JP2014020927A - Device for measuring transmittance of light guiding fiber and method for measuring transmittance of light guiding fiber - Google Patents

Device for measuring transmittance of light guiding fiber and method for measuring transmittance of light guiding fiber Download PDF

Info

Publication number
JP2014020927A
JP2014020927A JP2012159878A JP2012159878A JP2014020927A JP 2014020927 A JP2014020927 A JP 2014020927A JP 2012159878 A JP2012159878 A JP 2012159878A JP 2012159878 A JP2012159878 A JP 2012159878A JP 2014020927 A JP2014020927 A JP 2014020927A
Authority
JP
Japan
Prior art keywords
light
integrating sphere
guide fiber
light guide
photometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012159878A
Other languages
Japanese (ja)
Inventor
Yoshimi Obara
佳巳 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2012159878A priority Critical patent/JP2014020927A/en
Publication of JP2014020927A publication Critical patent/JP2014020927A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for measuring transmittance of a light guiding fiber and a method for measuring transmittance of the light guiding fiber which can accurately measure transmittance of the light guiding fiber even when the device has high tolerance for a connection posture of the light guiding fiber.SOLUTION: A device for measuring transmittance of a light guiding fiber comprises: a first integrating sphere 2 which radiates light by receiving light generated by a light source 1 then irregularly reflecting the received light; a second integrating sphere 5 which can selectively perform radiation of light by receiving the light radiated by the first integrating sphere 2 via a light guiding fiber 4 then irregularly reflecting the received light or radiation of light by receiving the light radiated by the first integrating sphere 2 without the light guiding fiber 4 then irregularly reflecting the received light; and a photometer 7 which receives the light radiated by the second integrating sphere.

Description

本発明は導光ファイバ透過率測定装置、及び、導光ファイバ透過率測定方法に関する。   The present invention relates to a light guide fiber transmittance measuring device and a light guide fiber transmittance measuring method.

導光ファイバの透過率測定装置(及び、測定方法)の従来技術としては、例えば特許文献1に開示されたものがある。
この導光ファイバ透過率測定装置は積分球を利用したものである。この積分球には、光源から出た光を受光するための2つの受光孔と、受光孔とは別の位置に設けた2つのファイバ取付孔と、が形成してあり、積分球の内部には光度計が設けてある。
導光ファイバの透過率を測定する際は、まず導光ファイバを透過した光を光度計で検出する。即ち、積分球の2つのファイバ取付孔に対して測定対象である導光ファイバの両端をそれぞれ接続し、その上で光源で発生した光を分光器及び集光レンズを介して一方の受光孔から積分球の内部に照射し、照明光(分光)を積分球の内面で乱反射させることなく導光ファイバの一端(入射端)に入射させる。すると導光ファイバの他端(出射端)から積分球内に照射された分光が積分球の内面によって多数回乱反射されて分光分布及び強度が均一化され、均一化された各分光の照度や放射照度が光度計によって測定される。
続いて光源で発生した光(参照光)を導光ファイバを通さずに光度計で検出する。即ち、光源で発生した光(参照光)を分光器及び集光レンズを介して他方の受光孔から積分球の内部に照射する。すると積分球内に照射された分光は、導光ファイバに向かうことなく積分球の内面によって多数回乱反射され(分光分布及び強度が均一化され)、均一化された各分光の照度や放射照度が光度計によって測定される。
上記二種類の測定を完了した後に、導光ファイバを透過した分光の光度計による測定値と参照光の光度計による測定値とを比較すれば、参照光(分光)の測定値を100%とした場合の導光ファイバの透過率を求めることができる。
As a prior art of the transmittance measuring device (and measuring method) of the light guide fiber, there is one disclosed in Patent Document 1, for example.
This light guide fiber transmittance measuring device uses an integrating sphere. The integrating sphere has two light receiving holes for receiving light emitted from the light source and two fiber mounting holes provided at positions different from the light receiving holes. Has a photometer.
When measuring the transmittance of the light guide fiber, the light transmitted through the light guide fiber is first detected with a photometer. That is, both ends of the light guide fiber to be measured are connected to the two fiber mounting holes of the integrating sphere, and the light generated by the light source on the two ends is passed through the spectroscope and the condensing lens from one light receiving hole. The inside of the integrating sphere is irradiated, and the illumination light (spectral) is incident on one end (incident end) of the light guiding fiber without being irregularly reflected by the inner surface of the integrating sphere. Then, the spectrum irradiated into the integrating sphere from the other end (outgoing end) of the light guide fiber is diffused and reflected many times by the inner surface of the integrating sphere, and the spectral distribution and intensity are made uniform. Illuminance is measured with a photometer.
Subsequently, the light (reference light) generated by the light source is detected by the photometer without passing through the light guide fiber. That is, the light (reference light) generated by the light source is irradiated into the integrating sphere from the other light receiving hole through the spectroscope and the condenser lens. Then, the spectrum irradiated into the integrating sphere is diffused and reflected many times by the inner surface of the integrating sphere without going to the light guiding fiber (spectral distribution and intensity are uniformed), and the illuminance and irradiance of each uniformed spectrum are Measured with a photometer.
After completing the above two types of measurements, if the measured value of the spectrophotometer transmitted through the light guide fiber is compared with the measured value of the reference light photometer, the measured value of the reference light (spectrum) is 100%. In this case, the transmittance of the light guide fiber can be obtained.

