WO2011142123A1 - Light sources, illumination optical system and reflection property measurement apparatus - Google Patents

Light sources, illumination optical system and reflection property measurement apparatus Download PDF

Info

Publication number
WO2011142123A1
WO2011142123A1 PCT/JP2011/002601 JP2011002601W WO2011142123A1 WO 2011142123 A1 WO2011142123 A1 WO 2011142123A1 JP 2011002601 W JP2011002601 W JP 2011002601W WO 2011142123 A1 WO2011142123 A1 WO 2011142123A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
optical system
illumination optical
distribution
Prior art date
Application number
PCT/JP2011/002601
Other languages
French (fr)
Japanese (ja)
Inventor
健二 井村
Original Assignee
コニカミノルタセンシング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタセンシング株式会社 filed Critical コニカミノルタセンシング株式会社
Priority to JP2012514712A priority Critical patent/JPWO2011142123A1/en
Publication of WO2011142123A1 publication Critical patent/WO2011142123A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts

Definitions

  • the present invention relates to a light source, an illumination optical system including the light source, and a reflection characteristic measuring apparatus including the illumination optical system.
  • FIG. 6 is a configuration diagram of the illumination optical system 2 described in Patent Document 1.
  • the white LED 21 is a light source of Lambert light distribution disposed on the optical axis 28.
  • the concave mirror 22 and the toroidal mirror 23 guide the radiated light from the white LED 21 from all directions to the sample surface 24 in the direction of 45 degrees from the optical axis 28.
  • the objective lens 25 converges the component in the normal direction of the reflected light from the sample surface 24 to the incident end of the optical fiber 26.
  • the optical fiber 26 guides incident light to a not-shown spectroscopic means.
  • the illumination optical system 2 is configured as an illumination optical system having a 45 ° a: 0 ° geometry that is not easily affected by the inclination of the sample surface 24 and the surface properties by the radiated light of the white LED 21.
  • the white LED 21 has almost no intensity in the short wavelength band of 400-430 nm.
  • the illumination optical system 2 includes a purple LED 27 arranged upstream of the toroidal mirror 23. The emitted light of the purple LED 27 is guided by the toroidal mirror 23 from one position to the sample surface 24 in the direction of 45 degrees from the normal line of the sample surface 24.
  • the illumination optical system 2 includes the purple LED 27.
  • the purple LED 27 illuminates the sample surface 24 at one position. Therefore, the illumination optical system 2 configures a 45 ° x: 0 ° geometry that is easily affected by the inclination of the sample surface 24 and the surface properties in the short wavelength band.
  • the influence of the inclination of the sample surface 24 and the surface properties vary depending on the wavelength band. Further, in the illumination optical system 2, the influence when the position of the sample surface 24 is changed varies depending on the wavelength band.
  • the measurement error of the spectral reflection characteristic of the sample obtained from the output of the spectroscopic means varies depending on the wavelength band.
  • Such a measurement error having a wavelength dependency is amplified when the color difference position is calculated from the spectral reflection characteristics, and a large color value error occurs.
  • this illumination optical system 2 does not strictly satisfy the 45 ° a: 0 ° or 45 ° c: 0 ° geometry required by some standards. Further, since the purple LED 27 is arranged in the light flux of the white LED 21, the configuration is complicated. Further, since the purple LED 27 is arranged on the right side of the center of the sample surface 24, the illumination on the right side in the sample surface 24 becomes high with respect to the illumination by the purple LED 27, and there is a large difference in illumination distribution within the sample surface 24. There is also a problem that arises.
  • the object of the present invention is to provide a light source that has sufficient intensity in all wavelength bands without complicating the configuration of the illumination optical system, and can suppress variations in illuminance change due to distance fluctuations to the sample surface for each wavelength band,
  • An illumination optical system including the light source and a reflection characteristic measuring apparatus including the illumination optical system are provided.
  • a light source includes a main light source that emits light from a predetermined light emission region, and one or more sub-light sources that have a spectral distribution different from the spectral distribution of the main light source and illuminate the light emission region.
  • the light emitting area reflects light emitted from the sub-light source.
  • An illumination optical system receives a combined light of the light source, the light emitted from the main light source, and the light emitted from the sub-light source reflected by the light emitting area. And an optical system that illuminates the sample surface as light.
  • a reflection characteristic measuring apparatus includes the illumination optical system described above and a light receiving optical system that receives light reflected from the sample surface.
  • Embodiment 1 of this invention It is a block diagram of the reflection characteristic measuring apparatus by Embodiment 1 of this invention. It is a block diagram of the light source shown in FIG. This is a spectral distribution of light emitted from a light source. It is a block diagram of the light source in Embodiment 2 of this invention. It is a spectral distribution of the light radiated
  • FIG. 1 is a configuration diagram of a reflection characteristic measuring apparatus according to Embodiment 1 of the present invention, (A) is a configuration diagram from a side view, (B) is an arrangement of a plane mirror 3 from a top view, (C) is a block diagram when paying attention to one plane mirror 3.
  • the reflection characteristic measuring apparatus includes a sample surface 1, a light source 2, a plane mirror 3, a reflecting mirror 4, a light receiving optical system 5, and a spectroscopic unit 6.
  • the light source 2 and the plane mirror 3 constitute an illumination optical system.
  • the sample surface 1 has a flat shape, and a sample such as a printed matter on which a color sample is printed is arranged.
  • the light source 2 includes a main light source 12 that emits light from the light emission area S (see FIG. 2), and a sub light source 22 that has a spectral distribution different from the spectral distribution of the main light source and illuminates the light emission area S.
  • FIG. 2 is a configuration diagram of the light source 2.
  • the main light source 12 is formed of, for example, a white LED, and includes an LED chip 12c, a resin 12r, and a package 12p.
  • the LED chip 12c is composed of, for example, a blue LED, and emits blue light L_b (see FIG. 3).
  • the LED chip 12c emits blue light L_b having a half width of about 20 nm centered at 450 nm, for example.
  • the resin 12r is applied to the surface of the LED chip 12c and includes a powdery fluorescent material.
  • the resin 12r is excited by the blue light L_b and emits fluorescence LF_y (see FIG. 3) having a half-value width of about 150 nm centered at 600 nm. Further, the resin 12r diffuses the blue light L_b and emits it from the light emitting region S. Note that the symbols L_b and LF_y are not shown in FIG.
  • the main light source 12 is configured by a white LED that emits white light LW (see FIG. 3) composed of blue light L_b and fluorescence LF_y excited by the blue light L_b.
  • the package 12p is made of a transparent member, and the LED chip 12c is arranged inside.
  • the secondary light source 22 is configured by, for example, a purple LED provided facing the light emission area S of the main light source 12, and emits purple light L_v toward the light emission area S to illuminate the light emission area S.
  • the violet light L_v is diffusely reflected by the fluorescent material contained in the resin 12r, and becomes diffused violet light LD_v (see FIG. 3) of the light distribution 22d, and is re-radiated from the light emitting area S.
  • both the blue light L_b and the fluorescence LF_y are diffused and emitted from the resin 12r. Therefore, the white light LW having the light distribution 12d is radiated from the light emitting area S.
  • the purple light L_v is diffusely reflected by the resin 12r. Therefore, from the light emission region S, diffused violet light LD_v having a light distribution 22d is emitted.
  • titanium oxide powder or the like as the resin 12r from the viewpoint of increasing scattering properties.
  • FIG. 3 shows the spectral distribution of light emitted from the light source 2, wherein the vertical axis indicates relative intensity and the horizontal axis indicates wavelength (nm).
  • the light source 2 mainly emits white light LW including blue light L_b and fluorescence LF_y and diffuse violet light LD_v.
  • the diffuse violet light LD_v is light having a wavelength band of 430 nm or less that is not covered by the white light LW.
  • LF_v is the purple fluorescence of the resin 12r excited by the purple light L_v.
  • the spectral distribution of the radiated light emitted from the light source 2 covers the entire wavelength band of visible light (400 to 700 nm). 2 is a light distribution of the combined light of the white light LW and the diffused violet light LD_v by the violet light L_v.
  • a plurality of plane mirrors 3 are arranged between the sample surface 1 and the light source 2 in an axisymmetric manner with the normal 1n as an axis of symmetry (FIG. 1 (B)).
  • a ring-shaped mirror may be employed instead of the plurality of plane mirrors 3.
  • the normal 3n is a normal of the sample surface 1 passing through the center O3 of the plane mirror 3.
  • the plane mirror 3 has an arrangement of the light source image 2 ′ with respect to the normal 2n of the sample surface 1 passing through the light source image 2 ′ of the light source 2 by the reflection surface 3a.
  • the optical main axis 2′x is arranged so as to be inclined by a predetermined offset angle ⁇ .
  • the offset angle ⁇ is a light distribution change rate of the light distribution 2d_max that maximizes the bias to the light distribution main axis at an angle of 45 ° ⁇ with respect to the light distribution main axis 2′x.
  • the predetermined angle is set to be substantially equal to the light distribution change rate at an angle of 45 ° with respect to the main axis.
  • the light flux component 2a is guided from a plurality of directions with respect to the center O so that the change in illuminance at the center O is minimized with respect to the distance variation between the illumination optical system and the sample surface 1. Become. As a result, an illumination optical system having a 45 ° c: 0 ° geometry (c: circumferential) is realized.
  • the reflecting mirror 4 is disposed on the normal line 1n and at a predetermined position between the light source 2 and the center O, and changes the optical path of the normal component 1a of the reflected light on the sample surface 1 by approximately 90 °.
  • the reflected light is incident on the spectroscopic unit 6 through the light receiving optical system 5, the spectral characteristics are measured, and output to an arithmetic processing unit (not shown).
  • the arithmetic processing unit obtains the spectral reflectance coefficient and the color value of the sample surface 1 from the spectral characteristics measured by the spectroscopic unit 6 using a known method.
