JP2010002255A - Optical system for measurement - Google Patents

Optical system for measurement Download PDF

Info

Publication number
JP2010002255A
JP2010002255A JP2008160179A JP2008160179A JP2010002255A JP 2010002255 A JP2010002255 A JP 2010002255A JP 2008160179 A JP2008160179 A JP 2008160179A JP 2008160179 A JP2008160179 A JP 2008160179A JP 2010002255 A JP2010002255 A JP 2010002255A
Authority
JP
Japan
Prior art keywords
lens
light beam
light
face
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008160179A
Other languages
Japanese (ja)
Inventor
Yasunori Tanami
康則 田波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2008160179A priority Critical patent/JP2010002255A/en
Priority to TW98119936A priority patent/TWI405958B/en
Publication of JP2010002255A publication Critical patent/JP2010002255A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical system for measurement capable of improving detection sensitivity using a filter for interference without extending the total length of the optical system. <P>SOLUTION: The optical system for measurement includes: a first lens 5 that faces a measurement target, has positive power, and condenses luminous flux from each point in a region to be measured of the measurement target as parallel luminous flux; an aperture diaphragm 6 that is arranged at a nearly rear focus position of the first lens 5 to regulate the incidence angle of luminous flux entering the first lens 5 from each point; a second lens 7 that has a front focus at the arrangement position of the aperture diaphragm 6 and forms an image of the region to be measured at a rear focus position based on luminous flux entering through the aperture diaphragm 6; a light guide 8 that has an incidence end face at the rear focus position of the second lens 7 and divides each luminous flux entering an incidence end face 8a into three luminous flux groups; and a light reception means for receiving each luminous flux group via an interference filter 11 arranged opposite to the emission surface of the light guide 8. An incidence angle at the position of the incidence end face 8a of the light guide 8 is set smaller than that at the position of the aperture diaphragm 6. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、測定対象の色の特性を測定するのに用いられる測定用光学系に関し、カラーLCDの表示特性(例えば、色度、輝度、色差等)を計測する色彩計に好適な測定用光学系に関する。   The present invention relates to a measurement optical system used for measuring the characteristics of a color to be measured, and relates to a measurement optical suitable for a colorimeter that measures display characteristics (for example, chromaticity, luminance, color difference, etc.) of a color LCD. Regarding the system.

従来から、カラーLCDの表示特性(例えば、色度、輝度、色差等)を計測する色彩計に用いる測定用光学系として、光強度が微弱な場合でも、測定対象の色の特性を正確に測定するために、測定対象の被測定領域からの光束のうち、出射角度が所定値以下の光束のみを集光する正のパワーを有する対物レンズを備え、この対物レンズにより集光された光束を複数本の光ファイバーを束ねて形成された導光体の入射端面に入射させ、この導光体を3分割し、分割された各導光体の出射端面から各光束を出射させ、この各出射端面から出射された各光束をそれぞれ、受光素子により受光して、光の三刺激値(R、G、B)に関連する光電変換信号に基づき、測定対象の色の特性の計測を行うものが知られている(特許文献1参照。)。
特開2002−318080号公報
Conventionally, as a measurement optical system used in colorimeters that measure the display characteristics of color LCDs (for example, chromaticity, brightness, color difference, etc.), even when the light intensity is weak, the characteristics of the color to be measured are accurately measured. In order to achieve this, an objective lens having a positive power for condensing only a light beam having an emission angle of a predetermined value or less among light beams from the measurement target region to be measured is provided, and a plurality of light beams collected by the objective lens are collected. The optical fiber is made to enter an incident end face of a light guide formed by bundling a plurality of optical fibers, the light guide is divided into three parts, and each light beam is emitted from the exit end face of each of the divided light guides. Each of the emitted light beams is received by a light receiving element, and the characteristics of the color to be measured are measured based on the photoelectric conversion signal related to the tristimulus values (R, G, B) of light. (See Patent Document 1).
Japanese Patent Laid-Open No. 2002-318080

ところで、従来、この測定用光学系では、光の三刺激値を得るために、R(赤)、B(青)、G(緑)の各波長領域に感度を有する分光感度補正フィルタが各受光素子の前に配設されている。この分光感度補正フィルタには、通常、色ガラスフィルタが用いられる。   Conventionally, in this measurement optical system, in order to obtain tristimulus values of light, spectral sensitivity correction filters having sensitivity in each wavelength region of R (red), B (blue), and G (green) It is arranged in front of the element. A color glass filter is usually used as the spectral sensitivity correction filter.

しかしながら、この種の色ガラスフィルタは、透過率が低いので、受光素子に入射する受光量が少なくなり、光強度が微弱な場合、色の特性の測定に相当の困難を伴い、検出感度を向上させて、測定対象の色の特性を正確に測定するのには不十分である。   However, since this type of colored glass filter has low transmittance, the amount of light received by the light receiving element is reduced, and when the light intensity is weak, the color characteristics are considerably difficult to measure and the detection sensitivity is improved. Thus, it is insufficient to accurately measure the characteristics of the color to be measured.

