JP2016095277A - Optical property measurement device - Google Patents

Optical property measurement device Download PDF

Info

Publication number
JP2016095277A
JP2016095277A JP2014232887A JP2014232887A JP2016095277A JP 2016095277 A JP2016095277 A JP 2016095277A JP 2014232887 A JP2014232887 A JP 2014232887A JP 2014232887 A JP2014232887 A JP 2014232887A JP 2016095277 A JP2016095277 A JP 2016095277A
Authority
JP
Japan
Prior art keywords
light beam
measurement
light
optical
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014232887A
Other languages
Japanese (ja)
Other versions
JP6331986B2 (en
Inventor
滋人 大森
Shigeto Omori
滋人 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2014232887A priority Critical patent/JP6331986B2/en
Publication of JP2016095277A publication Critical patent/JP2016095277A/en
Application granted granted Critical
Publication of JP6331986B2 publication Critical patent/JP6331986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical property measurement device capable of providing further accurate measurement of optical properties of an object under measurement even when the object under measurement has a polarizing property or directivity.SOLUTION: An optical property measurement device D1 includes: an imaging optical system 6 that outputs measurement light rays L for forming an image of an object under measurement; a bifurcating mirror 5 that splits the measurement light rays L into transmitted light rays L0 and reflected light rays L1 and splits an optical axis AX of the imaging optical system 6 into a transmission optical axis AX0 on a side of the transmitted light rays L0 and a reflection optical axis AX1 on a side of the reflected light rays L1; a line sensor 14 disposed on the transmission optical axis AX0; and a two-dimensional sensor 22 disposed on the reflection optical axis AX1. The bifurcating mirror 5 has transmissive areas A0 that allow the measurement light rays L to pass through and reflective areas A1 that reflect the measurement light rays L, where both the transmissive areas A0 and reflective areas A1 receive both a portion of the measurement light rays L in a light ray central area Aa centered on the optical axis AX and a portion thereof in a light ray peripheral area Ab that surrounds the light ray central area Aa.SELECTED DRAWING: Figure 1

Description

本発明は、光学特性測定装置に関するものである。例えば、輝度,色彩,光沢等の所定の光学特性を測定する光学特性測定装置に関するものであり、特に被測定物が偏光特性又は視野角度特性(指向性)を有している場合でも、より精度良い測定が可能な光学特性測定装置に関するものである。   The present invention relates to an optical characteristic measuring apparatus. For example, the present invention relates to an optical characteristic measuring apparatus that measures predetermined optical characteristics such as luminance, color, and gloss, and more accurate even when the object to be measured has polarization characteristics or viewing angle characteristics (directivity). The present invention relates to an optical characteristic measuring apparatus capable of good measurement.

近年、塗装,成形,印刷,繊維,農業等の各種産業分野において、製品の輝度,色彩,光沢等(例えば、表示モニターや自動車インスツルメントパネルの輝度・色彩)の所定の光学特性の管理が重要視されつつある。前記所定の光学特性を測定する装置としては、例えば、輝度計,分光測色計,色彩計(色彩色差計),光沢計等の光学特性測定装置が知られており、その1つに、例えば、特許文献1及び2に開示された2次元測色計がある。   In recent years, in various industrial fields such as painting, molding, printing, textiles, agriculture, etc., management of predetermined optical characteristics such as brightness, color, luster, etc. of products (for example, brightness and color of display monitors and automobile instrument panels) has been managed. It is becoming important. As the apparatus for measuring the predetermined optical characteristics, for example, optical characteristic measuring apparatuses such as a luminance meter, a spectrocolorimeter, a color meter (color and color difference meter), a gloss meter, and the like are known. There are two-dimensional colorimeters disclosed in Patent Documents 1 and 2.

特許文献1及び2に開示されている2次元測色計は、試料からの光を第1の光路と第2の光路に分岐するビームスプリッターと、上記第1の光路に導かれた光が通過する位置に配設され、分光透過率が所定の3次元表色系の等色関数に近似する第1,第2,第3の光学フィルターと、この第1,第2,第3の光学フィルターを通過した光をそれぞれ上記試料面の複数の測定点について受光する2次元受光検出手段と、上記測定点の中の特定点から上記第2の光路に導かれた光について分光分布を検出する分光検出手段と、検出された上記分光分布に基づいて上記3次元表色系の三刺激値を算出する三刺激値演算手段と、算出された上記三刺激値と上記特定点における上記2次元受光検出手段の検出結果との関係を用いて上記特定点以外の上記測定点について上記2次元受光検出手段の検出結果から上記三刺激値を算出する演算手段とを備えている。   The two-dimensional colorimeter disclosed in Patent Documents 1 and 2 includes a beam splitter that branches light from a sample into a first optical path and a second optical path, and light guided to the first optical path passes therethrough. First, second, and third optical filters that are arranged at positions where the spectral transmittance approximates the color matching function of a predetermined three-dimensional color system, and the first, second, and third optical filters A two-dimensional light receiving detection means for receiving the light passing through each of the plurality of measurement points on the sample surface, and a spectrum for detecting a spectral distribution of the light guided to the second optical path from a specific point among the measurement points. Detection means; tristimulus value calculation means for calculating tristimulus values of the three-dimensional color system based on the detected spectral distribution; and the two-dimensional light reception detection at the calculated tristimulus values and the specific point. The above other than the specific point using the relationship with the detection result of the means And a calculating means for calculating the tristimulus values from the detection results of the two-dimensional light receiving detection means for fixed point.

上記2次元測色計は、2次元色彩輝度計と分光計とが組み合わされた構成になっている。そして、三刺激値と特定点における2次元受光検出手段の検出結果との関係を用いて、演算手段が特定点以外の測定点について2次元受光検出手段の検出結果から三刺激値を算出することにより、相対的に精度の低い2次元受光検出手段の検出結果を相対的に精度の高い三刺激値で補正することを可能としている。したがって、特定点以外の測定点について、簡素な構成で精度良く色彩測定を行うことができる。   The two-dimensional colorimeter is configured by combining a two-dimensional color luminance meter and a spectrometer. Then, using the relationship between the tristimulus value and the detection result of the two-dimensional light reception detection unit at the specific point, the calculation unit calculates the tristimulus value from the detection result of the two-dimensional light reception detection unit at a measurement point other than the specific point. Thus, it is possible to correct the detection result of the two-dimensional light receiving detection means with relatively low accuracy with the tristimulus values with relatively high accuracy. Therefore, it is possible to accurately measure the color of measurement points other than the specific point with a simple configuration.

特許第3246021号公報Japanese Patent No. 3246021 特開平6−201472号公報JP-A-6-201472

前記特許文献1及び2に開示されている2次元測色計では、同一個所からの同一光を2分岐して、それぞれ異なる手法で測定を行うことが基本となる。しかし、同一光を得るための分岐方法には課題があり、ここでは偏光と放射方向に関する同一性が問題となる。   In the two-dimensional colorimeters disclosed in Patent Documents 1 and 2, it is fundamental that the same light from the same location is branched into two and measured by different methods. However, there is a problem in the branching method for obtaining the same light, and here, the identity regarding the polarization and the radiation direction becomes a problem.

まず偏光について、試料からの光に偏光特性がある場合(つまり、P偏光とS偏光の割合が異なる場合)の課題を説明する。特許文献1及び2に開示されている2次元測色計のように、試料からの光を第1の光路と第2の光路とに分岐するためにビームスプリッターが用いられている場合、ビームスプリッターとしてのハーフミラーは偏光依存性が大きいため(S偏光反射率>P偏光反射率、S偏光透過率<P偏光透過率)、試料光に対しビームスプリッターがP偏光の位置にある場合とS偏光の位置にある場合とで、透過と反射の光量関係が異なってしまい、正しい測定ができないことになる。   First, regarding polarized light, a problem when the light from the sample has polarization characteristics (that is, when the ratio of P-polarized light and S-polarized light is different) will be described. When the beam splitter is used to branch the light from the sample into the first optical path and the second optical path as in the two-dimensional colorimeter disclosed in Patent Documents 1 and 2, when the beam splitter is used, Since the half mirror has a large polarization dependency (S-polarized light reflectance> P-polarized light reflectance, S-polarized light transmittance <P-polarized light transmittance), the case where the beam splitter is at the position of P-polarized light with respect to the sample light and S-polarized light In this case, the relationship between the amount of light transmitted and reflected differs, and correct measurement cannot be performed.

以下に、波長500nm,45°入射の偏光依存性の具体例を示す。
アルミ:
反射 S偏光 94%,P偏光 89%,平均反射率91.5%,偏光依存性 2.7%
ハーフミラー:
反射 S偏光 90%,P偏光 10%,平均反射率 50%,偏光依存性 80%
透過 S偏光 10%,P偏光 90%,平均透過率 50%,偏光依存性 -80%
ガラス:
反射 S偏光 9%,P偏光 1%,平均反射率 5%,偏光依存性 80%
透過 S偏光 91%,P偏光 99%,平均透過率 95%,偏光依存性-4.2%
単層反射膜付ガラス:
反射 S偏光 3.9%,P偏光 0.1%,平均反射率 2%,偏光依存性 95%
透過 S偏光96.1%,P偏光99.9%,平均透過率 98%,偏光依存性-0.4%
Hereinafter, a specific example of the polarization dependence at a wavelength of 500 nm and 45 ° incidence will be shown.
Aluminum:
Reflection S-polarized light 94%, P-polarized light 89%, Average reflectance 91.5%, Polarization dependence 2.7%
Half mirror:
Reflection S-polarized light 90%, P-polarized light 10%, average reflectance 50%, polarization dependence 80%
Transmission S-polarized light 10%, P-polarized light 90%, Average transmittance 50%, Polarization dependence -80%
Glass:
Reflection S-polarized light 9%, P-polarized light 1%, average reflectance 5%, polarization dependence 80%
Transmission S-polarized light 91%, P-polarized light 99%, Average transmittance 95%, Polarization dependence -4.2%
Glass with single-layer reflective film:
Reflection S-polarized light 3.9%, P-polarized light 0.1%, Average reflectance 2%, Polarization dependence 95%
Transmission S-polarized light 96.1%, P-polarized light 99.9%, Average transmittance 98%, Polarization dependence -0.4%

次に放射方向について、試料からの光に指向性がある場合(つまり、放射方向(視野角度)で光量及び色度に偏りがある場合)の課題を説明する。例えば液晶表示板は、正面とそれ以外とで光量及び色度が異なる。測色計を液晶表示板の正面に据えて測定を行った場合、測色計の光学系は角度を持った試料からの光を受光器に導くため、光軸を中心とする光束中心領域の光とその周囲に位置する光束周辺領域の光とは光量及び色度が異なることになる。したがって、光束中心領域に略円形又は楕円形の鏡を配置するか、あるいは光束周辺領域をミラー面とする略円環形の鏡を配置して、ミラー面のある部分で光束を反射させ、ミラー面の無い部分で光束を通過(透過)させることにより、光束を分岐させる対策が考えられる。しかし、その分岐により得られた2光束を2つの受光器でそれぞれ受光すると、両光束は光量及び色度が異なるため、両受光器は異なる光量測定及び色度測定を行うことになってしまい、正しい測定ができないことになる。   Next, the problem in the case where the light from the sample has directivity in the radiation direction (that is, the amount of light and chromaticity are biased in the radiation direction (viewing angle)) will be described. For example, a liquid crystal display panel has a different light quantity and chromaticity between the front and the other. When measurement is performed with the colorimeter placed in front of the liquid crystal display panel, the optical system of the colorimeter guides light from the sample with an angle to the light receiver. The amount of light and chromaticity are different between the light and the light in the peripheral region of the light beam positioned around it. Therefore, a substantially circular or elliptical mirror is arranged in the central region of the light beam, or a substantially circular mirror having a mirror surface in the peripheral region of the light beam is arranged to reflect the light beam at a part of the mirror surface, and the mirror surface It is conceivable to take measures to split the light beam by passing (transmitting) the light beam in a portion where there is no light. However, if the two light beams obtained by the branching are received by the two light receivers, both light beams have different light amounts and chromaticities, so both light receivers will perform different light amount measurements and chromaticity measurements, It will not be possible to measure correctly.