特開平5−157661号公報JP-A-5-157661

特許文献1の透過率測定装置の光源で発生した光(分光)は、積分球の内面で乱反射することなく導光ファイバの入射端に直接入射するので、その分光分布及び強度が不均一である(入射端に向かう光の発散度が不均一である)。そのため、透過率測定装置のファイバ接続部の不具合等に起因して、導光ファイバの透過率測定装置に対する接続体勢(接続角度)が少しでも変わると、導光ファイバの入射端に入射する光の発散度が変化してしまう。
即ち、導光ファイバを導光ファイバ透過率測定装置に対して所定の体勢となるように精度よく接続しない限り、導光ファイバの透過率を正確に測定するのが困難である。
The light (spectrum) generated by the light source of the transmittance measuring device of Patent Document 1 is directly incident on the incident end of the light guide fiber without being irregularly reflected by the inner surface of the integrating sphere, so that its spectral distribution and intensity are not uniform. (The divergence of the light toward the incident end is not uniform). Therefore, if the connection posture (connection angle) of the light guide fiber with respect to the transmittance measurement device changes even slightly due to a defect in the fiber connection portion of the transmittance measurement device, the light incident on the incident end of the light guide fiber is changed. Divergence will change.
That is, it is difficult to accurately measure the transmittance of the light guide fiber unless the light guide fiber is accurately connected to the light guide fiber transmittance measuring device so as to have a predetermined posture.

本発明は、導光ファイバの接続体勢の許容度が緩くても導光ファイバの透過率を正確に測定可能な導光ファイバ透過率測定装置、及び、導光ファイバ透過率測定方法を提供することを目的とする。   The present invention provides a light guide fiber transmittance measuring device and a light guide fiber transmittance measuring method capable of accurately measuring the transmittance of the light guide fiber even when the tolerance of the connection posture of the light guide fiber is loose. With the goal.

本発明の導光ファイバ透過率測定装置は、光源で発生した光を受光し乱反射させた上で出射する第一積分球と、該第一積分球が出射した光を導光ファイバを介して受光し乱反射させた上で出射すること、及び、該導光ファイバを介さずに受光し乱反射させた上で出射することが選択的に可能な第二積分球と、該第二積分球が出射した光を受光する光度計と、を備えることを特徴としている。   The light guide fiber transmittance measuring device of the present invention receives a light generated by a light source, diffuses and reflects the light, and then emits the light through the light guide fiber. A second integrating sphere that can selectively emit light after being diffusely reflected, and receive light without being guided through the light guiding fiber and diffusely reflected, and the second integrating sphere is emitted. And a photometer for receiving light.

上記光源で発生した光を分光した上で上記第一積分球に送る分光器、又は、上記第二積分球が出射した光を分光する分光器を設けてもよい。   A spectroscope that splits the light generated by the light source and sends it to the first integrating sphere, or a spectroscope that splits the light emitted by the second integrating sphere may be provided.

