JP4333050B2 - Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system - Google Patents

Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system Download PDF

Info

Publication number
JP4333050B2
JP4333050B2 JP2001118649A JP2001118649A JP4333050B2 JP 4333050 B2 JP4333050 B2 JP 4333050B2 JP 2001118649 A JP2001118649 A JP 2001118649A JP 2001118649 A JP2001118649 A JP 2001118649A JP 4333050 B2 JP4333050 B2 JP 4333050B2
Authority
JP
Japan
Prior art keywords
light
light beam
measurement
optical system
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001118649A
Other languages
Japanese (ja)
Other versions
JP2002310800A5 (en
JP2002310800A (en
Inventor
浩明 飯尾
佳郁 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2001118649A priority Critical patent/JP4333050B2/en
Priority to TW91105187A priority patent/TW535004B/en
Publication of JP2002310800A publication Critical patent/JP2002310800A/en
Publication of JP2002310800A5 publication Critical patent/JP2002310800A5/ja
Application granted granted Critical
Publication of JP4333050B2 publication Critical patent/JP4333050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主にカラーLCDの表示特性(色度、輝度、色差等の特性)を計測するための三刺激値型光電色彩計に関し、特にその測定用光学系に関するものである。
【0002】
【従来の技術】
図12は、従来の三刺激値型光電色彩計に適用される光学系の一例を示す図である。
【0003】
同図に示す光学系100は、非接触ハンディタイプの色彩計に適用されるもので、三刺激値を測定するための光学系101(以下、測定光学系101という。)と、被測定物104(例えば液晶パネルなど)の被測定領域ARを測定者が確認するための一眼レフ方式の光学系102(以下、ファインダ光学系102という。)とからなる。
【0004】
測定光学系101は、被測定物104の被測定領域ARからの光線LFを集光する、例えば平凸レンズからなる対物レンズL1と、被測定物104の被測定領域ARを規定する視野絞りSと、対物レンズL1で集光された光束を3つの光束に分割し、それぞれ受光部103の受光センサ(光電変換素子)D1,D2,D3に導くファイバFBとからなる。受光部103は、被測定物104の発光色を三刺激値(X,Y,Z)で計測するため、3つの受光センサD1,D2,D3と、これらの受光センサD1〜D3の受光感度をCIE(Commission Internationale de I'Eclairage;国際照明委員会)で規定された標準観測者の分光感度にそれぞれ補正するための分光感度補正フィルタF1,F2,F3とからなる。
【0005】
被測定物104の被測定領域ARから出射された光線LFは対物レンズL1で集光され、視野絞りSの位置に結像される。視野絞りSの開口位置にはファイバFBの入射面が配設されており、視野絞りSを透過した光束LFはファイバFBに入射し、このファイバFBによって3つの光束に分割されて出射される。ファイバFBから出射された光束は、それぞれ分光感度補正フィルタF1,F2,F3を通して受光センサD1,D2,D3に入射され、これらの受光センサD1,D2,D3でそれぞれ電気信号に変換される。分光感度補正フィルタF1のフィルタ特性を赤の波長領域に感度を有する等色関数(エックス・バー・ラムダ)、分光感度補正フィルタF2のフィルタ特性を緑の波長領域に感度を有する等色関数(ワイ・バー・ラムダ)、分光感度補正フィルタF3のフィルタ特性を青の波長領域に感度を有する等色関数(ゼット・バー・ラムダ)とすると、受光センサD1,D2,D3からは三刺激値(X,Y,Z)に相当する受光信号が出力される。
【0006】
一方、ファインダ光学系102は、ハーフミラーMと、ポロ(Porro)型プリズムPRと、被測定領域のマークが付されたスケールグラスGと、接眼レンズL2とからなる。対物レンズL1を透過した光線の一部はハーフミラーMによってポロ型プリズムPRに導かれ、更にスケールグラスGを透過した後、接眼レンズL2で図略の接眼窓に出射される。ハーフミラーMに入射した光像(被測定領域ARの光像)は、当該ハーフミラーMで倒立されてポロ型プリズムPRに導かれるが、当該ポロ型プリズムPRで再度倒立されるため、接眼レンズL2には正立した光像が入射され、この光像(すなわち、正立の被測定領域ARの光像)が接眼窓に出射される。スケールグラスGは受光センサD1〜D3と等価な位置に配置されているので、測定者は接眼窓を覗くことで測定範囲のマークが付された被測定領域ARの光像を見ることができる。
【0007】
【発明が解決しようとする課題】
従来の三刺激値型光電色彩計に適用される光学系では、図13に示すように、ファイバFBの出射面SOから出射される光束の一部しか受光センサDに入射されないので、この分、受光センサDの受光光量が低下するという問題がある。
【0008】
一方、液晶パネルは、周知のように見る角度(パネルの中心面法線からの角度)によって輝度や色度が異なる特性(配光特性)を有しているため、液晶パネルの発光特性を正確に測定するには、例えば特開平2000−221109号公報に示されるように中心面法線に対して所定の角度(液晶パネルの配光特性に基づく所定の角度)の光束だけを受光センサに導き、その角度を超えて出射される光束は受光センサに入射しないような測定光学系が必要となるが、色彩計にこの公報に示される測定光学系を採用した場合は、以下に説明するように液晶パネルの中心面法線に対して所定の角度の光束のうち、一部光束しか受光センサに入射しないので、やはり受光センサの受光光量が低下するという問題がある。
【0009】
図14は、上記公報に示される被測定物の被測定領域から出射される光束のうち所定の出射角以下の光束のみを受光センサに導光する測定光学系の一例を示す図である。
【0010】
同図に示す測定光学系は、単一の正のパワーを有する、焦点距離fの対物レンズL1の物体側主点PPを、被測定領域ARから焦点距離fだけ受光ユニット103側に離れた位置に配設し、対物レンズL1の像側主点PP(図14は像側主点が物体側主点に略一致している例を示している)から焦点距離fだけ離れた位置に受光面RSが位置するように受光ユニット103が配設されている。
【0011】
この測定光学系は、いわゆるテレセントリック光学系となっており、受光ユニット103自体がテレセントリック光学系用の絞りとして機能している。従って、被測定領域ARの各部から出射された光束のうち、出射角α以下の光束が受光ユニット103の各受光センサDに入射する。
【0012】
しかし、この測定光学系では、対物レンズL1の像側主点PPから焦点距離fだけ離れた位置に受光センサDを配設しているので、液晶パネル104の被測定領域ARの各部から出射された出射角0〜αの光束のうち、出射角β〜αの光束(図14の斜線で示す光束)しか受光センサDに入射しないので、出射角0〜βの光束の分だけ受光ユニット103の受光光量が低下することになる。
【0013】
また、図12に示す従来の三刺激値型光電色彩計に適用される光学系では、測定者が被測定物104の被測定領域ARを確認できるようにファインダ光学系102を設け、対物レンズL1を透過した一部光束をファインダ光学系102に導くようにしているので、受光センサDの受光光量が更に低下するという問題がある。
【0014】
そして、このような受光光量の低下は、被測定物104の被測定領域ARから出射される光束が微弱な場合(低輝度の場合)には、測定可能な最小光量(特に繰返し測定に必要な最小の光量)の確保ができなくなるので、光源の光の色を正確に測定できないという問題を生じることになる。
【0015】
本発明は、上記課題に鑑みてなされたものであり、光強度が微弱な場合にも指向性の強い被測定物の発光特性を確実かつ正確に測定することのできる測定用光学系及びこの光学系を備えた三刺激値型光電色彩計を提供するものである。
【0016】
【課題を解決するための手段】
請求項1の発明は、被測定物の被測定領域から出射される光束のうち所定の出射角以下の光束のみを集光する正のパワーを有する集光手段と、上記集光手段の像側主点からほぼ当該集光手段の焦点距離だけ離れた位置に当該集光手段で集光された光束の入射面を有し、入射した光束を複数の光束に分割して出射する光束分割手段と、上記集光手段の像側主点からほぼ当該集光手段の焦点距離だけ離れた位置に、上記被測定物の被測定領域全体を照明する照明手段と、上記集光手段の像側主点からほぼ当該集光手段の焦点距離だけ離れた位置に、前記集光手段で集光された光束を前記光束分割手段の入射面に透過させる透過部と前記入射面への該光束の入射を遮断する遮光部とが切換可能な光路切換手段とを備え、上記照明手段は、上記光路切換手段の遮光部に配設されており、前記遮光部により前記光束を遮光するときに、前記被測定物の被測定領域を照明することを特徴とする測定用光学系である。
【0017】
この測定用光学系によれば、被測定物の被測定領域から出射される光束は、集光手段によって所定の出射角以下の光束だけが光束分割手段の入射面に集光され、この光束分割手段によって複数の光束に分割されて出射される。従って、被測定物の被測定領域から出射される光束のうち、所定の出射角以下の光束を、光量低下を招くことなく受光センサ側に導光することができる。
【0018】
また、照明手段を発光すると、集光手段と光束分割手段とはテレセントリック光学系を構成しているので、照明手段から発せられた光束は集光手段を透過した後、略平行光線となって被測定物の被測定領域に照射される。従って、非接触型光学機器に適用した場合、被測定物の被測定領域を照明することで測定者は当該被測定領域を確認することができる。ファインダ光学系を用いることなく被測定領域の確認が可能となるため、ファインダ光学系による受光センサ側への導光光量の低下を生じることがない。
【0019】
また、集光手段から集光される光束の光束分割手段への入射を光路切換手段の遮光部によって遮光することによって、遮光状態での測定(測定器のゼロ調整を行うためのオフセット補正値の測定)を容易に行うことができる。従って、光路切換手段の遮光部を光束の光路上に設定した状態で照明手段を発光すると、オフセット補正値の測定が可能になるとともに、この測定時に被測定物の被測定領域が照明され、測定者はオフセット補正値の測定時に被測定物の被測定領域を確認することができる。
【0020】
請求項記載の発明は、被測定物の被測定領域から出射される光束のうち所定の出射角以下の光束のみを集光する正のパワーを有する第1の集光手段と、上記第1の集光手段の像側主点からほぼ当該第1の集光手段の焦点距離だけ離れた位置に配設された開口絞りと、上記開口絞りを透過した光束を複数の光束に分割して出射する光束分割手段と、上記開口絞りと上記光束分割手段との間にあって当該開口絞りと当該光束分割手段の入射面とが共役な関係となる位置に配置され、上記開口絞りを透過した光束を上記光束分割手段に集光する第2の集光手段と、上記開口絞り若しくは上記光束分割手段の入射面の近傍位置に、上記被測定物の被測定領域全体を照明する照明手段と、上記開口絞り若しくは上記光束分割手段の入射面の近傍位置に、前記集光手段で集光された光束を前記光束分割手段の入射面に透過させる透過部と前記入射面への該光束の入射を遮断する遮光部とが切換可能な光路切換手段とを備え、上記照明手段は、上記光路切換手段の遮光部に配設されており、前記遮光部により前記光束を遮光するときに、前記被測定物の被測定領域を照明することを特徴とする測定用光学系である。
【0021】
この測定用光学系によれば、被測定物の被測定領域から出射される光束は、第1の集光手段と開口絞りとによって所定の出射角以下の光束だけが当該第1の集光手段の結像位置に集光され、更にその光束は第2の集光手段によって光束分割手段の入射面に導光され、この光束分割手段によって複数の光束に分割されて出射される。従って、この測定用光学系でも被測定物の被測定領域から出射される光束のうち、所定の出射角以下の光束を、光量低下を招くことなく受光センサ側に導光することができる。
【0022】