以下に、液晶表示板の放射角度依存性の具体例(指向性例)を示す。
VA(vertical alignment)モードパネル、正面に対する色度変動:
±5° Δxy=0.0013,
±10° Δxy=0.0019
Below, the specific example (directivity example) of the radiation angle dependence of a liquid crystal display panel is shown.
VA (vertical alignment) mode panel, chromaticity variation with respect to the front:
± 5 ° Δxy = 0.0013,
± 10 ° Δxy = 0.0019

また、分光検出手段に替えて三刺激値検出器を用いる測色計では、3つのフィルターに受光を分割するために、バンドルファイバーの一方の端面が結像位置近傍に配置され、他方の端面がフィルターへ光を射出するように配置されるが、試料表面は位置により輝度や色度にバラツキ(試料本来の不均一さと試料に付着したゴミや汚れによる不均一さ)を有しているため、測定するときの位置ズレにより測定値が不安定になって測定精度が低下することなる。バンドルファイバー端面をデフォーカス位置に配置すれば、前記バラツキが平均化されて測定値は安定化するが、十分な平均化のためには光軸を中心とする光束中心領域から光束周辺領域に至る様々な角度の光線を含むことが必要になる。   In addition, in a colorimeter that uses a tristimulus detector instead of the spectral detection means, one end face of the bundle fiber is arranged in the vicinity of the imaging position, and the other end face is divided to divide the received light into three filters. Although it is arranged to emit light to the filter, the sample surface has variations in brightness and chromaticity depending on the position (nonuniformity inherent to the sample and nonuniformity due to dust and dirt adhering to the sample). The measurement value becomes unstable due to the positional deviation at the time of measurement, and the measurement accuracy is lowered. If the end face of the bundle fiber is arranged at the defocus position, the variation is averaged and the measurement value is stabilized. However, for sufficient averaging, the light flux center region centered on the optical axis is extended to the light beam peripheral region. It is necessary to include rays of various angles.

本発明は上述したような事情に鑑みてなされたものであって、その目的は、被測定物が偏光特性又は指向性を有している場合でも、被測定物の光学特性をより精度良く測定できる光学特性測定装置を提供することにある。   The present invention has been made in view of the circumstances as described above, and its purpose is to measure the optical characteristics of the object to be measured with higher accuracy even when the object to be measured has polarization characteristics or directivity. An object of the present invention is to provide an optical property measuring apparatus that can be used.

上記目的を達成するために、第1の発明の光学特性測定装置は、被測定物の像を形成するための測定光束を射出する結像光学系と、
前記測定光束を透過光束と反射光束とに分け、前記結像光学系の光軸を透過光束側の透過光軸と反射光束側の反射光軸とに分ける分岐ミラーと、
前記透過光軸上に配置された第1のセンサーと、
前記反射光軸上に配置された第2のセンサーと、
を備えた光学特性測定装置であって、
前記第1,第2のセンサーのうち、一方が測色センサーであり、他方が2次元カラー撮像素子であり、
前記分岐ミラーが、前記測定光束を透過させる透過領域と、前記測定光束を反射させる反射領域とを有し、
前記透過領域と前記反射領域のいずれもが、前記測定光束において光軸を中心とする光束中心領域の光とその周囲に位置する光束周辺領域の光とを両方とも受光するように形成されていることを特徴とする。
In order to achieve the above object, an optical characteristic measurement apparatus according to a first aspect of the present invention includes an imaging optical system that emits a measurement light beam for forming an image of an object to be measured;
A branch mirror that divides the measurement light beam into a transmitted light beam and a reflected light beam, and divides the optical axis of the imaging optical system into a transmitted light axis on the transmitted light beam side and a reflected optical axis on the reflected light beam side;
A first sensor disposed on the transmitted optical axis;
A second sensor disposed on the reflected optical axis;
An optical characteristic measuring device comprising:
One of the first and second sensors is a colorimetric sensor, and the other is a two-dimensional color image sensor,
The branch mirror has a transmission region that transmits the measurement light beam and a reflection region that reflects the measurement light beam;
Both the transmission region and the reflection region are formed so as to receive both the light in the central region of the light beam centered on the optical axis and the light in the peripheral region of the light beam positioned around the light beam in the measurement light beam. It is characterized by that.

第2の発明の光学特性測定装置は、上記第1の発明において、前記光束中心領域と前記光束周辺領域との境界が、前記測定光束において光軸から最外縁までの距離の2分の1の位置にあることを特徴とする。   The optical characteristic measuring apparatus according to a second aspect of the present invention is the optical characteristic measuring apparatus according to the first aspect, wherein the boundary between the light flux center region and the light flux peripheral region is one half of the distance from the optical axis to the outermost edge in the measurement light flux. It is in position.

第3の発明の光学特性測定装置は、上記第1又は第2の発明において、前記透過領域と前記反射領域とが、光軸を中心とした放射状の線を境界として、交互に位置することを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the invention, the transmission region and the reflection region are alternately positioned with a radial line centered on the optical axis as a boundary. Features.

第4の発明の光学特性測定装置は、上記第1又は第2の発明において、前記透過領域と前記反射領域とが、格子状の縞模様にストライプ配列されて、交互に位置することを特徴とする。   The optical characteristic measuring apparatus according to a fourth invention is characterized in that, in the first or second invention, the transmission region and the reflection region are alternately arranged in a grid-like stripe pattern. To do.

第5の発明の光学特性測定装置は、上記第1又は第2の発明において、前記透過領域と前記反射領域とが、四角形状の市松模様にモザイク配列されて、交互に位置することを特徴とする。   The optical property measuring apparatus according to a fifth aspect of the invention is characterized in that, in the first or second aspect of the invention, the transmissive areas and the reflective areas are arranged in a mosaic pattern in a square checkered pattern and are alternately positioned. To do.

第6の発明の光学特性測定装置は、上記第1〜第5のいずれか1つの発明において、前記透過領域と前記反射領域との面積比が、1:9〜5:5であることを特徴とする。   In the optical characteristic measuring apparatus according to a sixth aspect of the present invention, in any one of the first to fifth aspects, an area ratio between the transmission region and the reflection region is 1: 9 to 5: 5. And

第7の発明の光学特性測定装置は、上記第1〜第6のいずれか1つの発明において、前記分岐ミラーが、透明平板表面に反射膜を形成することにより前記反射領域が設けられたものであることを特徴とする。   An optical property measuring apparatus according to a seventh invention is the optical property measuring apparatus according to any one of the first to sixth inventions, wherein the branch mirror is provided with the reflective region by forming a reflective film on a transparent flat plate surface. It is characterized by being.

第8の発明の光学特性測定装置は、上記第1〜第6のいずれか1つの発明において、前記分岐ミラーが、仮想平面上に微小ミラーを配置することにより前記反射領域が設けられたものであることを特徴とする。   An optical characteristic measuring apparatus according to an eighth invention is the optical property measuring apparatus according to any one of the first to sixth inventions, wherein the branch mirror is provided with the reflection region by disposing a minute mirror on a virtual plane. It is characterized by being.

第9の発明の光学特性測定装置は、上記第1〜第8のいずれか1つの発明において、前記測色センサーを有し、かつ、前記測定光束を第1精度で分光して測定する第1分光測定部と、前記2次元カラー撮像素子を有し、かつ、前記測定光束を第2精度で分光して測定する第2分光測定部とを備え、
前記第1精度が前記第2精度よりも高いことを特徴とする。
An optical characteristic measuring apparatus according to a ninth aspect of the present invention includes the colorimetric sensor according to any one of the first to eighth aspects, wherein the optical characteristic measuring apparatus is a first unit that spectroscopically measures the measurement light beam with a first accuracy. A spectroscopic measurement unit, and a second spectroscopic measurement unit that has the two-dimensional color imaging device and that splits and measures the measurement light beam with a second accuracy.
The first accuracy is higher than the second accuracy.

本発明の光学特性測定装置によれば、被測定物が偏光特性又は指向性を有している場合でも、被測定物の光学特性をより精度良く測定することが可能である。   According to the optical property measuring apparatus of the present invention, it is possible to measure the optical property of the object to be measured with higher accuracy even when the object to be measured has polarization characteristics or directivity.

光学特性測定装置の第1の実施の形態を示す概略構成図。1 is a schematic configuration diagram showing a first embodiment of an optical characteristic measuring apparatus. 光学特性測定装置の第2の実施の形態を示す概略構成図。The schematic block diagram which shows 2nd Embodiment of an optical characteristic measuring apparatus. 光学特性測定装置の第3の実施の形態を示す概略構成図。The schematic block diagram which shows 3rd Embodiment of an optical characteristic measuring apparatus. 分岐ミラーの具体例1を示す平面図。The top view which shows the specific example 1 of a branch mirror. 分岐ミラーの具体例2を示す平面図。The top view which shows the specific example 2 of a branch mirror. 分岐ミラーの具体例3を示す平面図。The top view which shows the specific example 3 of a branch mirror. 分岐ミラーの具体例4を示す平面図。The top view which shows the specific example 4 of a branch mirror. 分岐ミラーの具体例5を示す平面図。The top view which shows the specific example 5 of a branch mirror. 光学フィルターの分光応答度の具体例1を示すグラフ。The graph which shows the specific example 1 of the spectral response degree of an optical filter. 光学フィルターの分光応答度の具体例2を示すグラフ。The graph which shows the specific example 2 of the spectral response degree of an optical filter. 光学フィルターの分光応答度の具体例3を示すグラフ。The graph which shows the specific example 3 of the spectral response degree of an optical filter.

以下、本発明を実施した光学特性測定装置等を、図面を参照しつつ説明する。なお、実施の形態,具体例等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。   Hereinafter, an optical characteristic measuring apparatus and the like embodying the present invention will be described with reference to the drawings. Note that the same or corresponding parts in the embodiment, specific examples, and the like are denoted by the same reference numerals, and redundant description is omitted as appropriate.

図1に光学特性測定装置D1の第1の実施の形態を示し、図2に光学特性測定装置D2の第2の実施の形態を示し、図3に光学特性測定装置D3の第3の実施の形態を示す。図1,図2に示す光学特性測定装置D1は、第1分光測定部1,第2分光測定部2,測定角可変光学系3,制御処理部4,分岐ミラー5,結像光学系6,入出力部8,記憶部9等を備えている。また、図3に示す光学特性測定装置D3は、第1分光測定部1A,第2分光測定部2A,制御処理部4,分岐ミラー5,結像光学系6,入出力部8,記憶部9等を備えている。   FIG. 1 shows a first embodiment of the optical property measuring device D1, FIG. 2 shows a second embodiment of the optical property measuring device D2, and FIG. 3 shows a third embodiment of the optical property measuring device D3. The form is shown. 1 and 2 includes a first spectroscopic measurement unit 1, a second spectroscopic measurement unit 2, a variable measurement angle optical system 3, a control processing unit 4, a branch mirror 5, an imaging optical system 6, An input / output unit 8 and a storage unit 9 are provided. 3 includes a first spectroscopic measurement unit 1A, a second spectroscopic measurement unit 2A, a control processing unit 4, a branch mirror 5, an imaging optical system 6, an input / output unit 8, and a storage unit 9. Etc.

光学特性測定装置D1では、分岐ミラー5での反射光束L1が第1分光測定部1に入射し、分岐ミラー5での透過光束L0が測定角可変光学系3及び第2分光測定部2に入射する。それに対し、光学特性測定装置D2では、分岐ミラー5での透過光束L0が第1分光測定部1に入射し、分岐ミラー5での反射光束L1が測定角可変光学系3及び第2分光測定部2に入射する。このように透過光束L0と反射光束L1が入射する構成要素が入れ替わっているほかは、光学特性測定装置D1と光学特性測定装置D2とは同じ構成になっているので、それにより得られる効果も同様である。   In the optical characteristic measurement apparatus D1, the reflected light beam L1 from the branch mirror 5 enters the first spectroscopic measurement unit 1, and the transmitted light beam L0 from the branch mirror 5 enters the measurement angle variable optical system 3 and the second spectroscopic measurement unit 2. To do. On the other hand, in the optical characteristic measuring apparatus D2, the transmitted light beam L0 from the branch mirror 5 enters the first spectroscopic measurement unit 1, and the reflected light beam L1 from the branch mirror 5 is measured by the variable measuring angle optical system 3 and the second spectroscopic measurement unit. 2 is incident. As described above, the optical characteristic measuring device D1 and the optical characteristic measuring device D2 have the same configuration except that the constituent elements to which the transmitted light beam L0 and the reflected light beam L1 are incident are interchanged. It is.

また、光学特性測定装置D3では、分岐ミラー5での透過光束L0が第1分光測定部1Aに入射し、分岐ミラー5での反射光束L1が第2分光測定部2Aに入射する。このように光学特性測定装置D3は、第1分光測定部1の替わりに第1分光測定部1Aを、測定角可変光学系3及び第2分光測定部2の替わりに第2分光測定部2Aを、それぞれ備えているほかは、光学特性測定装置D2と同じ構成になっているので、それにより得られる効果も同様である。これら第1,第2分光測定部1A,2Aに関しては、後述するように、第1分光測定部1Aが三刺激値型測光計であり、第2分光測定部2Aが2次元受光検出装置である。   In the optical characteristic measuring apparatus D3, the transmitted light beam L0 from the branch mirror 5 enters the first spectroscopic measurement unit 1A, and the reflected light beam L1 from the branch mirror 5 enters the second spectroscopic measurement unit 2A. As described above, the optical property measuring apparatus D3 includes the first spectroscopic measurement unit 1A instead of the first spectroscopic measurement unit 1, and the second spectroscopic measurement unit 2A instead of the measurement angle variable optical system 3 and the second spectroscopic measurement unit 2. In addition to the above, since the optical characteristic measuring device D2 has the same configuration, the effects obtained thereby are also the same. Regarding the first and second spectroscopic measurement units 1A and 2A, as will be described later, the first spectroscopic measurement unit 1A is a tristimulus photometer, and the second spectroscopic measurement unit 2A is a two-dimensional photodetection detector. .