  • the offset angle ⁇ is close to zero.
  • the light distribution can be approximated in the entire wavelength band of visible light. Therefore, when the light source 2 is arranged as shown in FIG. 1, it is possible to suppress variation in illuminance change due to a variation in the distance between the illumination optical system and the sample surface 1 with respect to light in all visible wavelength bands.
  • the offset angle ⁇ is set so that the change in illuminance at the center O of the light beam component 2a due to the distance variation between the illumination optical system and the sample surface 1 is minimized. For example, the change in illuminance can be minimized with respect to the luminous flux in all wavelength bands of visible light.
  • the plane mirror 3 may be arranged at the offset angle ⁇ set for the light distribution with the maximum deviation to the light distribution main axis.
  • the actually set offset angle ⁇ deviates from the optimum offset angle ⁇ of a certain light distribution, the light distribution change rate at the angle ⁇ with respect to the light distribution main axis of the light distribution and the light distribution main axis of the Lambert light distribution
  • the deviation from the light distribution change rate at an angle with respect to 45 ° is larger as the light distribution is more biased toward the light distribution main axis.
  • the light distribution change rate dP1 / d ⁇ of the light distribution P1 ( ⁇ ) tends to increase as the angle ⁇ increases. Therefore, if the offset angle ⁇ set for the light source 2 is smaller than the optimum offset angle ⁇ _op1 of the light distribution P1 ( ⁇ ), the angle ⁇ of the light distribution P1 ( ⁇ ) with respect to the light distribution main axis becomes large.
  • the optimum offset angle ⁇ _opx of the light distribution PX ( ⁇ ) having the largest deviation to the light distribution main axis is the largest. Therefore, when the offset angle ⁇ of the light source 2 is set to ⁇ _opx, the angle ⁇ of the other light distribution PY ( ⁇ ) with respect to the light distribution main axis is the same as that when the optimum offset angle ⁇ _opy is set with respect to the light distribution PY ( ⁇ ). It becomes smaller than the angle ⁇ _y with respect to the light distribution main axis.
  • FIG. 4 is a configuration diagram of the light source 2 according to Embodiment 2 of the present invention. As shown in FIG. 4, the light source 2 further includes a sub light source 32 in addition to the main light source 12 and the sub light source 22. In addition, in this Embodiment, the same thing as Embodiment 1 attaches
  • the sub-light source 32 is configured by, for example, a UV LED that radiates ultraviolet light L_uv, which is provided adjacent to the sub-light source 22 and facing the light-emitting area S, and emits ultraviolet light L_uv toward the light-emitting area S. Then, the light emitting area S is illuminated.
  • the ultraviolet light L_uv is diffused and reflected by the fluorescent material contained in the resin 12r to become diffused ultraviolet light LD_uv and re-radiated from the light emitting region S. That is, in this embodiment, the violet light L_v and the ultraviolet light L_uv are re-radiated from the light emission region S as the diffused violet light LD_v and the diffused ultraviolet light LD_uv.
  • the diffused ultraviolet light LD_uv having the light distribution 32d is further emitted from the light emission region S.
  • the fluorescence LF_v is the fluorescence of the resin 12r excited by the purple light L_v
  • the fluorescence LF_uv is excited by the ultraviolet light L_uv.
  • the light distribution 42f in FIG. 4 is a light distribution of the combined light of the white light LW, the fluorescence LF_v due to the purple light L_v, and the fluorescence LF_uv due to the ultraviolet light L_uv.
  • FIG. 5 shows the spectral distribution of light emitted from the light source 2, the vertical axis shows the relative intensity, and the horizontal axis shows the wavelength (nm).
  • the light emitted from the main light source 12 mainly includes white light LW, diffuse violet light LD_v, and diffuse ultraviolet light LD_uv.
  • the spectral distribution of the light emitted from the light source 2 covers the entire wavelength band of visible light (400-700 nm), and the diffused ultraviolet light LD_uv is emitted, thereby enabling measurement of the fluorescent whitening sample.
  • the white light LW, the diffuse violet light LD_v, and the diffuse ultraviolet light LD_uv are diffused and radiated from the resin 12r, respective light distributions can be approximated. Therefore, it is possible to suppress variation in illuminance change due to a variation in the distance between the illumination optical system and the sample surface 1 for light in all wavelengths of visible light. Therefore, when this light source is used as the light source of the illumination optical system of FIG. 1, if an optimal offset angle ⁇ is set for a certain light distribution, the change in illuminance is minimized for light in all visible wavelength bands. Can do.
  • the main light source 12 and the sub light sources 22 and 32 are turned on at the same time.
  • the sub light source is intermittently driven by controlling ON / OFF of the sub light source 32 constituted by UVLEDs, Japanese Patent Laying-Open No. 2006-292510. As shown in the publication, it is possible to measure fluorescent whitening samples.
  • the number of sub-light sources is two.
  • the present invention is not limited to this, and may be three or more, such as three, four, and five.
  • the auxiliary light source 32 is configured by UVLEDs, but is not limited thereto, and may be configured by LEDs such as red LEDs and blue LEDs, or by infrared LEDs that emit infrared light. It may be configured.
  • the light source 2 in FIG. 2 or 4 may be replaced with the light source 21 of the illumination optical system in FIG. Thereby, since the purple LED 27 can be removed, a 45 ° a / 0 ° geometry that illuminates from all directions with a simple configuration can be realized.
  • the light emission region of the main light source is a resin.
  • a phosphor-dispersed glass obtained by dispersing a predetermined phosphor and sintering it, and further containing bubbles of a predetermined size at a certain density. And phosphor dispersion glass with improved uniformity of light dispersion.
  • the light source includes a main light source that emits light from a predetermined light emission region, and one or more auxiliary light sources that have a spectral distribution different from the spectral distribution of the main light source and illuminate the light emission region.
  • the light emitting area reflects light emitted from the sub-light source.
  • the light emission area of the main light source functions as a point light source that emits light having a spectral distribution obtained by combining both the spectral distributions of the light from the main light source and the light from the sub light source. Therefore, according to this light source, a point light source that can cover the entire wavelength band of visible light can be realized.
  • this light source functions as one point light source, as shown in Patent Document 1, it is not necessary to arrange another light source on the optical path of one light source, and the configuration of the illumination optical system can be simplified. can do.
  • this light source functions as a point light source with a light emitting area, the illuminance when the distance between the sample surface and the light source fluctuates as compared with a configuration in which the light source is provided at a completely different position as in Patent Document 1. It is possible to suppress variation for each wavelength band of change.
  • the light emitting area diffusely radiates light emitted from the main light source and diffusely reflects light emitted from the sub-light source.
  • both the light emitted from the main light source and the light emitted from the sub-light source are both diffused and radiated from the light emitting region, so that the light distribution of the light emitted from both light sources is approximated to emit light. Can be emitted from the area. Therefore, for example, when this light source is applied to an illumination optical system, even if the effect of suppressing the change in illuminance due to the variation in distance between the illumination optical system and the sample surface is dependent on the light distribution, it is not easily affected by each distribution. Variations in the illuminance change of light can be suppressed.
  • the main light source is a white LED, and at least one of the sub-light sources is a purple LED.
  • an illumination optical system that covers the visible range of 400 to 700 nm can be configured, and the color value of the sample surface can be accurately measured.
  • the main light source is a white LED
  • at least one of the sub-light sources is a UV LED (Ultra Violet Light Emitting Diode).
  • UV light is emitted from the light emitting region, it is possible to measure a fluorescent whitening sample excited by the UV light.
  • the light emitted from the UV LED is emitted from the same light emitting region as that of the white LED, the light distribution between the white light and the UV light approximates, and when this light source is used as the light source of the illumination optical system, illumination is performed. Variations in illumination distribution due to variations in distance between the optical system and the sample surface for each light distribution can be suppressed, and the fluorescent whitening sample can be measured with high accuracy.
  • the illumination optical system is a sample in which the combined light of the light source, the light emitted from the main light source, and the light emitted from the sub-light source reflected by the light emitting region is incident light. And an optical system for illuminating the surface. According to this structure, an illumination optical system provided with said light source can be provided.
  • the light emitting area is arranged on a normal line passing through the center of the sample surface, and the optical system has at least a part of the combined light as incident light and is omnidirectional or plural in a direction of 45 ° from the normal line. It is preferable to illuminate the center of the sample surface from the orientation.
  • an illumination optical system having a 45 ° c: 0 ° geometry or a 45 ° a: 0 ° geometry that covers a desired wavelength band can be configured, and the illumination optical system has low cost, low power consumption, and low heat generation. Can be provided.
  • the reflection characteristic measuring apparatus includes the illumination optical system and a light receiving optical system that receives light reflected from the sample surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A primary light source (12) is configured from a white LED, and includes an LED chip (12c), a resin (12r) and a package (12p). The LED chip (12c) is configured from, for example, a blue LED and emits blue light (L_b). The resin (12r) contains a powdered fluorescent substance that is excited by the blue light (L_b) and emits fluorescent light (LF_y). In addition, the resin (12r) diffuses the blue light (L_b) and emits this light from a light-emitting region (S). A secondary light source (22) is configured from a violet LED, and emits violet light (L_v) to the light-emitting region (S). The resin (12r) reflects and diffuses the violet light (L_v).