そこで、分光感度補正フィルタとして、透過率の高い干渉フィルタを用いることが考えられるが、干渉フィルタは、この干渉フィルタに入射する光束の入射角が大きいと、光の波長が短い方にシフトするので、正確に色の特性を測定し難いという問題がある。   Therefore, it is conceivable to use an interference filter having a high transmittance as the spectral sensitivity correction filter. However, if the incident angle of the light beam incident on this interference filter is large, the wavelength of light shifts to the shorter side. There is a problem that it is difficult to accurately measure color characteristics.

また、対物レンズの焦点距離を大きく設定すれば、導光体入射端面位置での入射角を小さくすることができ、その入射角が保存されて導光体出射端面に伝播されて出射され、干渉フィルタに対する入射角を小さくすることができるが、このような構成とすると、測定用光学系の全長が長くなるという問題が生じる。   In addition, if the focal length of the objective lens is set to be large, the incident angle at the light entrance end face position can be reduced, and the incident angle is stored and propagated to the light guide exit end face for output and interference. Although the incident angle with respect to the filter can be reduced, such a configuration causes a problem that the entire length of the measurement optical system is increased.

本発明は、上記の事情に鑑みて為されたもので、光学系の全長を長くすることなく、干渉用フィルタを用いて検出感度を向上させることのできる測定用光学系を提供することにある。   The present invention has been made in view of the above circumstances, and provides a measurement optical system capable of improving detection sensitivity using an interference filter without increasing the total length of the optical system. .

請求項1に記載の発明は、測定対象に対面されて正のパワーを有しかつ前記測定対象の被測定領域の各点からの光束を集光してコリメートする第1レンズと、前記第1レンズの略後側焦点位置に配設されて前記各点から前記第1レンズに入射する光束の入射角度を規制する開口絞りと、該開口絞りの略配設位置に前側焦点を有しかつ前記開口絞りを通過して入射する光束に基づき前記被測定領域の像を後側焦点位置に形成する第2レンズと、該第2レンズの略後側焦点位置に入射端面を有しかつ該入射端面に入射した各光束を3つの光束群に分割する光束分割手段と、前記光束分割手段の出射面に対向して配設された干渉フィルタを介して前記各光束群を受光する受光手段とを備え、前記光束分割手段の入射端面位置での光束の入射角が前記開口絞り位置での入射角よりも小さく設定され、前記受光手段からの出力が色特性を測定するのに用いられることを特徴とする測定用光学系である。   The invention according to claim 1 is a first lens that confronts the measurement object and has a positive power and collects and collimates light beams from each point of the measurement target area of the measurement object, and the first lens An aperture stop that is disposed at a substantially rear focal position of the lens and restricts an incident angle of a light beam incident on the first lens from each of the points; a front focal point at the substantially disposed position of the aperture stop; and A second lens for forming an image of the measured region at a rear focal position based on a light beam incident through an aperture stop; and an incident end face at an approximate rear focal position of the second lens. A beam splitting unit that splits each beam incident on the beam into three beam groups, and a light receiving unit that receives each beam group through an interference filter disposed opposite to the exit surface of the beam splitting unit. The incident angle of the light beam at the incident end face position of the light beam splitting means is the Is set smaller than the incident angle at the mouth aperture position, the output from the light receiving means is a measuring optical system characterized in that it is used to measure the color characteristics.

請求項2に記載の発明は、前記開口絞り位置での入射角よりも前記光束分割手段の入射端面位置での入射角を小さくするために、前記光束分割手段の入射端面の大きさが前記開口絞りの大きさよりも大きく設定されていることを特徴とする請求項1に記載の測定用光学系である。   According to a second aspect of the present invention, in order to make the incident angle at the incident end face position of the light beam dividing means smaller than the incident angle at the aperture stop position, the size of the incident end face of the light beam dividing means is the aperture. 2. The measuring optical system according to claim 1, wherein the measuring optical system is set larger than the size of the stop.

請求項3に記載の発明は、前記光束分割手段の入射端面に、前記被測定領域の大きさを規定する視野絞りが配設されていることを特徴とする請求項2に記載の測定用光学系である。   According to a third aspect of the present invention, the field stop for defining the size of the region to be measured is disposed on the incident end face of the light beam splitting means. It is a system.

請求項4に記載の発明は、前記光束分割手段は、多数本の光ファイバーを束ねた導光体からなり、該多数本の光ファイバーは、前記入射端面において結像した光束の結像位置関係が擬似的にランダムとなるようにして束ねられていることを特徴とする請求項3に記載の測定用光学系である。   According to a fourth aspect of the present invention, the light beam splitting means includes a light guide member in which a large number of optical fibers are bundled, and the multiple optical fibers have a pseudo image forming positional relationship of the light beams formed on the incident end face. 4. The measuring optical system according to claim 3, wherein the measuring optical system is bundled so as to be random.

請求項5に記載の発明は、前記受光手段は、前記出射端面に対向して配設されかつ該出射端面から出射された光束を集光する正のパワーを有する集光レンズと、該集光レンズにより集光された光を受光する受光部とからなることを特徴とする請求項4に記載の測定用光学系である。   According to a fifth aspect of the present invention, the light receiving means is disposed so as to face the emission end face and has a positive power for condensing the light beam emitted from the emission end face; The measurement optical system according to claim 4, further comprising a light receiving unit that receives light collected by the lens.

請求項1ないし請求項4に記載の発明によれば、光学系の全長を長くすることなく、干渉用フィルタを用いて検出感度を向上させることができるという効果を奏する。   According to the first to fourth aspects, the detection sensitivity can be improved using the interference filter without increasing the total length of the optical system.

また、請求項5に記載の発明によれば、上記の効果に加えて、受光感度の向上を図ることができる。   Further, according to the fifth aspect of the invention, in addition to the above effects, the light receiving sensitivity can be improved.

以下に、本発明に係わる色彩計の測定用光学系の発明の実施の形態を図面を参照しつつ説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a color measuring optical system according to the present invention will be described below with reference to the drawings.

図1は本発明に係わる色彩計の測定用光学系の概略構成を示す説明図であって、この図1において、符号1は液晶盤であり、符号1aは液晶盤1の表示面、2は測定用光学系である。ここでは、表示面1aが測定対象であり、この表示面1aの一部が被測定領域とされている。   FIG. 1 is an explanatory diagram showing a schematic configuration of a colorimeter measurement optical system according to the present invention. In FIG. 1, reference numeral 1 denotes a liquid crystal panel, reference numeral 1a denotes a display surface of the liquid crystal panel 1, and 2 denotes It is an optical system for measurement. Here, the display surface 1a is an object to be measured, and a part of the display surface 1a is a measurement target area.

測定用光学系2は筒体3と筐体4とから概略構成されている。筒体3の内部には、第1レンズ5、開口絞り6、第2レンズ7が設けられ、筐体4には、例えば導光体8、受光手段9、演算回路10を含むその他の測定回路、電源回路等、測定スイッチ等の測定に要する機構が設けられている。   The measuring optical system 2 is generally composed of a cylindrical body 3 and a housing 4. A first lens 5, an aperture stop 6, and a second lens 7 are provided inside the cylindrical body 3, and the housing 4 has other measurement circuits including, for example, a light guide 8, a light receiving unit 9, and an arithmetic circuit 10. A mechanism required for measurement such as a power supply circuit and a measurement switch is provided.

筒体3の先端3aは測定の際に表示面1aに接触され、第1レンズ5は表示面1aに測定の際に対面される。筒体3は外光を遮光する役割、第1レンズ5に対する表示面1aの距離を規定する役割を果たす。   The tip 3a of the cylindrical body 3 is in contact with the display surface 1a during measurement, and the first lens 5 is opposed to the display surface 1a during measurement. The cylindrical body 3 plays a role of shielding external light and a role of defining a distance of the display surface 1a from the first lens 5.

第1レンズ5は正のパワーを有し、その前側焦点位置f1が表示面1aに位置するようにして配設される。この第1レンズ5は表示面1aの被測定領域からの光束を集光してコリメートする役割を有する。その図1において、符号Pa1〜Pa3は点aから第1レンズ5に入射する光束を示し、符号Pb1〜Pb3は点bから第1レンズ5に入射する光束を示し、符号Pc1〜Pc3は点cから第1レンズ5に入射する光束を示し、被測定領域の各点a、b、cからの光束は第1レンズ5により集光されて、それぞれコリメートされて開口絞り6に導かれる。   The first lens 5 has a positive power and is disposed such that its front focal position f1 is located on the display surface 1a. The first lens 5 has a role of collecting and collimating the light flux from the region to be measured on the display surface 1a. In FIG. 1, reference characters Pa1 to Pa3 indicate light beams incident on the first lens 5 from the point a, reference characters Pb1 to Pb3 indicate light beams incident on the first lens 5 from the point b, and reference characters Pc1 to Pc3 indicate point c. The light beams from the points a, b, and c in the region to be measured are collected by the first lens 5, collimated, and guided to the aperture stop 6.

開口絞り6は第1レンズ5の後側焦点位置f1’に配設されて、各点a、b、cから第1レンズ5に入射する光束の入射角度を規制する役割を有する。ここでは、この開口絞り6は、主光線Pa2、Pb2、Pc2を基準として、プラス・マイナス2.5度を超える角度で被測定領域から第1レンズ5に向かう光束を遮光する役割を果たす。   The aperture stop 6 is disposed at the rear focal position f1 'of the first lens 5 and has a role of regulating the incident angle of the light beam incident on the first lens 5 from the points a, b, and c. Here, the aperture stop 6 plays a role of shielding a light beam traveling from the measurement region to the first lens 5 at an angle exceeding plus / minus 2.5 degrees with respect to the principal rays Pa2, Pb2, and Pc2.

ここで、主光線Pa2、Pb2、Pc2を基準として、プラス・マイナス2.5度を超える角度で被測定領域から第1レンズ5に向かう光束を遮光することにしたのは、色彩計に要請されている国際規格に基づくものである。   Here, the colorimeter is required to block the light beam from the measurement area toward the first lens 5 at an angle exceeding plus or minus 2.5 degrees with respect to the principal rays Pa2, Pb2, and Pc2. Is based on international standards.

第2レンズ7は開口絞り6の配設位置に前側焦点位置f2を有しかつ開口絞り6を通過して入射する光束に基づき被測定領域の像を後側焦点位置f2’に形成する役割を果たし、この第2レンズも第1レンズ5と同様に正のパワーを有する。この第2レンズ7の焦点距離は第1レンズ5の焦点距離よりも短い。   The second lens 7 has a front focal position f2 at the position where the aperture stop 6 is disposed, and plays a role of forming an image of the measurement region at the rear focal position f2 ′ based on the light beam incident through the aperture stop 6. The second lens also has a positive power like the first lens 5. The focal length of the second lens 7 is shorter than the focal length of the first lens 5.

導光体8は多数の光ファイバーを束ねたファイバー束から構成されている。このファイバー束は入射端面8aの側が一本に束ねられ、出射端面の側が3本のファイバー束に分割されている。この3本のファイバー束に分割された各ファイバー束の出射端面をそれぞれ符号8br、8bg、8bbで示す。その各出射端面8br、8bg、8bbは図2に示すように、例えば、その中心位置O1、O2、O3を結んだ線分が正三角形を構成するように配置されている。   The light guide 8 is composed of a fiber bundle in which a large number of optical fibers are bundled. In this fiber bundle, the incident end face 8a side is bundled into one, and the exit end face side is divided into three fiber bundles. The exit end faces of the fiber bundles divided into the three fiber bundles are denoted by reference numerals 8br, 8bg, and 8bb, respectively. As shown in FIG. 2, the emission end faces 8br, 8bg, and 8bb are arranged so that, for example, line segments connecting the center positions O1, O2, and O3 form an equilateral triangle.

導光体8の入射端面8aは第2レンズ7の後側焦点位置f2’に配設され、導光体8は入射端面8aに入射する像形成光束を3つの光束群に分割する光束分割手段としての役割を果たす。   The incident end face 8a of the light guide 8 is disposed at the rear focal position f2 'of the second lens 7, and the light guide 8 splits the image forming light flux incident on the incident end face 8a into three light flux groups. As a role.

この多数本の光ファイバーは、図3に模式的に示すように、入射端面8aに結像した像形成光束の結像位置関係が擬似的にランダムとなるようにして束ねられて形成され、これにより、各出射端面8br〜8bbから出射されて後述する各受光素子に入射する像形成光束が擬似的にランダムに混合されて当該各受光素子に入射されるため、像形成光束の光量むらが軽減される。   As schematically shown in FIG. 3, the multiple optical fibers are formed by being bundled so that the imaging position relationship of the image forming light beam formed on the incident end face 8a is pseudo-random. Since the image forming light beams emitted from the respective emission end faces 8br to 8bb and incident on each light receiving element to be described later are pseudo-randomly mixed and incident on the respective light receiving elements, unevenness in the amount of light of the image forming light beam is reduced. The

受光手段9は、干渉フィルタ11a〜11cと受光素子12a〜12cとから概略構成されている。その各干渉フィルタ11a〜11cはそれぞれ出射端面8br、8bg、8bbに対向して配設されている。受光素子12a〜12cはその各干渉フィルタ11a〜11cに対応させて配置されている。   The light receiving means 9 is roughly composed of interference filters 11a to 11c and light receiving elements 12a to 12c. The interference filters 11a to 11c are arranged to face the emission end faces 8br, 8bg, and 8bb, respectively. The light receiving elements 12a to 12c are arranged corresponding to the interference filters 11a to 11c.

干渉フィルタ11aは出射端面8brから出射された光束のうち赤色(R)の光を透過させるフィルタ特性を有し、干渉フィルタ11bは出射端面8bgから出射された光束のうち緑色(G)の光を透過させるフィルタ特性を有し、干渉フィルタ11cは出射端面8bbから出射された光束のうち青色(B)の光を透過させるフィルタ特性を有する。   The interference filter 11a has a filter characteristic that transmits red (R) light out of the light flux emitted from the emission end face 8br, and the interference filter 11b emits green (G) light out of the light flux emitted from the emission end face 8bg. The interference filter 11c has a filter characteristic that transmits blue (B) light out of the light beam emitted from the emission end face 8bb.

受光素子12aはその干渉フィルタ11aを透過した赤色波長域の光に基づき光電変換信号を出力し、受光素子12bはその干渉フィルタ11bを透過した緑色波長域の光に基づき光電変換信号を出力し、受光素子12cはその干渉フィルタ11cを透過した青色波長域の光に基づき光電変換信号を出力し、各光電変換信号は演算回路10その他の測定回路に入力され、これらの測定回路により、色度、輝度、色差等の色の特性が測定される。   The light receiving element 12a outputs a photoelectric conversion signal based on the light in the red wavelength range transmitted through the interference filter 11a, and the light receiving element 12b outputs a photoelectric conversion signal based on the light in the green wavelength range transmitted through the interference filter 11b. The light receiving element 12c outputs a photoelectric conversion signal based on the light in the blue wavelength band transmitted through the interference filter 11c, and each photoelectric conversion signal is input to the arithmetic circuit 10 and other measurement circuits. Color characteristics such as brightness and color difference are measured.

導光体8の入射端面8aには、被測定領域の大きさを規定する視野絞り13が設けられ、これにより、被測定領域からの余分な光が遮光されるようになっている。また、視野絞り13の大きさ、すなわち、導光体8の入射端面8aの大きさは、開口絞り6の大きさよりも大きく設定され、これにより、導光体8の入射端面8aを開口絞り6に配置したときにこの入射端面8aに入射する各光束の最大入射角α1に対して、導光体8の入射端面8aを第2レンズ7の後側焦点位置f2’に配置したときにこの入射端面8aに入射する各光束の最大入射角α2を緩やかにすることができ、その結果、透過率の高い干渉フィルタ11a〜11cを用いた場合でも、光の波長が短い方にシフトするのを防止でき、正確に色の特性を測定することができる。   The entrance end face 8a of the light guide 8 is provided with a field stop 13 that defines the size of the region to be measured, so that extra light from the region to be measured is shielded. The size of the field stop 13, that is, the size of the incident end face 8 a of the light guide 8 is set to be larger than the size of the aperture stop 6, whereby the incident end face 8 a of the light guide 8 is set to the aperture stop 6. When the incident end surface 8a of the light guide 8 is disposed at the rear focal position f2 ′ of the second lens 7 with respect to the maximum incident angle α1 of each light beam incident on the incident end surface 8a. The maximum incident angle α2 of each light beam incident on the end face 8a can be moderated. As a result, even when the interference filters 11a to 11c having high transmittance are used, the light wavelength is prevented from shifting to the shorter side. Color characteristics can be measured accurately.

また、開口絞り6の位置に入射端面8aをあえて配置すると、この入射端面8aに入射する各像形成光束の最大入射角α1が保存されて、出射端面8br〜8bbに伝搬されて出射されるため、干渉フィルタ11a〜11cを用いて測定用光学系を構成した場合には、最大入射角α1を小さくするために第1レンズ5の焦点距離を長くする必要があり、また、それに伴って導光体8の入射端面8aが大きくなるので、導光体8の長さが必要となり、測定用光学系の全長を長くしなければならないが、この発明の実施の形態では、第1レンズ5と第2レンズ7とを用いて測定用光学系をテレセントリック光学系からなる構成とし、第2レンズ7を介して入射端面8aに入射する像形成光束の最大入射角α2を最大入射角α1よりも緩やかに構成したので、測定用光学系の全長を長くすることなく、コンパクトに構成できる。   Further, when the incident end face 8a is intentionally arranged at the position of the aperture stop 6, the maximum incident angle α1 of each image-forming light beam incident on the incident end face 8a is preserved and propagated to and emitted from the exit end faces 8br to 8bb. When the measurement optical system is configured using the interference filters 11a to 11c, it is necessary to increase the focal length of the first lens 5 in order to reduce the maximum incident angle α1, and the light is guided accordingly. Since the incident end face 8a of the body 8 becomes larger, the length of the light guide 8 is required, and the total length of the measurement optical system must be increased. In the embodiment of the present invention, the first lens 5 and the first The measurement optical system is configured by a telecentric optical system using the two lenses 7, and the maximum incident angle α2 of the image-forming light beam incident on the incident end face 8a via the second lens 7 is made gentler than the maximum incident angle α1. Configure Because, without increasing the total length of the measurement optical system can be made compact.

好ましくは、開口絞り6の面積をS1、導光体8の入射端面8a、すなわち、視野絞り13の面積をS2として、開口絞り6の最大入射角α1のサインと面積S1との積S1・sinα1が最大入射角α2のサインと面積S2との積S2・sinα2に等しくなるように、第1レンズ5と第2レンズ7とを配設すると共に、第1レンズ5と第2レンズ7とを介して被測定領域と入射端面8aとが光学的に共役になるように入射端面8aを第2レンズ7に対して配設するのが望ましい。   Preferably, assuming that the area of the aperture stop 6 is S1 and the incident end face 8a of the light guide 8, that is, the area of the field stop 13 is S2, the product S1 · sinα1 of the sign of the maximum incident angle α1 of the aperture stop 6 and the area S1. The first lens 5 and the second lens 7 are disposed so that is equal to the product S2 · sin α2 of the sine of the maximum incident angle α2 and the area S2, and the first lens 5 and the second lens 7 are interposed. Therefore, it is desirable to arrange the incident end face 8a with respect to the second lens 7 so that the measurement region and the incident end face 8a are optically conjugate.

以上、この発明の実施の形態では、干渉フィルタ11a〜11cに直接受光素子12a〜12cを対向させて配設する構成としたが、図4に示すように、出射端面8br〜8bbと干渉フィルター11a〜11cとの間に、出射端面8br〜8bbから出射された光束を集光する正のパワーを有する集光レンズ14を配置し、受光部の一部を構成する干渉フィルター11a〜11cを透過した光束を受光素子12a〜12cに収束させる構成とすれば、受光感度の向上をより一層図ることができる。   As described above, in the embodiment of the present invention, the light receiving elements 12a to 12c are directly disposed opposite to the interference filters 11a to 11c. However, as shown in FIG. 4, the emission end faces 8br to 8bb and the interference filter 11a are arranged. To 11c, a condensing lens 14 having a positive power for condensing the light beams emitted from the emission end faces 8br to 8bb is disposed and transmitted through the interference filters 11a to 11c constituting a part of the light receiving unit. If the configuration is such that the light beam is converged on the light receiving elements 12a to 12c, the light receiving sensitivity can be further improved.

この発明の実施の形態によれば、微弱な光の検出感度が向上するので、被測定領域の黒色の測定感度を向上させることができるという効果を奏する。   According to the embodiment of the present invention, the detection sensitivity of weak light is improved, and there is an effect that the black measurement sensitivity of the measurement target area can be improved.

本発明の測定用光学系を模式的に示す説明図である。It is explanatory drawing which shows typically the optical system for a measurement of this invention. 図1に示す出射端面の位置関係を示す平面図である。It is a top view which shows the positional relationship of the output end surface shown in FIG. 本発明に係わる光ファイバー束の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the optical fiber bundle concerning this invention. 本発明に係わる測定用光学系の他の例を模式的に示す説明図である。It is explanatory drawing which shows typically the other example of the optical system for a measurement concerning this invention.

符号の説明Explanation of symbols

5…第1レンズ
6…開口絞り
7…第2レンズ
8…導光体
8a…入射端面
5 ... 1st lens 6 ... Aperture stop 7 ... 2nd lens 8 ... Light guide 8a ... Incident end face

Claims (5)

測定対象に対面されて正のパワーを有しかつ前記測定対象の被測定領域の各点からの光束を集光してコリメートする第1レンズと、
前記第1レンズの略後側焦点位置に配設されて前記各点から前記第1レンズに入射する光束の入射角度を規制する開口絞りと、
該開口絞りの略配設位置に前側焦点を有しかつ前記開口絞りを通過して入射する光束に基づき前記被測定領域の像を後側焦点位置に形成する第2レンズと、
該第2レンズの略後側焦点位置に入射端面を有しかつ該入射端面に入射した各光束を3つの光束群に分割する光束分割手段と、
前記光束分割手段の出射面に対向して配設された干渉フィルタを介して前記各光束群を受光する受光手段とを備え、
前記光束分割手段の入射端面位置での光束の入射角が前記開口絞り位置での入射角よりも小さく設定され、前記受光手段からの出力が色特性を測定するのに用いられることを特徴とする測定用光学系。
A first lens that faces a measurement object and has a positive power and collects and collimates a light beam from each point of the measurement target area of the measurement object;
An aperture stop disposed at a substantially rear focal position of the first lens and restricting an incident angle of a light beam incident on the first lens from each point;
A second lens having a front focal point at a substantially disposed position of the aperture stop and forming an image of the measured region at a rear focal point based on a light beam incident through the aperture stop;
A light beam splitting unit that has an incident end surface at a substantially rear focal position of the second lens and divides each light beam incident on the incident end surface into three light beam groups;
A light receiving means for receiving each of the light flux groups through an interference filter disposed to face the exit surface of the light flux splitting means,
An incident angle of a light beam at an incident end face position of the light beam splitting unit is set smaller than an incident angle at the aperture stop position, and an output from the light receiving unit is used for measuring a color characteristic. Optical system for measurement.
前記開口絞り位置での入射角よりも前記光束分割手段の入射端面位置での入射角を小さくするために、前記光束分割手段の入射端面の大きさが前記開口絞りの大きさよりも大きく設定されていることを特徴とする請求項1に記載の測定用光学系。   In order to make the incident angle at the incident end face position of the light beam dividing means smaller than the incident angle at the aperture stop position, the size of the incident end face of the light beam dividing means is set larger than the size of the aperture stop. The measuring optical system according to claim 1, wherein: 前記光束分割手段の入射端面に、前記被測定領域の大きさを規定する視野絞りが配設されていることを特徴とする請求項2に記載の測定用光学系。   3. The measurement optical system according to claim 2, wherein a field stop for defining the size of the measurement area is disposed on an incident end face of the light beam splitting unit. 前記光束分割手段は、多数本の光ファイバーを束ねた導光体からなり、該多数本の光ファイバーは、前記入射端面において結像した光束の結像位置関係が擬似的にランダムとなるようにして束ねられていることを特徴とする請求項3に記載の測定用光学系。   The light beam splitting means comprises a light guide that bundles a plurality of optical fibers, and the plurality of optical fibers are bundled so that the image forming positional relationship of the light beam formed on the incident end face becomes pseudo-random. The measuring optical system according to claim 3, wherein the measuring optical system is provided. 前記受光手段は、前記出射端面に対向して配設されかつ該出射端面から出射された光束を集光する正のパワーを有する集光レンズと、該集光レンズにより集光された光を受光する受光部とからなることを特徴とする請求項4に記載の測定用光学系。   The light-receiving means receives the light condensed by the condensing lens and the condensing lens that is disposed to face the emitting end surface and has a positive power for condensing the light beam emitted from the emitting end surface. The measuring optical system according to claim 4, further comprising: a light receiving portion that performs measurement.
JP2008160179A 2008-06-19 2008-06-19 Optical system for measurement Pending JP2010002255A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008160179A JP2010002255A (en) 2008-06-19 2008-06-19 Optical system for measurement
TW98119936A TWI405958B (en) 2008-06-19 2009-06-15 Optical system for measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160179A JP2010002255A (en) 2008-06-19 2008-06-19 Optical system for measurement

Publications (1)

Publication Number Publication Date
JP2010002255A true JP2010002255A (en) 2010-01-07

Family

ID=41584108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160179A Pending JP2010002255A (en) 2008-06-19 2008-06-19 Optical system for measurement

Country Status (2)

Country Link
JP (1) JP2010002255A (en)
TW (1) TWI405958B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121896A1 (en) * 2010-03-31 2011-10-06 コニカミノルタセンシング株式会社 Optical system for measurement, and color luminance meter and colorimeter using the same
WO2011132360A1 (en) 2010-04-23 2011-10-27 コニカミノルタセンシング株式会社 Optical system for measurements, and luminance colorimeter and colorimeter using same
WO2011142071A1 (en) 2010-05-14 2011-11-17 コニカミノルタセンシング株式会社 Optical system for measurement, luminance meter using the optical system, color luminance meter, and color meter
EP2505973A3 (en) * 2011-04-01 2012-11-07 X-Rite Europe GmbH Hand-held colour measurement device
CN103091074A (en) * 2013-01-09 2013-05-08 深圳市华星光电技术有限公司 Flicker degree measuring device and system of display panel
KR101361175B1 (en) * 2012-06-14 2014-02-10 (주)에이앤아이 Color Difference Meter Module Having Collimator Lens and Focusing Lens and Device of Color Meter Using The Same
JP2015055480A (en) * 2013-09-10 2015-03-23 株式会社島津製作所 Spectroscopy measurement device
JP2017156200A (en) * 2016-03-01 2017-09-07 コニカミノルタ株式会社 Measurement-purpose optical system and colorimetry device
WO2020017118A1 (en) * 2018-07-19 2020-01-23 コニカミノルタ株式会社 Photometric device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100573B1 (en) * 2015-11-30 2020-04-13 코니카 미놀타 가부시키가이샤 Optical device for measurement
WO2018230177A1 (en) * 2017-06-15 2018-12-20 コニカミノルタ株式会社 Optical system for measurement, color luminance meter and colorimeter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9923428D0 (en) * 1999-10-04 1999-12-08 Thomas Swan & Company Limited Optical switch
JP4333050B2 (en) * 2001-04-17 2009-09-16 コニカミノルタセンシング株式会社 Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system
JP2003247891A (en) * 2002-02-22 2003-09-05 Minolta Co Ltd Optical device for measurement
US6876494B2 (en) * 2002-09-30 2005-04-05 Fuji Photo Film Co., Ltd. Imaging forming apparatus
TWI290220B (en) * 2006-03-10 2007-11-21 Chroma Ate Inc An optical sensing system and a color analyzer with the optical sensing system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565458B2 (en) * 2010-03-31 2014-08-06 コニカミノルタ株式会社 Optical system for measurement, and color luminance meter and color meter using the same
US8982349B2 (en) 2010-03-31 2015-03-17 Konica Minolta Optics, Inc. Measuring optical system, and color luminance meter and colorimeter using the same
WO2011121896A1 (en) * 2010-03-31 2011-10-06 コニカミノルタセンシング株式会社 Optical system for measurement, and color luminance meter and colorimeter using the same
WO2011132360A1 (en) 2010-04-23 2011-10-27 コニカミノルタセンシング株式会社 Optical system for measurements, and luminance colorimeter and colorimeter using same
EP2562520A4 (en) * 2010-04-23 2015-01-14 Konica Minolta Optics Inc Optical system for measurements, and luminance colorimeter and colorimeter using same
EP2562520A1 (en) * 2010-04-23 2013-02-27 Konica Minolta Optics, Inc. Optical system for measurements, and luminance colorimeter and colorimeter using same
EP2570785A4 (en) * 2010-05-14 2015-01-14 Konica Minolta Optics Inc Optical system for measurement, luminance meter using the optical system, color luminance meter, and color meter
EP2570785A1 (en) * 2010-05-14 2013-03-20 Konica Minolta Optics, Inc. Optical system for measurement, luminance meter using the optical system, color luminance meter, and color meter
CN102893138A (en) * 2010-05-14 2013-01-23 柯尼卡美能达精密光学仪器株式会社 Optical system for measurement, luminance meter using the optical system, color luminance meter, and color meter
WO2011142071A1 (en) 2010-05-14 2011-11-17 コニカミノルタセンシング株式会社 Optical system for measurement, luminance meter using the optical system, color luminance meter, and color meter
JP5801800B2 (en) * 2010-05-14 2015-10-28 コニカミノルタ株式会社 Optical system for measurement of tristimulus colorimeter and luminance meter, color luminance meter and color meter using the same
EP2505973A3 (en) * 2011-04-01 2012-11-07 X-Rite Europe GmbH Hand-held colour measurement device
KR101361175B1 (en) * 2012-06-14 2014-02-10 (주)에이앤아이 Color Difference Meter Module Having Collimator Lens and Focusing Lens and Device of Color Meter Using The Same
CN103091074A (en) * 2013-01-09 2013-05-08 深圳市华星光电技术有限公司 Flicker degree measuring device and system of display panel
JP2015055480A (en) * 2013-09-10 2015-03-23 株式会社島津製作所 Spectroscopy measurement device
JP2017156200A (en) * 2016-03-01 2017-09-07 コニカミノルタ株式会社 Measurement-purpose optical system and colorimetry device
WO2020017118A1 (en) * 2018-07-19 2020-01-23 コニカミノルタ株式会社 Photometric device
KR20210021054A (en) 2018-07-19 2021-02-24 코니카 미놀타 가부시키가이샤 Metering device
CN112424575A (en) * 2018-07-19 2021-02-26 柯尼卡美能达株式会社 Light measuring device
JPWO2020017118A1 (en) * 2018-07-19 2021-08-02 コニカミノルタ株式会社 Photometer
KR102609046B1 (en) * 2018-07-19 2023-12-01 코니카 미놀타 가부시키가이샤 metering device
CN112424575B (en) * 2018-07-19 2024-01-12 柯尼卡美能达株式会社 Photometry device
JP7415923B2 (en) 2018-07-19 2024-01-17 コニカミノルタ株式会社 Photometric device

Also Published As

Publication number Publication date
TW201003048A (en) 2010-01-16
TWI405958B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
TWI405958B (en) Optical system for measurement
JP7270807B2 (en) Confocal displacement meter
TWI325953B (en) A high-speed optical sensing device abling to sense luminous intensity and chromaticity and an optical measuring system with the high-speed optical sensing device
US10260859B2 (en) Confocal displacement sensor
JP2010025558A (en) Optical system for measurement
US9541376B2 (en) Chromatic confocal sensor and measurement method
KR101417565B1 (en) Optical system for measurements, and luminance colorimeter and colorimeter using same
CN107966098A (en) spectral confocal sensor
JP6229005B2 (en) Optical detector
JP4333050B2 (en) Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system
JP5378359B2 (en) Photometric device
JP7200936B2 (en) Measuring optics, luminance and colorimeters
US6737637B1 (en) Illuminator for illuminating multiple targets
TWI660157B (en) Light source device and ranging sensor provided with the same
US10754166B2 (en) Optical structure
JP2001083012A (en) Optical path split type colorimeter
CN108291839B (en) Optical device for measurement
JP2014169957A (en) Spectral measuring system
JP2016095277A (en) Optical property measurement device