光学特性測定装置D1〜D3において、結像光学系6は、受光レンズ系6aと開口絞り6bからなっており、被測定物の像を形成するための測定光束Lを射出する。測定対象である被測定物からの被測定光は、測定域SPから放射され、受光レンズ系6aに入射する。受光レンズ系6aは、1つ又は複数の光学レンズ等の光学素子からなる対物レンズに相当し、ここでは、両凸の正レンズと像側に凸の負メニスカスレンズとの接合レンズで構成されており、全体として正の屈折力(焦点距離の逆数で定義される光学的パワー)を有している。この受光レンズ系6aに入射した被測定光は収束され、開口絞り6b及び分岐ミラー5を介して所定の位置P1及びその等価位置P3に、それぞれ測定対象の像(第1の像)IM1が形成される。なお、被測定光は、測定域SPに測定対象の光源が配置された場合には、その光源から放射された光(光源自体の光)であってもよく、また、測定域SPに被測定物が配置された場合には、所定の光源から放射された光が被測定物で反射されて生じた反射光であってもよい。   In the optical characteristic measuring devices D1 to D3, the imaging optical system 6 includes a light receiving lens system 6a and an aperture stop 6b, and emits a measurement light beam L for forming an image of the object to be measured. The light to be measured from the measurement object to be measured is emitted from the measurement region SP and enters the light receiving lens system 6a. The light receiving lens system 6a corresponds to an objective lens composed of an optical element such as one or a plurality of optical lenses. Here, the light receiving lens system 6a is composed of a cemented lens of a biconvex positive lens and a negative meniscus lens convex on the image side. And has a positive refractive power (optical power defined by the reciprocal of the focal length) as a whole. The light to be measured incident on the light receiving lens system 6a is converged, and an image (first image) IM1 to be measured is formed at a predetermined position P1 and its equivalent position P3 via the aperture stop 6b and the branch mirror 5, respectively. Is done. In addition, when the light source to be measured is arranged in the measurement area SP, the measurement light may be light emitted from the light source (light of the light source itself), or the measurement area SP may be measured. When an object is arranged, it may be reflected light generated by reflecting light emitted from a predetermined light source by the object to be measured.

上記開口絞り6bは、受光レンズ系6aと分岐ミラー5との間において、分岐ミラー5側に寄った所定の位置に配置されている。この開口絞り6bは、被測定光を光束規制しつつ通過させることにより、結像光学系6から射出する測定光束Lのサイズ(例えば、光束径等)を規定する光学部材である。例えば、被測定光の波長範囲に対し遮光性を有する材料からなり、被測定光を通過させるための貫通孔を有する板状部材である。貫通孔のサイズは、開口絞り6bを通過する測定光束Lのサイズに応じて設定される。   The aperture stop 6b is disposed at a predetermined position near the branch mirror 5 between the light receiving lens system 6a and the branch mirror 5. The aperture stop 6b is an optical member that regulates the size of the measurement light beam L (for example, the light beam diameter) emitted from the imaging optical system 6 by allowing the light to be measured to pass while restricting the light beam. For example, it is a plate-like member made of a material having a light shielding property with respect to the wavelength range of the light to be measured and having a through hole for allowing the light to be measured to pass therethrough. The size of the through hole is set according to the size of the measurement light beam L that passes through the aperture stop 6b.

分岐ミラー5は、被測定光の測定光束L中に配置されて、測定光束Lを透過光束L0と反射光束L1とに分け、結像光学系6の光軸AXを透過光束L0側の透過光軸AX0と反射光束L1側の反射光軸AX1とに分ける。したがって、測定光束Lは、分岐ミラー5での反射により光路を折り曲げられた反射光束L1と、分岐ミラー5で光路を折り曲げられずに透過した透過光束L0と、に分割される。透過光軸AX0上に第1のセンサーが配置され、反射光軸AX1上に第2のセンサーが配置される。光学特性測定装置D1,D2(図1,図2)では、これら第1,第2のセンサーのうち、一方がラインセンサー14(測色センサー)であり、他方が2次元センサー22(2次元カラー撮像素子)である。光学特性測定装置D3(図3)では、透過光軸AX0上に第1〜第3センサーS1〜S3が配置され、反射光軸AX1上に2次元センサー(不図示)が配置される。   The branch mirror 5 is disposed in the measurement light beam L of the light to be measured, divides the measurement light beam L into a transmitted light beam L0 and a reflected light beam L1, and transmits the optical axis AX of the imaging optical system 6 to the transmitted light on the transmitted light beam L0 side. It is divided into an axis AX0 and a reflected optical axis AX1 on the reflected light beam L1 side. Therefore, the measurement light beam L is divided into a reflected light beam L1 whose optical path is bent by reflection at the branch mirror 5, and a transmitted light beam L0 which is transmitted without being bent at the branch mirror 5. A first sensor is disposed on the transmitted optical axis AX0, and a second sensor is disposed on the reflected optical axis AX1. In the optical characteristic measuring devices D1 and D2 (FIGS. 1 and 2), one of the first and second sensors is a line sensor 14 (colorimetric sensor), and the other is a two-dimensional sensor 22 (two-dimensional color). Imaging device). In the optical characteristic measuring device D3 (FIG. 3), the first to third sensors S1 to S3 are arranged on the transmission optical axis AX0, and the two-dimensional sensor (not shown) is arranged on the reflection optical axis AX1.

光学特性測定装置D1(図1)では、反射光束L1が第1分光測定部1へ導光され、透過光束L0が測定角可変光学系3及び第2分光測定部2へ導光される。光学特性測定装置D2(図2)では、透過光束L0が第1分光測定部1へ導光され、反射光束L1が測定角可変光学系3及び第2分光測定部2へ導光される。光学特性測定装置D3(図3)では、透過光束L0が第1分光測定部1Aへ導光され、反射光束L1が第2分光測定部2Aへ導光される。そして、光学特性測定装置D1〜D3(図1〜図3)において、透過光束L0と反射光束L1のいずれもが、測定光束Lにおいて光軸AXを中心とする光束中心領域の光とその周囲に位置する光束周辺領域の光とを両方とも含んでいる。図1〜図3において、その光束中心領域と光束周辺領域との境界上の光線の一例を点線で示す。なお、分岐ミラー5の具体例に関しては後で詳述する(図4〜図8)。   In the optical characteristic measuring apparatus D1 (FIG. 1), the reflected light beam L1 is guided to the first spectroscopic measurement unit 1, and the transmitted light beam L0 is guided to the measurement angle variable optical system 3 and the second spectroscopic measurement unit 2. In the optical characteristic measuring device D2 (FIG. 2), the transmitted light beam L0 is guided to the first spectroscopic measurement unit 1, and the reflected light beam L1 is guided to the measurement angle variable optical system 3 and the second spectroscopic measurement unit 2. In the optical characteristic measuring device D3 (FIG. 3), the transmitted light beam L0 is guided to the first spectroscopic measurement unit 1A, and the reflected light beam L1 is guided to the second spectroscopic measurement unit 2A. Then, in the optical characteristic measuring devices D1 to D3 (FIGS. 1 to 3), both the transmitted light beam L0 and the reflected light beam L1 are transmitted to and around the light in the central region of the light beam L centered on the optical axis AX. It includes both of the light in the surrounding region of the luminous flux. 1 to 3, an example of a light beam on the boundary between the light flux center region and the light flux peripheral region is indicated by a dotted line. A specific example of the branch mirror 5 will be described later in detail (FIGS. 4 to 8).

第1,第2分光測定部1,1A;2,2Aは、それぞれ制御処理部4に接続されており、制御処理部4の制御に従って測定光束L(つまり、反射光束L1と透過光束L0)を分光して測定する。光学特性測定装置D1(図1)では、第1分光測定部1が反射光束L1を第1精度で分光して測定し、その測定結果(第1分光測定結果)を制御処理部4へ出力する。また第2分光測定部2は、透過光束L0を第2精度で分光して測定し、その測定結果(第2分光測定結果)を制御処理部4へ出力する。光学特性測定装置D2,D3(図2,図3)では、第1分光測定部1,1Aが透過光束L0を第1精度で分光して測定し、その測定結果(第1分光測定結果)を制御処理部4へ出力する。また第2分光測定部2,2Aは、反射光束L1を第2精度で分光して測定し、その測定結果(第2分光測定結果)を制御処理部4へ出力する。   The first and second spectroscopic measurement units 1, 1 </ b> A; 2, 2 </ b> A are respectively connected to the control processing unit 4, and the measurement light beam L (that is, the reflected light beam L <b> 1 and the transmitted light beam L <b> 0) is controlled under the control of the control processing unit 4. Spectroscopically measure. In the optical property measuring apparatus D1 (FIG. 1), the first spectroscopic measurement unit 1 measures the reflected light beam L1 by spectroscopically measuring with the first accuracy, and outputs the measurement result (first spectroscopic measurement result) to the control processing unit 4. . The second spectroscopic measurement unit 2 spectroscopically measures the transmitted light beam L0 with the second accuracy and outputs the measurement result (second spectroscopic measurement result) to the control processing unit 4. In the optical characteristic measurement devices D2 and D3 (FIGS. 2 and 3), the first spectroscopic measurement units 1 and 1A measure the transmitted light beam L0 with the first accuracy and measure the measurement result (first spectroscopic measurement result). Output to the control processing unit 4. The second spectroscopic measurement units 2 and 2 </ b> A measure and measure the reflected light beam L <b> 1 with the second accuracy and output the measurement result (second spectroscopic measurement result) to the control processing unit 4.

これら第1,第2分光測定部1,1A;2,2Aは、その測定精度が互いに異なっている。つまり、第1分光測定部1,1Aの第1精度は、第2分光測定部2,2Aの第2精度よりも高くなっている。すなわち、第1分光測定部1,1Aは第2分光測定部2,2Aよりも高い精度を有している。   The first and second spectroscopic measurement units 1, 1A; 2, 2A have different measurement accuracy. That is, the first accuracy of the first spectroscopic measurement units 1 and 1A is higher than the second accuracy of the second spectroscopic measurement units 2 and 2A. That is, the first spectroscopic measurement units 1 and 1A have higher accuracy than the second spectroscopic measurement units 2 and 2A.

光学特性測定装置D1,D2(図1,図2)の第1分光測定部1は、スポット測定(1点測定)を行う装置であり、被測定光である測定光束Lを1点として測定し、1個の第1分光測定結果を出力する。そして、相対的に狭い測定域SP(例えば、第1分光測定角が約0.1°〜約3°の範囲)から放射された測定光束Lを測定する。つまり第1分光測定部1では、測定光束Lの放射位置に関わらず、測定光束L(反射光束L1又は透過光束L0)を1つとして扱う測定が行われる。   The first spectroscopic measurement unit 1 of the optical characteristic measurement devices D1 and D2 (FIGS. 1 and 2) is a device that performs spot measurement (single-point measurement), and measures the measurement light beam L that is light to be measured as one point. One first spectroscopic measurement result is output. Then, the measurement light beam L radiated from a relatively narrow measurement area SP (for example, a range in which the first spectroscopic measurement angle is about 0.1 ° to about 3 °) is measured. That is, in the first spectroscopic measurement unit 1, measurement is performed in which the measurement light beam L (the reflected light beam L1 or the transmitted light beam L0) is treated as one regardless of the radiation position of the measurement light beam L.

ここで一例として挙げる第1分光測定部1(図1,図2)は、回折格子等の分光光学素子で測定光束Lを所定の波長間隔で分光して測定する分光型測光計である。この分光型の第1分光測定部1は、レンズ系12と、反射型回折格子13と、測色センサーとしてのラインセンサー14と、これらレンズ系12,反射型回折格子13及びラインセンサー14を収容する筐体10と、を備えている。筐体10は、ラインセンサー14の受光可能な波長範囲に対し遮光性を有する材料によって形成された箱体である。筐体10の一側面には、被測定光の一部分である反射光束L1又は透過光束L0を筐体10内に導光するスリット形状等の入射開口11が形成されている。第1分光測定部1は、第1の像IM1が形成される収束位置P3(位置P1の等価位置)に入射開口11が位置するように配置される。   The first spectroscopic measurement unit 1 (FIGS. 1 and 2), which is mentioned here as an example, is a spectrophotometer that measures and measures a measurement light beam L at a predetermined wavelength interval with a spectroscopic optical element such as a diffraction grating. The spectroscopic first spectroscopic measurement unit 1 accommodates a lens system 12, a reflective diffraction grating 13, a line sensor 14 as a colorimetric sensor, and the lens system 12, the reflective diffraction grating 13 and the line sensor 14. And a housing 10 to be operated. The housing 10 is a box formed of a material having a light shielding property with respect to a wavelength range in which the line sensor 14 can receive light. An incident opening 11 having a slit shape or the like for guiding the reflected light beam L1 or the transmitted light beam L0, which is a part of the light to be measured, into the housing 10 is formed on one side surface of the housing 10. The first spectroscopic measurement unit 1 is arranged such that the incident aperture 11 is located at a convergence position P3 (an equivalent position of the position P1) where the first image IM1 is formed.