Description

光源、照明光学系、及び反射特性測定装置Light source, illumination optical system, and reflection characteristic measuring device
 本発明は、光源、その光源を備える照明光学系、及びその照明光学系を備える反射特性測定装置に関するものである。 The present invention relates to a light source, an illumination optical system including the light source, and a reflection characteristic measuring apparatus including the illumination optical system.
 図6は、特許文献1に記載された照明光学系2の構成図である。白色LED21は、光軸28上に配置されたランベルト配光の光源である。凹面鏡22及びトロイダル鏡23は、白色LED21からの放射光を、光軸28から45度の方向で全方位から試料面24へと導く。対物レンズ25は、試料面24の反射光の法線方向の成分を、光学ファイバー26の入射端に収束させる。光学ファイバー26は、入射光を図略の分光手段へと導く。 FIG. 6 is a configuration diagram of the illumination optical system 2 described in Patent Document 1. The white LED 21 is a light source of Lambert light distribution disposed on the optical axis 28. The concave mirror 22 and the toroidal mirror 23 guide the radiated light from the white LED 21 from all directions to the sample surface 24 in the direction of 45 degrees from the optical axis 28. The objective lens 25 converges the component in the normal direction of the reflected light from the sample surface 24 to the incident end of the optical fiber 26. The optical fiber 26 guides incident light to a not-shown spectroscopic means.
 このようにして、照明光学系2は、白色LED21の放射光による試料面24の傾きや表面性状の影響を受けにくい45°a:0°ジオメトリの照明光学系として構成されている。 In this way, the illumination optical system 2 is configured as an illumination optical system having a 45 ° a: 0 ° geometry that is not easily affected by the inclination of the sample surface 24 and the surface properties by the radiated light of the white LED 21.
 白色LED21は400-430nmの短波長帯において殆ど強度をもたない。これを補うべく、照明光学系2は、トロイダル鏡23の上流に配置された紫色LED27を備えている。この紫色LED27の放射光は、トロイダル鏡23によって、試料面24の法線から45度の方向で一方位から試料面24へと導かれる。 The white LED 21 has almost no intensity in the short wavelength band of 400-430 nm. In order to compensate for this, the illumination optical system 2 includes a purple LED 27 arranged upstream of the toroidal mirror 23. The emitted light of the purple LED 27 is guided by the toroidal mirror 23 from one position to the sample surface 24 in the direction of 45 degrees from the normal line of the sample surface 24.
 このように、照明光学系2は、紫色LED27を備えているが、この紫色LED27は、一方位で試料面24を照明している。そのため、照明光学系2は、短波長帯において、試料面24の傾きや表面性状の影響を受けやすい45°x:0°ジオメトリを構成することになる。 As described above, the illumination optical system 2 includes the purple LED 27. The purple LED 27 illuminates the sample surface 24 at one position. Therefore, the illumination optical system 2 configures a 45 ° x: 0 ° geometry that is easily affected by the inclination of the sample surface 24 and the surface properties in the short wavelength band.
 したがって、この照明光学系2では、試料面24の傾きや表面性状の影響が波長帯によって異なってしまう。また、この照明光学系2では、試料面24の位置が変化した場合の影響も波長帯によって異なってしまう。 Therefore, in this illumination optical system 2, the influence of the inclination of the sample surface 24 and the surface properties vary depending on the wavelength band. Further, in the illumination optical system 2, the influence when the position of the sample surface 24 is changed varies depending on the wavelength band.
 よって、この照明光学系2では、分光手段の出力から求められる試料の分光反射特性の測定誤差が波長帯によって異なってしまう。このような波長依存性のある測定誤差は、分光反射特性から色差位置を算出した際に増幅され、大きな色彩値誤差が生じてしまう。 Therefore, in this illumination optical system 2, the measurement error of the spectral reflection characteristic of the sample obtained from the output of the spectroscopic means varies depending on the wavelength band. Such a measurement error having a wavelength dependency is amplified when the color difference position is calculated from the spectral reflection characteristics, and a large color value error occurs.
 さらに、この照明光学系2は、一部の規格が要求する45°a:0°あるいは45°c:0°ジオメトリを厳密には満たしていない。また、紫色LED27が白色LED21の光束中に配置されているため、構成が複雑になる。更に、紫色LED27は、試料面24の中心よりも右側に配置されているため、紫色LED27による照明について、試料面24内の右側の照度が高くなり、試料面24内で大きな照度分布の差が生じるという問題もある。 Furthermore, this illumination optical system 2 does not strictly satisfy the 45 ° a: 0 ° or 45 ° c: 0 ° geometry required by some standards. Further, since the purple LED 27 is arranged in the light flux of the white LED 21, the configuration is complicated. Further, since the purple LED 27 is arranged on the right side of the center of the sample surface 24, the illumination on the right side in the sample surface 24 becomes high with respect to the illumination by the purple LED 27, and there is a large difference in illumination distribution within the sample surface 24. There is also a problem that arises.
特開2010-60525号公報JP 2010-60525 A
 本発明の目的は、照明光学系の構成を複雑化することなく全波長帯において十分な強度を持ち、試料面までの距離変動による照度変化の波長帯ごとのばらつきを抑制することができる光源、その光源を備える照明光学系、及びその照明光学系を備える反射特性測定装置を提供することである。 The object of the present invention is to provide a light source that has sufficient intensity in all wavelength bands without complicating the configuration of the illumination optical system, and can suppress variations in illuminance change due to distance fluctuations to the sample surface for each wavelength band, An illumination optical system including the light source and a reflection characteristic measuring apparatus including the illumination optical system are provided.
 本発明の一局面による光源は、所定の発光域から光を放射する主光源と、前記主光源の分光分布とは異なる分光分布をもち、前記発光域を照明する1つ以上の副光源とを備え、前記発光域は、前記副光源から放射された光を反射させる。 A light source according to an aspect of the present invention includes a main light source that emits light from a predetermined light emission region, and one or more sub-light sources that have a spectral distribution different from the spectral distribution of the main light source and illuminate the light emission region. The light emitting area reflects light emitted from the sub-light source.
 本発明の別の一局面による照明光学系は、上記の光源と、前記主光源から放射される光と、前記発光域で反射される前記副光源から放射された光との合成光を、入射光として試料面を照明する光学系とを備える。 An illumination optical system according to another aspect of the present invention receives a combined light of the light source, the light emitted from the main light source, and the light emitted from the sub-light source reflected by the light emitting area. And an optical system that illuminates the sample surface as light.
 本発明の更に別の一局面による反射特性測定装置は、上記の照明光学系と、前記試料面から反射された光を受光する受光光学系とを備える。 A reflection characteristic measuring apparatus according to another aspect of the present invention includes the illumination optical system described above and a light receiving optical system that receives light reflected from the sample surface.
本発明の実施の形態1による反射特性測定装置の構成図である。It is a block diagram of the reflection characteristic measuring apparatus by Embodiment 1 of this invention. 図1に示す光源の構成図である。It is a block diagram of the light source shown in FIG. 光源から放射される光の分光分布である。This is a spectral distribution of light emitted from a light source. 本発明の実施の形態2における光源の構成図である。It is a block diagram of the light source in Embodiment 2 of this invention. 図4に示す光源から放射される光の分光分布である。It is a spectral distribution of the light radiated | emitted from the light source shown in FIG. 特許文献1に記載された照明光学系の構成図である。It is a block diagram of the illumination optical system described in Patent Document 1.
 (実施の形態1)
 図1は、本発明の実施の形態1による反射特性測定装置の構成図であり、(A)は側面視からの構成図であり、(B)は上面視からの平面鏡3の配置であり、(C)は1つの平面鏡3に注目した場合の構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a reflection characteristic measuring apparatus according to Embodiment 1 of the present invention, (A) is a configuration diagram from a side view, (B) is an arrangement of a plane mirror 3 from a top view, (C) is a block diagram when paying attention to one plane mirror 3.
 この反射特性測定装置は、試料面1、光源2、平面鏡3、反射鏡4、受光光学系5、及び分光部6を備えている。なお、光源2及び平面鏡3により照明光学系が構成される。試料面1は、平面状であり、色サンプルが印刷された印刷物等の試料が配置される。光源2は、発光域S(図2参照)から光を放射する主光源12、及び主光源の分光分布とは異なる分光分布をもち、発光域Sを照明する副光源22を備えている。図2は、光源2の構成図である。 The reflection characteristic measuring apparatus includes a sample surface 1, a light source 2, a plane mirror 3, a reflecting mirror 4, a light receiving optical system 5, and a spectroscopic unit 6. The light source 2 and the plane mirror 3 constitute an illumination optical system. The sample surface 1 has a flat shape, and a sample such as a printed matter on which a color sample is printed is arranged. The light source 2 includes a main light source 12 that emits light from the light emission area S (see FIG. 2), and a sub light source 22 that has a spectral distribution different from the spectral distribution of the main light source and illuminates the light emission area S. FIG. 2 is a configuration diagram of the light source 2.
 主光源12は、例えば白色LEDにより構成され、LEDチップ12c、レジン12r、及びパッケージ12pを含む。LEDチップ12cは、例えば青色LEDによりより構成され、青色光L_b(図3参照)を放射する。本実施の形態では、LEDチップ12cは、例えば450nmを中心とする半値幅20nm程度の青色光L_bを放射する。 The main light source 12 is formed of, for example, a white LED, and includes an LED chip 12c, a resin 12r, and a package 12p. The LED chip 12c is composed of, for example, a blue LED, and emits blue light L_b (see FIG. 3). In the present embodiment, the LED chip 12c emits blue light L_b having a half width of about 20 nm centered at 450 nm, for example.