本発明の導光ファイバ透過率測定方法は、光源で発生した光を第一積分球で乱反射させ、該第一積分球が乱反射させた上で出射した光を導光ファイバを介して第二積分球に入射させ、さらに第二積分球が乱反射させた上で出射した光を光度計で測定する導光ファイバ透過光検出ステップ、上記光源で発生した光を上記第一積分球で乱反射させ、該第一積分球が乱反射させた上で出射した光を上記導光ファイバを介さずに上記第二積分球で受光し、さらに該第二積分球が乱反射させた上で出射した光を上記光度計で受光する参照光検出ステップ、及び、上記導光ファイバ透過光検出ステップにおける上記光度計の測定値と、上記参照光検出ステップにおける上記光度計の測定値と、を比較する比較ステップ、を有することを特徴としている。   In the light guide fiber transmittance measuring method of the present invention, the light generated by the light source is irregularly reflected by the first integrating sphere, and the light emitted after the first integrating sphere is irregularly reflected is second integrated via the light guiding fiber. A step of detecting light transmitted through a light guiding fiber, which is incident on the sphere and then diffused by the second integrating sphere, and measuring the light emitted by the photometer, and diffused by the first integrating sphere. Light emitted after irregular reflection by the first integrating sphere is received by the second integrating sphere without passing through the light guide fiber, and further, the light emitted after irregular reflection by the second integrating sphere is received by the photometer. And a comparison step of comparing the measured value of the photometer in the light guide fiber transmitted light detecting step with the measured value of the photometer in the reference light detecting step. It is characterized by.

上記参照光検出ステップ及び上記導光ファイバ透過光検出ステップにおいて、上記光源で発生した光を分光した上で上記第一積分球に送るか、又は、上記第二積分球が出射した光を分光してもよい。   In the reference light detection step and the light guide fiber transmitted light detection step, the light generated by the light source is dispersed and sent to the first integrating sphere, or the light emitted by the second integrating sphere is dispersed. May be.

本発明の導光ファイバ透過率測定装置、及び、導光ファイバ透過率測定方法は、導光ファイバの透過光を光度計で測定する場合と、参照光を光度計で測定する場合のいずれにおいても、光源で発生した光の強度を第一積分球で均一化した後に、均一化された光を導光ファイバを介して、又は、導光ファイバを介さずに第二積分球に入射させている。
光を均一化しないまま、導光ファイバの導光ファイバ透過率測定装置に対する接続体勢(接続角度)を少しずつ変えながら測定作業を複数回行うと、導光ファイバの入射端に入射する光の発散度が測定作業毎に変化してしまう。導光ファイバは一般的に、入射端に入射する光の発散度が変化すると透過率が変化する特性を有しているため、導光ファイバの入射端に入射する光の発散度が変化すると透過率を正確に測定できなくなる。
しかし、本発明のように光を均一化しながら複数回の測定作業を行うと、仮に導光ファイバの導光ファイバ透過率測定装置に対する接続体勢(接続角度)が測定作業毎に多少変化しても、導光ファイバの入射端に入射する光の発散度は毎回ほぼ一定になる。そのため、導光ファイバの接続体勢が多少悪くても、導光ファイバの透過率を正確に測定できる。
The light guide fiber transmittance measuring device and the light guide fiber transmittance measuring method according to the present invention can be used both when the transmitted light of the light guide fiber is measured with a photometer and when the reference light is measured with a photometer. After the light intensity generated by the light source is made uniform by the first integrating sphere, the uniformed light is made incident on the second integrating sphere through the light guiding fiber or not through the light guiding fiber. .
Dividing the light incident on the incident end of the light guide fiber if the measurement operation is performed several times while changing the connection posture (connection angle) of the light guide fiber to the light guide fiber transmittance measuring device little by little without making the light uniform. The degree changes every measurement work. In general, the light guide fiber has a characteristic that the transmittance changes when the divergence of the light incident on the incident end changes. Therefore, the light guide fiber transmits when the divergence of the light incident on the incident end of the light guide fiber changes. The rate cannot be measured accurately.
However, if the measurement work is performed a plurality of times while making the light uniform as in the present invention, even if the connection posture (connection angle) of the light guide fiber to the light guide fiber transmittance measuring device changes somewhat for each measurement work, The divergence of light incident on the incident end of the light guide fiber is almost constant each time. Therefore, the transmittance of the light guide fiber can be accurately measured even if the connection posture of the light guide fiber is somewhat bad.

本発明の一実施形態を適用した導光ファイバ透過率測定装置を利用して導光ファイバから出射された光を測定する状態を示す図である。It is a figure which shows the state which measures the light radiate | emitted from the light guide fiber using the light guide fiber transmittance | permeability measuring apparatus to which one Embodiment of this invention is applied. 導光ファイバ透過率測定装置を利用して参照光を測定する状態を示す図である。It is a figure which shows the state which measures reference light using a light guide fiber transmittance measuring device.

以下、添付図面を参照しながら本発明の一実施形態について説明する。
導光ファイバ透過率測定装置10は、第一積分球2、絞り3、第二積分球5、及び、光度計7を具備する装置である。
集光レンズ(図示略)を有する光源1(ランプ、LEDなど)を固定状態で取り付けた第一積分球2は出射孔2aを有しており、出射孔2aには絞り3が同心状態で着脱可能に固定してある。入射孔5aを有する第二積分球5には、光度計7の光度計プローブ6が接続している。光度計7は、光度計プローブ6に入射した光を分光する分光器を内蔵しており、さらに分光器によって分けられた各分光の照度と放射照度を測定する機能を有している。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
The light guide fiber transmittance measuring device 10 is a device including a first integrating sphere 2, a diaphragm 3, a second integrating sphere 5, and a photometer 7.
A first integrating sphere 2 to which a light source 1 (lamp, LED, etc.) having a condenser lens (not shown) is attached in a fixed state has an exit hole 2a, and a diaphragm 3 is attached to and detached from the exit hole 2a in a concentric state. It is fixed as possible. The photometer probe 6 of the photometer 7 is connected to the second integrating sphere 5 having the incident hole 5a. The photometer 7 has a built-in spectroscope that splits the light incident on the photometer probe 6, and further has a function of measuring the illuminance and irradiance of each spectrum divided by the spectroscope.

続いて導光ファイバ透過率測定装置10を利用した導光ファイバ4の透過率測定方法について説明する。
まず初めに導光ファイバ4を透過した光(白色光の分光)を光度計7で測定(受光)する。即ち、図1に示すように第一積分球2の出射孔2a(絞り3は取り外してある)と第二積分球5の入射孔5aに導光ファイバ4の両端をそれぞれ接続し、その上で光源1で発生した白色光を上記集光レンズを介して第一積分球2の内部に照射する。すると白色光が第一積分球2の内面によって多数回乱反射されて強度が均一化され、均一化された白色光が導光ファイバ4の入射端に照射される。導光ファイバ4に入射した白色光は導光ファイバ4の出射端から入射孔5aを介して第二積分球5の内部に照射され、第二積分球5の内面によって多数回乱反射されて強度が均一化される。そして光度計プローブ6を介して第二積分球5に接続する光度計7が白色光を波長が異なる複数の分光に分けた上で、各分光の照度や放射照度を測定する。
続いて光源1で発生した光(参照光)を導光ファイバ4に通すことなく光度計7で測定(受光)する。即ち、図2に示すように第一積分球2の出射孔2a(絞り3を固定する)と第二積分球5の入射孔5aを直接接続し、その上で光源1で発生した白色光を上記集光レンズを介して第一積分球2の内部に照射する。すると第一積分球2内に照射された白色光が第一積分球2の内面によって多数回乱反射されて強度が均一化され、均一化された白色光が絞り3を介して入射孔5aから第二積分球5の内部に照射される。第二積分球5の内部に照射された白色光は、第二積分球5の内面によって多数回乱反射されて強度が均一化された後に、光度計7によって波長が異なる複数の分光に分けられた上で、光度計7によって照度や放射照度が測定される。
上記二種類の測定を完了した後に、参照光の光度計7による測定値と、導光ファイバ4を透過した分光の光度計7による測定値と、を比較すれば、参照光(分光)の測定値を100%とした場合の導光ファイバ4の透過率を求めることができる。
Then, the transmittance | permeability measuring method of the light guide fiber 4 using the light guide fiber transmittance measuring apparatus 10 is demonstrated.
First, the light transmitted through the light guide fiber 4 (white light spectrum) is measured (received) by the photometer 7. That is, as shown in FIG. 1, both ends of the light guide fiber 4 are connected to the exit hole 2a (the diaphragm 3 is removed) of the first integrating sphere 2 and the entrance hole 5a of the second integrating sphere 5, respectively. White light generated by the light source 1 is irradiated to the inside of the first integrating sphere 2 through the condenser lens. Then, the white light is diffused and reflected many times by the inner surface of the first integrating sphere 2 to make the intensity uniform, and the uniformed white light is irradiated to the incident end of the light guide fiber 4. The white light incident on the light guide fiber 4 is irradiated from the exit end of the light guide fiber 4 to the inside of the second integrating sphere 5 through the incident hole 5a, and is diffused and reflected many times by the inner surface of the second integrating sphere 5. It is made uniform. A photometer 7 connected to the second integrating sphere 5 via the photometer probe 6 divides white light into a plurality of spectra having different wavelengths, and measures the illuminance and irradiance of each spectrum.
Subsequently, the light (reference light) generated by the light source 1 is measured (received) by the photometer 7 without passing through the light guide fiber 4. That is, as shown in FIG. 2, the exit hole 2a (fixing the diaphragm 3) of the first integrating sphere 2 and the entrance hole 5a of the second integrating sphere 5 are directly connected, and the white light generated by the light source 1 is then connected thereto. The first integrating sphere 2 is irradiated through the condenser lens. Then, the white light irradiated into the first integrating sphere 2 is diffused and reflected many times by the inner surface of the first integrating sphere 2 to make the intensity uniform, and the uniformed white light passes through the aperture 3 through the entrance hole 5a. The two integrating spheres 5 are irradiated inside. The white light irradiated to the inside of the second integrating sphere 5 was scattered irregularly many times by the inner surface of the second integrating sphere 5 to make the intensity uniform, and then divided into a plurality of spectra having different wavelengths by the photometer 7. Above, illuminance and irradiance are measured by the photometer 7.
After the above two types of measurements are completed, if the measured value of the reference light photometer 7 is compared with the measured value of the spectrophotometer 7 transmitted through the light guide fiber 4, the reference light (spectrum) is measured. The transmittance of the light guide fiber 4 when the value is 100% can be obtained.

そして本実施形態の導光ファイバ透過率測定装置10を利用した導光ファイバ4の透過率測定方法では、導光ファイバ4の透過光を光度計7で測定する場合と参照光を光度計7で測定する場合のいずれにおいても、光源1で発生した白色光の強度を第一積分球2で均一化した後に、均一化された白色光を導光ファイバ4を介して、又は、導光ファイバ4を介さずに第二積分球5に入射させ、その後に分光の照度や放射照度を光度計7によって測定している。導光ファイバ4に入射する白色光及び導光ファイバ4が出射した白色光を均一化すれば、複数回の測定作業を行う場合に導光ファイバ4の導光ファイバ透過率測定装置10に対する接続体勢(接続角度)が(導光ファイバ透過率測定装置10のファイバ接続部の不具合等に起因して)測定作業毎に多少変化したとしても、導光ファイバ4の入射端に入射する光の発散度は毎回ほぼ一定になる。そのため導光ファイバ4の導光ファイバ透過率測定装置10(第一積分球2、第二積分球5)に対する接続体勢が多少悪くても、導光ファイバ4の透過率を正確に測定可能である。   In the method for measuring the transmittance of the light guide fiber 4 using the light guide fiber transmittance measuring device 10 of this embodiment, the transmitted light of the light guide fiber 4 is measured with the photometer 7 and the reference light is measured with the photometer 7. In any case of measurement, the intensity of the white light generated by the light source 1 is made uniform by the first integrating sphere 2, and then the uniformed white light is passed through the light guide fiber 4 or the light guide fiber 4. Then, the light is incident on the second integrating sphere 5 and the illuminance and irradiance of the spectrum are then measured by the photometer 7. If the white light incident on the light guide fiber 4 and the white light emitted by the light guide fiber 4 are made uniform, the connection posture of the light guide fiber 4 with respect to the light guide fiber transmittance measuring device 10 when performing a plurality of measurement operations. Even if the (connection angle) is slightly changed for each measurement operation (due to a defect in the fiber connection portion of the light guide fiber transmittance measuring device 10), the divergence of light incident on the incident end of the light guide fiber 4 Is almost constant each time. Therefore, the transmittance of the light guide fiber 4 can be accurately measured even if the connection posture of the light guide fiber 4 with respect to the light guide fiber transmittance measuring device 10 (the first integrating sphere 2 and the second integrating sphere 5) is somewhat bad. .

以上、上記実施形態を利用して本発明を説明したが、本発明は様々な変形を施しながら実施可能である。
例えば、光度計7から分光器をなくし、光源1と第一積分球2の間に分光器を設けてもよい。
さらに導光ファイバ透過率測定装置10から分光器をなくすことにより、(光源1で発生した)白色光に関する導光ファイバ4の透過率を測定してもよい。
As mentioned above, although this invention was demonstrated using the said embodiment, this invention can be implemented, giving various deformation | transformation.
For example, the spectroscope may be eliminated from the photometer 7 and a spectroscope may be provided between the light source 1 and the first integrating sphere 2.
Further, the transmittance of the light guide fiber 4 related to white light (generated by the light source 1) may be measured by eliminating the spectroscope from the light guide fiber transmittance measuring device 10.

1 光源
2 第一積分球
2a 出射孔
3 絞り
4 導光ファイバ
5 第二積分球
5a 入射孔
6 光度計プローブ
7 光度計
10 導光ファイバ透過率測定装置
DESCRIPTION OF SYMBOLS 1 Light source 2 1st integrating sphere 2a Outgoing hole 3 Diaphragm 4 Light guide fiber 5 2nd integrating sphere 5a Incident hole 6 Photometer probe 7 Photometer 10 Light guide fiber transmittance measuring device

Claims (4)

光源で発生した光を受光し乱反射させた上で出射する第一積分球と、
該第一積分球が出射した光を導光ファイバを介して受光し乱反射させた上で出射すること、及び、該導光ファイバを介さずに受光し乱反射させた上で出射することが選択的に可能な第二積分球と、
該第二積分球が出射した光を受光する光度計と、
を備えることを特徴とする導光ファイバ透過率測定装置。
A first integrating sphere that receives the light generated by the light source, diffuses it, and emits it;
Selectively emitting the light emitted from the first integrating sphere after receiving and irregularly reflecting the light through the light guiding fiber, and emitting the light after receiving and irregularly reflecting without passing through the light guiding fiber. A second integrating sphere capable of
A photometer for receiving the light emitted by the second integrating sphere;
A light guide fiber transmittance measuring device comprising:
請求項1記載の導光ファイバ透過率測定装置において、
上記光源で発生した光を分光した上で上記第一積分球に送る分光器、又は、上記第二積分球が出射した光を分光する分光器を設けた導光ファイバ透過率測定装置。
In the light guide fiber transmittance measuring device according to claim 1,
A light guide fiber transmittance measuring device provided with a spectroscope that splits the light generated by the light source and sends it to the first integrating sphere, or a spectroscope that splits the light emitted from the second integrating sphere.
光源で発生した光を第一積分球で乱反射させ、該第一積分球が乱反射させた上で出射した光を導光ファイバを介して第二積分球に入射させ、さらに第二積分球が乱反射させた上で出射した光を光度計で測定する導光ファイバ透過光検出ステップ、
上記光源で発生した光を上記第一積分球で乱反射させ、該第一積分球が乱反射させた上で出射した光を上記導光ファイバを介さずに上記第二積分球で受光し、さらに該第二積分球が乱反射させた上で出射した光を上記光度計で受光する参照光検出ステップ、及び、
上記導光ファイバ透過光検出ステップにおける上記光度計の測定値と、上記参照光検出ステップにおける上記光度計の測定値と、を比較する比較ステップ、
を有することを特徴とする導光ファイバ透過率測定方法。
The light generated by the light source is diffusely reflected by the first integrating sphere, and the first integrating sphere is diffusely reflected, and the emitted light is incident on the second integrating sphere through the light guide fiber, and the second integrating sphere is irregularly reflected. A light guide fiber transmitted light detecting step for measuring the emitted light with a photometer
The light generated by the light source is irregularly reflected by the first integrating sphere, the light emitted after the first integrating sphere is irregularly reflected is received by the second integrating sphere without passing through the light guide fiber, and the A reference light detection step for receiving light emitted by the second integrating sphere after irregular reflection by the photometer, and
A comparison step for comparing the measurement value of the photometer in the light guide fiber transmitted light detection step with the measurement value of the photometer in the reference light detection step;
A method for measuring the transmittance of a light guide fiber, comprising:
請求項3記載の導光ファイバ透過率測定方法において、
上記参照光検出ステップ及び上記導光ファイバ透過光検出ステップにおいて、上記光源で発生した光を分光した上で上記第一積分球に送るか、又は、上記第二積分球が出射した光を分光する導光ファイバ透過率測定方法。
In the light guide fiber transmittance measuring method according to claim 3,
In the reference light detection step and the light guide fiber transmitted light detection step, the light generated by the light source is dispersed and sent to the first integrating sphere, or the light emitted from the second integrating sphere is dispersed. Light guide fiber transmittance measurement method.
JP2012159878A 2012-07-18 2012-07-18 Device for measuring transmittance of light guiding fiber and method for measuring transmittance of light guiding fiber Pending JP2014020927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012159878A JP2014020927A (en) 2012-07-18 2012-07-18 Device for measuring transmittance of light guiding fiber and method for measuring transmittance of light guiding fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159878A JP2014020927A (en) 2012-07-18 2012-07-18 Device for measuring transmittance of light guiding fiber and method for measuring transmittance of light guiding fiber

Publications (1)

Publication Number Publication Date
JP2014020927A true JP2014020927A (en) 2014-02-03

Family

ID=50195964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159878A Pending JP2014020927A (en) 2012-07-18 2012-07-18 Device for measuring transmittance of light guiding fiber and method for measuring transmittance of light guiding fiber

Country Status (1)

Country Link
JP (1) JP2014020927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896085A (en) * 2017-04-11 2017-06-27 安徽省蚌埠华益导电膜玻璃有限公司 A kind of coated glass film heat reflectivity detection means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896085A (en) * 2017-04-11 2017-06-27 安徽省蚌埠华益导电膜玻璃有限公司 A kind of coated glass film heat reflectivity detection means

Similar Documents

Publication Publication Date Title
TWI325953B (en) A high-speed optical sensing device abling to sense luminous intensity and chromaticity and an optical measuring system with the high-speed optical sensing device
JP6420807B2 (en) Methods for wavelength spectrum analysis for detecting various gases using processed tapes
EP2653854B1 (en) Optical measuring system and calibration method
JP2005207982A5 (en)
JP2017211378A (en) Inspection apparatus and inspection method for inspecting surface appearance of flat item that represents test specimen
JP2009520184A (en) Apparatus and method for illuminator independent color measurement
JP4504298B2 (en) Equipment for identifying surface properties
TW201400796A (en) Detachable peripheral device of spectrometer
JP2021081441A5 (en)
WO2020135540A1 (en) Quantum yield measurement method
CN105866029B (en) Optical analyser
KR101987506B1 (en) Measurement apparatus and measurement method
CN107907527B (en) Raman spectrum detection equipment and method based on reflected light power and image recognition
JP2008076399A (en) Device for analyzing characteristic of surface using indirect illumination
JP2009236546A (en) Standard light source device
JP2007198883A (en) Spectral measuring instrument by optical fiber probe
CN106415243A (en) Surface characteristic measurement device
CN107991286B (en) Raman spectrum detection equipment and method based on reflected light power
CN105572058B (en) Sample analyzer and absorbance measuring device thereof
JP2014020809A5 (en)
JP2014020927A (en) Device for measuring transmittance of light guiding fiber and method for measuring transmittance of light guiding fiber
JP2012026962A (en) Measurement instrument
US9885668B2 (en) Surface inspection device, surface inspection method, and program
JP2014215257A (en) Haze value measuring device
CN203274911U (en) Luminous flux measuring device of sharp-beam LED lamp

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150129