入射開口11から入射した反射光束L1(図1)又は透過光束L0(図2)は、レンズ系12に入射し、このレンズ系12によって平行化(コリメート)されて反射型回折格子13に入射し、反射型回折格子13によって回折されて反射される。この反射光は、再びレンズ系12に入射し、このレンズ系12によってラインセンサー14の受光面上に光像の波長分散像として結像する。ラインセンサー14は、一方向に沿って配列された複数の光電変換素子を備えた構成になっている。この光電変換素子は、例えば、シリコンホトダイオード(SPD)等である。ラインセンサー14は、その受光面上に形成された光像の波長分散像を複数の光電変換素子それぞれで光電変換することによって、各波長ごとの強度レベルを表す電気信号を生成する。そして、ラインセンサー14は、この電気信号(第1分光測定結果)を制御処理部4へ出力する。   The reflected light beam L1 (FIG. 1) or the transmitted light beam L0 (FIG. 2) incident from the incident aperture 11 is incident on the lens system 12, collimated by the lens system 12, and incident on the reflective diffraction grating 13. The light is diffracted and reflected by the reflective diffraction grating 13. The reflected light is incident on the lens system 12 again, and is formed on the light receiving surface of the line sensor 14 as a wavelength dispersion image of the optical image by the lens system 12. The line sensor 14 has a configuration including a plurality of photoelectric conversion elements arranged along one direction. This photoelectric conversion element is, for example, a silicon photodiode (SPD). The line sensor 14 generates an electrical signal representing an intensity level for each wavelength by photoelectrically converting the wavelength dispersion image of the optical image formed on the light receiving surface by each of the plurality of photoelectric conversion elements. Then, the line sensor 14 outputs this electric signal (first spectroscopic measurement result) to the control processing unit 4.

光学特性測定装置D3(図3)の第1分光測定部1Aは、三刺激値型測光計であり、透過光軸AX0(透過光束L0)を3つに分けるバンドルファイバーFBと、互いに異なる分光応答度を持つ3個の第1〜第3光学フィルターF1,F2,F3と、第1〜第3光学フィルターF1,F2,F3を通過した光を受光する第1〜第3センサーS1,S2,S3と、を備えている。これら第1〜第3光学フィルターF1〜F3は、例えば図9に示すように、CIE(国際照明委員会)等色関数に近似した分光応答度(具体例1)をそれぞれ持っている。つまり、第1光学フィルターF1は、CIE等色関数z(λ)に近似した分光応答度を持ち、第2光学フィルターF2は、CIE等色関数y(λ)に近似した分光応答度を持ち、そして、第3光学フィルターF3は、CIE等色関数x(λ)に近似した分光応答度を持つものである(λ:波長)。あるいは、これら第1〜第3光学フィルターF1〜F3が、例えば図10に示す分光応答度(具体例2)をそれぞれ持つものであってもよい。   The first spectroscopic measurement unit 1A of the optical characteristic measurement device D3 (FIG. 3) is a tristimulus type photometer, and a bundle fiber FB that divides the transmitted optical axis AX0 (transmitted light beam L0) into three and spectral responses different from each other. First to third optical filters F1, F2, and F3 having the same degree, and first to third sensors S1, S2, and S3 that receive light that has passed through the first to third optical filters F1, F2, and F3. And. Each of the first to third optical filters F1 to F3 has a spectral response (specific example 1) approximated to a CIE (International Commission on Illumination) color matching function, for example, as shown in FIG. That is, the first optical filter F1 has a spectral response close to the CIE color matching function z (λ), and the second optical filter F2 has a spectral response close to the CIE color matching function y (λ). The third optical filter F3 has a spectral response approximate to the CIE color matching function x (λ) (λ: wavelength). Or these 1st-3rd optical filters F1-F3 may each have the spectral response (specific example 2) shown, for example in FIG.

第1〜第3光学フィルターF1〜F3を通過した光は、第1〜第3センサーS1〜S3(例えばシリコンホトダイオード(SPD)等)に照射される。第1〜第3センサーS1〜S3は、それぞれ光電変換を行うことによって、各分光応答度ごとの強度レベルを表す電気信号を生成し、制御処理部4へ出力する。   The light that has passed through the first to third optical filters F1 to F3 is applied to the first to third sensors S1 to S3 (for example, silicon photodiode (SPD)). The first to third sensors S <b> 1 to S <b> 3 generate photoelectric signals representing the intensity levels for the respective spectral responsiveness levels by performing photoelectric conversion, and output them to the control processing unit 4.

光学特性測定装置D1,D2(図1,図2)の第2分光測定部2は、2次元測定を行う装置であり、被測定光である測定光束Lを面として2次元で測定し、2次元分布の第2分光測定結果を出力する。そして、相対的に広い測定域SP(例えば、第2分光測定角が約10°〜約30°の範囲)から放射された測定光束Lを測定する。つまり第2分光測定部2では、測定光束Lの放射位置ごとに測定光束L(反射光束L1又は透過光束L0)を測定する光学特性分布の測定が行われる。   The second spectroscopic measurement unit 2 of the optical characteristic measurement devices D1 and D2 (FIGS. 1 and 2) is a device that performs two-dimensional measurement, measures two-dimensionally with a measurement light beam L that is light to be measured as a surface, and 2 The second spectroscopic measurement result of the dimensional distribution is output. Then, the measurement light beam L radiated from a relatively wide measurement area SP (for example, a range in which the second spectroscopic measurement angle is about 10 ° to about 30 °) is measured. That is, the second spectroscopic measurement unit 2 measures an optical characteristic distribution for measuring the measurement light beam L (the reflected light beam L1 or the transmitted light beam L0) for each radiation position of the measurement light beam L.

ここで一例として挙げる第2分光測定部2(図1,図2)は、光学フィルター等で測定光束Lを所定の波長範囲に分光して測定する測光計である。この第2分光測定部2は、フィルター選択部21(例えば、カラーホイール)と、2次元カラー撮像素子を構成する2次元センサー(エリアセンサー)22と、を備えている。2次元センサー22は、第2の像IM2が形成される結像位置P2に受光面が位置するように配置されている。フィルター選択部21は、複数の光学フィルター211と、これら複数の光学フィルター211を保持するフィルター保持部材212と、フィルター保持部材212を移動するための駆動力を生成するモーター213と、を備えており、複数の光学フィルター211の中から、被測定光のフィルタリングに用いる1個の光学フィルター211を選択する装置である。   The second spectroscopic measurement unit 2 (FIGS. 1 and 2) given here as an example is a photometer that measures and measures the measurement light beam L in a predetermined wavelength range with an optical filter or the like. The second spectroscopic measurement unit 2 includes a filter selection unit 21 (for example, a color wheel) and a two-dimensional sensor (area sensor) 22 constituting a two-dimensional color image sensor. The two-dimensional sensor 22 is disposed so that the light receiving surface is positioned at the image formation position P2 where the second image IM2 is formed. The filter selection unit 21 includes a plurality of optical filters 211, a filter holding member 212 that holds the plurality of optical filters 211, and a motor 213 that generates a driving force for moving the filter holding member 212. This is a device that selects one optical filter 211 to be used for filtering measured light from among a plurality of optical filters 211.

フィルター保持部材212は、例えば、周方向に等間隔で4個の貫通開口が形成された円板である。これら4個の貫通開口は、RGBに対応した3枚の光学フィルター211(図1,図2ではB,Gの2枚を示している。)に応じた大きさで形成されており、そのうちの3個の貫通開口に3枚の光学フィルター211がそれぞれ嵌め込まれて、例えば、接着剤等によって接着固定されている。   The filter holding member 212 is, for example, a disc in which four through openings are formed at equal intervals in the circumferential direction. These four through-openings are formed in a size corresponding to three optical filters 211 (B and G are shown in FIG. 1 and FIG. 2) corresponding to RGB, of which Three optical filters 211 are fitted in the three through openings, respectively, and are fixedly bonded with, for example, an adhesive.

また、フィルター保持部材212は、その中心位置に回転軸が挿通され、その周面には歯切り加工が施されて歯車(ギア)になっている。そのフィルター保持部材212のギアは、モーター213の出力軸に装着されているギアと歯合しており、モーター213の駆動力がフィルター保持部材212に伝達されるようになっている。これによって、フィルター保持部材212は回転軸を中心に回転駆動する。そして、フィルター保持部材212は、3枚の光学フィルター211の各光軸が順次回転するごとに第2分光測定部2内で光軸AX0又は光軸AX1と一致するように、測定角可変光学系3と2次元センサー22との間に配置されている。   In addition, the filter holding member 212 has a rotation shaft inserted in the center position thereof, and gear cutting is performed on the peripheral surface thereof to form a gear. The gear of the filter holding member 212 is engaged with a gear mounted on the output shaft of the motor 213 so that the driving force of the motor 213 is transmitted to the filter holding member 212. Accordingly, the filter holding member 212 is driven to rotate about the rotation axis. The filter holding member 212 is a measurement angle variable optical system so that the optical axis AX0 or the optical axis AX1 coincides with the optical axis AX1 in the second spectroscopic measurement unit 2 each time the optical axes of the three optical filters 211 are sequentially rotated. 3 and the two-dimensional sensor 22.

光学特性測定装置D3(図3)の第2分光測定部2Aは、光学特性測定装置D1,D2(図1,図2)の第2分光測定部2と同様、2次元測定を行う2次元受光検出装置であり、被測定光である測定光束Lを面として2次元で測定し、2次元分布の第2分光測定結果を出力する。そして、相対的に広い測定域SP(例えば、第2分光測定角が約10°〜約30°の範囲)から放射された測定光束Lを測定する。つまり第2分光測定部2では、測定光束Lの放射位置ごとに測定光束L(反射光束L1又は透過光束L0)を測定する光学特性分布の測定が行われる。   The second spectroscopic measurement unit 2A of the optical characteristic measurement device D3 (FIG. 3) is a two-dimensional light receiving device that performs two-dimensional measurement, like the second spectroscopic measurement unit 2 of the optical characteristic measurement devices D1 and D2 (FIGS. 1 and 2). It is a detection device, and measures the measurement light beam L, which is the light to be measured, in a two-dimensional manner, and outputs a second spectroscopic measurement result of a two-dimensional distribution. Then, the measurement light beam L radiated from a relatively wide measurement area SP (for example, a range in which the second spectroscopic measurement angle is about 10 ° to about 30 °) is measured. That is, the second spectroscopic measurement unit 2 measures an optical characteristic distribution for measuring the measurement light beam L (the reflected light beam L1 or the transmitted light beam L0) for each radiation position of the measurement light beam L.

このような第2分光測定部2Aとしては、例えば光学フィルター等で測定光束Lを所定の波長範囲に分光して測定する測光計、更に具体的には、カラーフィルターアレイを有する単板式の2次元カラー撮像素子等が挙げられる。ただし、第2分光測定部2Aにおいて2次元カラー撮像素子を構成する2次元センサー(不図示)の前面にあるフィルター(不図示)は、CIE等色関数近似度において第1分光測定部フィルターに劣る構成であり、例えば図11に示す分光応答度(具体例3)を有するものである。   As such a second spectroscopic measurement unit 2A, for example, a photometer that measures and measures the measurement light beam L in a predetermined wavelength range with an optical filter or the like, more specifically, a single plate type two-dimensional having a color filter array. A color imaging device or the like can be given. However, the filter (not shown) in front of the two-dimensional sensor (not shown) constituting the two-dimensional color imaging device in the second spectroscopic measurement unit 2A is inferior to the first spectroscopic measurement unit filter in CIE color matching function approximation. For example, it has the spectral response (specific example 3) shown in FIG.