 レジン12rは、LEDチップ12cの表面に塗布され、粉末状の蛍光物質を含む。そして、レジン12rは、青色光L_bで励起され、600nmを中心とする半値幅150nm程度の蛍光LF_y(図3参照)を放射する。また、レジン12rは青色光L_bを拡散させて発光域Sから放射させる。なお、符号、L_b,LF_yは図2では図示を省略している。 The resin 12r is applied to the surface of the LED chip 12c and includes a powdery fluorescent material. The resin 12r is excited by the blue light L_b and emits fluorescence LF_y (see FIG. 3) having a half-value width of about 150 nm centered at 600 nm. Further, the resin 12r diffuses the blue light L_b and emits it from the light emitting region S. Note that the symbols L_b and LF_y are not shown in FIG.
 つまり、主光源12は、青色光L_bと、この青色光L_bで励起される蛍光LF_yとからなる白色光LW(図3参照)を放射する白色LEDにより構成されている。パッケージ12pは、透明の部材から構成され、内部にLEDチップ12cが配置されている。 That is, the main light source 12 is configured by a white LED that emits white light LW (see FIG. 3) composed of blue light L_b and fluorescence LF_y excited by the blue light L_b. The package 12p is made of a transparent member, and the LED chip 12c is arranged inside.
 副光源22は、主光源12の発光域Sに対向して設けられた、例えば紫色LEDにより構成され、発光域Sに向けて紫色光L_vを放射して、発光域Sを照明する。この紫色光L_vは、レジン12rに含まれる蛍光物質により拡散反射され、配光22dの拡散紫色光LD_v(図3参照)となって、発光域Sから再放射される。 The secondary light source 22 is configured by, for example, a purple LED provided facing the light emission area S of the main light source 12, and emits purple light L_v toward the light emission area S to illuminate the light emission area S. The violet light L_v is diffusely reflected by the fluorescent material contained in the resin 12r, and becomes diffused violet light LD_v (see FIG. 3) of the light distribution 22d, and is re-radiated from the light emitting area S.
 また、青色光L_b及び蛍光LF_yは共にレジン12rから拡散放射される。そのため、発光域Sからは、配光12dを持つ白色光LWが放射される。 Also, both the blue light L_b and the fluorescence LF_y are diffused and emitted from the resin 12r. Therefore, the white light LW having the light distribution 12d is radiated from the light emitting area S.
 また、紫色光L_vもレジン12rにより拡散反射される。そのため、発光域Sからは、配光22dを持つ拡散紫色光LD_vが放射される。 Also, the purple light L_v is diffusely reflected by the resin 12r. Therefore, from the light emission region S, diffused violet light LD_v having a light distribution 22d is emitted.
 なお、散乱性を上げるという観点から、レジン12rとしては、酸化チタン粉末等を添加することが好ましい。 In addition, it is preferable to add titanium oxide powder or the like as the resin 12r from the viewpoint of increasing scattering properties.
 図3は、光源2から放射される光の分光分布であり、縦軸は相対強度を示し、横軸は波長(nm)を示している。図3に示すように光源2からは、主に、青色光L_b及び蛍光LF_yを含む白色光LWと、拡散紫色光LD_vとが放射されている。拡散紫色光LD_vは、白色光LWではカバーされていない、430nm以下の波長帯の光である。なお、LF_vは、紫色光L_vによって励起されたレジン12rの紫色蛍光である。これにより、光源2から放射される放射光の分光分布は可視光の全波長帯(400-700nm)をカバーする。また、図2の配光12fは、白色光LWと、紫色光L_vによる拡散紫色光LD_vとの合算光の配光である。 FIG. 3 shows the spectral distribution of light emitted from the light source 2, wherein the vertical axis indicates relative intensity and the horizontal axis indicates wavelength (nm). As shown in FIG. 3, the light source 2 mainly emits white light LW including blue light L_b and fluorescence LF_y and diffuse violet light LD_v. The diffuse violet light LD_v is light having a wavelength band of 430 nm or less that is not covered by the white light LW. Note that LF_v is the purple fluorescence of the resin 12r excited by the purple light L_v. Thereby, the spectral distribution of the radiated light emitted from the light source 2 covers the entire wavelength band of visible light (400 to 700 nm). 2 is a light distribution of the combined light of the white light LW and the diffused violet light LD_v by the violet light L_v.
 図1(A)に戻り、平面鏡3は、試料面1と光源2との間に法線1nを対称軸として軸対称に複数配置されている(図1(B))。なお、試料面1を全方位から照射する場合は、複数の平面鏡3に代えて、リング状の鏡を採用すればよい。 Referring back to FIG. 1 (A), a plurality of plane mirrors 3 are arranged between the sample surface 1 and the light source 2 in an axisymmetric manner with the normal 1n as an axis of symmetry (FIG. 1 (B)). When the sample surface 1 is irradiated from all directions, a ring-shaped mirror may be employed instead of the plurality of plane mirrors 3.
 平面鏡3は、光源2から放射される白色光LW及び拡散紫色光LD_vの配光の異なる全てのφ=45°-δの光束成分を反射して、θ=45°で試料を照明するので、法線1nに対する角度φ(=45°-δ)の光束成分2aを反射し、反射した光束成分2aが法線1nに対してθ(=45°)の角度で試料面1の中心Oに導かれるように法線3nに対して所定の角度δ/2傾斜されて配置されている。なお、法線3nは、平面鏡3の中心O3を通る試料面1の法線である。 Since the plane mirror 3 reflects all the light flux components of φ = 45 ° −δ having different light distributions of the white light LW and the diffuse violet light LD_v emitted from the light source 2 and illuminates the sample at θ = 45 °, The light beam component 2a having an angle φ (= 45 ° −δ) with respect to the normal line 1n is reflected, and the reflected light beam component 2a is guided to the center O of the sample surface 1 at an angle θ (= 45 °) with respect to the normal line 1n. As shown, it is disposed at a predetermined angle δ / 2 with respect to the normal 3n. The normal 3n is a normal of the sample surface 1 passing through the center O3 of the plane mirror 3.
 具体的には、図1(C)に示すように、平面鏡3は、その反射面3aによる光源2の光源像2´を通る試料面1の法線2nに対して、光源像2´の配光主軸2´xが所定のオフセット角δだけ傾くように配置されている。 Specifically, as shown in FIG. 1C, the plane mirror 3 has an arrangement of the light source image 2 ′ with respect to the normal 2n of the sample surface 1 passing through the light source image 2 ′ of the light source 2 by the reflection surface 3a. The optical main axis 2′x is arranged so as to be inclined by a predetermined offset angle δ.
 ここで、オフセット角δは、配光主軸2´xに対して45°-δの角度における配光主軸への偏りが最大となる配光2d_maxの配光変化率が、ランベルト配光の配光主軸に対して45°の角度における配光変化率に実質的に等しくなるような所定の角度に設定されている。 Here, the offset angle δ is a light distribution change rate of the light distribution 2d_max that maximizes the bias to the light distribution main axis at an angle of 45 ° −δ with respect to the light distribution main axis 2′x. The predetermined angle is set to be substantially equal to the light distribution change rate at an angle of 45 ° with respect to the main axis.
 これにより、照明光学系と試料面1との間の距離変動に対して中心Oでの照度の変化が最小となるように、中心Oに対して複数の方位から光束成分2aが導かれることになる。これにより、45°c:0°ジオメトリ(c:circumferential)の照明光学系が実現されることになる。 Thereby, the light flux component 2a is guided from a plurality of directions with respect to the center O so that the change in illuminance at the center O is minimized with respect to the distance variation between the illumination optical system and the sample surface 1. Become. As a result, an illumination optical system having a 45 ° c: 0 ° geometry (c: circumferential) is realized.
 反射鏡4は、法線1n上であって、光源2と中心Oとの間の所定の位置に配置され、試料面1の反射光の法線成分1aの光路をほぼ90°変更する。反射光は受光光学系5を経て分光部6に入射し分光特性が測定され、図略の演算処理部に出力される。演算処理部は、分光部6により測定された分光特性から、公知の方法を用いて試料面1の分光反射率係数及び色彩値を求める。 The reflecting mirror 4 is disposed on the normal line 1n and at a predetermined position between the light source 2 and the center O, and changes the optical path of the normal component 1a of the reflected light on the sample surface 1 by approximately 90 °. The reflected light is incident on the spectroscopic unit 6 through the light receiving optical system 5, the spectral characteristics are measured, and output to an arithmetic processing unit (not shown). The arithmetic processing unit obtains the spectral reflectance coefficient and the color value of the sample surface 1 from the spectral characteristics measured by the spectroscopic unit 6 using a known method.
 図2に示す光源2では、白色光LW及び拡散紫色光LD_vは、共にレジン12rにより拡散放射される光であるため、配光12dと、拡散紫色光LD_vの配光22dとは、近似し、ランベルト配光に近いのでオフセット角δは0に近くなる。 In the light source 2 shown in FIG. 2, since the white light LW and the diffuse violet light LD_v are both light diffused and radiated by the resin 12r, the light distribution 12d and the light distribution 22d of the diffuse violet light LD_v are approximated, Since it is close to the Lambert light distribution, the offset angle δ is close to zero.
 このように、光源2からは、可視光の全波長帯の光がレジン12rから拡散放射されているため、可視光の全波長帯において配光を近似させることができる。そのため、光源2を図1に示すように配置した場合、可視光の全波長帯の光について照明光学系と試料面1との間の距離変動による照度変化のバラツキを抑制することができる。そして、配光12d、22dのどちらかにおいて、照明光学系と試料面1との間の距離変動に伴う光束成分2aの中心Oでの照度変化が最小となるように、オフセット角δを設定すれば、可視光の全波長帯の光束について照度変化を最小にすることができる。 Thus, since light in the entire wavelength band of visible light is diffused and emitted from the resin 12r from the light source 2, the light distribution can be approximated in the entire wavelength band of visible light. Therefore, when the light source 2 is arranged as shown in FIG. 1, it is possible to suppress variation in illuminance change due to a variation in the distance between the illumination optical system and the sample surface 1 with respect to light in all visible wavelength bands. In either of the light distributions 12d and 22d, the offset angle δ is set so that the change in illuminance at the center O of the light beam component 2a due to the distance variation between the illumination optical system and the sample surface 1 is minimized. For example, the change in illuminance can be minimized with respect to the luminous flux in all wavelength bands of visible light.
 また、1つの光源2を用いて45°c:0°ジオメトリが構成されているため、高効率化かつ低コストな反射特性測定装置を提供することができる。 Also, since a 45 ° c: 0 ° geometry is configured using one light source 2, it is possible to provide a highly efficient and low-cost reflection characteristic measuring device.
 なお、上記では、白色LEDにおいて、青色光L_bと蛍光LF_yとの配光の差を無視して白色光LWの配光12dとし、白色光LW及び拡散紫色光LD_vの配光が近似しているとしたが、これらの配光が異なる場合、配光主軸への偏りが最大の配光について設定したオフセット角δで平面鏡3を配置すればよい。これにより、可視光の全ての波長帯に亘って、光源2及び試料面1間の距離変動に対する中心O3での照度変化を最小にすることができる。これは、以下の2点で説明される。 In the above, in the white LED, the light distribution difference of the blue light L_b and the fluorescence LF_y is ignored to obtain the light distribution 12d of the white light LW, and the light distribution of the white light LW and the diffuse violet light LD_v is approximated. However, when these light distributions are different, the plane mirror 3 may be arranged at the offset angle δ set for the light distribution with the maximum deviation to the light distribution main axis. Thereby, the illuminance change at the center O3 with respect to the distance fluctuation between the light source 2 and the sample surface 1 can be minimized over the entire wavelength band of visible light. This is explained in the following two points.
 (1)実際に設定したオフセット角δが、各配光の最適なオフセット角δに近い場合、どの配光においても、配光主軸に対する角度φ(=45°-δ)での配光変化率は、ランベルト配光の配光主軸に対する角度が45度の配光変化率に近似するため、問題はない。しかしながら、実際に設定したオフセット角δが、ある配光の最適なオフセット角δから外れた場合、その配光の配光主軸に対する角度φでの配光変化率と、ランベルト配光の配光主軸に対する角度が45°の配光変化率との乖離は、配光主軸への偏りが大きい配光ほど大きくなる。 (1) When the actually set offset angle δ is close to the optimum offset angle δ for each light distribution, the light distribution change rate at an angle φ (= 45 ° −δ) with respect to the light distribution main axis in any light distribution Since the angle of the Lambert light distribution with respect to the light distribution main axis approximates a light distribution change rate of 45 degrees, there is no problem. However, when the actually set offset angle δ deviates from the optimum offset angle δ of a certain light distribution, the light distribution change rate at the angle φ with respect to the light distribution main axis of the light distribution and the light distribution main axis of the Lambert light distribution The deviation from the light distribution change rate at an angle with respect to 45 ° is larger as the light distribution is more biased toward the light distribution main axis.
 (2)実際に設定したオフセット角δが、ある配光P1(φ)の最適なオフセット角δ_op1よりも小さい場合(δ<δ_op1)、配光P1(φ)の配光主軸に対する角度φ(=45°-δ)は大きくなる。また、光源2に対して設定したオフセット角δが配光P1(φ)の最適なオフセット角δ_op1よりも大きい場合(δ>δ_op1)、配光P1(φ)の配光主軸に対する角度φは小さくなる。 (2) When the actually set offset angle δ is smaller than the optimum offset angle δ_op1 of a certain light distribution P1 (φ) (δ <δ_op1), the angle φ (= 45 ° −δ) increases. Further, when the offset angle δ set for the light source 2 is larger than the optimum offset angle δ_op1 of the light distribution P1 (φ) (δ> δ_op1), the angle φ of the light distribution P1 (φ) with respect to the light distribution main axis is small. Become.
 配光P1(φ)の配光変化率dP1/dφは、角度φが大きくなるにつれて増大する傾向にある。したがって、光源2に対して設定したオフセット角δが、配光P1(φ)の最適なオフセット角δ_op1より小さいと、配光P1(φ)の配光主軸に対する角度φが大きくなるため、配光P1(φ)の配光変化率dP1/dφが、ランベルト配光PL(θ=45°)での配光変化率dPL/dθから大きく乖離する。 The light distribution change rate dP1 / dφ of the light distribution P1 (φ) tends to increase as the angle φ increases. Therefore, if the offset angle δ set for the light source 2 is smaller than the optimum offset angle δ_op1 of the light distribution P1 (φ), the angle φ of the light distribution P1 (φ) with respect to the light distribution main axis becomes large. The light distribution change rate dP1 / dφ of P1 (φ) greatly deviates from the light distribution change rate dPL / dθ in the Lambert light distribution PL (θ = 45 °).
 一方、実際に設定したオフセット角δが配光P1(φ)の最適なオフセット角δ_op1より大きいと、配光主軸に対する角度φが小さくなるため、配光P1(φ)の配光変化率dP1/dφがランベルト配光PL(θ=45°)の配光変化率dPL/dθから大きく乖離しない。 On the other hand, when the actually set offset angle δ is larger than the optimum offset angle δ_op1 of the light distribution P1 (φ), the angle φ with respect to the light distribution main axis becomes small, and therefore the light distribution change rate dP1 / of the light distribution P1 (φ). dφ does not greatly deviate from the light distribution change rate dPL / dθ of the Lambert light distribution PL (θ = 45 °).
 複数の配光の中で、配光主軸への偏りが最も大きい配光PX(φ)の最適なオフセット角δ_opxは最も大きい。そのため、光源2のオフセット角δをδ_opxに設定すると、他の配光PY(φ)の配光主軸に対する角度φは、配光PY(φ)に対して最適なオフセット角δ_opyを設定した場合の配光主軸に対する角度φ_yよりも小さくなる。 Among the plurality of light distributions, the optimum offset angle δ_opx of the light distribution PX (φ) having the largest deviation to the light distribution main axis is the largest. Therefore, when the offset angle δ of the light source 2 is set to δ_opx, the angle φ of the other light distribution PY (φ) with respect to the light distribution main axis is the same as that when the optimum offset angle δ_opy is set with respect to the light distribution PY (φ). It becomes smaller than the angle φ_y with respect to the light distribution main axis.
 そのため、複数の配光のうち、配光主軸への偏りが最も大きい配光PX(X)の最適なオフセット角δ_opxで実際のオフセット角δを設定することが好ましい。 Therefore, it is preferable to set the actual offset angle δ with the optimum offset angle δ_opx of the light distribution PX (X) having the largest deviation from the light distribution main axis among the plurality of light distributions.
 (実施の形態2)
 実施の形態2による反射特性測定装置は、副光源の個数を2つにしたことを特徴としている。図4は、本発明の実施の形態2における光源2の構成図である。図4に示すように、光源2は、主光源12及び副光源22に加えて、更に副光源32を備えている。なお、本実施の形態において実施の形態1と同一のものは同一の符号を付し、説明を省略する。
(Embodiment 2)
The reflection characteristic measuring apparatus according to Embodiment 2 is characterized in that the number of sub-light sources is two. FIG. 4 is a configuration diagram of the light source 2 according to Embodiment 2 of the present invention. As shown in FIG. 4, the light source 2 further includes a sub light source 32 in addition to the main light source 12 and the sub light source 22. In addition, in this Embodiment, the same thing as Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits description.
 副光源32は、副光源22に隣接し、かつ、発光域Sに対向して設けられた、例えば、紫外光L_uvを放射するUVLEDにより構成され、発光域Sに向けて紫外光L_uvを放射して、発光域Sを照明する。この紫外光L_uvは、レジン12rに含まれる蛍光物質により拡散反射され拡散紫外光LD_uvとなって、発光域Sから再放射される。つまり、本実施の形態では、紫色光L_v及び紫外光L_uvが、拡散紫色光LD_v及び拡散紫外光LD_uvになって発光域Sから再放射される。 The sub-light source 32 is configured by, for example, a UV LED that radiates ultraviolet light L_uv, which is provided adjacent to the sub-light source 22 and facing the light-emitting area S, and emits ultraviolet light L_uv toward the light-emitting area S. Then, the light emitting area S is illuminated. The ultraviolet light L_uv is diffused and reflected by the fluorescent material contained in the resin 12r to become diffused ultraviolet light LD_uv and re-radiated from the light emitting region S. That is, in this embodiment, the violet light L_v and the ultraviolet light L_uv are re-radiated from the light emission region S as the diffused violet light LD_v and the diffused ultraviolet light LD_uv.
 したがって、発光域Sからは、配光12dを持つ白色光LW、及び配光22dを持つ拡散紫色光LD_vに加えて、更に、配光32dを持つ拡散紫外光LD_uvが放射される。なお、蛍光LF_vは紫色光L_vによって、蛍光LF_uvは紫外光L_uvによって励起されたレジン12rの蛍光である。また、図4の配光42fは、白色光LWと、紫色光L_vによる蛍光LF_vと、紫外光L_uvによる蛍光LF_uvとの合算光の配光である。 Therefore, in addition to the white light LW having the light distribution 12d and the diffuse violet light LD_v having the light distribution 22d, the diffused ultraviolet light LD_uv having the light distribution 32d is further emitted from the light emission region S. The fluorescence LF_v is the fluorescence of the resin 12r excited by the purple light L_v, and the fluorescence LF_uv is excited by the ultraviolet light L_uv. The light distribution 42f in FIG. 4 is a light distribution of the combined light of the white light LW, the fluorescence LF_v due to the purple light L_v, and the fluorescence LF_uv due to the ultraviolet light L_uv.
 図5は、光源2から放射される光の分光分布を示し、縦軸は相対強度を示し、横軸は波長(nm)を示している。図5に示すように主光源12から放射される光には、主に、白色光LW、拡散紫色光LD_v、及び拡散紫外光LD_uvが含まれていることが分かる。 FIG. 5 shows the spectral distribution of light emitted from the light source 2, the vertical axis shows the relative intensity, and the horizontal axis shows the wavelength (nm). As shown in FIG. 5, it can be seen that the light emitted from the main light source 12 mainly includes white light LW, diffuse violet light LD_v, and diffuse ultraviolet light LD_uv.
 これにより、光源2から放射される光の分光分布は可視光の全波長帯(400-700nm)をカバーするとともに、拡散紫外光LD_uvが放射されているため、蛍光増白試料の測定が可能になる。 As a result, the spectral distribution of the light emitted from the light source 2 covers the entire wavelength band of visible light (400-700 nm), and the diffused ultraviolet light LD_uv is emitted, thereby enabling measurement of the fluorescent whitening sample. Become.
 また、図4に示す光源2では、白色光LW、拡散紫色光LD_v、及び拡散紫外光LD_uvはレジン12rから拡散放射されているため、それぞれの配光を近似させることができる。そのため、可視光の全波長帯の光について照明光学系と試料面1と間の距離変動による照度変化のバラツキを抑制することができる。したがって、この光源を図1の照明光学系の光源とする場合、ある1つの配光について、最適なオフセット角δを設定すれば、可視光の全波長帯の光について照度変化を最小にすることができる。 Further, in the light source 2 shown in FIG. 4, since the white light LW, the diffuse violet light LD_v, and the diffuse ultraviolet light LD_uv are diffused and radiated from the resin 12r, respective light distributions can be approximated. Therefore, it is possible to suppress variation in illuminance change due to a variation in the distance between the illumination optical system and the sample surface 1 for light in all wavelengths of visible light. Therefore, when this light source is used as the light source of the illumination optical system of FIG. 1, if an optimal offset angle δ is set for a certain light distribution, the change in illuminance is minimized for light in all visible wavelength bands. Can do.
 ここで、主光源12、副光源22,32は、同時に点灯されるが、UVLEDにより構成される副光源32のON/OFFを制御し、副光源を間欠駆動すれば、特開2006-292510号公報に示すように蛍光増白試料の測定が可能になる。 Here, the main light source 12 and the sub light sources 22 and 32 are turned on at the same time. However, if the sub light source is intermittently driven by controlling ON / OFF of the sub light source 32 constituted by UVLEDs, Japanese Patent Laying-Open No. 2006-292510. As shown in the publication, it is possible to measure fluorescent whitening samples.
 なお、実施の形態2では、副光源の個数を2つとしたが、本発明はこれに限定されず、3つ、4つ、5つ等の3つ以上にしてもよい。また、実施の形態2では、副光源32をUVLEDにより構成したが、これに限定されず、赤色LED、青色LED等のLEDにより構成してもよいし、赤外光を放射する赤外LEDにより構成してもよい。 In the second embodiment, the number of sub-light sources is two. However, the present invention is not limited to this, and may be three or more, such as three, four, and five. In the second embodiment, the auxiliary light source 32 is configured by UVLEDs, but is not limited thereto, and may be configured by LEDs such as red LEDs and blue LEDs, or by infrared LEDs that emit infrared light. It may be configured.
 また、図2或いは図4の光源2を図6の照明光学系の光源21に置き換えても良い。これにより、紫色LED27を除去できるので、簡単な構成で全方位から照明する45°a/0°ジオメトリが実現できる。 Further, the light source 2 in FIG. 2 or 4 may be replaced with the light source 21 of the illumination optical system in FIG. Thereby, since the purple LED 27 can be removed, a 45 ° a / 0 ° geometry that illuminates from all directions with a simple configuration can be realized.
 また、実施の形態1及び2では、主光源における発光域をレジンとしたが、所定の蛍光体分散させて焼結した蛍光体分散ガラスや、更に所定の大きさの気泡をある密度で含有させて光の分散の均一性を向上させた蛍光体分散ガラスであってもよい。 In the first and second embodiments, the light emission region of the main light source is a resin. However, a phosphor-dispersed glass obtained by dispersing a predetermined phosphor and sintering it, and further containing bubbles of a predetermined size at a certain density. And phosphor dispersion glass with improved uniformity of light dispersion.
 上記の実施の形態による技術的特徴をまとめると下記のようになる。 The technical features according to the above embodiment are summarized as follows.
 (1)上記の光源は、所定の発光域から光を放射する主光源と、前記主光源の分光分布とは異なる分光分布をもち、前記発光域を照明する1つ以上の副光源とを備え、前記発光域は、前記副光源から放射された光を反射させる。 (1) The light source includes a main light source that emits light from a predetermined light emission region, and one or more auxiliary light sources that have a spectral distribution different from the spectral distribution of the main light source and illuminate the light emission region. The light emitting area reflects light emitted from the sub-light source.
 この構成によれば、主光源の発光域からは、主光源が放射する光と、副光源が放射した光の反射光とが放射される。そのため、主光源の発光域は、主光源の光及び副光源の光の両分光分布を合わせた分光分布をもつ光を放射する点光源として機能する。したがって、この光源によれば、可視光の全波長帯をカバーすることができる点光源を実現することができる。 According to this configuration, light emitted from the main light source and reflected light of light emitted from the sub-light source are emitted from the light emission area of the main light source. Therefore, the light emission area of the main light source functions as a point light source that emits light having a spectral distribution obtained by combining both the spectral distributions of the light from the main light source and the light from the sub light source. Therefore, according to this light source, a point light source that can cover the entire wavelength band of visible light can be realized.
 そして、この光源の発光域は1つの点光源として機能するため、特許文献1に示すように、一方の光源の光路上に他の光源を配置する必要がなく、照明光学系の構成を簡便にすることができる。また、この光源は、発光域が1つの点光源として機能するため、特許文献1のように光源を全く異なる位置に設ける構成に比べ、試料面と光源との間の距離が変動したときの照度変化の波長帯ごとのバラツキを抑制することがきる。 And since the light emission area of this light source functions as one point light source, as shown in Patent Document 1, it is not necessary to arrange another light source on the optical path of one light source, and the configuration of the illumination optical system can be simplified. can do. In addition, since this light source functions as a point light source with a light emitting area, the illuminance when the distance between the sample surface and the light source fluctuates as compared with a configuration in which the light source is provided at a completely different position as in Patent Document 1. It is possible to suppress variation for each wavelength band of change.
 (2)前記発光域は、前記主光源から放射された光を拡散放射し、かつ、前記副光源から放射された光を拡散反射することが好ましい。 (2) It is preferable that the light emitting area diffusely radiates light emitted from the main light source and diffusely reflects light emitted from the sub-light source.
 この構成によれば、主光源から放射された光と副光源から放射された光とが、ともに発光域から拡散放射されるため、両光源から放射された光の配光を近似させて、発光域から放射させることができる。そのため、例えばこの光源を照明光学系に適用した場合、照明光学系と試料面との間の距離変動による照度変化の抑制効果に配光依存性があっても、その影響を受けにくく、各配光の照度変化のバラツキを抑制することができる。 According to this configuration, both the light emitted from the main light source and the light emitted from the sub-light source are both diffused and radiated from the light emitting region, so that the light distribution of the light emitted from both light sources is approximated to emit light. Can be emitted from the area. Therefore, for example, when this light source is applied to an illumination optical system, even if the effect of suppressing the change in illuminance due to the variation in distance between the illumination optical system and the sample surface is dependent on the light distribution, it is not easily affected by each distribution. Variations in the illuminance change of light can be suppressed.
 (3)前記主光源は、白色LEDであり、前記副光源は、少なくとも1つが紫色LEDであることが好ましい。 (3) Preferably, the main light source is a white LED, and at least one of the sub-light sources is a purple LED.
 この構成によれば、400-700nmの可視域をカバーする照明光学系を構成でき、試料面の色彩値を精度よく測定できる。 According to this configuration, an illumination optical system that covers the visible range of 400 to 700 nm can be configured, and the color value of the sample surface can be accurately measured.
 (4)前記主光源は、白色LEDであり、前記副光源は、少なくとも1つがUVLED(Ultra Violet Light Emitting Diode)であることが好ましい。 (4) Preferably, the main light source is a white LED, and at least one of the sub-light sources is a UV LED (Ultra Violet Light Emitting Diode).
 この構成によれば、発光域からはUV光が放射されるため、UV光によって励起される蛍光増白試料の測定が可能になる。また、UVLEDから放射された光は、白色LEDと同一の発光域から放射されるため、白色光とUV光との配光が近似し、この光源を照明光学系の光源とした場合に、照明光学系と試料面との間の距離変動による照度変化の配光ごとのバラツキを抑制することができ、蛍光増白試料を高精度で測定することができる。 According to this configuration, since UV light is emitted from the light emitting region, it is possible to measure a fluorescent whitening sample excited by the UV light. In addition, since the light emitted from the UV LED is emitted from the same light emitting region as that of the white LED, the light distribution between the white light and the UV light approximates, and when this light source is used as the light source of the illumination optical system, illumination is performed. Variations in illumination distribution due to variations in distance between the optical system and the sample surface for each light distribution can be suppressed, and the fluorescent whitening sample can be measured with high accuracy.
 (5)上記の照明光学系は、上記の光源と、前記主光源から放射される光と、前記発光域で反射される前記副光源から放射された光との合成光を、入射光として試料面を照明する光学系とを備える。この構成によれば、上記の光源を備える照明光学系を提供することができる。 (5) The illumination optical system is a sample in which the combined light of the light source, the light emitted from the main light source, and the light emitted from the sub-light source reflected by the light emitting region is incident light. And an optical system for illuminating the surface. According to this structure, an illumination optical system provided with said light source can be provided.
 (6)前記発光域は、試料面の中心を通る法線上に配置され、前記光学系は、前記合成光の少なくとも一部を入射光として、前記法線から45°の方向で全方位又は複数の方位から前記試料面の中心を照明することが好ましい。 (6) The light emitting area is arranged on a normal line passing through the center of the sample surface, and the optical system has at least a part of the combined light as incident light and is omnidirectional or plural in a direction of 45 ° from the normal line. It is preferable to illuminate the center of the sample surface from the orientation.
 この構成によれば、所望の波長帯をカバーする45°c:0°ジオメトリあるいは45°a:0°ジオメトリの照明光学系を構成でき、低コスト、低消費電力、及び低発熱の照明光学系を提供することができる。 According to this configuration, an illumination optical system having a 45 ° c: 0 ° geometry or a 45 ° a: 0 ° geometry that covers a desired wavelength band can be configured, and the illumination optical system has low cost, low power consumption, and low heat generation. Can be provided.
 (7)上記の反射特性測定装置は、上記照明光学系と、前記試料面から反射された光を受光する受光光学系とを備える。 (7) The reflection characteristic measuring apparatus includes the illumination optical system and a light receiving optical system that receives light reflected from the sample surface.
 この構成によれば、上記の照明光学系を備える反射特性測定装置を提供することができる。 According to this configuration, it is possible to provide a reflection characteristic measuring apparatus including the illumination optical system described above.

Claims (7)

  1.  所定の発光域から光を放射する主光源と、
     前記主光源の分光分布とは異なる分光分布をもち、前記発光域を照明する1つ以上の副光源とを備え、
     前記発光域は、前記副光源から放射された光を反射させる光源。
    A main light source that emits light from a predetermined emission region;
    One or more sub-light sources having a spectral distribution different from the spectral distribution of the main light source and illuminating the light emitting area;
    The light emitting area is a light source that reflects light emitted from the sub-light source.
  2.  前記発光域は、前記主光源から放射された光を拡散放射し、かつ、前記副光源から放射された光を拡散反射する請求項1記載の光源。 The light source according to claim 1, wherein the light emitting area diffuses and radiates light emitted from the main light source and diffusely reflects light emitted from the sub-light source.
  3.  前記主光源は、白色LED(Light Emitting Diode)であり、
     前記副光源は、少なくとも1つが紫色LEDである請求項1記載の光源。
    The main light source is a white LED (Light Emitting Diode),
    The light source according to claim 1, wherein at least one of the auxiliary light sources is a purple LED.
  4.  前記主光源は、白色LEDであり、
     前記副光源は、少なくとも1つがUVLED(Ultra Violet Light Emitting Diode)である請求項1記載の光源。
    The main light source is a white LED,
    The light source according to claim 1, wherein at least one of the sub light sources is a UV LED (Ultra Violet Light Emitting Diode).
  5.  請求項1記載の光源と、
     前記主光源から放射される光と、前記発光域で反射される前記副光源から放射された光との合成光を、入射光として試料面を照明する光学系とを備える照明光学系。
    A light source according to claim 1;
    An illumination optical system comprising: an optical system that illuminates the sample surface with combined light of light emitted from the main light source and light emitted from the sub-light source reflected from the light emission area as incident light.
  6.  前記発光域は、試料面の中心を通る法線上に配置され、
     前記光学系は、前記合成光の少なくとも一部を入射光として、前記法線から45°の方向で全方位又は複数の方位から前記試料面の中心を照明する請求項5記載の照明光学系。
    The emission region is arranged on a normal passing through the center of the sample surface,
    The illumination optical system according to claim 5, wherein the optical system illuminates the center of the sample surface from all directions or a plurality of directions in a direction of 45 ° from the normal with at least part of the combined light as incident light.
  7.  請求項5記載の照明光学系と、
     前記試料面から反射された光を受光する受光光学系とを備える反射特性測定装置。
    The illumination optical system according to claim 5;
    A reflection characteristic measuring apparatus comprising: a light receiving optical system that receives light reflected from the sample surface.
PCT/JP2011/002601 2010-05-14 2011-05-10 Light sources, illumination optical system and reflection property measurement apparatus WO2011142123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012514712A JPWO2011142123A1 (en) 2010-05-14 2011-05-10 Light source, illumination optical system, and reflection characteristic measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-111912 2010-05-14
JP2010111912 2010-05-14

Publications (1)

Publication Number Publication Date
WO2011142123A1 true WO2011142123A1 (en) 2011-11-17

Family

ID=44914183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002601 WO2011142123A1 (en) 2010-05-14 2011-05-10 Light sources, illumination optical system and reflection property measurement apparatus

Country Status (2)

Country Link
JP (1) JPWO2011142123A1 (en)
WO (1) WO2011142123A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013186021A (en) * 2012-03-09 2013-09-19 Ricoh Co Ltd Spectrum measurement device, image evaluation device and image formation device
WO2014192523A1 (en) * 2013-05-27 2014-12-04 コニカミノルタ株式会社 Illumination device and reflection characteristics measurement device
JP2020186966A (en) * 2019-05-13 2020-11-19 河北ライティングソリューションズ株式会社 Light source device and optical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142059A (en) * 1996-11-13 1998-05-29 Sunx Ltd Mark detecting device
JP2005017140A (en) * 2003-06-26 2005-01-20 Shimadzu Corp Analyzing/measuring light source
JP2010060525A (en) * 2008-09-05 2010-03-18 Konica Minolta Sensing Inc Spectral property measuring device, calibration technique thereof, and spectral property measuring system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544236Y2 (en) * 1990-02-16 1997-08-13 三洋電機株式会社 Light emitting diode lamp
JPH08222768A (en) * 1995-02-17 1996-08-30 Iwasaki Electric Co Ltd Layered light emitting diode
US6960872B2 (en) * 2003-05-23 2005-11-01 Goldeneye, Inc. Illumination systems utilizing light emitting diodes and light recycling to enhance output radiance
JP5200859B2 (en) * 2008-10-29 2013-06-05 コニカミノルタオプティクス株式会社 Optical property measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142059A (en) * 1996-11-13 1998-05-29 Sunx Ltd Mark detecting device
JP2005017140A (en) * 2003-06-26 2005-01-20 Shimadzu Corp Analyzing/measuring light source
JP2010060525A (en) * 2008-09-05 2010-03-18 Konica Minolta Sensing Inc Spectral property measuring device, calibration technique thereof, and spectral property measuring system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013186021A (en) * 2012-03-09 2013-09-19 Ricoh Co Ltd Spectrum measurement device, image evaluation device and image formation device
WO2014192523A1 (en) * 2013-05-27 2014-12-04 コニカミノルタ株式会社 Illumination device and reflection characteristics measurement device
JP5720859B1 (en) * 2013-05-27 2015-05-20 コニカミノルタ株式会社 Illumination device and reflection characteristic measuring device
JP2020186966A (en) * 2019-05-13 2020-11-19 河北ライティングソリューションズ株式会社 Light source device and optical device
WO2020230757A1 (en) * 2019-05-13 2020-11-19 河北ライティングソリューションズ株式会社 Light source device and optical device
JP7085758B2 (en) 2019-05-13 2022-06-17 河北ライティングソリューションズ株式会社 Optical measuring device, light source device
US11927528B2 (en) 2019-05-13 2024-03-12 Kahoku Lighting Solutions Corporation Light source device and optical device

Also Published As

Publication number Publication date
JPWO2011142123A1 (en) 2013-07-22

Similar Documents

Publication Publication Date Title
US11060917B2 (en) Confocal displacement measurement device and a confocal thickness measurement device
USRE48712E1 (en) Color mixing optics for LED lighting
US8310737B2 (en) Image reading apparatus
US8345230B2 (en) Illumination apparatus and reflective characteristics measuring apparatus employing the same
KR20080085732A (en) White light source device
US11592159B2 (en) Light source system and lighting apparatus
JP2008293838A (en) Light source device
US20130044496A1 (en) Luminous-flux control member and illumination apparatus using the same
US20180081182A1 (en) Illumination device and observation system
US20180100627A1 (en) Illumination apparatus
JP2011150790A (en) White led illumination device and optical lens
WO2017051868A1 (en) Lighting device
WO2011142123A1 (en) Light sources, illumination optical system and reflection property measurement apparatus
JP2012174985A (en) White led lighting device
JP2007080526A (en) Light-emitting device
JP5354098B2 (en) Illumination optical system, reflection characteristic measuring apparatus, and illumination method
JP2009238990A (en) Light source device
JP2016534337A (en) Method for manufacturing a light emitter
JP7445083B2 (en) light source device
JP2015185209A (en) Light-emitting device, vehicular lighting fixture and optical fiber
US20080259460A1 (en) Light-pipe integrator with mask for uniform irradiance
JP2005088512A (en) Illuminating device
CN215492063U (en) Light source device
JP6750189B2 (en) Optical property measuring device
WO2019188264A1 (en) Light irradiating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514712

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780382

Country of ref document: EP

Kind code of ref document: A1