また、照明手段が開口絞りの近傍位置に設けられている場合は、照明手段を発光すると、集光手段と開口絞りとはテレセントリック光学系を構成しているので、照明手段から発せられた光束は第1の集光手段を透過した後、略平行光線となって被測定物の被測定領域に照射される。照明手段が光束分割手段の入射面の近傍位置に設けられている場合は、照明手段を発光すると、開口絞りの位置と当該光束分割手段の入射面の位置とは共役関係にあり、且つ、第1の集光手段と開口絞りとはテレセントリック光学系を構成しているので、照明手段から発せられた光束は第2の集光手段によって開口絞りの位置に一旦集光された後、第1の集光手段に入射され、当該第1の集光手段によって被測定物の被測定領域に照射される。従って、非接触型光学機器に適用した場合、被測定物の被測定領域を照明することで測定者は当該被測定領域を確認することができる。ファインダ光学系を用いることなく被測定領域の確認が可能となるため、ファインダ光学系による受光センサ側への導光光量の低下を生じることがない。
【0023】
また、光路切換手段の遮光部を光束の光路上に設定した状態で照明手段を発光すると、オフセット補正値の測定が可能になるとともに、この測定時に被測定物の被測定領域が照明され、測定者はオフセット補正値の測定時に被測定物の被測定領域を確認することができる。
【0024】
請求項記載の発明は、請求項1又は2に記載の測定用光学系において、上記光束分割手段を正のパワーを有するものとしたものである。なお、上記分割手段は、光束を複数に分割する導光部材と、上記導光部材の複数の出射面に対応して設けられた複数の正のパワーを有する集光部材とで構成するとよい(請求項)。
【0025】
この測定用光学系によれば、光束分割手段から出射される光束は集光されるため、出射光束の集光範囲を受光センサの受光範囲に略一致させることで、光束分割手段と受光センサとの間での導光ロスが低減される。
【0026】
請求項記載の発明は、請求項1〜のいずれかに記載の測定用光学系と、上記測定用光学系における上記光束分割手段の複数の出射面に対向してそれぞれ配置された複数の受光部を有し、当該出射面から出射される光束を三原色の色成分に分離し、電気信号に光電変換して出力する受光手段と、上記受光手段から出力される三原色の色成分の受光信号に基づき三刺激値を演算する演算手段とを備えた三刺激値型光電色彩計である。
【0027】
この三刺激値型光電色彩計では、測定用光学系によって被測定物の被測定領域から出射される光束のうち、所定の出射角以下の光束が三分割されてそれぞれ受光手段に入射される。各受光手段で入射光束が三原色の色成分の電気信号に光電変換されて出力され、演算手段でこれらの電気信号に用いて三刺激値が算出される。被測定物の被測定領域から出射される光束のうち、所定の出射角以下の光束は全て測定光学系によって受光手段に導光されるので、測定光学系での導光光量のロスが少なく、被測定物の発光量が小さい場合にも確実に三刺激値の測定をすることができる。
【0028】
【発明の実施の形態】
図1は、本発明に係る三刺激値型光電色彩計の外観を示す斜視図である。
【0029】
三刺激値型光電色彩計1(以下、色彩計1と略称する。)は、測定プローブ2と計測器本体3とからなる。測定プローブ2と計測器本体3とは専用のケーブル4で接続されるようになっている。
【0030】
測定プローブ2は、被測定物である液晶パネル5の表示面51から所定の間隔d(例えば3cm程度)だけ離して対向配置され、当該液晶パネル5の表示面51からの光を受光し、電気信号(アナログ信号)に光電変換して測定器本体3に入力するものである。測定プローブ2は、非接触で液晶パネル5からの光を受光するように構成されている。このため、測定プローブ2は、同図に示すように三脚6に取り付け、当該三脚6で高さ調整をするとともに、液晶パネル5に対する対向位置を調整することで、所望の被測定領域ARに対向配置される。
【0031】
測定器本体3は、測定プローブ2から入力された受光信号をデジタル信号に変換した後、所定の演算処理を行って、例えば三刺激値(X,Y,Z)、CIEで制定されているYxy(輝度、色度座標)、TΔuvY(相関色温度、黒体軌跡からの色差、輝度)などを算出し、その演算結果を表示パネル301に表示するものである。
【0032】
図2は、測定プローブ2及び測定器本体3の内部構成を示すブロック図である。測定プローブ2は、例えば平凸レンズからなる単一の正のパワーを有する対物レンズ21(集光手段)、光路切換部材22(光路切換手段)、この光路切換部材22を駆動する駆動部材23及び対物レンズ21を透過した光束を3つの光束に分割する光束分割部材24(光束分割手段)からなる測定光学系と、標準観測者の分光感度特性を有する3個の受光センサを有し、光束分割部材24から出射される3つの光束を各受光センサでそれぞれ入射強度に応じた電気信号に光電変換して出力する光電変換部25及び各受光センサから出力される電気信号(電圧)を所定のレベルに増幅する増幅部26からなる受光系とを備えている。
【0033】
図3は、測定プローブ2の測定光学系及び光電変換部の具体的な構成を示す図である。同図に示すように、光束分割部材24は、複数の光ファイバを束ねたファイバ241と3個の正のパワーを有するレンズ242a,242b,242cとからなる。
【0034】
ファイバ241は、束ねられた複数の光ファィバが中間部分で3つに分割され、1つの光束入射面Aと3つの光束出射面B1,B2,B3を有している。ファイバ241は、入射面Aが対物レンズ21の像側主点PP(なお、説明の便宜上、本実施形態及び後で説明する他の実施形態では像側主点が物体側主点と略一致しているものを例示する。)から当該対物レンズ21の焦点距離fだけ離れた位置となるように配設されている。すなわち、対物レンズ21とファイバ241とでテレセントリック光学系が構成されるようになっている。なお、本実施形態では、光束分割部材24として光ファイバを用いているが、例えば光導管等のように光ファイバと同一の機能を果たす他の光学部品を用いてもよい。
【0035】
この構成により、測定プローブ2を、液晶パネル5の表示面51から所定の間隔d(例えば3cm程度)だけ離してセットすると、液晶パネル5の被測定領域ARの各部から出射される光束のうち、当該被測定領域ARの法線方向(図3では光軸Lに平行な方向)に対する出射角の最大値α(以下、最大出射角αという。)以下の光束だけがファイバ241の入射面Aに入射する。なお、最大出射角αは対物レンズ21の焦点距離fとファイバ241の入射面Aにおける直径Rによって決定される。そして、入射光束は、ファイバ241内で3つに分割され、それぞれ出射面B1,B2,B3から出射される。
【0036】
レンズ242aは、図4に示すようにファイバ241の出射面B1から出射される光束を受光センサ252aに集光し、当該光束の照射範囲LAを当該受光センサ252aの受光範囲SAに略一致させるものである。同様にレンズ242b,242cは、ファイバ241の出射面B2,B3から出射される光束をそれぞれ受光センサ252b,252cに集光し、各光束の照射範囲を対応する受光センサ252b,252cの受光範囲に略一致させるものである。
【0037】
このようにファイバ241から出射される光束を受光センサ252の受光範囲SAに集光することで、ファイバ241に入射された光束(液晶パネル5の被測定領域ARの各部から出射される当該被測定領域ARの法線方向に対する最大出射角α以下の全ての光束)は1/3ずつそれぞれ各受光センサ252a,252b,252cに入射され、図14に示す従来の測定光学系のように受光センサでの受光光量が低下することはない。
【0038】
光路切換部材22は、対物レンズ21によって集光される光束のファイバ241への入射と遮光とを切り換えるとともに、遮光時に液晶パネル5の表示面51を照明することで、測定者が被測定領域ARを視認できるようにするものである。
【0039】
ファイバ241への光束入射を遮蔽可能にするのは、液晶パネル5がない場合(すなわち、光の入射がない場合)でも対物レンズ21及び光束分割部材24からなる測定光学系の迷光が受光部25に入射し、受光部25からノイズ信号となって出力されるため、これをキャンセルするキャリブレーション(オフセット補正)を正確に行えるようにするためである。すなわち、光路切換部材22でファイバ241を完全に遮光した状態で測定値のゼロ調整、若しくは遮光状態での測定値をオフセット補正値としてメモリに記憶できるようにしている。
【0040】
光路切換部材22は、図5に示すように中心軸222の回りに回転可能な円盤状の部材で、中心から所定の距離だけ偏心した位置に所定のサイズの円形開口223が形成されるとともに、対物レンズ21に臨む面(ファィバ241の反対側の面)で円形開口223の中心軸222に対する点対称の位置に発光素子224が設けられている。
【0041】
なお、円形開口223のサイズは、当該円形開口223がファイバ241の入射面Aに対向配置されたとき、対物レンズ21によって集光される光束が光路切換部材22でケラレることなく完全に入射面Aに入射し得るサイズに設定されている。また、発光素子224は、LED、半導体レーザ、ランプなど任意の発光素子を用いることができる。
【0042】
光路切換部材22はモータなどの駆動部材23によって回転駆動され、測定時には、図5に示すように円形開口223がファイバ241に対向する位置(導光位置)に設定され、キャリブレーション時には、図6に示すように発光素子224が対物レンズ21の光軸L上となる位置(ファイバ241の入射面Aと重なる位置。遮光位置)に設定される。光路切換部材22を遮光位置に設定したとき、発光素子22がファイバ241の入射面Aと略等しい位置に来るようにしているのは、キャリブレーション時に測定者が液晶パネル5の被測定領域ARを確認できるようにするためである。
【0043】
すなわち、光路切換部材22が遮光位置に設定されると、発光素子224が発光される。上述したように対物レンズ21とファイバ241とはテレセントリック光学系を構成しているので、ファイバ241の入射面Aと略等しい位置に配置された発光素子224から発せられた光は、図6に示すように対物レンズ21を透過した後、略平行光となって液晶パネル5の表示面51の被測定領域ARと略等しい領域に照射される。従って、測定者は液晶パネル5の表示面51の照明領域によって被測定領域AR(照明領域)を確認することができる。
【0044】
なお、本実施形態では、光路切換部材22の切換えをモータ等の駆動源を用いて行わせているが、手動で行わせるようにしてもよい。このようにすると、測定プローブ2に駆動源を内蔵する必要がなくなるので、測定プローブ2の小型/軽量化が可能になる。
【0045】
また、本実施形態では光路切換部材22の形状を円盤状としているが、図7に示すように矩形板状としてもよい。また、本実施形態では光路切換部材22の遮光位置と導光位置との切換えを回転動作で行っているが、図7に示すようにスライド移動(スライド方向は任意)によって行うようにしてもよい。
【0046】
更に、本実施形態では光路切換部材22を測定プローブ2に内蔵しているが、この光路切換部材22を省略してもよい。この場合は、測定者は測定プローブ2の先端にキャップ等の遮光部材を被せることで遮光状態とし、この状態でキャリブレーションを行えばよい。一方、被測定領域ARを確認するための発光素子224は、例えば図8に示すように、ファイバ241の入射面A側の先端に鍔部241Aを設け、この鍔部241Aの対物レンズ21を臨む面にファイバ241によって光束が遮られないように配置すればよい。この場合、発光素子224は1個でもよく、複数個でもよい。図8の例は2個の発光素子224,224’を設けたものであるが、各発光素子224,224’から発せられた光は、それぞれ同図に示す光路を通り、対物レンズ21によって液晶パネル5の表示面51の被測定領域ARと略同一の範囲に照射される。
【0047】
図9は、測定光学系の他の実施形態を示す図である。
【0048】
同図に示す測定光学系は、図3に示す測定光学系において、対物レンズ21(第1の集光手段)とファイバ241との間の所定の位置にリレーレンズ211(第2の集光手段)、開口絞りS1及び視野絞りS2を設けたものである。開口絞りS1は対物レンズ21の像側主点PPから焦点距離fだけ離れた位置Cに設けられ、視野絞りS2は対物レンズ21の結像位置に設けられている。リレーレンズ211は、視野絞りS2に結像された光像をファイバ241に導くもので、開口絞りS1とファイバ241の入射面Aの位置C’とが共役な位置関係となるように当該開口絞りS1と当該ファイバ241との間に配置されている。
【0049】
開口絞りS1と対物レンズ21とによってテレセントリック光学系が構成され、液晶パネル5の被測定領域ARから出射される光束のうち、最大出射角α以下の光束が視野絞りS1に入射する。なお、最大出射角αは対物レンズ21の焦点距離fと開口絞りS1の開口径によって決定されるので、開口絞りS1の開口径は所望の最大出射角αと対物レンズ21の焦点距離fとに基づいて調整されている。
【0050】
この測定光学系では、液晶パネル5の被測定領域ARから出射される光束のうち、最大出射角α以下の光束だけが開口絞りS1を透過し、被測定領域ARの光像は視野絞りS2の位置に結像される。そして、この光像はリレーレンズ211によってファイバ241の入射面Aに導かれる。開口絞りS1とファイバ241の入射面Aとは共役関係の位置に配置されているので、開口絞りS1を透過する光束はリレーレンズ211によってファイバ241の入射面Aに入射され、この測定光学系によっても図3に示した測定光学系と同様に光量をロスすること無く、液晶パネル5の被測定領域ARから出射される光束のうち、最大出射角α以下の光束が全て受光部25に導かれる。
【0051】
また、この測定用光学系では光路切換部材22を遮光位置に設定して発光素子224を発光すると、発光素子224からの光が図10に示す光路(液晶パネル5からファイバ241への入射光の光路と略逆の光路)を通って液晶パネル5の表示面51の被測定領域ARに略一致する領域に照射される。従って、この測定用光学系でも発光素子224の照明光によって測定者は液晶パネル5の被測定領域ARを確認することができる。
【0052】
なお、この測定用光学系では、開口絞りS1とファイバ241の入射面Aとが共役の位置関係にあるので、図9,図10に点線で示すように発光素子224を開口絞りS1の位置に配置することができる。例えば開口絞りS1をリング状の円盤部材で構成した場合、図5に示した光路切換部材22と類似の構成として、当該円盤部材の対物レンズ21を臨む面の適所に適宜の数を配設するとよい。
【0053】
上述したように開口絞りS1と対物レンズ21とはテレセントリック光学系を構成しているので、開口絞りS1とほぼ同じ位置に配設された発光素子224から発せられた光は、対物レンズ21に入射した後、略平行光となって液晶パネル5の表示面51に出射されるので(図6に示した光路参照)、液晶パネル5の被測定領域ARを照明することができる。
【0054】
図3に戻り、光電変換部25は、略同一の受光感度を有する、例えばSPC等からなる3個の受光センサ252a,252b,252cと、各受光センサ252a,252b,252cにCIE規定の標準観測者の分光感度を持たせるための3個の分光感度補正フィルタ251a,251b,251cとからなる。
【0055】
受光センサ252a,252b,252cは、それぞれレンズ242a,242b,242cの光軸上であって当該レンズ242a,242b,242cによって集光される光の照射範囲が当該受光センサ252a,252b,252cの受光範囲となる位置に配置されている。分光感度補正フィルタ251a,251b,251cは、それぞれ受光センサ252a,252b,252cとレンズ242a,242b,242cとの間の適所に配置されている。
【0056】
分光感度補正フィルタ251aは、例えばR(赤)の波長領域に感度を有するフィルタ特性を有し、このフィルタ特性によって受光センサ252aの受光感度は赤の波長域に大きな感度を有する等色関数(エックス・バー・ラムダ)の受光感度に補正されている。一方、分光感度補正フィルタ251b,251cは、それぞれG(緑)とB(青)の波長領域に感度を有するフィルタ特性を有し、これらのフィルタ特性によって受光センサ252bと受光センサ252cの受光感度は、それぞれ緑の波長域に大きな感度を有する等色関数(ワイ・バー・ラムダ)の受光感度と青の波長域に大きな感度を有する等色関数(ゼット・バー・ラムダ)の受光感度とに補正されている。従って、受光センサ252a,252b,252cからはそれぞれ三刺激値(X,Y,Z)に相当する受光信号が出力される。
【0057】
図2に戻り、測定器本体3は、測定プローブ2から入力される受光信号をデジタルの信号(以下、測定データという。)に変換するA/D変換部31、A/D変換部31から出力される測定データを記憶するデータメモリ32、データメモリに格納された測定データを用いて、三刺激値(X,Y,Z)、CIEで制定されているYxy(輝度、色度座標)、TΔuvY(相関色温度、黒体軌跡からの色差、輝度)などを演算するデータ処理部33、演算結果を表示する表示部34、測定に関する各種情報(測定の指示、表示モードの設定、測定レンジ等)を入力するための操作部35及び測定プローブ2の動作や測定器本体3内の各部の動作を集中的に制御することで測定動作を制御する制御部36からなる。
【0058】
次に、色彩計1の測定処理について、図11のフローチャートを用いて簡単に説明する。この測定処理では、測定対象となる液晶パネル(LCD)5の色度を測定する場合について説明する。
【0059】
まず、図1に示すように、測定プローブ2を液晶パネル5の測定したい領域に対向させ、当該液晶パネル5の表示面51から所定の間隔d(数cm程度)だけ離した位置にセットする(ステップ#1)。続いて、図略のパターンジェネレータから液晶パネル5に映像信号を与えて所定の測定用画像を当該液晶パネル5の表示面51に映し出す(ステップ#3)。
【0060】
こうして測定用画像が映し出されると、各受光センサ252a,252b,252cから三刺激値X,Y,Zに関連する3つの受光信号(アナログ信号)SX,SY,SZがそれぞれ出力され、これらの受光信号SX,SY,SZは、増幅部26で所定のレベルに増幅された後、測定器本体3に入力される。そして、測定器本体3では、受光信号SX,SY,SZがA/D変換部31でデジタル信号DX,DY,DZに変換されてデータメモリ32に記憶される(ステップ#5)。
【0061】
次に、データメモリ32から測定データDX,DY,DZと当該データメモリ32に予め記憶されている校正データKX,KY,KZとがデータ処理部33に読み出され、測定用画像の三刺激値X,Y,Zが算出される(ステップ#7)。なお、三刺激値X,Y,Zは、X=KX・DX,Y=KY・DY,Z=KZ・DZによって算出される。こうして、真の三刺激値X,Y,Zが算出されると、その算出結果が表示部34(すなわち、表示パネル301)に表示される(#9)。
【0062】
なお、上記実施形態では、国際照明委員会(CIE)で標準観察者の分光感度として規定されている3つの分光感度に対応した赤フィルタ251a、緑フィルタ251bおよび青フィルタ251cによって、受光センサ252a〜252cの分光感度を補正するようにしているが、フィルタの種類はこれに限定されるものではない。
【0063】
【発明の効果】
以上説明したように、本発明によれば、正のパワーを有する集光手段と、この集光手段の像側主点からほぼ当該集光手段の焦点距離だけ離れた位置に入射面を有する光束分割手段とで測定光学系を構成したので、被測定物の被測定領域から出射される光束のうち所定の出射角以下の光束全てをロスなく光束分割手段を介して受光センサ側に導くことができ、被測定物の発光強度が小さい場合にも被測定物の光学特性を正確に測定することができる(請求項1)。
【0064】
また、本発明によれば、正のパワーを有する第1の集光手段と、この第1の集光手段の像側主点からほぼ当該第1の集光手段の焦点距離だけ離れた位置に配設された開口絞りと、この開口絞りを透過した光束を複数の光束に分割して出射する光束分割手段と、開口絞りと光束分割手段の入射面とが共役な関係となる位置に配置され、開口絞りを透過した光束を光束分割手段に集光する第2の集光手段とで測定光学系を構成したので、被測定物の被測定領域から出射される光束のうち所定の出射角以下の光束全てをロスなく光束分割手段を介して受光センサ側に導くことができ、上記と同様の効果を得ることができる(請求項)。
【0065】
また、本発明によれば、光束分割手段の入射面若しくは開口絞りの近傍位置に照明手段を設け、この照明手段で被測定物の被測定領域全体を照明するようにしたので、ファインダ光学系が不要となり、ファインダ光学系を設けることに起因する受光センサ側への導光光量の低下をなくすることができる(請求項1,2)。
【0066】
また、光束分割手段は、正のパワーを有するものにしたので、光束分割手段から出射された光束の照射範囲を受光センサの受光範囲と略一致させることで、光束分割手段と受光センサとの間の導光ロスを低減することができる。これにより受光センサの受光光量の低下を更に防止することができる(請求項3,4)。
【0067】
また、本発明に係る測定用光学系を用いて三刺激値光電色彩計を構成したので、被測定物の被測定領域から出射される光束のうち所定の出射角以下の光束が測定用光学系により光量ロスをすることなく受光センサに導かれ、被測定物の被測定領域からの光束が小さい場合にも確実かつ正確に三刺激値の測定を行うことができる(請求項)。
【図面の簡単な説明】
【図1】 本発明に係る三刺激値型光電色彩計の外観を示す斜視図である。
【図2】 測定プローブ及び測定器本体の内部構成を示すブロック図である。
【図3】 測定プローブの測定光学系の具体的な構成を示す図である。
【図4】 ファイバからの出射光束による照明範囲と受光部の受光範囲との関係を示す図である。
【図5】 光路切換部材の構造を示す図である。
【図6】 光路切換部材の発光素子により被測定領域が照明される様子を示す図である。
【図7】 光路切換部材の他の構造を示す図である。
【図8】 発光素子の他の取付構造を示す図である。
【図9】 測定用光学系の他の実施形態を示す図である。
【図10】 測定用光学系の他の実施形態における発光素子の照明範囲を示す図である。
【図11】 測定処理の手順を示すフローチャートである。
【図12】 従来の三刺激値型光電色彩計に適用される光学系の一例を示す図である。
【図13】 従来の測定用光学系におけるファイバからの出射光束による照明範囲と受光部の受光範囲との関係を示す図である。
【図14】 被測定物の被測定領域から出射される光束のうち、所定の出射角以下の光束のみを受光センサに導光する従来の測定用光学系の一例を示す図である。
【符号の説明】
1 三刺激値型光電色彩計
2 測定プローブ
21 対物レンズ(集光手段、第1の集光手段)
211 リレーレンズ(第2の集光手段)
22 光路切換部材(光路切換手段)
224 発光素子(照明手段)
23 駆動部材
24 光束分割部材(光束分割手段)
241 ファイバ
242a,242b,242c 正レンズ
25 光電変換部
251a,251b,251c 分光感度補正フィルタ
252a,252b,252c 受光センサ(受光手段)
26 増幅部
3 測定器本体
31 A/D変換部
32 データメモリ
33 データ処理部(演算手段)
34 表示部
35 操作部
36 制御部
4 ケーブル
5 液晶パネル(被測定物)
6 三脚
AR 被測定領域
S1 開口絞り
S2 視野絞り
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a tristimulus type photoelectric colorimeter for measuring display characteristics (characteristics such as chromaticity, luminance, and color difference) of a color LCD, and more particularly to an optical system for the measurement.
[0002]
[Prior art]
FIG. 12 is a diagram showing an example of an optical system applied to a conventional tristimulus type photoelectric colorimeter.
[0003]
An optical system 100 shown in the figure is applied to a non-contact handy type colorimeter, and includes an optical system 101 for measuring tristimulus values (hereinafter referred to as measurement optical system 101) and an object 104 to be measured. It comprises a single-lens reflex optical system 102 (hereinafter referred to as a finder optical system 102) for allowing a measurer to confirm a measurement area AR of a liquid crystal panel (for example, a liquid crystal panel).
[0004]
The measurement optical system 101 condenses the light beam LF from the measurement area AR of the measurement object 104, for example, an objective lens L1 made of a plano-convex lens, and a field stop S that defines the measurement area AR of the measurement object 104. The light beam collected by the objective lens L1 is divided into three light beams, and each includes a fiber FB that leads to light receiving sensors (photoelectric conversion elements) D1, D2, and D3 of the light receiving unit 103. The light receiving unit 103 measures the light emission color of the object 104 to be measured with tristimulus values (X, Y, Z), and the light receiving sensitivities of the three light receiving sensors D1, D2, and D3 and the light receiving sensors D1 to D3. It consists of spectral sensitivity correction filters F1, F2, and F3 for correcting the spectral sensitivity of the standard observer specified by the CIE (Commission Internationale de I'Eclairage).
[0005]
The light beam LF emitted from the measurement area AR of the measurement object 104 is collected by the objective lens L1 and imaged at the position of the field stop S. An entrance surface of the fiber FB is disposed at the opening position of the field stop S, and the light beam LF transmitted through the field stop S enters the fiber FB, and is divided into three light beams by the fiber FB and emitted. The light beams emitted from the fiber FB are incident on the light receiving sensors D1, D2, and D3 through the spectral sensitivity correction filters F1, F2, and F3, and are converted into electric signals by the light receiving sensors D1, D2, and D3, respectively. The filter characteristic of the spectral sensitivity correction filter F1 is a color matching function (X bar lambda) having sensitivity in the red wavelength region, and the filter characteristic of the spectral sensitivity correction filter F2 is a color matching function having sensitivity in the green wavelength region (Y If the filter characteristic of the spectral sensitivity correction filter F3 is a color matching function (zet bar lambda) having sensitivity in the blue wavelength region, the tristimulus values (X , Y, Z) is output.
[0006]
On the other hand, the finder optical system 102 includes a half mirror M, a Porro prism PR, a scale glass G with a mark of a measurement area, and an eyepiece L2. A part of the light beam that has passed through the objective lens L1 is guided to the polo-type prism PR by the half mirror M, further passes through the scale glass G, and then is emitted to the ocular window (not shown) by the eyepiece lens L2. The optical image incident on the half mirror M (the optical image of the measurement area AR) is inverted by the half mirror M and guided to the polo prism PR, but is inverted again by the polo prism PR. An upright light image is incident on L2, and this light image (that is, the light image of the upright measurement area AR) is emitted to the eyepiece window. Since the scale glass G is disposed at a position equivalent to the light receiving sensors D1 to D3, the measurer can see the optical image of the measurement area AR with the measurement range mark by looking through the eyepiece window.
[0007]
[Problems to be solved by the invention]
In the optical system applied to the conventional tristimulus photoelectric colorimeter, as shown in FIG. 13, only a part of the light beam emitted from the emission surface SO of the fiber FB is incident on the light receiving sensor D. There is a problem that the amount of light received by the light receiving sensor D decreases.
[0008]
On the other hand, as is well known, liquid crystal panels have characteristics (light distribution characteristics) that vary in brightness and chromaticity depending on the viewing angle (angle from the normal to the center plane of the panel). For example, as shown in Japanese Patent Application Laid-Open No. 2000-221109, only a light beam having a predetermined angle (a predetermined angle based on the light distribution characteristic of the liquid crystal panel) with respect to the center plane normal is guided to the light receiving sensor. However, a measurement optical system is required so that the light beam emitted beyond that angle does not enter the light receiving sensor. However, when the measurement optical system shown in this publication is adopted for the colorimeter, as described below, Since only a part of the light flux having a predetermined angle with respect to the normal to the center plane of the liquid crystal panel is incident on the light receiving sensor, there is a problem that the amount of light received by the light receiving sensor is reduced.
[0009]
FIG. 14 is a diagram illustrating an example of a measurement optical system that guides only a light beam having a predetermined emission angle or less to a light receiving sensor among light beams emitted from a measurement region of an object to be measured described in the above publication.
[0010]
The measurement optical system shown in the figure has a single positive power and is located at the object side principal point PP of the objective lens L1 with the focal length f away from the measurement region AR by the focal length f toward the light receiving unit 103. And the light receiving surface at a position separated from the image side principal point PP of the objective lens L1 (FIG. 14 shows an example in which the image side principal point substantially coincides with the object side principal point) by the focal length f. The light receiving unit 103 is arranged so that the RS is located.
[0011]
This measuring optical system is a so-called telecentric optical system, and the light receiving unit 103 itself functions as a diaphragm for the telecentric optical system. Therefore, among the light beams emitted from each part of the measurement area AR, a light beam having an emission angle α or less enters each light receiving sensor D of the light receiving unit 103.
[0012]
However, in this measurement optical system, since the light receiving sensor D is disposed at a position separated from the image side principal point PP of the objective lens L1 by the focal length f, the light is emitted from each part of the measurement area AR of the liquid crystal panel 104. Of the light beams having the emission angles 0 to α, only the light beams having the emission angles β to α (light beams shown by oblique lines in FIG. 14) are incident on the light receiving sensor D. The amount of received light is reduced.