光学特性測定装置D1〜D3(図1〜図3)の第2分光測定部2,2Aにおいて、互いに異なる分光応答度を持つ3種の光学フィルターは、例えば図9に示すように、CIE(国際照明委員会)等色関数に近似した分光応答度(具体例1)をそれぞれ持っている。つまり、第1光学フィルターが、CIE等色関数z(λ)に近似した分光応答度を持ち、第2光学フィルターが、CIE等色関数y(λ)に近似した分光応答度を持ち、そして、第3光学フィルターが、CIE等色関数x(λ)に近似した分光応答度を持つものである。あるいは、これら第1〜第3光学フィルターが、例えば図10や図11に示す分光応答度(具体例2,3)をそれぞれ持つものであってもよい。第2分光測定部2,2Aにおいて、光学フィルターは2次元センサーの前面に配置される構成でもよく、2次元センサーの個々のセル直前に配置される構成でもよい。   In the second spectroscopic measurement units 2 and 2A of the optical characteristic measuring apparatuses D1 to D3 (FIGS. 1 to 3), three types of optical filters having different spectral responsiveness are, for example, as shown in FIG. Illumination Committee) Each has a spectral response (specific example 1) approximated to a color matching function. That is, the first optical filter has a spectral response approximating the CIE color matching function z (λ), the second optical filter has a spectral response approximating the CIE color matching function y (λ), and The third optical filter has a spectral response approximate to the CIE color matching function x (λ). Alternatively, these first to third optical filters may each have the spectral response (specific examples 2 and 3) shown in FIGS. 10 and 11, for example. In the second spectroscopic measurement units 2 and 2A, the optical filter may be arranged in front of the two-dimensional sensor or may be arranged just before each cell of the two-dimensional sensor.

前述したように、光学特性測定装置D1〜D3(図1〜図3)において、透過光束L0と反射光束L1のいずれもが、測定光束Lにおいて光軸AXを中心とする光束中心領域の光とその周囲に位置する光束周辺領域の光とを両方とも含んでいる。このような測定光束Lの分割を行うために、分岐ミラー5は、測定光束Lを透過させる透過領域と、測定光束Lを反射させる反射領域とを有しており、これら透過領域と反射領域のいずれもが、測定光束Lにおいて光軸AXを中心とする光束中心領域の光とその周囲に位置する光束周辺領域の光とを両方とも受光するように形成されている。   As described above, in the optical characteristic measurement apparatuses D1 to D3 (FIGS. 1 to 3), both the transmitted light beam L0 and the reflected light beam L1 are the light in the central region of the light beam L centered on the optical axis AX. It includes both the light in the peripheral region of the light beam located around it. In order to divide the measurement light beam L in this way, the branch mirror 5 has a transmission region that transmits the measurement light beam L and a reflection region that reflects the measurement light beam L. Both are formed so as to receive both the light in the central region of the light beam centered on the optical axis AX and the light in the peripheral region of the light beam positioned around it in the measurement light beam L.

分岐ミラー5において測定光束Lを反射させる反射領域は、例えば、アルミニウム等の金属材料を反射材料として用いてなる反射面で構成される。例えば、アルミニウム等の金属材料からなる反射膜を透明平板表面に形成することにより反射領域を設けてもよく、アルミニウム等の金属材料からなる微小ミラーを仮想平面上に配置することにより反射領域を設けてもよい。分岐ミラー5において測定光束Lを透過させる透過領域は、上記反射面が設けられていない範囲を透過面とすることにより構成される。例えば、アルミニウム等の金属材料からなる反射膜を透明平板表面に形成しないことにより透過領域を設けてもよく、アルミニウム等の金属材料からなる微小ミラーを仮想平面上に配置しないことにより透過領域を設けてもよい。   The reflective region that reflects the measurement light beam L in the branch mirror 5 is configured by a reflective surface using a metal material such as aluminum as a reflective material, for example. For example, a reflective region may be provided by forming a reflective film made of a metal material such as aluminum on the surface of a transparent flat plate, or a reflective region may be provided by arranging a micromirror made of a metal material such as aluminum on a virtual plane. May be. The transmission region through which the measurement light beam L is transmitted in the branch mirror 5 is configured by setting a range where the reflection surface is not provided as a transmission surface. For example, a transmissive region may be provided by not forming a reflective film made of a metal material such as aluminum on the surface of the transparent flat plate, and a transmissive region may be provided by not arranging a micromirror made of a metal material such as aluminum on a virtual plane. May be.

ビームスプリッターとしてのハーフミラーは、前述したように偏光依存性が大きいため、試料光に対しビームスプリッターがP偏光の位置にある場合とS偏光の位置にある場合とで、透過と反射の光量関係が異なってしまい、正しい測定ができないことになる。上記のように、測定光束Lを透過させる透過領域と、測定光束Lを反射させる反射領域と、を有する分岐ミラー5は、偏光依存性が小さいので、被測定物が偏光特性を有している場合でも、被測定物の光学特性をより精度良く測定することができる。   Since the half mirror as a beam splitter has a large polarization dependency as described above, the light quantity relationship between transmission and reflection when the beam splitter is at the P-polarization position and at the S-polarization position with respect to the sample light. Will not be able to measure correctly. As described above, the branch mirror 5 having the transmission region that transmits the measurement light beam L and the reflection region that reflects the measurement light beam L has a small polarization dependence, so that the object to be measured has polarization characteristics. Even in this case, the optical characteristics of the object to be measured can be measured with higher accuracy.

また、被測定物として種々の試料を想定した場合、前述したように試料からの光に指向性があると、正しい測定ができないことになる。その指向性対策に好適な光束分割を行うことのできる分岐ミラー5の具体例を以下に説明する。   Further, when various samples are assumed as the object to be measured, if the light from the sample has directivity as described above, correct measurement cannot be performed. A specific example of the branch mirror 5 capable of performing light beam splitting suitable for the directivity countermeasure will be described below.

図4〜図8に、分岐ミラー5の具体例1〜5として分岐ミラー5a〜5eを示す。分岐ミラー5a〜5eは、測定光束L(図1〜図3)を透過させる透過領域A0と、測定光束Lを反射させる反射領域A1とを有しており、透過領域A0と反射領域A1のいずれもが、測定光束Lにおいて光軸AXを中心とする光束中心領域Aa(円形状領域)の光とその周囲に位置する光束周辺領域Ab(光束最外縁を含むリング形状領域)の光とを両方とも受光するように形成されている。上記反射領域A1は反射膜又は鏡からなっており、上記透過領域A0は透明材料又は空間からなっている。そして、分岐ミラー5a〜5eは、測定光束Lに対して斜め(一般的には45°)の仮想平面上に配置されることで、測定光束Lが透過光束L0と反射光束L1とに分離される。   4 to 8 show branch mirrors 5 a to 5 e as specific examples 1 to 5 of the branch mirror 5. The branch mirrors 5a to 5e have a transmission region A0 that transmits the measurement light beam L (FIGS. 1 to 3) and a reflection region A1 that reflects the measurement light beam L. Either of the transmission region A0 or the reflection region A1 However, in the measurement light beam L, both the light in the light beam center region Aa (circular region) centered on the optical axis AX and the light in the light beam peripheral region Ab (ring-shaped region including the outermost edge of the light beam) positioned around the light beam Both are formed to receive light. The reflective area A1 is made of a reflective film or a mirror, and the transmissive area A0 is made of a transparent material or space. The branch mirrors 5a to 5e are arranged on a virtual plane that is oblique (generally 45 °) with respect to the measurement light beam L, so that the measurement light beam L is separated into the transmitted light beam L0 and the reflected light beam L1. The

ここでは、光束中心領域Aaと光束周辺領域Abとの境界(点線)が、測定光束Lにおいて光軸AXから最外縁までの距離の2分の1の位置に設定されている。このことから、図1〜図3中の透過光束L0と反射光束L1のいずれもが、光束中心領域Aaの光と光束周辺領域Abの光とを両方とも含んでいることが分かる。このように透過領域A0と反射領域A1のいずれもが、光軸AXを中心とする光束中心領域Aaの光とその周囲に位置する光束周辺領域Abの光とを両方とも受光するように形成されていると、被測定物の視野角度特性(指向性)の影響を受けにくくなるので、被測定物が指向性を有している場合でも、被測定物の光学特性をより精度良く測定することができる。   Here, the boundary (dotted line) between the light flux center area Aa and the light flux peripheral area Ab is set at a position that is half the distance from the optical axis AX to the outermost edge in the measurement light flux L. From this, it can be seen that both the transmitted light beam L0 and the reflected light beam L1 in FIGS. 1 to 3 include both the light in the light beam central region Aa and the light in the light beam peripheral region Ab. As described above, both the transmission area A0 and the reflection area A1 are formed so as to receive both the light in the light flux center area Aa centered on the optical axis AX and the light in the light flux peripheral area Ab positioned around the light transmission area A0. This makes it difficult to be affected by the viewing angle characteristics (directivity) of the object to be measured, so that even if the object to be measured has directivity, the optical characteristics of the object to be measured can be measured more accurately. Can do.

分岐ミラー5a〜5c(図4〜図6)は、透過領域A0と反射領域A1とが、光軸AXを中心とした放射状の線を境界として、交互に位置する構成になっている。つまり、分岐ミラー5a〜5cの表面が、ミラー中心に相当する光軸AXから放射状に分割されて透過領域A0と反射領域A1とが交互に配置された分割例である。分岐ミラー5a,5b(図4,図5)の場合、光束中心領域Aaと光束周辺領域Abが上下左右方向の透過領域A0と反射領域A1に含まれているため、測定光束Lが光軸AX中心に対して上下左右方向対称に指向性を有するとき、透過光束L0と反射光束L1は、第1,第2分光測定部1,1A;2,2Aに対して同一の輝度と色度を示すことになる。分岐ミラー5b(図5)は、同心円状の分割が加えられているため、上下左右方向非対称に指向性を有する場合に好適であり、また、分岐ミラー5c(図6)は、円周方向に分割数が増やされているため、上下左右斜め方向対称に指向性を有する場合に好適である。   The branch mirrors 5a to 5c (FIGS. 4 to 6) are configured such that the transmission regions A0 and the reflection regions A1 are alternately positioned with a radial line centered on the optical axis AX as a boundary. That is, in this example, the surfaces of the branch mirrors 5a to 5c are divided radially from the optical axis AX corresponding to the center of the mirror, and the transmissive areas A0 and the reflective areas A1 are alternately arranged. In the case of the branch mirrors 5a and 5b (FIGS. 4 and 5), since the light flux center area Aa and the light flux peripheral area Ab are included in the transmission area A0 and the reflection area A1 in the vertical and horizontal directions, the measurement light flux L is the optical axis AX. When having directivity symmetrically in the vertical and horizontal directions with respect to the center, the transmitted light beam L0 and the reflected light beam L1 exhibit the same luminance and chromaticity with respect to the first and second spectroscopic measurement units 1, 1A; It will be. Since the branch mirror 5b (FIG. 5) is concentrically divided, the branch mirror 5b (FIG. 6) is suitable when it has directivity asymmetrically in the vertical and horizontal directions, and the branch mirror 5c (FIG. 6) is arranged in the circumferential direction. Since the number of divisions is increased, it is suitable for the case where the directivity is symmetrical in the diagonal direction in the vertical and horizontal directions.

分岐ミラー5d(図7)は、透過領域A0と反射領域A1とが、格子状の縞模様にストライプ配列されて、交互に位置する構成になっている。つまり、分岐ミラー5dの表面が、縞模様の格子状に分割されて透過領域A0と反射領域A1とが交互に配置された分割例である。この分岐ミラー5dは、左右非対称に指向性を有する場合に好適である。   The branch mirror 5d (FIG. 7) has a configuration in which the transmission regions A0 and the reflection regions A1 are alternately arranged in a grid-like striped pattern. That is, this is an example of division in which the surface of the branch mirror 5d is divided into a striped lattice pattern, and the transmission areas A0 and the reflection areas A1 are alternately arranged. This branching mirror 5d is suitable for a case where the left and right asymmetrical directivity is provided.

分岐ミラー5e(図8)は、透過領域A0と反射領域A1とが、四角形状の市松模様にモザイク配列されて、交互に位置する構成になっている。つまり、分岐ミラー5eの表面が、市松模様の四角形状に分割されて透過領域A0と反射領域A1とが交互に配置された分割例である。この分岐ミラー5eは、様々な方向に対し指向性を有する場合に好適である。   The branch mirror 5e (FIG. 8) has a configuration in which the transmissive areas A0 and the reflective areas A1 are arranged in a mosaic pattern in a square checkered pattern and are alternately positioned. That is, in this example, the surface of the branch mirror 5e is divided into a checkered quadrangular shape, and the transmission areas A0 and the reflection areas A1 are alternately arranged. This branch mirror 5e is suitable when it has directivity in various directions.

例えば、分岐ミラー5d,5e(図7,図8)で測定光束Lを4以上の多数の透過光束L0と反射光束L1とに分割する場合、透明平板表面に反射膜を形成することにより反射領域A1を設ければ、反射膜をパターニングで形成できるため、少ない部品数で簡単に構成することが可能である。なお、反射膜の代わりに微小ミラーを透明平板表面に配置してもよい。   For example, when the measurement light beam L is divided into a large number of four or more transmitted light beams L0 and reflected light beams L1 by the branch mirrors 5d and 5e (FIGS. 7 and 8), a reflective film is formed on the surface of the transparent flat plate to form a reflective region. If A1 is provided, the reflective film can be formed by patterning, so that it can be easily configured with a small number of components. In addition, you may arrange | position a micromirror on a transparent flat plate surface instead of a reflecting film.

分岐ミラー5a〜5e(図4〜図8)の透過領域A0と反射領域A1は、仮想平面上に複数の微小ミラーを配置することにより形成することができる。仮想平面上の微小ミラーのない部分にはガラス等の光学媒質が存在しないため、測定光束Lは光学媒質の偏光性等の影響を受けることなく分岐ミラー5a〜5eを透過することになる。なお、後述するように高精度の検出結果で低精度の検出結果を補正する場合、透過光束L0を受光する側に高精度検出器を配置することが、高い精度を得るためには適している。   The transmission region A0 and the reflection region A1 of the branch mirrors 5a to 5e (FIGS. 4 to 8) can be formed by arranging a plurality of minute mirrors on a virtual plane. Since an optical medium such as glass does not exist in a portion where there is no micromirror on the virtual plane, the measurement light beam L passes through the branch mirrors 5a to 5e without being affected by the polarization property of the optical medium. As will be described later, when correcting a low-precision detection result with a high-precision detection result, it is suitable to provide a high-precision detector on the side that receives the transmitted light beam L0 in order to obtain high accuracy. .

透明平板表面に反射膜を形成する場合、透明平板の透過率と反射率との割合を考慮して、透過領域A0と反射領域A1との面積比を5:5〜6:4とするのが好ましい。仮想平面上に微小ミラーを配置する場合、ミラー反射率を考慮して、透過領域A0と反射領域A1との面積比を4:6〜5:5とするのが好ましい。これらの構成により、第1分光測定部1,1Aと第2分光測定部2,2Aとに対する光量割合を同一にすることができる。   When a reflective film is formed on the transparent flat plate surface, the area ratio between the transmission region A0 and the reflection region A1 is set to 5: 5 to 6: 4 in consideration of the ratio between the transmittance and the reflectance of the transparent flat plate. preferable. When a micromirror is arranged on a virtual plane, it is preferable that the area ratio between the transmission region A0 and the reflection region A1 is 4: 6 to 5: 5 in consideration of the mirror reflectivity. With these configurations, the light quantity ratios for the first spectroscopic measurement units 1 and 1A and the second spectroscopic measurement units 2 and 2A can be made the same.

また、仮想平面上に複数の微小ミラーを配置する構成で、光学特性測定装置D2,D3(図2,図3)のように反射光束L1で2次元測定を行う場合、2次元受光手段は低輝度性能が分光検出(測色)手段に比べて同等から一桁程度劣る場合が多く、そのために透過領域A0と反射領域A1との面積比は1:9〜5:5とすることが望ましい。以上を鑑みて透過領域A0と反射領域A1との面積比は1:9〜6:4が好適である。   Further, in the configuration in which a plurality of micromirrors are arranged on a virtual plane, when the two-dimensional measurement is performed with the reflected light beam L1 as in the optical characteristic measurement devices D2 and D3 (FIGS. 2 and 3), the two-dimensional light receiving means is low. The luminance performance is often inferior to about an order of magnitude compared to the spectral detection (colorimetry) means. For this reason, it is desirable that the area ratio between the transmission region A0 and the reflection region A1 is 1: 9 to 5: 5. In view of the above, the area ratio between the transmission region A0 and the reflection region A1 is preferably 1: 9 to 6: 4.

上記のように分岐ミラー5は、測定光束Lを透過させる透過領域A0と、測定光束Lを反射させる反射領域A1とを有しているため、被測定物の偏光特性の影響を受けにくく、また、透過領域A0と反射領域A1のいずれもが、光軸AXを中心とする光束中心領域Aaの光とその周囲に位置する光束周辺領域Abの光とを両方とも受光するように形成されているため、被測定物の視野角度特性(指向性)の影響を受けにくい。したがって、光学特性測定装置D1〜D3(図1〜図3)によれば、被測定物が偏光特性又は指向性を有している場合でも、被測定物の光学特性をより精度良く測定することが可能である。   As described above, the branch mirror 5 has the transmission region A0 that transmits the measurement light beam L and the reflection region A1 that reflects the measurement light beam L. Therefore, the branch mirror 5 is not easily affected by the polarization characteristics of the object to be measured. Each of the transmission area A0 and the reflection area A1 is formed so as to receive both the light in the light flux center area Aa centered on the optical axis AX and the light in the light flux peripheral area Ab positioned therearound. Therefore, it is difficult to be affected by the viewing angle characteristics (directivity) of the object to be measured. Therefore, according to the optical characteristic measuring devices D1 to D3 (FIGS. 1 to 3), even when the measured object has polarization characteristics or directivity, the optical characteristic of the measured object can be measured with higher accuracy. Is possible.

光学特性測定装置D1〜D3(図1〜図3)において、制御処理部4には、入力部81,出力部82,IF(interface)部83等からなる入出力部8と、記憶部9と、が接続されている。記憶部9は、制御処理部4の制御に従って、各種の所定のプログラム及び各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、被測定光を測定するための測定プログラム等の制御処理プログラムが含まれる。前記各種の所定のデータには、後述の補正演算部422で求められた補正係数が含まれる。このような記憶部9は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備えている。そして、記憶部9には、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御処理部4のワーキングメモリとなるRAM(Random Access Memory)等が含まれている。   In the optical characteristic measuring devices D1 to D3 (FIGS. 1 to 3), the control processing unit 4 includes an input / output unit 8 including an input unit 81, an output unit 82, an IF (interface) unit 83, a storage unit 9, and the like. , Is connected. The storage unit 9 is a circuit that stores various predetermined programs and various predetermined data under the control of the control processing unit 4. The various predetermined programs include, for example, a control processing program such as a measurement program for measuring the light to be measured. The various predetermined data includes a correction coefficient obtained by a correction calculation unit 422 described later. The storage unit 9 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like. The storage unit 9 includes a RAM (Random Access Memory) serving as a working memory of the so-called control processing unit 4 that stores data and the like generated during execution of the predetermined program.

制御処理部4は、光学特性測定装置D1〜D3の各部を当該各部の機能に応じてそれぞれ制御し、被測定光の光学特性を求めるための回路である。制御処理部4は、例えば、CPU(Central Processing Unit)及びその周辺回路を備えて構成される。制御処理部4には、制御処理プログラムが実行されることによって、制御部41及び光学特性演算部42が機能的に構成される。制御部41は、光学特性測定装置D1〜D3の各部を当該各部の機能に応じてそれぞれ制御するためのものである。   The control processing unit 4 is a circuit for controlling the respective units of the optical characteristic measuring devices D1 to D3 according to the functions of the respective units to obtain the optical characteristics of the light to be measured. The control processing unit 4 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits. In the control processing unit 4, a control unit 41 and an optical characteristic calculation unit 42 are functionally configured by executing a control processing program. The control part 41 is for controlling each part of the optical characteristic measuring apparatus D1-D3 according to the function of each said part, respectively.

光学特性演算部42は、第1,第2分光測定部1,1A;2,2Aそれぞれの第1,第2分光測定結果に基づいて、被測定光(測定光束L)の所定の光学特性を求めるものである。第1〜第3の実施の形態で想定している光学特性は被測定光の色彩であり、光学特性測定装置D1〜D3としては測色計を想定している。光学特性測定装置D1〜D3では、前述したように第1分光測定部1,1Aの第1精度が第2分光測定部2,2Aの第2精度よりも高くなっており、光学特性演算部42は、第2分光測定部2,2Aの第2分光測定結果を第1分光測定部1,1Aの第1分光測定結果で補正して、被測定光の光学特性を求めるものである。光学特性演算部42は、そのために特性演算部421と補正演算部422とを機能的に備えている。   The optical characteristic calculation unit 42 obtains predetermined optical characteristics of the light under measurement (measurement light beam L) based on the first and second spectroscopic measurement results of the first and second spectroscopic measurement units 1, 1A; It is what you want. The optical characteristic assumed in the first to third embodiments is the color of the light to be measured, and a colorimeter is assumed as the optical characteristic measuring devices D1 to D3. In the optical characteristic measurement devices D1 to D3, as described above, the first accuracy of the first spectroscopic measurement units 1 and 1A is higher than the second accuracy of the second spectroscopic measurement units 2 and 2A, and the optical characteristic calculation unit 42 Is to correct the second spectroscopic measurement result of the second spectroscopic measurement unit 2, 2 </ b> A with the first spectroscopic measurement result of the first spectroscopic measurement unit 1, 1 </ b> A to obtain the optical characteristics of the light to be measured. For this purpose, the optical characteristic calculator 42 functionally includes a characteristic calculator 421 and a correction calculator 422.

ここで、第1分光測定部1で測定した被測定光の分光分布(第1分光測定結果)をP(λ)であるとし、CIE等色関数をx(λ),y(λ),z(λ)とすると、被測定光の三刺激値は、次式(1),式(2)及び式(3)によって与えられる。なお、CIE等色関数x(λ),y(λ),z(λ)は、記憶部9に予め記憶される。
X=∫P(λ)・x(λ)dλ …(1)
Y=∫P(λ)・y(λ)dλ …(2)
Z=∫P(λ)・z(λ)dλ …(3)
Here, the spectral distribution (first spectral measurement result) of the measured light measured by the first spectroscopic measurement unit 1 is P (λ), and the CIE color matching functions are x (λ), y (λ), z If (λ), the tristimulus value of the light to be measured is given by the following equations (1), (2), and (3). The CIE color matching functions x (λ), y (λ), and z (λ) are stored in the storage unit 9 in advance.
X = ∫P (λ) · x (λ) dλ (1)
Y = ∫P (λ) · y (λ) dλ (2)
Z = ∫P (λ) · z (λ) dλ (3)

一方、第2分光測定部2で測定した被測定光の各画素(n,m)の各画素値(第2分光測定結果)をXc(n,m)、Yc(n,m)、Xc(n,m)とし、第1分光測定部1で測定した被測定光の点(スポット測定の測定点)に対応する第2分光測定部2上での画素を(n0,m0)とすると、次の式(4)〜(6)が成り立つ。なお、(n0,m0)は、予め調べられて記憶部9に記憶される。
X=f{Xc(n0,m0),Yc(n0,m0),Zc(n0,m0)} …(4)
Y=g{Xc(n0,m0),Yc(n0,m0),Zc(n0,m0)} …(5)
Z=h{Xc(n0,m0),Yc(n0,m0),Zc(n0,m0)} …(6)
On the other hand, each pixel value (second spectral measurement result) of each pixel (n, m) of the light to be measured measured by the second spectroscopic measurement unit 2 is expressed as Xc (n, m), Yc (n, m), Xc ( n, m), and the pixel on the second spectroscopic measurement unit 2 corresponding to the point of the light to be measured (measurement point of spot measurement) measured by the first spectroscopic measurement unit 1 is (n0, m0), Equations (4) to (6) are established. Note that (n0, m0) is examined in advance and stored in the storage unit 9.
X = f {Xc (n0, m0), Yc (n0, m0), Zc (n0, m0)} (4)
Y = g {Xc (n0, m0), Yc (n0, m0), Zc (n0, m0)} (5)
Z = h {Xc (n0, m0), Yc (n0, m0), Zc (n0, m0)} (6)

これら式(4)〜(6)における関数f,g,hの各係数が補正係数であり、これら式(4)〜(6)の関係式を、次式(7)のようにおくと、式(8)〜(10)のように、補正係数α,β,γが求められる。
α=X/Xc(n0,m0) …(8)
β=Y/Yc(n0,m0) …(9)
γ=Z/Zc(n0,m0) …(10)
The coefficients of the functions f, g, and h in these expressions (4) to (6) are correction coefficients. When the relational expressions of these expressions (4) to (6) are set as the following expression (7), Correction coefficients α, β, and γ are obtained as in equations (8) to (10).
α = X / Xc (n0, m0) (8)
β = Y / Yc (n0, m0) (9)
γ = Z / Zc (n0, m0) (10)

Figure 2016095277
…(7)
Figure 2016095277
... (7)

第2分光測定部2の補正された各画素の三刺激値は、次の式(11)〜(13)によって与えられる。
X(n,m)=α・Xc(n,m) …(11)
Y(n,m)=β・Xc(n,m) …(12)
Z(n,m)=γ・Xc(n,m) …(13)
The corrected tristimulus values of each pixel of the second spectroscopic measurement unit 2 are given by the following equations (11) to (13).
X (n, m) = α · Xc (n, m) (11)
Y (n, m) = β · Xc (n, m) (12)
Z (n, m) = γ · Xc (n, m) (13)

したがって、補正演算部422は、第1,第2分光測定部1,1A;2,2Aそれぞれの第1,第2分光測定結果に基づいて、上述のように、補正係数α,β,γを求め、この補正係数α,β,γを記憶部9に記憶するものである。そして、特性演算部421は、第2分光測定部2の第2分光測定結果と、第1,第2分光測定部1,1A;2,2Aそれぞれの第1,第2分光測定結果に基づく補正係数α,β,γとに基づいて、上述の式(11)〜(13)を用いることで、被測定光の三刺激値を所定の光学特性として求めるものである。このように光学特性測定装置D1〜D3では、第2分光測定部2,2Aの第2精度が相対的に低くても、第2分光測定部2,2Aの第2分光測定結果を、相対的に高い第1精度を持つ第1分光測定部1,1Aの第1分光測定結果で補正するので、光学特性測定装置D1〜D3は、第2分光測定部2,2Aの第2分光測定結果を、第2精度より向上させることが可能である。   Therefore, the correction calculation unit 422 calculates the correction coefficients α, β, γ as described above based on the first and second spectroscopic measurement results of the first and second spectroscopic measurement units 1, 1A; The correction coefficients α, β, γ are obtained and stored in the storage unit 9. Then, the characteristic calculation unit 421 performs correction based on the second spectroscopic measurement result of the second spectroscopic measurement unit 2 and the first and second spectroscopic measurement results of the first and second spectroscopic measurement units 1 and 1A; Based on the coefficients α, β, and γ, the tristimulus values of the light to be measured are obtained as predetermined optical characteristics by using the above-described equations (11) to (13). As described above, in the optical property measurement apparatuses D1 to D3, even if the second accuracy of the second spectroscopic measurement units 2 and 2A is relatively low, the second spectroscopic measurement results of the second spectroscopic measurement units 2 and 2A are relatively compared. Since the first spectroscopic measurement unit D1 to D3 corrects the first spectroscopic measurement result of the first spectroscopic measurement unit 1 or 1A having the first accuracy with high accuracy, The second accuracy can be improved.

そして、光学特性演算部42は、上記のようにして求めた所定の光学特性を出力部82に出力する。また必要に応じて、光学特性演算部42は、上記のようにして求めた所定の光学特性を、IF部83を介して外部機器(不図示)へ出力する。   Then, the optical characteristic calculator 42 outputs the predetermined optical characteristic obtained as described above to the output unit 82. Further, as necessary, the optical characteristic calculation unit 42 outputs the predetermined optical characteristic obtained as described above to an external device (not shown) via the IF unit 83.

上記のような光学特性測定装置D1〜D3では、測定が開始されると、被測定光は受光レンズ系6aに入射し、開口絞り6bから射出する。光学特性測定装置D1では、測定光束Lとして開口絞り6bを通過した被測定光は、光軸AXを中心とする光束中心領域の光とその周囲に位置する光束周辺領域の光とを含む一部が分岐ミラー5で反射され、その光路が折り曲げられて第1分光測定部1へと導光され、残余の部分がそのまま測定角可変光学系3を介して第2分光測定部2へと導光される。光学特性測定装置D2では、測定光束Lとして開口絞り6bを通過した被測定光は、光軸AXを中心とする光束中心領域の光とその周囲に位置する光束周辺領域の光とを含む一部が分岐ミラー5で反射され、その光路が折り曲げられて測定角可変光学系3,第2分光測定部2の順で導光され、残余の部分がそのまま第1分光測定部1へと導光される。光学特性測定装置D3では、測定光束Lとして開口絞り6bを通過した被測定光は、光軸AXを中心とする光束中心領域の光とその周囲に位置する光束周辺領域の光とを含む一部が分岐ミラー5で反射され、その光路が折り曲げられて第2分光測定部2Aへと導光され、残余の部分がそのまま第1分光測定部1Aへと導光される。   In the optical characteristic measuring devices D1 to D3 as described above, when measurement is started, the light to be measured enters the light receiving lens system 6a and exits from the aperture stop 6b. In the optical characteristic measuring apparatus D1, the light to be measured that has passed through the aperture stop 6b as the measurement light beam L includes a part of the light in the light flux center region centered on the optical axis AX and the light in the light flux peripheral region positioned around the light beam. Is reflected by the branch mirror 5, its optical path is bent and guided to the first spectroscopic measurement unit 1, and the remaining part is guided as it is to the second spectroscopic measurement unit 2 through the measurement angle variable optical system 3. Is done. In the optical characteristic measuring apparatus D2, the light to be measured that has passed through the aperture stop 6b as the measurement light beam L includes a part of the light in the light beam central region centered on the optical axis AX and the light in the light beam peripheral region positioned around the light beam. Is reflected by the branch mirror 5, the optical path thereof is bent, and is guided in the order of the variable measuring angle optical system 3 and the second spectroscopic measuring unit 2, and the remaining part is guided to the first spectroscopic measuring unit 1 as it is. The In the optical characteristic measuring apparatus D3, the light to be measured that has passed through the aperture stop 6b as the measurement light beam L includes a part of the light in the light flux center region centered on the optical axis AX and the light in the light flux peripheral region positioned around the light beam. Is reflected by the branch mirror 5, the optical path thereof is bent and guided to the second spectroscopic measurement unit 2A, and the remaining part is guided as it is to the first spectroscopic measurement unit 1A.

第1分光測定部1,1Aへ導光された一部の被測定光(反射光束L1又は透過光束L0)は、分光されて測定され、その第1分光測定結果が第1分光測定部1,1Aから制御処理部4へ出力される。ここで、分岐ミラー5は、その偏光依存性と角度依存性が小さいので、第1分光測定部1は、被測定物が偏光特性又は指向性を有している場合でもより精度良く測定できる。第2分光測定部2へ導光された残余の被測定光(反射光束L1又は透過光束L0)は、分光されて測定され、その第2分光測定結果が第2分光測定部2,2Aから制御処理部4へ出力される。制御処理部4の光学特性演算部42は、補正演算部422によって第1,第2分光測定結果に基づいて補正係数α,β,γを求め、この求めた補正係数α,β,γと第2分光測定結果に基づいて、特性演算部421によって被測定光における光学特性の2次元分布を求め、出力部82に出力する。   A part of the light to be measured (reflected light beam L1 or transmitted light beam L0) guided to the first spectroscopic measurement unit 1 or 1A is spectrally measured, and the first spectroscopic measurement result is the first spectroscopic measurement unit 1 or 1A. 1A is output to the control processing unit 4. Here, since the branch mirror 5 has small polarization dependency and angle dependency, the first spectroscopic measurement unit 1 can perform measurement more accurately even when the object to be measured has polarization characteristics or directivity. The remaining light to be measured (reflected light beam L1 or transmitted light beam L0) guided to the second spectroscopic measurement unit 2 is spectroscopically measured, and the second spectroscopic measurement result is controlled by the second spectroscopic measurement units 2 and 2A. It is output to the processing unit 4. The optical characteristic calculation unit 42 of the control processing unit 4 obtains the correction coefficients α, β, γ based on the first and second spectroscopic measurement results by the correction calculation unit 422, and the obtained correction coefficients α, β, γ Based on the two spectroscopic measurement results, the characteristic calculation unit 421 obtains a two-dimensional distribution of optical characteristics in the light to be measured and outputs the two-dimensional distribution to the output unit 82.

以上説明したように、光学特性測定装置D1〜D3及びこれを用いた光学特性測定方法は、ラインセンサー14等を有し、かつ、測定光束Lを第1精度で分光して測定する第1分光測定部1,1Aと、2次元センサー22等を有し、かつ、測定光束Lを第2精度で分光して測定する第2分光測定部2,2Aとを備えており、第1精度が第2精度よりも高くなっている。そして光学特性演算部42により、第2分光測定部2,2Aの第2分光測定結果が第1分光測定部1,1Aの第1分光測定結果で補正されて、被測定光の光学特性が求められる。上記第1,第2分光測定部1,1A;2,2Aへ被測定光を導光するミラーとして、ハーフミラーではなく、被測定光の全光束Lのうちの光束中心領域Aaの光と光束周辺領域Abの光とを両方とも含む一部の光束L1を折り曲げて第1分光測定部1,1Aへ導光するとともに、残余の光束L0をそのまま第2分光測定部2,2Aへ導光する分岐ミラー5を備えている。つまり、この分岐ミラー5は、被測定光の測定光束Lにおける断面積の一部分の光束L1を反射して折り曲げて第1分光測定部1,1Aへ導光するとともに、断面積の残余部分の光束L0をそのまま第2分光測定部2,2Aへ導光するミラーである。したがって、分岐ミラー5は偏光依存性及び角度依存性が小さいので、被測定物が偏光特性又は指向性を有している場合でもより精度良く測定することが可能である。   As described above, the optical characteristic measuring devices D1 to D3 and the optical characteristic measuring method using the same have the line sensor 14 and the like, and the first light spectrum is obtained by measuring the measurement light beam L with the first accuracy. It has a measurement unit 1, 1 </ b> A, a second spectral measurement unit 2, 2 </ b> A that has a two-dimensional sensor 22, etc., and that measures and measures the measurement light beam L with a second accuracy. It is higher than 2 precision. Then, the optical characteristic calculation unit 42 corrects the second spectroscopic measurement result of the second spectroscopic measurement unit 2 and 2A with the first spectroscopic measurement result of the first spectroscopic measurement unit 1 and 1A, and obtains the optical characteristic of the light to be measured. It is done. The mirrors for guiding the light to be measured to the first and second spectroscopic measuring units 1, 1A; 2, 2A are not half mirrors, but the light and the light in the central region Aa of the total light flux L of the light to be measured. A part of the light beam L1 including both of the light in the peripheral region Ab is bent and guided to the first spectroscopic measurement units 1 and 1A, and the remaining light beam L0 is directly guided to the second spectroscopic measurement units 2 and 2A. A branch mirror 5 is provided. That is, the branch mirror 5 reflects and bends the light beam L1 having a part of the cross-sectional area of the measurement light beam L of the light to be measured and guides it to the first spectroscopic measurement units 1 and 1A, and the light beam of the remaining cross-sectional area. This is a mirror that guides L0 directly to the second spectroscopic measurement units 2 and 2A. Therefore, since the branch mirror 5 has small polarization dependency and angle dependency, it is possible to measure with higher accuracy even when the object to be measured has polarization characteristics or directivity.

光学特性測定装置D1〜D3のように、被測定物側から像側へ順に、受光レンズ系6aと開口絞り6bとからなる結像光学系6を、分岐ミラー5の被測定物側に配置することにより、開口絞り6bが分岐ミラー5側に寄って配置されることが好ましい。このよう開口絞り6bを配置することによって、受光レンズ系6aのフォーカシングを行っても受光光量を不変にすることができる。   As in the optical characteristic measuring devices D1 to D3, the imaging optical system 6 including the light receiving lens system 6a and the aperture stop 6b is arranged on the measured object side of the branch mirror 5 in order from the measured object side to the image side. Accordingly, it is preferable that the aperture stop 6b is disposed closer to the branch mirror 5 side. By disposing the aperture stop 6b in this way, the amount of received light can be made unchanged even when the light receiving lens system 6a is focused.

光学特性測定装置D1〜D3において結像光学系6に開口絞り6bを備えない場合には、受光レンズ系6aのフォーカシングによって受光光量が変化するので、制御処理部4には、受光レンズ系6aのフォーカシングに応じて受光光量を補正する光量補正部を機能的に備えることが好ましい。この場合、受光レンズ系6aのフォーカス位置(受光レンズ系6aの中でフォーカシングのために光軸AXに沿って移動する光学レンズ(又はレンズ群)の位置)と光量補正係数との関係を予め求めて、記憶部9に記憶しておく。そして、前記光量補正部が、受光レンズ系6aのフォーカス位置に対応した光量補正係数で受光光量を補正するように構成するのが好ましい。   When the imaging optical system 6 is not provided with the aperture stop 6b in the optical characteristic measuring devices D1 to D3, the amount of received light changes due to the focusing of the light receiving lens system 6a, so that the control processing unit 4 includes the light receiving lens system 6a. It is preferable to functionally include a light amount correction unit that corrects the amount of received light according to focusing. In this case, the relationship between the focus position of the light receiving lens system 6a (the position of the optical lens (or lens group) moving along the optical axis AX for focusing in the light receiving lens system 6a) and the light amount correction coefficient is obtained in advance. And stored in the storage unit 9. It is preferable that the light amount correction unit is configured to correct the received light amount with a light amount correction coefficient corresponding to the focus position of the light receiving lens system 6a.

上述した光学特性測定装置D1,D2では、第1分光測定部1として回折格子等の分光光学素子を用いた分光型測光計を採用しているが、第2分光測定部2の光学フィルター211よりも高精度な分光応答度を持つ光学フィルターを用いることにより、三刺激値型測光計を採用してもよい。また、上述した光学特性測定装置D1〜D3は測色計であるため、3種類の分光感度で被測定光を測定するために、互いに分光応答度の異なる3個の光学フィルター211(RGB),F1〜F3を第2分光測定部2,2Aに用いているが、光学特性測定装置D1〜D3が輝度計である場合には、第2分光測定部2,2Aが1種類の分光感度で被測定光を測定する構成にすればよい。   In the optical characteristic measuring apparatuses D1 and D2 described above, a spectrophotometer using a spectroscopic optical element such as a diffraction grating is adopted as the first spectroscopic measurement unit 1, but from the optical filter 211 of the second spectroscopic measurement unit 2. Alternatively, a tristimulus photometer may be employed by using an optical filter having a highly accurate spectral response. In addition, since the above-described optical characteristic measuring devices D1 to D3 are colorimeters, in order to measure light to be measured with three types of spectral sensitivities, three optical filters 211 (RGB) having different spectral responsiveness from each other, Although F1 to F3 are used for the second spectroscopic measurement units 2 and 2A, when the optical property measurement devices D1 to D3 are luminance meters, the second spectroscopic measurement units 2 and 2A are covered with one type of spectral sensitivity. A configuration for measuring the measurement light may be used.

D1〜D3 光学特性測定装置
IM1,IM2 第1,第2の像
SP 測定域(被測定物)
AX 光軸
AX0 透過光軸
AX1 反射光軸
A0 透過領域
A1 反射領域
Aa 光束中心領域
Ab 光束周辺領域
L 測定光束
L0 透過光束
L1 反射光束
FB バンドルファイバー
F1〜F3 第1〜第3光学フィルター
S1〜S3 第1〜第3センサー
1,1A 第1分光測定部
2,2A 第2分光測定部
3 測定角可変光学系
4 制御処理部
5,5a〜5e 分岐ミラー
6 結像光学系
6a 受光レンズ系
6b 開口絞り
8 入出力部
9 記憶部
10 筐体
11 入射開口
12 レンズ系
13 反射型回折格子
14 ラインセンサー(第1,第2のセンサー;測色センサー)
21 フィルター選択部
22 2次元センサー(第1,第2のセンサー;2次元カラー撮像素子)
41 制御部
42 光学特性演算部
81 入力部
82 出力部
83 IF部
211 光学フィルター
212 フィルター保持部材
213 モーター
421 特性演算部
422 補正演算部
D1 to D3 Optical characteristic measuring device IM1, IM2 First and second images SP Measurement area (object to be measured)
AX Optical axis AX0 Transmitted optical axis AX1 Reflected optical axis A0 Transmitted area A1 Reflected area Aa Light flux center area Ab Light flux peripheral area L Measurement light flux L0 Transmitted light flux L1 Reflected light flux FB Bundle fiber F1 to F3 First to third optical filters S1 to S3 1st-3rd sensor 1, 1A 1st spectroscopic measurement part 2, 2A 2nd spectroscopic measurement part 3 Measurement angle variable optical system 4 Control processing part 5, 5a-5e Branch mirror 6 Imaging optical system 6a Light receiving lens system 6b Aperture Aperture 8 Input / output unit 9 Storage unit 10 Case 11 Entrance aperture 12 Lens system 13 Reflective diffraction grating 14 Line sensor (first and second sensors; colorimetric sensor)
21 Filter selection unit 22 Two-dimensional sensor (first and second sensors; two-dimensional color image sensor)
DESCRIPTION OF SYMBOLS 41 Control part 42 Optical characteristic calculating part 81 Input part 82 Output part 83 IF part 211 Optical filter 212 Filter holding member 213 Motor 421 Characteristic calculating part 422 Correction calculating part

Claims (9)

被測定物の像を形成するための測定光束を射出する結像光学系と、
前記測定光束を透過光束と反射光束とに分け、前記結像光学系の光軸を透過光束側の透過光軸と反射光束側の反射光軸とに分ける分岐ミラーと、
前記透過光軸上に配置された第1のセンサーと、
前記反射光軸上に配置された第2のセンサーと、
を備えた光学特性測定装置であって、
前記第1,第2のセンサーのうち、一方が測色センサーであり、他方が2次元カラー撮像素子であり、
前記分岐ミラーが、前記測定光束を透過させる透過領域と、前記測定光束を反射させる反射領域とを有し、
前記透過領域と前記反射領域のいずれもが、前記測定光束において光軸を中心とする光束中心領域の光とその周囲に位置する光束周辺領域の光とを両方とも受光するように形成されていることを特徴とする光学特性測定装置。
An imaging optical system that emits a measurement light beam for forming an image of the object to be measured;
A branch mirror that divides the measurement light beam into a transmitted light beam and a reflected light beam, and divides the optical axis of the imaging optical system into a transmitted light axis on the transmitted light beam side and a reflected optical axis on the reflected light beam side;
A first sensor disposed on the transmitted optical axis;
A second sensor disposed on the reflected optical axis;
An optical characteristic measuring device comprising:
One of the first and second sensors is a colorimetric sensor, and the other is a two-dimensional color image sensor,
The branch mirror has a transmission region that transmits the measurement light beam and a reflection region that reflects the measurement light beam;
Both the transmission region and the reflection region are formed so as to receive both the light in the central region of the light beam centered on the optical axis and the light in the peripheral region of the light beam positioned around the light beam in the measurement light beam. An optical characteristic measuring apparatus.
前記光束中心領域と前記光束周辺領域との境界が、前記測定光束において光軸から最外縁までの距離の2分の1の位置にあることを特徴とする請求項1記載の光学特性測定装置。   2. The optical characteristic measuring apparatus according to claim 1, wherein a boundary between the light flux central region and the light flux peripheral region is located at a half of a distance from an optical axis to an outermost edge in the measurement light flux. 前記透過領域と前記反射領域とが、光軸を中心とした放射状の線を境界として、交互に位置することを特徴とする請求項1又は2記載の光学特性測定装置。   The optical characteristic measuring apparatus according to claim 1, wherein the transmission area and the reflection area are alternately positioned with a radial line centered on the optical axis as a boundary. 前記透過領域と前記反射領域とが、格子状の縞模様にストライプ配列されて、交互に位置することを特徴とする請求項1又は2記載の光学特性測定装置。   The optical characteristic measuring device according to claim 1, wherein the transmission region and the reflection region are alternately arranged in a stripe pattern in a lattice-like stripe pattern. 前記透過領域と前記反射領域とが、四角形状の市松模様にモザイク配列されて、交互に位置することを特徴とする請求項1又は2記載の光学特性測定装置。   The optical characteristic measuring apparatus according to claim 1, wherein the transmission area and the reflection area are arranged in a mosaic pattern in a square checkered pattern and are alternately arranged. 前記透過領域と前記反射領域との面積比が、1:9〜5:5であることを特徴とする請求項1〜5のいずれか1項に記載の光学特性測定装置。   6. The optical characteristic measuring apparatus according to claim 1, wherein an area ratio between the transmission region and the reflection region is 1: 9 to 5: 5. 前記分岐ミラーが、透明平板表面に反射膜を形成することにより前記反射領域が設けられたものであることを特徴とする請求項1〜6のいずれか1項に記載の光学特性測定装置。   The optical characteristic measurement apparatus according to claim 1, wherein the branch mirror is provided with the reflection region by forming a reflection film on a transparent flat plate surface. 前記分岐ミラーが、仮想平面上に微小ミラーを配置することにより前記反射領域が設けられたものであることを特徴とする請求項1〜6のいずれか1項に記載の光学特性測定装置。   The optical characteristic measurement apparatus according to claim 1, wherein the branch mirror is provided with the reflection region by arranging a micro mirror on a virtual plane. 前記測色センサーを有し、かつ、前記測定光束を第1精度で分光して測定する第1分光測定部と、前記2次元カラー撮像素子を有し、かつ、前記測定光束を第2精度で分光して測定する第2分光測定部とを備え、
前記第1精度が前記第2精度よりも高いことを特徴とする請求項1〜8のいずれか1項に記載の光学特性測定装置。
A first spectroscopic measurement unit that has the colorimetric sensor and that measures and measures the measurement light beam with a first accuracy; and the two-dimensional color imaging device; and the measurement light beam has a second accuracy. A second spectroscopic measurement unit that performs spectroscopic measurement.
The optical characteristic measuring apparatus according to claim 1, wherein the first accuracy is higher than the second accuracy.
JP2014232887A 2014-11-17 2014-11-17 Optical property measuring device Expired - Fee Related JP6331986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014232887A JP6331986B2 (en) 2014-11-17 2014-11-17 Optical property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232887A JP6331986B2 (en) 2014-11-17 2014-11-17 Optical property measuring device

Publications (2)

Publication Number Publication Date
JP2016095277A true JP2016095277A (en) 2016-05-26
JP6331986B2 JP6331986B2 (en) 2018-05-30

Family

ID=56071113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232887A Expired - Fee Related JP6331986B2 (en) 2014-11-17 2014-11-17 Optical property measuring device

Country Status (1)

Country Link
JP (1) JP6331986B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279944A (en) * 1975-12-26 1977-07-05 Anritsu Electric Co Ltd Half mirror
JPS6454403A (en) * 1987-08-25 1989-03-01 Hamamatsu Photonics Kk Beam splitter
JPH06201472A (en) * 1993-01-06 1994-07-19 Minolta Camera Co Ltd Two-dimensional colorimeter
JPH09281314A (en) * 1996-04-12 1997-10-31 Jiyuu Denshi Laser Kenkyusho:Kk Optical mirror and laser beam splitting and distributing device formed by using the same
JP2007285761A (en) * 2006-04-13 2007-11-01 Shibuya Optical Co Ltd Half mirror, and microscopic spectrophotometer using the same
JP2010271246A (en) * 2009-05-22 2010-12-02 Sony Corp Method and device for color luminance measurement
JP2013130522A (en) * 2011-12-22 2013-07-04 Olympus Corp Spectral detection device and confocal microscope including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279944A (en) * 1975-12-26 1977-07-05 Anritsu Electric Co Ltd Half mirror
JPS6454403A (en) * 1987-08-25 1989-03-01 Hamamatsu Photonics Kk Beam splitter
JPH06201472A (en) * 1993-01-06 1994-07-19 Minolta Camera Co Ltd Two-dimensional colorimeter
US5432609A (en) * 1993-01-06 1995-07-11 Minolta Co., Ltd. Two-dimensional colorimeter
JPH09281314A (en) * 1996-04-12 1997-10-31 Jiyuu Denshi Laser Kenkyusho:Kk Optical mirror and laser beam splitting and distributing device formed by using the same
JP2007285761A (en) * 2006-04-13 2007-11-01 Shibuya Optical Co Ltd Half mirror, and microscopic spectrophotometer using the same
JP2010271246A (en) * 2009-05-22 2010-12-02 Sony Corp Method and device for color luminance measurement
JP2013130522A (en) * 2011-12-22 2013-07-04 Olympus Corp Spectral detection device and confocal microscope including the same

Also Published As

Publication number Publication date
JP6331986B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US7898656B2 (en) Apparatus and method for cross axis parallel spectroscopy
US8400627B2 (en) Photo-detector and method of measuring light
JP6658517B2 (en) Optical characteristic measuring device and optical characteristic measuring method
CN107923793B (en) Compact spectrometer and spectroscopic method
JP2019002720A (en) Confocal displacement meter
CN1650151B (en) Optical spectrometer
CN102680098A (en) Spectral measurement device
CN114599946A (en) Spectrometer and imaging device
DK2929307T3 (en) SPECTROMETER FOR ANALYZING A SPECTRUM SPECTRUM
US5914777A (en) Apparatus for and method of measuring a distribution of luminous intensity of light source
JP2001208607A (en) Wavelength calibrating method and wavelength measuring method for spectroscope in wavelength measuring instrument, and device therefor
CN210603594U (en) Spectrum appearance
US20240264454A1 (en) Imager and spot sampler with translatable stage
US9759671B2 (en) Device and method for measuring panes, in particular windscreens of vehicles
WO2013114524A1 (en) Spectrometer and image part extraction device
JP6331986B2 (en) Optical property measuring device
JP7486178B2 (en) Spectroscopic equipment
JP6717199B2 (en) Multi-angle colorimeter
KR101825994B1 (en) Luminance and color meter with wave plate
US6721050B2 (en) Method and device for the spectral analysis of light
KR102022836B1 (en) Apparatus for measuring light, system and method thereof
TWI404922B (en) Spectral spectral measurement system
KR101054017B1 (en) Calibration method of the spectrometer
US11525734B2 (en) Optical device allowing the angular and spectral emission of an object to be measured simultaneously
WO2015182572A1 (en) Optical characteristic measurement device and optical characteristic measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6331986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees