitting surface is conjugate with the light-emitting surface;
α/β>2
A photometric device that satisfies the following;
however,
L0sin α={L−L0(1-cosα)}tanθP
tan(β/2)=(D2-D1)/2L
L0=D2L/(D2-D1)
nPsinθP= sin θ
and
L : Length of the light guide member in the optical axis direction (mm)
θ : The maximum value (°) of the angle between the light ray incident on the center of the light-incidence side end face of the light guide member and the normal line of the light-incidence side end face.
D1: Diameter (mm) of the inscribed circle of the light incident side end surface of the light guide member
D2: Diameter of the inscribed circle of the light-emitting side end face of the light guide member (mm)
nP: refractive index of the light guide member
and D1=D2in the case of,
α/β=Ltanθp/D2>2
It is.
前記対物光学系は、前記被測定光源側に位置する前側レンズ系と、前記導光部材側に位置する後側レンズ系と、前記被測定光源の1点から出射される光の広がり角を規制する絞りとを含み、
前記絞りは、前記前側レンズ系の後側焦点位置に配置されている、請求項1に記載の測光装置。
The objective optical system includes a front lens system located on the side of the light source to be measured, a rear lens system located on the side of the light guide member, and regulating a spread angle of light emitted from one point of the light source to be measured. and an aperture to
The photometric device according to claim 1, wherein the diaphragm is located at a rear focal position of the front lens system.
前記受光部の前記複数のセンサは、それぞれ、受光面が正方形または長方形である受光素子と、前記受光素子の光入射側に配置される光学フィルタとを含み、
前記光学フィルタの少なくとも2つは、互いに異なる波長域の光を透過させる、請求項1または2に記載の測光装置。
Each of the plurality of sensors of the light receiving unit includes a light receiving element whose light receiving surface is square or rectangular, and an optical filter disposed on the light incident side of the light receiving element,
3. The photometric device according to claim 1, wherein at least two of the optical filters transmit light in different wavelength ranges .
前記受光部の前記複数のセンサは、それぞれ、受光面が正方形または長方形である受光素子と、前記受光素子の光入射側に配置される光学フィルタとを含み、Each of the plurality of sensors of the light receiving unit includes a light receiving element whose light receiving surface is square or rectangular, and an optical filter disposed on the light incident side of the light receiving element,
前記光学フィルタの少なくとも2つは、互いに異なる等色関数に対応する波長域の光を透過させる、請求項1または2に記載の測光装置。3. The photometric device according to claim 1, wherein at least two of the optical filters transmit light in wavelength ranges corresponding to mutually different color matching functions.
前記導光部材の前記光出射側端面から出射される光が前記受光部を照射するときの照射範囲は、前記受光部の前記複数のセンサの各受光範囲を全て包含する、請求項1から4のいずれかに記載の測光装置。Claims 1 to 4, wherein the irradiation range when the light emitted from the light emitting side end face of the light guide member irradiates the light receiving section includes all the light receiving ranges of the plurality of sensors of the light receiving section. The photometric device according to any one of. 前記受光部の前記複数のセンサは、それぞれ、等色関数X、Y、Zに対応する測定感度を有している、請求項1から5のいずれかに記載の測光装置。6. The photometric device according to claim 1, wherein each of the plurality of sensors of the light receiving section has a measurement sensitivity corresponding to color matching functions X, Y, and Z. 前記導光部材の前記光入射側端面および前記光出射側端面は、四角形であり、The light-incidence side end face and the light-output side end face of the light guide member are square,
前記受光部の複数のセンサは、1つの四角形の四隅にそれぞれ位置する四角形の受光面を有している、請求項1から6のいずれかに記載の測光装置。7. The photometric device according to claim 1, wherein the plurality of sensors of the light receiving section have rectangular light receiving surfaces located at four corners of one rectangle, respectively.
JP2020530897A 2018-07-19 2019-04-15 Photometric device Active JP7415923B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018135574 2018-07-19
JP2018135574 2018-07-19
PCT/JP2019/016205 WO2020017118A1 (en) 2018-07-19 2019-04-15 Photometric device

Publications (2)

Publication Number Publication Date
JPWO2020017118A1 JPWO2020017118A1 (en) 2021-08-02
JP7415923B2 true JP7415923B2 (en) 2024-01-17

Family

ID=69164449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020530897A Active JP7415923B2 (en) 2018-07-19 2019-04-15 Photometric device

Country Status (4)

Country Link
JP (1) JP7415923B2 (en)
KR (1) KR102609046B1 (en)
CN (1) CN112424575B (en)
WO (1) WO2020017118A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135042A (en) * 2020-02-21 2021-09-13 ローム株式会社 Illuminance sensor and electronic apparatus
CN111337126B (en) * 2020-03-09 2023-01-31 安徽大学 Light source mode measuring instrument
JPWO2022059524A1 (en) * 2020-09-16 2022-03-24

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221113A (en) 1999-01-29 2000-08-11 Minolta Co Ltd Optical measuring equipment
JP2002310800A (en) 2001-04-17 2002-10-23 Minolta Co Ltd Measuring optical system and three-stimulation value photoelectric colorimeter provided therewith
US20050052648A1 (en) 2003-07-23 2005-03-10 Beat Frick Spectral photometer and associated measuring head
JP2010002255A (en) 2008-06-19 2010-01-07 Topcon Corp Optical system for measurement
JP2016053550A (en) 2014-09-04 2016-04-14 株式会社セコニック Photometric apparatus
WO2018012478A1 (en) 2016-07-15 2018-01-18 コニカミノルタ株式会社 Colorimeter
US20180172509A1 (en) 2016-12-20 2018-06-21 Oculus Vr, Llc Measurement of display characteristics of electronic display panel using optical tapers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221113A (en) 1999-01-29 2000-08-11 Minolta Co Ltd Optical measuring equipment
JP2002310800A (en) 2001-04-17 2002-10-23 Minolta Co Ltd Measuring optical system and three-stimulation value photoelectric colorimeter provided therewith
US20050052648A1 (en) 2003-07-23 2005-03-10 Beat Frick Spectral photometer and associated measuring head
JP2010002255A (en) 2008-06-19 2010-01-07 Topcon Corp Optical system for measurement
JP2016053550A (en) 2014-09-04 2016-04-14 株式会社セコニック Photometric apparatus
WO2018012478A1 (en) 2016-07-15 2018-01-18 コニカミノルタ株式会社 Colorimeter
US20180172509A1 (en) 2016-12-20 2018-06-21 Oculus Vr, Llc Measurement of display characteristics of electronic display panel using optical tapers

Also Published As

Publication number Publication date
WO2020017118A1 (en) 2020-01-23
CN112424575A (en) 2021-02-26
CN112424575B (en) 2024-01-12
KR20210021054A (en) 2021-02-24
KR102609046B1 (en) 2023-12-01
JPWO2020017118A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP7415923B2 (en) Photometric device
TWI429888B (en) Measuring the optical system and using a color meter with this color meter
CN101625263B (en) Brightness measuring device
JP4570680B1 (en) Light irradiation device and inspection device
KR101417565B1 (en) Optical system for measurements, and luminance colorimeter and colorimeter using same
CN201218753Y (en) Brightness measurement apparatus
CN102893138B (en) Optical system for measurement, luminance meter using the optical system, color luminance meter, and color meter
TWI495854B (en) Optical measurement apparatus, optical measurement system, and fiber coupler
JP2010025558A (en) Optical system for measurement
US8675194B2 (en) Apparatus for measuring the retroreflectance of materials
US20110085160A1 (en) Spectral detector with angular resolution using refractive and reflective structures
US7298485B2 (en) Method of and a device for measuring optical absorption characteristics of a sample
US20170248795A1 (en) Backscatter reductant anamorphic beam sampler
US7508522B2 (en) Reflected light measuring apparatus and reflected light measuring method
KR20220147647A (en) An optical device that can quickly measure the angular radiation pattern of a light source in a limited area
WO2022059524A1 (en) Photometer
JP7076954B2 (en) Confocal displacement meter
WO2022030292A1 (en) Optical device, spectroradiometer, and colorimeter
US20230168478A1 (en) Lens and Optical System Device
JP2013130549A (en) Wavelength distribution measuring apparatus
JPH05126676A (en) Inspecting device for optical fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7415923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150