[0013]
In the optical system applied to the conventional tristimulus photoelectric colorimeter shown in FIG. 12, a finder optical system 102 is provided so that the measurer can confirm the measurement area AR of the measurement object 104, and the objective lens L1. Since a part of the light beam that has passed through the finder optical system 102 is guided to the finder optical system 102, there is a problem that the amount of light received by the light receiving sensor D is further reduced.
[0014]
Such a decrease in the amount of received light is the minimum measurable light amount (especially necessary for repeated measurement) when the light beam emitted from the measurement area AR of the object 104 to be measured is weak (in the case of low luminance). As a result, it becomes impossible to accurately measure the color of the light from the light source.
[0015]
The present invention has been made in view of the above problems, and a measurement optical system capable of reliably and accurately measuring the light emission characteristics of an object having high directivity even when the light intensity is weak, and the optical system The present invention provides a tristimulus photoelectric colorimeter equipped with a system.
[0016]
[Means for Solving the Problems]
The invention according to claim 1 is a condensing unit having a positive power for condensing only a light beam having a predetermined emission angle or less out of the light beam emitted from the measurement region of the object to be measured, and the image side of the light collecting unit. A light beam splitting unit that has an incident surface of a light beam collected by the light collecting unit at a position substantially away from the principal point by the focal length of the light collecting unit, and divides the incident light beam into a plurality of light beams and emits the light beam An illuminating means for illuminating the entire measurement area of the object to be measured at a position substantially separated from the image side principal point of the light collecting means by the focal length of the light collecting means, and an image side principal point of the light collecting means. At a position approximately away from the focal distance of the light collecting means, Condensed by the light collecting means Luminous flux On the incident surface of the light beam splitting means With a transparent part to transmit Incidence of the luminous flux to the incident surface A light path switching means capable of switching between the light shielding section and the light shielding section, and the illumination means is disposed in the light shielding section of the light path switching means. And illuminating the measurement area of the measurement object when the light beam is shielded by the light shielding portion. This is an optical system for measurement.
[0017]
According to this measuring optical system, the light beam emitted from the measurement area of the object to be measured is focused on the incident surface of the light beam splitting means by the light collecting means so that only the light beam having a predetermined emission angle or less is collected. The light is divided into a plurality of light beams by the means and emitted. Accordingly, among the light beams emitted from the measurement region of the object to be measured, a light beam having a predetermined emission angle or less can be guided to the light receiving sensor side without causing a decrease in the light amount.
[0018]
Also When the illuminating means emits light, the condensing means and the light beam splitting means constitute a telecentric optical system, so that the light beam emitted from the illuminating means passes through the condensing means and becomes a substantially parallel light beam to be measured. Irradiates the area to be measured of the object. Therefore, when applied to a non-contact type optical apparatus, the measurer can confirm the measurement area by illuminating the measurement area of the measurement object. Since the measurement area can be confirmed without using the finder optical system, the amount of light guided to the light receiving sensor by the finder optical system does not decrease.
[0019]
Also , Measurement in a light-shielded state (measurement of an offset correction value for performing zero adjustment of the measuring instrument) by blocking light incident on the light beam splitting means from the light collecting means by the light shielding portion of the optical path switching means ) Can be easily performed. Therefore, if the illumination means emits light with the light shielding portion of the optical path switching means set on the optical path of the light beam, the offset correction value can be measured, and the measurement area of the measurement object is illuminated at the time of this measurement. The person can confirm the measurement area of the measurement object when measuring the offset correction value.
[0020]
Claim 2 The described invention includes a first condensing means having a positive power for condensing only a light beam having a predetermined emission angle or less out of the light beam emitted from the measurement region of the object to be measured, and the first light collecting device. An aperture stop disposed at a position substantially away from the image-side principal point of the means by the focal length of the first condensing means, and a beam splitting unit that splits a light beam that has passed through the aperture stop into a plurality of light beams and emits the light beam Between the aperture stop and the beam splitting means, the aperture stop and the incident surface of the beam splitting means are arranged in a conjugate relationship, and the beam splitting means transmits the beam that has passed through the aperture stop. Second condensing means for condensing light, illumination means for illuminating the entire measurement area of the object to be measured at a position near the entrance surface of the aperture stop or the light beam splitting means, and the aperture stop or the light flux In the vicinity of the entrance surface of the dividing means, Condensed by the light collecting means Luminous flux On the incident surface of the light beam splitting means With a transparent part to transmit Incidence of the luminous flux to the incident surface A light path switching means capable of switching between the light shielding section and the light shielding section, and the illumination means is disposed in the light shielding section of the light path switching means. And illuminating the measurement area of the measurement object when the light beam is shielded by the light shielding portion. This is an optical system for measurement.
[0021]
According to this measuring optical system, only the light beam emitted from the measurement region of the object to be measured is equal to or smaller than the predetermined light emission angle by the first light collecting means and the aperture stop. Then, the light beam is guided to the incident surface of the light beam dividing unit by the second light collecting unit, and is divided into a plurality of light beams by the light beam dividing unit and emitted. Therefore, even in this measurement optical system, it is possible to guide a light beam having a predetermined emission angle or less out of the light beam emitted from the measurement region of the object to be measured to the light receiving sensor side without causing a decrease in the light amount.
[0022]
Also When the illumination unit is provided in the vicinity of the aperture stop, when the illumination unit emits light, the condensing unit and the aperture stop form a telecentric optical system. After passing through one condensing means, it becomes a substantially parallel light beam and irradiates the measurement area of the measurement object. When the illuminating means is provided in the vicinity of the incident surface of the light beam dividing means, when the illuminating means emits light, the position of the aperture stop and the position of the incident surface of the light beam dividing means are in a conjugate relationship, and Since the first focusing means and the aperture stop constitute a telecentric optical system, the light beam emitted from the illumination means is once condensed at the position of the aperture stop by the second focusing means, and then the first The light is incident on the light collecting means, and is irradiated on the measurement area of the object to be measured by the first light collecting means. Therefore, when applied to a non-contact type optical apparatus, the measurer can confirm the measurement area by illuminating the measurement area of the measurement object. Since the measurement area can be confirmed without using the finder optical system, the amount of light guided to the light receiving sensor by the finder optical system does not decrease.
[0023]
Also When the illumination means emits light with the light shielding portion of the optical path switching means set on the optical path of the light beam, the offset correction value can be measured, and the measurement area of the measurement object is illuminated at the time of the measurement. Can confirm the measurement area of the measurement object when measuring the offset correction value.
[0024]
Claim 3 The invention described in claim 1 Or 2 In the measurement optical system described in (1), the light beam splitting means has a positive power. In addition, the said division | segmentation means is good to comprise with the light guide member which divides | segments a light beam into plurality, and the condensing member which has several positive power provided corresponding to the several output surface of the said light guide member ( Claim 4 ).
[0025]
According to this measuring optical system, since the light beam emitted from the light beam splitting means is collected, the light beam splitting means, the light receiving sensor, The light guide loss between the two is reduced.
[0026]
Claim 5 The invention described in claims 1 to 4 And a plurality of light receiving portions respectively disposed opposite to the plurality of light exit surfaces of the light beam splitting means in the measurement optical system, and emitted from the light exit surface. A light receiving means for separating the luminous flux into three primary color components, photoelectrically converting them into electrical signals and outputting them, and a computing means for calculating tristimulus values based on the light receiving signals of the three primary color components output from the light receiving means. Tristimulus type photoelectric colorimeter.
[0027]
In this tristimulus type photoelectric colorimeter, among the light beams emitted from the measurement region of the object to be measured by the measurement optical system, the light beams having a predetermined emission angle or less are divided into three parts and are incident on the light receiving means. Each light receiving means photoelectrically converts the incident light beam into electrical signals of the three primary color components and outputs them, and the computing means uses these electrical signals to calculate tristimulus values. Among the light beams emitted from the measurement area of the object to be measured, all the light beams having a predetermined emission angle or less are guided to the light receiving means by the measurement optical system, so there is little loss of the light guide light amount in the measurement optical system, Tristimulus values can be reliably measured even when the light emission of the object to be measured is small.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view showing an external appearance of a tristimulus value type photoelectric colorimeter according to the present invention.
[0029]
The tristimulus value type photoelectric colorimeter 1 (hereinafter abbreviated as “color meter 1”) includes a measurement probe 2 and a measuring instrument body 3. The measurement probe 2 and the measuring instrument main body 3 are connected by a dedicated cable 4.
[0030]
The measurement probe 2 is disposed opposite to the display surface 51 of the liquid crystal panel 5 that is the object to be measured by a predetermined distance d (for example, about 3 cm), receives light from the display surface 51 of the liquid crystal panel 5, and A signal (analog signal) is photoelectrically converted and input to the measuring device main body 3. The measurement probe 2 is configured to receive light from the liquid crystal panel 5 in a non-contact manner. For this reason, the measurement probe 2 is attached to a tripod 6 as shown in the figure, the height is adjusted by the tripod 6, and the position facing the liquid crystal panel 5 is adjusted to face the desired measurement area AR. Be placed.
[0031]
The measuring device main body 3 converts the received light signal input from the measuring probe 2 into a digital signal, and then performs a predetermined calculation process, for example, tristimulus values (X, Y, Z), Yxy established by CIE, for example. (Luminance, chromaticity coordinates), TΔuvY (correlated color temperature, color difference from black body locus, luminance), and the like are calculated, and the calculation result is displayed on the display panel 301.
[0032]
FIG. 2 is a block diagram showing the internal configuration of the measurement probe 2 and the measurement device main body 3. The measurement probe 2 includes, for example, a single positive power objective lens 21 (condensing means) made of a plano-convex lens, an optical path switching member 22 (optical path switching means), a driving member 23 for driving the optical path switching member 22, and an objective. A measurement optical system including a light beam splitting member 24 (light beam splitting means) that splits a light beam transmitted through the lens 21 into three light beams, and three light receiving sensors having spectral sensitivity characteristics of a standard observer; The photoelectric conversion unit 25 that photoelectrically converts the three light beams emitted from the light 24 into electric signals corresponding to the incident intensity by the light receiving sensors and outputs the electric signals (voltages) output from the light receiving sensors to a predetermined level. And a light receiving system including an amplifying unit 26 for amplifying.
[0033]
FIG. 3 is a diagram illustrating a specific configuration of the measurement optical system and the photoelectric conversion unit of the measurement probe 2. As shown in the figure, the light beam splitting member 24 includes a fiber 241 in which a plurality of optical fibers are bundled and three lenses 242a, 242b, and 242c having positive power.
[0034]
In the fiber 241, a plurality of bundled optical fibers are divided into three at an intermediate portion, and one light incident surface A and three light exit surfaces B1, B2, and B3 are provided. In the fiber 241, the incident surface A has the image side principal point PP of the objective lens 21 (for convenience of explanation, in this embodiment and other embodiments described later, the image side principal point substantially coincides with the object side principal point. The objective lens 21 is disposed so as to be separated from the objective lens 21 by the focal length f. That is, the objective lens 21 and the fiber 241 constitute a telecentric optical system. In the present embodiment, an optical fiber is used as the light beam splitting member 24. However, other optical components that perform the same function as the optical fiber, such as an optical conduit, may be used.
[0035]
With this configuration, when the measurement probe 2 is set away from the display surface 51 of the liquid crystal panel 5 by a predetermined distance d (for example, about 3 cm), among the light beams emitted from each part of the measurement area AR of the liquid crystal panel 5, Only the luminous flux below the maximum value α (hereinafter referred to as the maximum emission angle α) of the emission angle with respect to the normal direction of the measurement area AR (the direction parallel to the optical axis L in FIG. 3) is incident on the incident surface A of the fiber 241. Incident. The maximum emission angle α is determined by the focal length f of the objective lens 21 and the diameter R of the incident surface A of the fiber 241. The incident light beam is divided into three in the fiber 241 and emitted from the emission surfaces B1, B2, and B3, respectively.
[0036]
As shown in FIG. 4, the lens 242a condenses the light beam emitted from the emission surface B1 of the fiber 241 on the light receiving sensor 252a, and substantially matches the irradiation range LA of the light beam with the light receiving range SA of the light receiving sensor 252a. It is. Similarly, the lenses 242b and 242c condense the light beams emitted from the emission surfaces B2 and B3 of the fiber 241 to the light receiving sensors 252b and 252c, respectively, and set the irradiation range of each light beam to the light receiving ranges of the corresponding light receiving sensors 252b and 252c. It is a thing to make it substantially coincide.
[0037]
In this way, the light beam emitted from the fiber 241 is condensed in the light receiving range SA of the light receiving sensor 252, so that the light beam incident on the fiber 241 (the measured object emitted from each part of the measured region AR of the liquid crystal panel 5). All the luminous fluxes having a maximum emission angle α or less with respect to the normal direction of the area AR are respectively incident on the respective light receiving sensors 252a, 252b, and 252c by 1/3, and are received by the light receiving sensors as in the conventional measurement optical system shown in FIG. The amount of received light does not decrease.
[0038]
The optical path switching member 22 switches between the incidence of light flux collected by the objective lens 21 on the fiber 241 and the light shielding, and illuminates the display surface 51 of the liquid crystal panel 5 at the time of the light shielding so that the measurer can measure the area AR to be measured. Is made visible.
[0039]
The light beam incident on the fiber 241 can be blocked because the stray light of the measurement optical system including the objective lens 21 and the light beam splitting member 24 is received by the light receiving unit 25 even when the liquid crystal panel 5 is not provided (that is, when no light is incident). This is to make it possible to accurately perform calibration (offset correction) for canceling the noise signal. That is, the measured value is zero-adjusted in a state where the optical path switching member 22 completely shields the fiber 241 or the measured value in the light-shielded state can be stored in the memory as an offset correction value.
[0040]
As shown in FIG. 5, the optical path switching member 22 is a disk-shaped member that can rotate around a central axis 222. A circular opening 223 having a predetermined size is formed at a position eccentric from the center by a predetermined distance. A light emitting element 224 is provided at a point-symmetrical position with respect to the central axis 222 of the circular opening 223 on the surface facing the objective lens 21 (surface opposite to the fiber 241).
[0041]
Note that the size of the circular opening 223 is such that when the circular opening 223 is disposed opposite to the incident surface A of the fiber 241, the light beam collected by the objective lens 21 is completely vignetted without being vignetted by the optical path switching member 22. It is set to a size that can be incident on A. The light-emitting element 224 can be any light-emitting element such as an LED, a semiconductor laser, or a lamp.
[0042]
The optical path switching member 22 is rotationally driven by a driving member 23 such as a motor. At the time of measurement, the circular opening 223 is set at a position (light guiding position) facing the fiber 241 as shown in FIG. As shown in FIG. 4, the light emitting element 224 is set to a position on the optical axis L of the objective lens 21 (position overlapping the incident surface A of the fiber 241; light shielding position). When the optical path switching member 22 is set at the light blocking position, the light emitting element 22 is positioned at a position substantially equal to the incident surface A of the fiber 241 because the measurer sets the measured area AR of the liquid crystal panel 5 during calibration. This is so that it can be confirmed.
[0043]
That is, when the optical path switching member 22 is set at the light shielding position, the light emitting element 224 emits light. Since the objective lens 21 and the fiber 241 constitute a telecentric optical system as described above, the light emitted from the light emitting element 224 disposed at a position substantially equal to the incident surface A of the fiber 241 is shown in FIG. After passing through the objective lens 21 as described above, the light becomes substantially parallel light and is irradiated onto an area substantially equal to the measurement area AR of the display surface 51 of the liquid crystal panel 5. Therefore, the measurer can confirm the measurement area AR (illumination area) by the illumination area of the display surface 51 of the liquid crystal panel 5.
[0044]
In the present embodiment, the switching of the optical path switching member 22 is performed using a drive source such as a motor, but may be performed manually. In this way, it is not necessary to incorporate a drive source in the measurement probe 2, so that the measurement probe 2 can be reduced in size and weight.
[0045]
In the present embodiment, the optical path switching member 22 has a disk shape, but may have a rectangular plate shape as shown in FIG. Further, in this embodiment, the light path switching member 22 is switched between the light blocking position and the light guiding position by a rotation operation. However, as shown in FIG. 7, it may be performed by sliding movement (sliding direction is arbitrary). .
[0046]
Furthermore, although the optical path switching member 22 is built in the measurement probe 2 in this embodiment, the optical path switching member 22 may be omitted. In this case, the measurer puts a light-shielding member such as a cap on the tip of the measurement probe 2 to make the light-shielded state, and calibration may be performed in this state. On the other hand, in the light emitting element 224 for confirming the measurement region AR, for example, as shown in FIG. 8, a flange 241A is provided at the tip of the incident surface A side of the fiber 241, and the objective lens 21 of the flange 241A faces. What is necessary is just to arrange | position so that a light beam may not be interrupted | blocked by the fiber 241 on the surface. In this case, the light emitting element 224 may be one or plural. In the example of FIG. 8, two light emitting elements 224 and 224 ′ are provided. The light emitted from each of the light emitting elements 224 and 224 ′ passes through the optical path shown in FIG. Irradiation is made in a range substantially the same as the measurement area AR of the display surface 51 of the panel 5.
[0047]
FIG. 9 is a diagram showing another embodiment of the measurement optical system.
[0048]
The measurement optical system shown in the figure is the same as the measurement optical system shown in FIG. 3 except that the relay lens 211 (second condensing means) is placed at a predetermined position between the objective lens 21 (first condensing means) and the fiber 241. ), An aperture stop S1 and a field stop S2. The aperture stop S1 is provided at a position C away from the image-side principal point PP of the objective lens 21 by the focal length f, and the field stop S2 is provided at the imaging position of the objective lens 21. The relay lens 211 guides the optical image formed on the field stop S2 to the fiber 241, and the aperture stop so that the aperture stop S1 and the position C ′ of the incident surface A of the fiber 241 have a conjugate positional relationship. It is arranged between S1 and the fiber 241.
[0049]
The aperture stop S1 and the objective lens 21 constitute a telecentric optical system, and among the light beams emitted from the measurement area AR of the liquid crystal panel 5, a light beam having a maximum emission angle α or less enters the field stop S1. Since the maximum emission angle α is determined by the focal length f of the objective lens 21 and the aperture diameter of the aperture stop S1, the aperture diameter of the aperture stop S1 is set to a desired maximum emission angle α and the focal length f of the objective lens 21. Has been adjusted based on.
[0050]
In this measurement optical system, among the light beams emitted from the measurement region AR of the liquid crystal panel 5, only the light beam having a maximum emission angle α or less passes through the aperture stop S1, and the optical image of the measurement region AR is from the field stop S2. The image is formed at the position. This optical image is guided to the incident surface A of the fiber 241 by the relay lens 211. Since the aperture stop S1 and the incident surface A of the fiber 241 are arranged in a conjugate relationship, the light beam passing through the aperture stop S1 is incident on the incident surface A of the fiber 241 by the relay lens 211, and is measured by this measurement optical system. In the same way as the measurement optical system shown in FIG. 3, all of the light beams emitted from the measurement area AR of the liquid crystal panel 5 with the maximum emission angle α or less are guided to the light receiving unit 25 without losing the light amount. .
[0051]
Further, in this measuring optical system, when the light path switching member 22 is set to the light shielding position and the light emitting element 224 emits light, the light from the light emitting element 224 is reflected in the optical path shown in FIG. 10 (the incident light from the liquid crystal panel 5 to the fiber 241 An area substantially coincident with the area to be measured AR of the display surface 51 of the liquid crystal panel 5 is irradiated through an optical path substantially opposite to the optical path). Therefore, even in this measurement optical system, the measurer can confirm the measurement area AR of the liquid crystal panel 5 by the illumination light of the light emitting element 224.
[0052]
In this measurement optical system, since the aperture stop S1 and the incident surface A of the fiber 241 are in a conjugate positional relationship, the light emitting element 224 is positioned at the position of the aperture stop S1 as indicated by a dotted line in FIGS. Can be arranged. For example, when the aperture stop S1 is configured by a ring-shaped disk member, an appropriate number is arranged at an appropriate position on the surface of the disk member facing the objective lens 21 as a structure similar to the optical path switching member 22 shown in FIG. Good.
[0053]
As described above, since the aperture stop S1 and the objective lens 21 constitute a telecentric optical system, the light emitted from the light emitting element 224 disposed at substantially the same position as the aperture stop S1 enters the objective lens 21. After that, since it becomes substantially parallel light and is emitted to the display surface 51 of the liquid crystal panel 5 (see the optical path shown in FIG. 6), the measurement area AR of the liquid crystal panel 5 can be illuminated.
[0054]
Returning to FIG. 3, the photoelectric conversion unit 25 has three light receiving sensors 252a, 252b, and 252c having substantially the same light receiving sensitivity, such as SPC, and the CIE standard observation for each of the light receiving sensors 252a, 252b, and 252c. And three spectral sensitivity correction filters 251a, 251b, and 251c for giving the user's spectral sensitivity.
[0055]
The light receiving sensors 252a, 252b, and 252c are on the optical axes of the lenses 242a, 242b, and 242c, respectively, and the irradiation ranges of the light collected by the lenses 242a, 242b, and 242c are received by the light receiving sensors 252a, 252b, and 252c, respectively. It is arranged at a position that is a range. The spectral sensitivity correction filters 251a, 251b, and 251c are disposed at appropriate positions between the light receiving sensors 252a, 252b, and 252c and the lenses 242a, 242b, and 242c, respectively.
[0056]
The spectral sensitivity correction filter 251a has, for example, a filter characteristic having sensitivity in the R (red) wavelength region. Due to this filter property, the light reception sensitivity of the light receiving sensor 252a is a color matching function (X) having a large sensitivity in the red wavelength region. (Bar / lambda) On the other hand, the spectral sensitivity correction filters 251b and 251c have filter characteristics having sensitivity in the wavelength regions of G (green) and B (blue), respectively, and the light receiving sensitivity of the light receiving sensor 252b and the light receiving sensor 252c is based on these filter characteristics. Corrected to light sensitivity of color matching function (Yi bar lambda) having high sensitivity in the green wavelength range and light receiving sensitivity of color matching function (Zet bar lambda) having high sensitivity in the blue wavelength range. Has been. Therefore, the light receiving signals corresponding to the tristimulus values (X, Y, Z) are output from the light receiving sensors 252a, 252b, 252c, respectively.
[0057]
Returning to FIG. 2, the measuring instrument body 3 outputs from the A / D converter 31 and the A / D converter 31 that convert the received light signal input from the measurement probe 2 into a digital signal (hereinafter referred to as measurement data). Data memory 32 for storing measured data, tristimulus values (X, Y, Z), Yxy (luminance, chromaticity coordinates) established by CIE, TΔuvY using measurement data stored in the data memory (Data processing unit 33 for calculating (correlated color temperature, color difference from black body locus, luminance), etc., display unit 34 for displaying the calculation result, various information relating to measurement (measurement instruction, display mode setting, measurement range, etc.) The control unit 36 controls the measurement operation by intensively controlling the operation of the operation unit 35 and the operation of the measurement probe 2 and the operation of each unit in the measuring instrument main body 3.
[0058]
Next, the measurement process of the colorimeter 1 will be briefly described with reference to the flowchart of FIG. In this measurement process, a case where the chromaticity of the liquid crystal panel (LCD) 5 to be measured is measured will be described.
[0059]
First, as shown in FIG. 1, the measurement probe 2 is opposed to a region to be measured on the liquid crystal panel 5 and set at a position separated from the display surface 51 of the liquid crystal panel 5 by a predetermined distance d (about several centimeters) ( Step # 1). Subsequently, a video signal is given to the liquid crystal panel 5 from a pattern generator (not shown) to display a predetermined measurement image on the display surface 51 of the liquid crystal panel 5 (step # 3).
[0060]
When the measurement image is displayed in this way, the respective light receiving sensors 252a, 252b, and 252c output three light receiving signals (analog signals) SX, SY, and SZ related to the tristimulus values X, Y, and Z, respectively. The signals SX, SY, and SZ are amplified to a predetermined level by the amplifying unit 26 and then input to the measuring device main body 3. In the measuring instrument body 3, the received light signals SX, SY, SZ are converted into digital signals DX, DY, DZ by the A / D converter 31 and stored in the data memory 32 (step # 5).
[0061]
Next, the measurement data DX, DY, DZ and the calibration data KX, KY, KZ stored in advance in the data memory 32 are read from the data memory 32 to the data processing unit 33, and the tristimulus values of the measurement image are read. X, Y, Z are calculated (step # 7). The tristimulus values X, Y, and Z are calculated by X = KX · DX, Y = KY · DY, and Z = KZ · DZ. When the true tristimulus values X, Y, and Z are calculated in this way, the calculation results are displayed on the display unit 34 (that is, the display panel 301) (# 9).
[0062]
In the above-described embodiment, the light receiving sensors 252a to 252a through the red filter 251a, the green filter 251b, and the blue filter 251c corresponding to the three spectral sensitivities defined as the standard observer's spectral sensitivities by the International Commission on Illumination (CIE). The spectral sensitivity of 252c is corrected, but the type of filter is not limited to this.
[0063]
【The invention's effect】
As described above, according to the present invention, the condensing unit having a positive power and the light beam having the incident surface at a position that is substantially separated from the image-side principal point of the condensing unit by the focal length of the condensing unit. Since the measuring optical system is configured with the splitting means, all the light beams having a predetermined emission angle or less out of the light fluxes emitted from the measurement region of the object to be measured can be guided to the light receiving sensor side through the light flux splitting means without loss. In addition, even when the light emission intensity of the object to be measured is small, the optical characteristics of the object to be measured can be accurately measured (claim 1).
[0064]
Further, according to the present invention, the first condensing unit having a positive power and a position separated from the image-side principal point of the first condensing unit by a focal distance of the first condensing unit. The aperture stop disposed, the light beam splitting means for splitting the light beam transmitted through the aperture stop into a plurality of light beams, and the entrance surface of the aperture stop and the light beam splitting means are arranged in a conjugate relationship. Since the measurement optical system is constituted by the second light collecting means for condensing the light beam transmitted through the aperture stop on the light beam splitting means, the light beam emitted from the measurement region of the object to be measured is equal to or less than a predetermined emission angle. The light beam can be guided to the light receiving sensor side through the light beam splitting means without loss, and the same effect as described above can be obtained. 2 ).
[0065]
Further, according to the present invention, the illumination means is provided in the vicinity of the entrance surface of the light beam splitting means or the aperture stop, and the whole measurement area of the object to be measured is illuminated by this illumination means. This eliminates the need to reduce the amount of light guided to the light receiving sensor due to the provision of the finder optical system. 1, 2 ).
[0066]
Further, since the light beam splitting means has a positive power, the light beam splitting means emits light between the light beam splitting means and the light receiving sensor by substantially matching the irradiation range of the light flux emitted from the light beam splitting means with the light receiving range of the light receiving sensor. The light guide loss can be reduced. As a result, it is possible to further prevent a decrease in the amount of light received by the light receiving sensor. 3, 4 ).
[0067]
Further, since the tristimulus photoelectric colorimeter is configured by using the measurement optical system according to the present invention, the measurement optical system emits a light beam having a predetermined emission angle or less out of the light beams emitted from the measurement region of the measurement object. Therefore, the tristimulus value can be measured reliably and accurately even when the light flux from the measurement area of the object to be measured is small. 5 ).
[Brief description of the drawings]
FIG. 1 is a perspective view showing an external appearance of a tristimulus type photoelectric colorimeter according to the present invention.
FIG. 2 is a block diagram showing an internal configuration of a measurement probe and a measuring instrument main body.
FIG. 3 is a diagram showing a specific configuration of a measurement optical system of a measurement probe.
FIG. 4 is a diagram showing a relationship between an illumination range by a light beam emitted from a fiber and a light receiving range of a light receiving unit.
FIG. 5 is a view showing a structure of an optical path switching member.
FIG. 6 is a diagram illustrating a state in which a measurement region is illuminated by a light emitting element of an optical path switching member.
FIG. 7 is a view showing another structure of the optical path switching member.
FIG. 8 is a view showing another mounting structure of the light emitting element.
FIG. 9 is a diagram showing another embodiment of a measurement optical system.
FIG. 10 is a diagram showing an illumination range of a light emitting element in another embodiment of the measurement optical system.
FIG. 11 is a flowchart showing a procedure of measurement processing.
FIG. 12 is a diagram showing an example of an optical system applied to a conventional tristimulus type photoelectric colorimeter.
FIG. 13 is a diagram showing a relationship between an illumination range by a light beam emitted from a fiber and a light receiving range of a light receiving unit in a conventional measuring optical system.
FIG. 14 is a diagram illustrating an example of a conventional measurement optical system that guides, to a light receiving sensor, only a light beam having a predetermined emission angle or less among light beams emitted from a measurement region of a measurement object.
[Explanation of symbols]
1 Tristimulus type photoelectric colorimeter
2 Measuring probe
21 Objective lens (condensing means, first condensing means)
211 relay lens (second condensing means)
22 Optical path switching member (optical path switching means)
224 Light emitting element (illumination means)
23 Drive member
24 beam splitting member (beam splitting means)
241 fiber
242a, 242b, 242c Positive lens
25 Photoelectric converter
251a, 251b, 251c Spectral sensitivity correction filter
252a, 252b, 252c Light receiving sensor (light receiving means)
26 Amplifier
3 Measuring instrument body
31 A / D converter
32 data memory
33 Data processing unit (calculation means)
34 Display section
35 Operation unit
36 Control unit
4 Cable
5 LCD panel (measurement object)
6 Tripod
AR Measurement area
S1 Aperture stop
S2 Field stop

Claims (5)

被測定物の被測定領域から出射される光束のうち所定の出射角以下の光束のみを集光する正のパワーを有する集光手段と、上記集光手段の像側主点からほぼ当該集光手段の焦点距離だけ離れた位置に当該集光手段で集光された光束の入射面を有し、入射した光束を複数の光束に分割して出射する光束分割手段と、上記集光手段の像側主点からほぼ当該集光手段の焦点距離だけ離れた位置に、上記被測定物の被測定領域全体を照明する照明手段と、上記集光手段の像側主点からほぼ当該集光手段の焦点距離だけ離れた位置に、前記集光手段で集光された光束を前記光束分割手段の入射面に透過させる透過部と前記入射面への該光束の入射を遮断する遮光部とが切換可能な光路切換手段とを備え、上記照明手段は、上記光路切換手段の遮光部に配設されており、前記遮光部により前記光束を遮光するときに、前記被測定物の被測定領域を照明することを特徴とする測定用光学系。A condensing means having a positive power for condensing only a light beam having a predetermined emission angle or less out of the light flux emitted from the measurement area of the object to be measured, and the light condensing from the image side principal point of the light collecting means. A light beam splitting unit having an incident surface of a light beam collected by the light collecting unit at a position separated by a focal length of the unit, dividing the incident light beam into a plurality of light beams, and an image of the light collecting unit An illuminating means for illuminating the entire measurement area of the object to be measured at a position approximately away from the side principal point by the focal length of the light collecting means; and A transmission part that transmits the light beam condensed by the light collecting unit to the incident surface of the light beam dividing unit and a light shielding unit that blocks the incidence of the light beam on the incident surface can be switched at a position separated by a focal length. Optical path switching means, and the illuminating means is arranged in a light shielding portion of the optical path switching means. Are, the when shielding the light beam by the light shielding portion, the measurement optical system, characterized in that illuminating the measurement area of the object to be measured. 被測定物の被測定領域から出射される光束のうち所定の出射角以下の光束のみを集光する正のパワーを有する第1の集光手段と、上記第1の集光手段の像側主点からほぼ当該第1の集光手段の焦点距離だけ離れた位置に配設された開口絞りと、上記開口絞りを透過した光束を複数の光束に分割して出射する光束分割手段と、上記開口絞りと上記光束分割手段との間にあって当該開口絞りと当該光束分割手段の入射面とが共役な関係となる位置に配置され、上記開口絞りを透過した光束を上記光束分割手段に集光する第2の集光手段と、上記開口絞り若しくは上記光束分割手段の入射面の近傍位置に、上記被測定物の被測定領域全体を照明する照明手段と、上記開口絞り若しくは上記光束分割手段の入射面の近傍位置に、前記集光手段で集光された光束を前記光束分割手段の入射面に透過させる透過部と前記入射面への該光束の入射を遮断する遮光部とが切換可能な光路切換手段とを備え、上記照明手段は、上記光路切換手段の遮光部に配設されており、前記遮光部により前記光束を遮光するときに、前記被測定物の被測定領域を照明することを特徴とする測定用光学系。A first condensing means having a positive power for condensing only a light beam having a predetermined emission angle or less out of light beams emitted from the measurement region of the object to be measured; and an image side main of the first light condensing means. An aperture stop disposed at a position approximately away from the point by the focal length of the first light collecting means, a light beam splitting means for splitting a light beam transmitted through the aperture stop into a plurality of light beams, and the aperture A first light beam is disposed between the stop and the light beam splitting unit, and is disposed at a position where the aperture stop and the incident surface of the light beam splitting unit have a conjugate relationship, and the light beam that has passed through the aperture stop is condensed on the light beam splitting unit. Two condensing means, an illuminating means for illuminating the entire measurement area of the measured object at a position near the entrance surface of the aperture stop or the light beam splitting means, and an entrance surface of the aperture stop or the light beam splitting means in the vicinity of the light collecting in the focusing means And a light shielding portion and is switchable optical path switching means for interrupting the incidence of the luminous flux of the light flux to the incident surface and the transmission portion for transmitting the incident surface of the beam splitting means has, the illumination means, the light path switching An optical system for measurement , which is disposed in a light shielding portion of the means, and illuminates a measured region of the object to be measured when the light beam is shielded by the light shielding portion . 上記光束分割手段は、正のパワーを有することを特徴とする請求項1又は2に記載の測定用光学系。Is the beam splitting means, a positive measurement optical system according to claim 1 or 2, characterized in that it has a power. 上記光束分割手段は、光束を複数に分割する導光部材と、上記導光部材の複数の出射面に対応して設けられた複数の正のパワーを有する集光部材とからなることを特徴とする請求項記載の測定用光学系。The light beam splitting means includes a light guide member that splits a light beam into a plurality of light beams, and a plurality of light collecting members having positive power provided corresponding to a plurality of light exit surfaces of the light guide member. The measuring optical system according to claim 3 . 請求項1〜のいずれかに記載の測定用光学系と、上記測定用光学系における上記光束分割手段の複数の出射面に対向してそれぞれ配置された複数の受光部を有し、当該出射面から出射される光束を三原色の色成分に分離し、電気信号に光電変換して出力する受光手段と、上記受光手段から出力される三原色の色成分の受光信号に基づき三刺激値を演算する演算手段とを備えたことを特徴とする三刺激値型光電色彩計。Includes a measuring optical system according to any one of claims 1-4, a plurality of light receiving portions arranged respectively to face a plurality of the exit surface of the beam splitting means in the measuring optical system, the exit A tristimulus value is calculated based on a light receiving unit that divides a light beam emitted from the surface into three primary color components, photoelectrically converts them into electrical signals, and outputs light signals of the three primary color components output from the light receiving unit. A tristimulus value type photoelectric colorimeter comprising a calculation means.
JP2001118649A 2001-04-17 2001-04-17 Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system Expired - Fee Related JP4333050B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001118649A JP4333050B2 (en) 2001-04-17 2001-04-17 Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system
TW91105187A TW535004B (en) 2001-04-17 2002-03-19 Measuring optical system and three-stimulation value photoelectric colorimeter provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001118649A JP4333050B2 (en) 2001-04-17 2001-04-17 Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system

Publications (3)

Publication Number Publication Date
JP2002310800A JP2002310800A (en) 2002-10-23
JP2002310800A5 JP2002310800A5 (en) 2006-06-22
JP4333050B2 true JP4333050B2 (en) 2009-09-16

Family

ID=18969013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001118649A Expired - Fee Related JP4333050B2 (en) 2001-04-17 2001-04-17 Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system

Country Status (2)

Country Link
JP (1) JP4333050B2 (en)
TW (1) TW535004B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539472B1 (en) 2007-08-27 2015-07-24 가부시키가이샤 니콘 Color distribution measuring optical system, color distribution measuring device, and color distribution measuring method
JP2010002255A (en) * 2008-06-19 2010-01-07 Topcon Corp Optical system for measurement
KR100982896B1 (en) 2008-06-23 2010-09-16 주식회사 투아이스펙트라 Spectro-photometric system for color analysis of displays
JP2010025558A (en) * 2008-07-15 2010-02-04 Topcon Corp Optical system for measurement
KR100965804B1 (en) * 2009-05-19 2010-06-24 삼성교정기술원(주) Probe of light color analyzer using x,y,z tristimulus values
JP5390953B2 (en) * 2009-06-19 2014-01-15 株式会社クボタ Measuring device for internal quality of powder
EP3385687B1 (en) 2015-11-30 2023-10-25 Konica Minolta, Inc. Optical device for measurement
JP2017150935A (en) * 2016-02-24 2017-08-31 コニカミノルタ株式会社 Optical characteristic measurement system and optical device for measurement
WO2018047366A1 (en) * 2016-09-06 2018-03-15 株式会社アタゴ Nondestructive measuring device
CN110741300A (en) * 2017-06-15 2020-01-31 柯尼卡美能达株式会社 Optical system for measurement, color luminance meter, and color meter
KR102609046B1 (en) * 2018-07-19 2023-12-01 코니카 미놀타 가부시키가이샤 metering device
CN108871570A (en) * 2018-09-21 2018-11-23 苏州华兴源创科技股份有限公司 A kind of optic probe
CN110927897B (en) * 2019-12-10 2022-06-10 深圳市晟睿通信有限公司 Photoelectric sensing device and implementation method thereof
WO2022059524A1 (en) * 2020-09-16 2022-03-24 コニカミノルタ株式会社 Photometer

Also Published As

Publication number Publication date
TW535004B (en) 2003-06-01
JP2002310800A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP4333050B2 (en) Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system
US7646976B2 (en) Digital camera
US4257687A (en) Eye examining instrument with photo-detecting system
JP4047217B2 (en) Ophthalmic equipment
JP2010271246A (en) Method and device for color luminance measurement
US7909471B2 (en) Rear projection type display apparatus
WO2018147631A1 (en) Apparatus for implementing confocal image using chromatic aberration lens
US11954766B2 (en) Method for carrying out a shading correction and optical observation device system
US20050243330A1 (en) Methods and apparatus for determining three dimensional configurations
JP2009109315A (en) Light measuring device and scanning optical system
JP5424064B2 (en) measuring device
JP2013002951A (en) Measuring device
JPH09248281A (en) Endoscope spectrometer
JP2020014718A (en) Light source device for endoscope and endoscope system
JP4208536B2 (en) Focus detection device, imaging device having the same, and photographing lens
JPS62192714A (en) Focus detecting device
WO2009128338A1 (en) Photometer
JP3376040B2 (en) Eye photographing device
US20200195819A1 (en) Image capturing apparatus
JPS6240416A (en) Light source optical system for endoscope
JP2769405B2 (en) 2D light distribution measurement device for liquid crystal display panel
JP2669173B2 (en) Light source device
JPH03254727A (en) Image photographing device
JPH08320273A (en) Optical angle characteristic measuring device
US20240004182A1 (en) Beam Splitting Device for a Distal End Section of an Endoscope, Objective System and Endoscope

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees