WO2017163814A1 - Scroll-type compressor - Google Patents

Scroll-type compressor Download PDF

Info

Publication number
WO2017163814A1
WO2017163814A1 PCT/JP2017/008395 JP2017008395W WO2017163814A1 WO 2017163814 A1 WO2017163814 A1 WO 2017163814A1 JP 2017008395 W JP2017008395 W JP 2017008395W WO 2017163814 A1 WO2017163814 A1 WO 2017163814A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
back pressure
pressure
chamber
fluid introduction
Prior art date
Application number
PCT/JP2017/008395
Other languages
French (fr)
Japanese (ja)
Inventor
泰造 佐藤
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Priority to DE112017001481.6T priority Critical patent/DE112017001481T5/en
Priority to CN201780016615.5A priority patent/CN108779775B/en
Publication of WO2017163814A1 publication Critical patent/WO2017163814A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls

Definitions

  • the present invention relates to a scroll compressor that has a fixed scroll and a movable scroll meshed with each other, and compresses a fluid such as a refrigerant flowing into a space between both scrolls.
  • This type of scroll compressor includes a scroll unit having a fixed scroll and a movable scroll meshed with each other.
  • the scroll compressor is incorporated in a refrigerant circuit of a vehicle air conditioner and used to compress the refrigerant in the refrigerant circuit.
  • the movable scroll is revolved around the axis of the fixed scroll via the drive shaft, thereby gradually reducing the volume of the sealed space between the two scrolls, and the refrigerant gas flowing into the suction chamber Or the like is compressed in a sealed space, and the compressed fluid is discharged through a discharge chamber.
  • a scroll compressor described in Patent Document 1 is generally known.
  • the scroll compressor described in Patent Document 1 includes a back pressure chamber between the movable scroll and a bearing holding portion that rotatably supports the movable scroll side end portion of the drive shaft.
  • the back pressure chamber communicates with the discharge chamber and the suction chamber.
  • a back pressure adjusting valve is provided in the middle of the passage that connects the back pressure chamber and the suction chamber, and the back pressure adjusting valve changes the pressure in the back pressure chamber to a pressure intermediate between the pressure in the suction chamber and the pressure in the discharge chamber. It has been adjusted to be.
  • lubricating oil is supplied into the back pressure chamber in order to lubricate sliding parts such as a drive shaft in the back pressure chamber.
  • the lubricating oil supplied into the back pressure chamber is directly discharged into the suction chamber via a passage communicating the back pressure chamber and the suction chamber and a back pressure adjusting valve provided in the middle of the passage.
  • the lubricating oil is required not only for the sliding part such as the drive shaft in the back pressure chamber but also for the sliding part in the scroll unit.
  • the refrigerant gas supplied from the suction chamber to the scroll unit may contain a small amount of lubricating oil, but there may be insufficient lubrication of the sliding portion in the scroll unit with a small amount of lubricating oil.
  • the scroll compressor described in Patent Document 1 since the lubricating oil is only supplied to the back pressure chamber, there is a possibility that the sliding portion in the scroll unit may be insufficiently lubricated. .
  • the present invention has been made paying attention to such a situation, and is not limited to a sliding portion in the back pressure chamber, and is a scroll type compressor capable of appropriately lubricating the sliding portion in the scroll unit. The purpose is to provide.
  • a scroll compressor includes a housing having a fluid suction chamber and a discharge chamber therein, and a fixed scroll and a movable scroll that are provided in the housing and mesh with each other.
  • a scroll unit that is disposed in the housing and holds a bearing portion that rotatably supports the movable scroll side end portion of the drive shaft and forms a back pressure chamber between the movable scroll and the scroll unit.
  • a scroll compressor comprising a holding portion and a back pressure adjusting valve for adjusting pressure in the back pressure chamber, an inner peripheral surface of a peripheral wall portion of the housing
  • a fluid introduction passage formed in cooperation with the outer peripheral surface of the bearing holding portion and communicating the suction chamber and the space near the outer peripheral portion of the scroll unit, and the discharge chamber and the back pressure chamber.
  • the back pressure adjusting valve is provided at the fluid introduction passage side opening end of the pressure release passage.
  • the fluid in the suction chamber is guided to the space near the outer peripheral portion of the scroll unit through the fluid introduction passage, and the fluid in the discharge chamber is routed through the pressure supply passage. It is led to the pressure chamber, and the fluid in the back pressure chamber can be guided to the middle of the fluid inlet passage via the pressure release passage and the back pressure regulating valve, and returned to the scroll unit side on the flow in the fluid introduction passage.
  • the lubricating oil is returned to the middle of the fluid introducing passage through the pressure releasing passage and the back pressure adjusting valve.
  • Lubricating oil from the chamber can be supplied to the scroll unit together with lubricating oil from the suction chamber. In this way, it is possible to provide a scroll compressor that can appropriately lubricate the sliding portion of the scroll unit.
  • FIG. 1 It is a schematic sectional drawing of the scroll compressor by one Embodiment of invention. It is a schematic sectional drawing for demonstrating the fastening state of the bearing holding
  • FIG. 1 is a schematic cross-sectional view of a scroll compressor according to this embodiment.
  • the scroll compressor 100 according to the present embodiment is incorporated in a refrigerant circuit of a vehicle air conditioner, for example, and compresses and discharges refrigerant (fluid) sucked from the low pressure side of the refrigerant circuit.
  • the scroll compressor 100 includes a scroll unit 1, a housing 10 having a refrigerant suction chamber H 1 and a discharge chamber H 2 therein, an electric motor 20 as a drive unit that drives the scroll unit 1, and driving of the electric motor 20.
  • a bearing holding portion 30 for rotatably supporting one end portion (upper end portion in FIG.
  • the scroll unit 1 includes a fixed scroll 2 and a movable scroll 3 that are meshed with each other.
  • the fixed scroll 2 is formed by integrally forming a spiral wrap 2b on a disk-shaped bottom plate 2a.
  • the movable scroll 3 is formed by integrally forming a spiral wrap 3b on a disk-shaped bottom plate 3a.
  • the bottom plate 2 a of the fixed scroll 2 has a larger diameter than the bottom plate 3 a of the movable scroll 3.
  • Both scrolls 2 and 3 are arranged so that both the spiral wraps 2b and 3b mesh. Specifically, both the scrolls 2 and 3 have a predetermined gap between the end edge of the spiral wrap 2b of the fixed scroll 2 and the bottom plate 3a of the movable scroll 3 so that the spiral wrap 3b of the movable scroll 3 protrudes.
  • the side edge is disposed so as to have a predetermined gap with the bottom plate 2 a of the fixed scroll 2. This gap that may fluctuate during the compression operation is maintained in an appropriate range during the compression operation, and the airtightness of the sealed space (compression chamber) S described later is appropriately maintained.
  • the scrolls 2 and 3 are arranged so that the side walls of the spiral wraps 2b and 3b are partially in contact with each other with the circumferential angles of the spiral wraps 2b and 3b shifted from each other. Thereby, a crescent-shaped sealed space (compression chamber) S is formed between the spiral wraps 2b and 3b.
  • the fixed scroll 2 is fixed to a rear housing 12 (to be described later) of the housing 10, and has a groove 2a1 that opens toward the rear housing 12 at the radial center. Specifically, the groove 2a1 is formed on the back surface of the bottom plate 2a (that is, the end surface opposite to the movable scroll 3).
  • the movable scroll 3 is configured to be capable of revolving orbiting around the axis of the fixed scroll 2 via the drive shaft 21 in a state in which the rotation is prevented.
  • the scroll unit 1 moves the sealed space S formed between the scrolls 2 and 3, more specifically between the spiral wraps 2b and 3b, to the center, and gradually reduces the volume.
  • the scroll unit 1 compresses the refrigerant flowing into the sealed space S from the outer end side of the spiral wraps 2b and 3b in the sealed space S.
  • the housing 10 mainly includes a scroll housing 1, an electric motor 20, a bearing holding portion 30, and an inverter 40 inside a front housing 11, a rear housing 12, and an inverter. And a cover 13.
  • the front housing 11 has a substantially annular peripheral wall portion 11a and a partition wall portion 11b.
  • the interior space of the front housing 11 is divided into an accommodation space for accommodating the scroll unit 1, the electric motor 20, and the bearing holding portion 30 and an accommodation space for accommodating the inverter 40 by the partition wall portion 11 b. Partitioned.
  • the opening on one end side (upper side in FIG. 1) of the peripheral wall portion 11 a is closed by the rear housing 12. Further, the opening on the other end side (the lower side in FIG. 1) of the peripheral wall portion 11 a is closed by the inverter cover 13.
  • a cylindrical support portion 11b1 that holds a bearing 15 that supports the other end portion (the lower end portion in FIG. 1) of the drive shaft 21 is provided at one end side of the peripheral wall portion 11a. Protrusively facing.
  • a refrigerant suction port P1 is formed in the peripheral wall portion 11a. Refrigerant from the low pressure side of the refrigerant circuit is sucked into the front housing 11 through the suction port P1. Therefore, the space in the front housing 11 functions as the suction chamber H1.
  • the electric motor 20 is cooled by circulating the refrigerant around the electric motor 20 in the suction chamber H1.
  • the upper space of the electric motor 20 communicates with the lower space of the electric motor 20 and constitutes one suction chamber H ⁇ b> 1 together with the lower space of the electric motor 20.
  • the refrigerant flows as a mixed fluid with a small amount of lubricating oil.
  • the rear housing 12 is formed in a disk shape having an outer diameter that matches the outer diameter of the peripheral wall portion 11 a of the front housing 11.
  • the peripheral edge of the rear housing 12 is fastened to one end of the peripheral wall 11a (upper end in FIG. 1) by fastening means such as a suitable number of bolts 14 and the like. Close.
  • a peripheral edge portion (in other words, a portion surrounding the groove portion 2a1) of the rear surface of the bottom plate 2a of the fixed scroll 2 is in contact with one end surface of the rear housing 12.
  • the one end face of the rear housing 12 and the groove 2a1 of the bottom plate 2a define a refrigerant discharge chamber H2.
  • a compressed refrigerant discharge passage L2 is formed at the center of the bottom plate 2a.
  • a one-way valve (a check valve for restricting the flow from the discharge chamber H2 to the scroll unit 1) 16 is provided so as to cover the opening of the discharge passage L2.
  • the refrigerant compressed in the sealed space S formed between the spiral wraps 2b and 3b is discharged through the discharge passage L2 and the one-way valve 16.
  • the rear housing 12 is formed with a discharge port P2 that communicates the discharge chamber H2 with the outside (the high pressure side of the refrigerant circuit).
  • the compressed refrigerant in the discharge chamber H2 is discharged to the high pressure side of the refrigerant circuit through the discharge port P2.
  • an appropriate oil separator for separating the lubricating oil from the compressed refrigerant flowing into the discharge port P2 is provided in the discharge port P2.
  • the refrigerant from which the lubricating oil is separated by the oil separator (including the refrigerant in which a small amount of lubricating oil remains) is discharged to the high pressure side of the refrigerant circuit via the discharge port P2.
  • the lubricating oil separated by the oil separator is guided to a pressure supply passage L3 described later.
  • the electric motor 20 includes a drive shaft 21, a rotor 22, and a stator core unit 23 disposed on the radially outer side of the rotor 22.
  • a three-phase AC motor is applied.
  • a direct current from a vehicle battery (not shown) is converted into an alternating current by the inverter 40 and supplied to the electric motor 20.
  • the drive shaft 21 is connected to the movable scroll 3 via a crank mechanism, and transmits the rotational force of the electric motor 20 to the movable scroll 3.
  • One end portion of the drive shaft 21 (that is, the end portion on the movable scroll 3 side) is inserted through a through hole formed in the bearing holding portion 30 and is rotatably supported by the bearing 17, and the other end portion of the drive shaft 21.
  • the inverter 40 side end portion is rotatably supported by a bearing 15 fitted to the support portion 11b1.
  • the bearing 17 corresponds to a “bearing portion” according to the present invention.
  • the rotor 22 is rotatably supported on the radially inner side of the stator core unit 23 via a drive shaft 21 that is fitted (for example, press-fitted) into a shaft hole formed at the radial center thereof.
  • a magnetic field is generated in the stator core unit 23 by power feeding from the inverter 40, a rotational force is applied to the rotor 22 and the drive shaft 21 is rotationally driven.
  • the bearing holding portion 30 is provided in the front housing 11 and holds the bearing 17 as a bearing portion that rotatably supports the end portion of the drive shaft 21 on the movable scroll 3 side.
  • the bearing holding portion 30 is formed in a bottomed cylindrical shape having an outer diameter combined with the outer diameter of the bottom plate 2a of the fixed scroll 2, for example, and includes a cylindrical portion 30a and a bottom wall portion 30b positioned on one end side of the cylindrical portion 30a. And have.
  • the cylindrical portion 30a has a shoulder portion 30a3 that is expanded so that the inner diameter on the opening side is larger than the inner diameter on the bottom wall portion 30b side, and connects between the large-diameter portion 30a1 and the small-diameter portion 30a2.
  • the movable scroll 3 is accommodated in a space defined by the large-diameter portion 30a1 and the shoulder portion 30a3.
  • the opening-side end portion of the cylindrical portion 30a is in contact with the peripheral edge portion of the end surface on the movable scroll 3 side of the bottom plate 2a. Therefore, the opening of the bearing holding portion 30 is closed by the fixed scroll 2.
  • the bearing 17 is fitted into the small diameter portion 30a2 of the cylindrical portion 30a.
  • the through-hole for making the movable scroll 3 side edge part of the drive shaft 21 penetrate is opened in the radial direction center part of the bottom wall part 30b.
  • An appropriate seal member 18a is provided between the bearing 17 and the bottom wall portion 30b to ensure the airtightness of the back pressure chamber H3 described later.
  • An annular thrust plate 19 is disposed between the shoulder 30 a 3 of the bearing holder 30 and the bottom plate 3 a of the movable scroll 3.
  • the shoulder 30 a 3 receives a thrust force from the movable scroll 3 through the thrust plate 19.
  • Sealing members 18b are disposed at portions of the shoulder 30a3 and the bottom plate 3a that are in contact with the thrust plate 19, respectively.
  • a back pressure chamber H3 is defined between the bottom plate 3a and the small diameter portion 30a2 by the seal members 18a and 18b. That is, the bearing holding part 30 forms a back pressure chamber H ⁇ b> 3 with the movable scroll 3.
  • a fluid introduction passage L1 is formed in communication with the space H4 and for introducing a refrigerant (specifically, a mixed fluid of a refrigerant and a small amount of lubricating oil) from the suction chamber H1 to the space H4. That is, in this embodiment, the fluid introduction passage L1 that communicates the suction chamber H1 and the space H4 cooperates with the inner peripheral surface of the peripheral wall portion 11a of the front housing 11 and the outer peripheral surface of the cylindrical portion 30a of the bearing holding portion 30. Formed. For this reason, the pressure in the space H4 is equal to the pressure in the suction chamber H1.
  • a refrigerant specifically, a mixed fluid of a refrigerant and a small amount of lubricating oil
  • the crank mechanism includes a cylindrical boss portion 24 projectingly formed on the back surface (the end surface on the back pressure chamber H3 side) of the bottom plate 3a, and a crank 25 provided on the movable scroll 3 side end portion of the drive shaft 21. And an eccentric bush 26 attached in an eccentric state, and a sliding bearing 27 fitted to the boss portion 24. The eccentric bush 26 is rotatably supported in the boss portion 24 via a slide bearing 27.
  • a balancer weight 28 is attached to the end of the drive shaft 21 on the side of the movable scroll 3 so as to face the centrifugal force during the operation of the movable scroll 3.
  • a rotation prevention mechanism for preventing the rotation of the movable scroll 3 is appropriately provided.
  • FIG. 2 is a schematic cross-sectional view for explaining a fastening state of the bearing holding portion 30, and shows a cross-sectional position including the fastening bolt 14 of the bearing holding portion 30.
  • the bearing holding portion 30 is integrated with the fixed scroll 2 and the rear housing 12 by fastening bolts 14 with the fixed scroll 2 sandwiched between the bearing holding portion 30 and the rear housing 12. Has been concluded.
  • the fixed scroll 2 causes the peripheral portion of the back surface of the bottom plate 2a to abut one end surface of the rear housing 12, and the peripheral portion of the end surface of the bottom plate 2a on the movable scroll 3 side is used as a bearing holding portion. It is made to contact
  • the bearing holding portion 30 and the fixed scroll 2 are opened so as to extend in the extending direction of the drive shaft 21 at a plurality of locations spaced in the circumferential direction of the peripheral portion (specifically, the peripheral portion of the cylindrical portion 30a and the bottom plate 2a).
  • the fluid introduction passage L1 is a recess 30c (FIG.
  • the fluid introduction passage L1 includes a portion (concave portion 30c) that is appropriately recessed toward the drive shaft 21 in order to reduce weight at a portion of the cylindrical portion 30a that avoids the formation portion of the through hole 14a, and this portion. It is mainly partitioned by the corresponding part of the inner peripheral surface of the peripheral wall portion 11a facing each other.
  • One end of the fluid introduction passage L1 opens into the suction chamber H1, and the other end of the fluid introduction passage L1 passes through the end of the cylindrical portion 30a and opens into the space H4.
  • FIG. 3 is a block diagram for explaining the refrigerant flow in the scroll compressor 100.
  • the refrigerant from the low-pressure side of the refrigerant circuit is introduced into the suction chamber H1 through the suction port P1, and then guided to the space H4 near the outer end of the scroll unit 1 through the fluid introduction passage L1.
  • coolant in the space H4 is taken in in the sealed space S between both the spiral wraps 2b and 3b, and is compressed in this sealed space S.
  • the compressed refrigerant is discharged to the discharge chamber H2 via the discharge passage L2 and the one-way valve 16, and then discharged from the discharge chamber H2 to the high pressure side of the refrigerant circuit via the discharge port P2.
  • the scroll unit 1 that compresses the refrigerant flowing into the suction chamber H1 in the sealed space S and discharges the compressed refrigerant through the discharge chamber H2 is configured.
  • the scroll compressor 100 according to the present embodiment further includes a back pressure adjusting valve 50 for adjusting the pressure in the back pressure chamber H3.
  • the back pressure adjustment valve 50 is a differential pressure actuated check valve, and when the differential pressure between the pressure in the back pressure chamber H3 and the pressure in the suction chamber H1 is larger than a predetermined differential pressure, When the differential pressure is less than or equal to the predetermined differential pressure, the valve operates in the valve closing direction, and the pressure in the back pressure chamber H3 is changed between the pressure (high pressure) in the discharge chamber H2 and the suction chamber H1. The pressure is adjusted to be a predetermined pressure (intermediate pressure) intermediate to the pressure (low pressure).
  • the arrangement position, structure, and back pressure adjustment operation of the back pressure adjustment valve 50 will be described in detail later.
  • the scroll compressor 100 includes a pressure supply passage L3 and a pressure release passage L4 in addition to the fluid introduction passage L1 and the discharge passage L2, as shown in FIGS.
  • the pressure supply passage L3 is a passage for communicating the discharge chamber H2 and the back pressure chamber H3.
  • the lubricating oil separated from the compressed refrigerant in the discharge port P2 by the oil separator (not shown) is guided into the back pressure chamber H3 through the pressure supply passage L3, and each sliding portion in the back pressure chamber H3. Used for lubrication.
  • the discharge chamber H2 and the back pressure chamber H3 communicate with each other via the pressure supply passage L3, whereby the pressure in the back pressure chamber H3 increases.
  • the pressure supply passage L3 is specifically a passage formed in the rear housing 12, and one end opens to the discharge chamber H2 via the discharge port P2 and the other end contacts the bottom plate 2a.
  • An orifice OL is provided in the middle of the pressure supply passage L3. Therefore, the lubricating oil or the like separated from the compressed refrigerant in the discharge chamber H2 is appropriately decompressed by the orifice OL and supplied into the back pressure chamber H3 through the pressure supply passage L3.
  • the pressure relief passage L4 is a passage for communicating between the back pressure chamber H3 and the suction chamber H1.
  • the pressure release passage L4 passes through the small diameter portion 30a2 of the cylindrical portion 30a and extends in a direction orthogonal to the drive shaft 21.
  • One end of the pressure relief passage L4 opens to the back pressure chamber H3, and the other end of the pressure relief passage L4 opens to the fluid introduction passage L1.
  • FIG. 4 is an enlarged cross-sectional view of the main part including the back pressure regulating valve 50 and shows a valve open state.
  • the back pressure adjusting valve 50 includes a valve housing 51, a valve seat housing 52, a valve body 53, and an urging means 54, and is provided at the opening end of the pressure release passage L4 on the fluid introduction passage L1 side. Part of L4.
  • the valve housing 51 has a cylindrical portion 51a and a bottom wall portion 51b that closes one end of the cylindrical portion 51a, is formed in a bottomed cylindrical shape as a whole, and has a valve chamber 51c inside.
  • the cylindrical portion 51a and the bottom wall portion 51b are respectively formed with outlet holes 55 that open to the fluid introduction passage L1. In the present embodiment, two outlet holes 55 are opened in the cylindrical portion 51a and one outlet hole 55 is opened in the bottom wall portion 51b.
  • the outlet hole 55 communicates the space in the fluid introduction passage L ⁇ b> 1 and the valve chamber 51 c in the valve housing 51. Specifically, as for the two cylindrical part exit holes 55a opened in the cylindrical part 51a of the outlet holes 55, a part of each is located in the fluid introduction passage L1, as shown in FIG. On the other hand, as shown in FIG. 4, the bottom wall part outlet hole 55b opened in the bottom wall part 51b of the outlet hole 55 is entirely located in the fluid introduction passage L1.
  • the pressure regulating valve 50 is disposed so that at least a part of the outlet hole 55 is located in the fluid introduction passage L1.
  • the back pressure adjusting valve 50 is disposed so that the cylindrical portion outlet hole 55a opens at a position close to the pressure release passage L4 side in the fluid introduction passage L1.
  • the cylindrical portion outlet hole 55a is positioned so as to straddle the boundary between the fluid introduction passage L1 and the pressure release passage L4.
  • cylindrical portion outlet hole 55a is formed on the opening end side (valve seat housing 52 side) of the cylindrical portion 51a in a direction parallel to the extending direction of the fluid introduction passage L1 (in other words, a fluid indicated by a white arrow in FIG. 4). It opens toward the direction parallel to the flow of the refrigerant flowing in the introduction passage L1.
  • the bottom wall portion outlet hole 55b opens in a direction orthogonal to the fluid introduction passage L1.
  • at least a part of the plurality of outlet holes 55 is open in a direction parallel to the extending direction of the fluid introduction passage L1.
  • the valve seat housing 52 constitutes one end of the back pressure regulating valve 50 and is fitted to the opening end of the pressure release passage L4 on the fluid introduction passage L1 side.
  • the valve seat housing 52 is formed, for example, in a bottomed cylindrical shape having an outer diameter that matches the inner diameter of the pressure release passage L4, and has a cylindrical portion 52a and a bottom wall portion 52b that is located on one end side of the cylindrical portion 52a. The other end side of the cylindrical portion 52 a is fixed to the opening end side of the valve housing 51.
  • a valve seat 52c having a conical surface is formed by contacting and separating the valve body 53 at a portion on the bottom wall 52b side of the cylindrical portion 52a.
  • the valve seat housing 52 has an inlet hole 52d that is formed through the bottom wall portion 52b and opens to the back pressure chamber H3 side of the pressure release passage L4. One end of the inlet hole 52d opens to the valve seat 52c, and the other end opens to the space on the back pressure chamber H3 side of the pressure release passage L4.
  • the valve body 53 opens and closes the inlet hole 52d, is formed in a ball shape, and is urged toward the valve seat 52c by the urging means 54.
  • the biasing means 54 is connected to the coil spring 54a whose one end is in contact with the bottom wall 51b of the valve housing 51 and the other end of the coil spring 54a and biases the valve body 53 in the valve closing direction.
  • the back pressure regulating valve 50 includes a valve housing 51, a valve seat housing 52, an inlet hole 52d that opens to the back pressure chamber H3 side of the pressure release passage L4, and a valve body 53 that opens and closes the inlet hole 52d. And an urging means 54 and outlet holes 55 (55a, 55b) that open to the fluid introduction passage L1, and the pressure difference between the pressure in the back pressure chamber H3 and the pressure in the suction chamber H1 is a predetermined difference.
  • the valve body 53 When the pressure is greater than the pressure, the valve body 53 is moved in the valve opening direction, and when the differential pressure is equal to or less than the predetermined differential pressure, the valve body 53 is moved in the valve closing direction.
  • the back pressure adjusting valve 50 is in a closed state, and the back pressure chamber H3 is communicated with the discharge chamber H2 via the pressure supply passage L3 and the orifice OL, and the pressure in the back pressure chamber H3 is reduced by lubricating oil or the like. It will be described below as it is becoming higher.
  • the back pressure regulating valve 50 closes the inlet hole 52d by pressing the valve body 53 against the valve seat portion 52c by the urging means 54.
  • the urging force by the coil spring 54a of the urging means 54 and the pressure in the suction chamber H1 transmitted through the fluid introduction passage L1 and the outlet hole 55 act on the valve body 53.
  • the pressure in the back pressure chamber H3 gradually increases, and a predetermined differential pressure in which the differential pressure between the pressure in the back pressure chamber H3 and the pressure in the suction chamber H1 is determined based on the biasing force of the biasing means 54.
  • the valve body 53 moves in the valve opening direction against the urging force of the urging means 54.
  • the back pressure adjusting valve 50 reduces the pressure in the back pressure chamber H3.
  • Lubricating oil or the like guided along the fluid introduction passage L1 through the back pressure adjusting valve 50 is returned to the scroll unit 1 side (space H4 side) along the flow in the fluid introduction passage L1.
  • the valve body 53 moves in the valve closing direction by the urging force of the urging means 54.
  • the back pressure regulating valve 50 increases the pressure in the back pressure chamber H3.
  • the refrigerant in the suction chamber H1 is guided to the space H4 near the outer peripheral portion of the scroll unit 1 via the fluid introduction passage L1, and via the pressure supply passage L3.
  • the lubricating oil mainly contained in the refrigerant in the discharge chamber H2 is guided to the back pressure chamber H3, and the lubricating oil and the like in the back pressure chamber H3 are fluidized through the pressure release passage L4 and the back pressure adjustment valve 50.
  • it can be returned to the scroll unit 1 side on the flow in the fluid introduction passage L1.
  • the lubricating oil or the like enters the fluid introduction passage L1 via the pressure release passage L4 and the back pressure adjustment valve 50.
  • the lubricating oil or the like from the back pressure chamber H3 can be supplied to the scroll unit 1 together with the refrigerant containing a small amount of lubricating oil from the suction chamber H1.
  • the scroll compressor 100 that can appropriately lubricate the sliding portion of the scroll unit 1.
  • the fluid introduction passage L1 is formed in cooperation with the inner peripheral surface of the peripheral wall portion 11a of the front housing 11 and the outer peripheral surface of the bearing holding portion 30 (specifically, the inner surface of the concave portion 30c). It was. Thereby, the fluid introduction passage L1 can be easily formed.
  • the back pressure adjusting valve 50 opens to the inlet hole 52d that opens to the back pressure chamber H3 side of the pressure release passage L4, the valve body 53 that opens and closes the inlet hole 52d, and the fluid introduction passage L1.
  • An outlet hole 55 and when the differential pressure between the pressure in the back pressure chamber H3 and the pressure in the suction chamber H1 is larger than a predetermined differential pressure, the valve body 53 is moved in the valve opening direction, and the differential pressure A so-called differential pressure actuated check valve that moves the valve body 53 in the valve closing direction when the pressure is not more than the predetermined differential pressure is employed.
  • the back pressure adjusting valve 50 that does not require electric power and that can autonomously adjust the pressure in the back pressure chamber H3 by simply sensing the differential pressure.
  • the back pressure adjusting valve 50 is of the differential pressure operation type, if an obstruction that obstructs the flow of the fluid flowing out from the outlet hole 55 is in the vicinity of the outlet hole 55, the downstream of the valve body 53 Pressure loss on the side may be excessive. In this case, the back pressure adjustment valve 50 may not operate normally.
  • the cylindrical portion outlet hole 55a of the outlet holes 55 opens at a position close to the pressure release passage L4 side in the fluid introduction passage L1.
  • the back pressure adjusting valve 50 is disposed so that the cylindrical portion outlet hole 55a (at least a part of the outlet hole) opens at a position close to the pressure release passage L4 side in the fluid introduction passage L1. Thereby, at least a part (55a) of the outlet holes 55 can be opened in a wide space free of obstructions. As a result, the pressure loss on the downstream side of the valve body 53 can be reduced, and the back pressure regulating valve 50 can be operated appropriately. Therefore, as in the present embodiment, CO 2 refrigerant is employed as the refrigerant, and the differential pressure between the pressure in the back pressure chamber H3 and the pressure in the suction chamber H1 is higher than the conventional pressure, and is higher in the back pressure adjustment valve 50.
  • a back pressure regulating valve 50 that can be appropriately operated according to a predetermined differential pressure.
  • at least a part (cylindrical portion outlet hole 55a) of the plurality of outlet holes 55 is open in a direction parallel to the extending direction of the fluid introduction passage L1.
  • the fluid introduction passage L1 has a drive shaft between the formation portions of the through holes 14a through which the fastening bolts 14 are inserted in the peripheral edge portion (that is, the cylindrical portion 30a) of the bearing holding portion 30. It was set as the structure extended along the recessed part 30c extended in the extending
  • the movable scroll 3 is accommodated in the bearing holding portion 30 (specifically, the large-diameter portion 30a1).
  • the present invention is not limited to this, and as shown in FIG. It is good also as a structure accommodated.
  • the peripheral portion of the bottom plate 2 a of the fixed scroll 2 is formed with a large diameter portion 2 a 3 that protrudes toward the bearing holding portion 30, and the movable scroll 3 is accommodated in the large diameter portion 2 a 3 of the fixed scroll 2.
  • maintenance part 30 should just be provided with the small diameter part 30a2 which fits the bearing 17 in the cylindrical part 30a.
  • the fluid introduction passage L1 communicates with the inner surface of the peripheral wall portion 11a of the front housing 11, the outer peripheral surface of the bearing holding portion 30 (the inner surface of the concave portion 30c), and the outer peripheral surface of the fixed scroll 2 (the concave portion 30c). And the inner surface of the recess 2c extending in this manner.
  • the number of the outlet holes 55 of the back pressure adjusting valve 50, the opening position and the opening direction, and the formation position of the fluid introduction passage L1 can be set as appropriate.
  • the number of the outlet holes 55 is three, but may be one, two, or four or more.
  • the cylindrical portion outlet hole 55a has been described as an example of the case where the cylindrical portion outlet hole 55a is positioned so as to straddle the boundary between the fluid introduction passage L1 and the pressure release passage L4.
  • the entirety may be located in the fluid introduction passage L1. If the cylindrical portion outlet hole 55a is opened at a position close to the pressure release passage L4 in the fluid introduction passage L1, pressure loss on the downstream side of the valve body 53 can be effectively reduced, The pressure regulating valve 50 can be appropriately operated. Further, if the back pressure adjusting valve 50 is provided at the opening end of the pressure release passage L4 on the fluid introduction passage side, the lubricant in the back pressure chamber H3 is slid on the scroll unit 1 through the fluid introduction passage L1. Can be returned to the site.
  • the scroll compressor 100 has been described by taking a so-called inverter-integrated case as an example.
  • the present invention is not limited to this, and the scroll compressor 100 may be separate from the inverter 40.
  • the housing 10 only needs to include the front housing 11 and the rear housing 12.
  • the refrigerant has been assumed to be CO 2 refrigerant is not limited to this, it is possible to apply the appropriate refrigerant.

Abstract

Provided is a scroll-type compressor capable of appropriately lubricating a sliding site inside a scroll unit. The scroll-type compressor 100 includes: a housing 10 having an intake chamber H1 and a discharge chamber H2; a scroll unit 1 that compresses and discharges refrigerant, inside a sealed space S between a fixed scroll 2 and a movable scroll 3; a bearing holding unit 30 holding a bearing 17 that rotatably supports a drive shaft 21 and forming a back pressure chamber H3 between the bearing holding unit 30 and the movable scroll 3; a back pressure adjustment valve 50; a fluid introduction passage L1 that connects the intake chamber H1 and a space H4 in the vicinity of the outer circumferential section of the scroll unit 1; a pressure supply passage L3 that connects the discharge chamber H2 and the back pressure chamber H3; and a pressure release passage L4 that connects the back pressure chamber H3 and the fluid introduction passage L1. The back pressure adjustment valve 50 is configured so as to be provided at an opening end on the fluid introduction passage L1 side of the pressure release passage L4.

Description

スクロール型圧縮機Scroll compressor
 本発明は、互いに噛み合わされる固定スクロール及び可動スクロールを有し、両スクロール間の空間に流入する冷媒等の流体を圧縮するスクロール型圧縮機に関する。 The present invention relates to a scroll compressor that has a fixed scroll and a movable scroll meshed with each other, and compresses a fluid such as a refrigerant flowing into a space between both scrolls.
 この種のスクロール型圧縮機は、互いに噛み合わされる固定スクロール及び可動スクロールを有するスクロールユニットを備え、例えば、車両用空調装置の冷媒回路に組み込まれ、冷媒回路の冷媒を圧縮するために用いられる。このスクロールユニットは、駆動軸を介して可動スクロールが固定スクロールの軸心周りに公転旋回運動されることにより、両スクロール間の密閉空間の容積を徐々に減少させ、吸入室に流入された冷媒ガス等の流体を密閉空間内で圧縮し、この圧縮流体を吐出室を介して吐出するように構成されている。
 この種のスクロール型圧縮機としては、例えば、特許文献1に記載されたスクロール型圧縮機が一般的に知られている。特許文献1に記載されたスクロール型圧縮機は、可動スクロールと、駆動軸の可動スクロール側端部を回動可能に支持する軸受保持部との間に背圧室を有する。この背圧室は、吐出室と吸入室に連通している。背圧室と吸入室とを連通する通路の途上には背圧調整弁が設けられ、この背圧調整弁により、背圧室の圧力が吸入室の圧力と吐出室の圧力の中間の圧力になるように調整されている。そして、特許文献1に記載されたスクロール型圧縮機では、背圧室内の駆動軸等の摺動部位の潤滑のために、潤滑油が背圧室内に供給されている。そして、この背圧室内に供給された潤滑油は、背圧室と吸入室とを連通する通路及びこの通路の途上に設けられる背圧調整弁を経由して吸入室内に直接排出される。
This type of scroll compressor includes a scroll unit having a fixed scroll and a movable scroll meshed with each other. For example, the scroll compressor is incorporated in a refrigerant circuit of a vehicle air conditioner and used to compress the refrigerant in the refrigerant circuit. In this scroll unit, the movable scroll is revolved around the axis of the fixed scroll via the drive shaft, thereby gradually reducing the volume of the sealed space between the two scrolls, and the refrigerant gas flowing into the suction chamber Or the like is compressed in a sealed space, and the compressed fluid is discharged through a discharge chamber.
As this type of scroll compressor, for example, a scroll compressor described in Patent Document 1 is generally known. The scroll compressor described in Patent Document 1 includes a back pressure chamber between the movable scroll and a bearing holding portion that rotatably supports the movable scroll side end portion of the drive shaft. The back pressure chamber communicates with the discharge chamber and the suction chamber. A back pressure adjusting valve is provided in the middle of the passage that connects the back pressure chamber and the suction chamber, and the back pressure adjusting valve changes the pressure in the back pressure chamber to a pressure intermediate between the pressure in the suction chamber and the pressure in the discharge chamber. It has been adjusted to be. In the scroll compressor described in Patent Document 1, lubricating oil is supplied into the back pressure chamber in order to lubricate sliding parts such as a drive shaft in the back pressure chamber. The lubricating oil supplied into the back pressure chamber is directly discharged into the suction chamber via a passage communicating the back pressure chamber and the suction chamber and a back pressure adjusting valve provided in the middle of the passage.
特開2015−38327号公報Japanese Patent Laying-Open No. 2015-38327
 しかしながら、この種のスクロール型圧縮機では、潤滑油は、背圧室内の駆動軸等の摺動部位に限らず、スクロールユニット内の摺動部位にも必要である。吸入室からスクロールユニットに供給される冷媒ガスには微量の潤滑油が含まれ得るが、微量の潤滑油ではスクロールユニット内の摺動部位の潤滑が不十分な場合もある。
 この点について、上記特許文献1に記載のスクロール型圧縮機では、潤滑油が背圧室に供給されるだけであるため、スクロールユニット内の摺動部位の潤滑が不十分になる可能性がある。
 本発明は、このような実情に着目してなされたものであり、背圧室内の摺動部位に限らず、スクロールユニット内の摺動部位の潤滑を適切に行うことが可能なスクロール型圧縮機を提供することを目的とする。
However, in this type of scroll compressor, the lubricating oil is required not only for the sliding part such as the drive shaft in the back pressure chamber but also for the sliding part in the scroll unit. The refrigerant gas supplied from the suction chamber to the scroll unit may contain a small amount of lubricating oil, but there may be insufficient lubrication of the sliding portion in the scroll unit with a small amount of lubricating oil.
In this regard, in the scroll compressor described in Patent Document 1, since the lubricating oil is only supplied to the back pressure chamber, there is a possibility that the sliding portion in the scroll unit may be insufficiently lubricated. .
The present invention has been made paying attention to such a situation, and is not limited to a sliding portion in the back pressure chamber, and is a scroll type compressor capable of appropriately lubricating the sliding portion in the scroll unit. The purpose is to provide.
 本発明の一側面によるスクロール型圧縮機は、流体の吸入室及び吐出室を内部に有するハウジングと、前記ハウジング内に設けられ、互いに噛み合わされる固定スクロール及び可動スクロールを有し、前記可動スクロールが駆動軸を介して前記固定スクロールの軸心周りに公転旋回運動されることにより、前記吸入室に流入された流体を両スクロール間の密閉空間内で圧縮し、この圧縮流体を前記吐出室を介して吐出するスクロールユニットと、前記ハウジング内に設けられ、前記駆動軸の可動スクロール側端部を回動可能に支持する軸受部を保持すると共に前記可動スクロールとの間に背圧室を形成する軸受保持部と、前記背圧室内の圧力調整用の背圧調整弁と、を備えるスクロール型圧縮機において、前記ハウジングの周壁部の内周面と前記軸受保持部の外周面とにより協働して形成され、前記吸入室と前記スクロールユニットの外周部付近の空間とを連通する流体導入通路と、前記吐出室と前記背圧室とを連通する圧力供給通路と、前記背圧室と前記流体導入通路とを連通する放圧通路と、を含み、前記背圧調整弁は、前記放圧通路の流体導入通路側開口端に設けられる。 A scroll compressor according to one aspect of the present invention includes a housing having a fluid suction chamber and a discharge chamber therein, and a fixed scroll and a movable scroll that are provided in the housing and mesh with each other. By revolving around the axis of the fixed scroll via the drive shaft, the fluid flowing into the suction chamber is compressed in a sealed space between the two scrolls, and this compressed fluid is passed through the discharge chamber. And a scroll unit that is disposed in the housing and holds a bearing portion that rotatably supports the movable scroll side end portion of the drive shaft and forms a back pressure chamber between the movable scroll and the scroll unit. In a scroll compressor comprising a holding portion and a back pressure adjusting valve for adjusting pressure in the back pressure chamber, an inner peripheral surface of a peripheral wall portion of the housing A fluid introduction passage formed in cooperation with the outer peripheral surface of the bearing holding portion and communicating the suction chamber and the space near the outer peripheral portion of the scroll unit, and the discharge chamber and the back pressure chamber. A pressure supply passage, and a pressure release passage communicating the back pressure chamber and the fluid introduction passage. The back pressure adjusting valve is provided at the fluid introduction passage side opening end of the pressure release passage.
 前記一側面によるスクロール型圧縮機によれば、流体導入通路を経由して、吸入室内の流体をスクロールユニットの外周部付近の空間に導き、圧力供給通路を経由して、吐出室内の流体を背圧室に導き、放圧通路及び背圧調整弁を経由して、背圧室内の流体を流体入通路の途上に導くと共に流体導入通路内の流れにのせてスクロールユニット側に戻すことができる。これにより、吸入室から流体導入通路に流れる流体中の潤滑油が微量であったとしても、放圧通路及び背圧調整弁を経由して流体導入通路の途上に潤滑油を戻し、この背圧室からの潤滑油を吸入室からの潤滑油と共にスクロールユニットに供給することができる。
 このようにして、スクロールユニットの摺動部位の潤滑を適切に行うことが可能なスクロール型圧縮機を提供することができる。
According to the scroll compressor according to the one aspect, the fluid in the suction chamber is guided to the space near the outer peripheral portion of the scroll unit through the fluid introduction passage, and the fluid in the discharge chamber is routed through the pressure supply passage. It is led to the pressure chamber, and the fluid in the back pressure chamber can be guided to the middle of the fluid inlet passage via the pressure release passage and the back pressure regulating valve, and returned to the scroll unit side on the flow in the fluid introduction passage. As a result, even if the amount of lubricating oil in the fluid flowing from the suction chamber to the fluid introducing passage is very small, the lubricating oil is returned to the middle of the fluid introducing passage through the pressure releasing passage and the back pressure adjusting valve. Lubricating oil from the chamber can be supplied to the scroll unit together with lubricating oil from the suction chamber.
In this way, it is possible to provide a scroll compressor that can appropriately lubricate the sliding portion of the scroll unit.
発明の一実施形態によるスクロール型圧縮機の概略断面図である。It is a schematic sectional drawing of the scroll compressor by one Embodiment of invention. 記スクロール型圧縮機の軸受保持部の締結状態を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the fastening state of the bearing holding | maintenance part of the scroll compressor. 記スクロール型圧縮機における冷媒流れを説明するためのブロック図である。It is a block diagram for demonstrating the refrigerant | coolant flow in the scroll-type compressor. 記スクロール型圧縮機の要部を示した要部断面図である。It is principal part sectional drawing which showed the principal part of the scroll-type compressor. 記スクロール型圧縮機の軸受保持部及び固定スクロールの変形例示した図である。It is the figure which illustrated the modification of the bearing holding | maintenance part and fixed scroll of the scroll-type compressor.
 以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
 図1は、本実施形態に係るスクロール型圧縮機の概略断面図である。
 本実施形態によるスクロール型圧縮機100は、例えば車両用空調装置の冷媒回路に組み込まれ、冷媒回路の低圧側から吸入した冷媒(流体)を圧縮して吐出するものである。
このスクロール型圧縮機100は、スクロールユニット1と、冷媒の吸入室H1及び吐出室H2を内部に有するハウジング10と、スクロールユニット1を駆動させる駆動部としての電動モータ20と、電動モータ20の駆動軸21の一端部(図1では上端部)を回動可能に支持するための軸受保持部30と、電動モータ20の駆動制御用のインバータ40と、を備えている。なお、本実施形態においては、前記冷媒としてCO冷媒が採用されているものとする。また、スクロール型圧縮機100は、いわゆるインバータ一体型の場合を一例に挙げて説明する。
 前記スクロールユニット1は、互いに噛み合わされる固定スクロール2及び可動スクロール3を有する。固定スクロール2は、円盤状の底板2a上に渦巻きラップ2bが一体形成されてなる。可動スクロール3は、円盤状の底板3a上に渦巻きラップ3bが一体形成されてなる。また、固定スクロール2の底板2aは可動スクロール3の底板3aより大きな径を有する。
 両スクロール2,3は、その両渦巻きラップ2b,3bを噛み合わせるように配置される。詳しくは、両スクロール2,3は、固定スクロール2の渦巻きラップ2bの突出側の端縁が可動スクロール3の底板3aとの間に所定の隙間を有し、可動スクロー3の渦巻きラップ3bの突出側の端縁が固定スクロール2の底板2aとの間に所定の隙間を有するように配設される。圧縮運転中に変動し得るこの隙間は圧縮運転中に適切な範囲に維持され、後述する密閉空間(圧縮室)Sの気密性が適切に維持される。
 また、両スクロール2,3は、両渦巻きラップ2b,3bの周方向の角度が互いにずれた状態で、両渦巻きラップ2b,3bの側壁が互いに部分的に接触するように配設される。これにより、両渦巻きラップ2b,3b間に三日月状の密閉空間(圧縮室)Sが形成される。
 固定スクロール2は、ハウジング10の後述するリアハウジング12に固定されると共に、その径方向中央部に、リアハウジング12側に開口する溝部2a1を有する。詳しくは、この溝部2a1は、底板2aの背面(つまり、可動スクロール3とは反対側の端面)に形成されている。
 可動スクロール3は、その自転が阻止された状態で、駆動軸21を介して固定スクロール2の軸心周りに公転旋回運動可能に構成されている。これにより、スクロールユニット1は、両スクロール2,3間、詳しくは、両渦巻きラップ2b,3b間に形成される密閉空間Sを中央部に移動させ、その容積を徐々に減少させる。その結果、スクロールユニット1は、渦巻きラップ2b,3bの外端部側から密閉空間S内に流入する冷媒を密閉空間S内で圧縮する。
 前記ハウジング10は、図1に示すように、主に、スクロールユニット1、電動モータ20、軸受保持部30、及び、インバータ40を、その内側に収容するフロントハウジング11と、リアハウジング12と、インバータカバー13と、を有する。そして、これら(11,12,13)がボルト14等の締結手段によって一体的に締結されてスクロール型圧縮機100のハウジング10が構成される。
 前記フロントハウジング11は、概ね円環状の周壁部11aと仕切壁部11bとを有する。フロントハウジング11は、その内部空間が、仕切壁部11bにより主にスクロールユニット1、電動モータ20、及び、軸受保持部30を収容するための収容空間とインバータ40を収容するための収容空間とに仕切られる。周壁部11aの一端側(図1では上側)の開口はリアハウジング12によって閉止される。また、周壁部11aの他端側(図1では下側)の開口はインバータカバー13によって閉止される。仕切壁部11bには、その径方向中央部に駆動軸21の他端部(図1では下端部)を支持するベアリング15を保持する筒状の支持部11b1が、周壁部11aの一端側に向って突設されている。
 また、周壁部11aには、冷媒の吸入ポートP1が形成されている。冷媒回路の低圧側からの冷媒は、この吸入ポートP1を介してフロントハウジング11内に吸入される。したがって、フロントハウジング11内の空間は吸入室H1として機能している。なお、冷媒が吸入室H1内で電動モータ20の周囲等を流通することにより、電動モータ20が冷却されるように構成されている。そして、図1において、電動モータ20の上側の空間は、電動モータ20の下側の空間と連通し、電動モータ20の下側の空間と共に一つの吸入室H1を構成する。また、吸入室H1において、冷媒は微量の潤滑油との混合流体として流れている。
 前記リアハウジング12は、フロントハウジング11の周壁部11aの外径に合わせた外径を有する円盤状に形成されている。そして、このリアハウジング12は、その周縁部が周壁部11aの一端側端部(図1では、上端部)に適宜本数のボルト14等の締結手段によって締結され、フロントハウジング11の一端側の開口を閉止する。
 また、このリアハウジング12の一端面には、固定スクロール2の底板2aの背面のうちの周縁部(言い換えると、溝部2a1を囲む部位)が当接されている。このリアハウジング12の一端面と底板2aの溝部2a1とにより、冷媒の吐出室H2が区画される。底板2aの中心部には、圧縮冷媒の吐出通路L2が形成される。そして、この吐出室H2には、一方向弁(吐出室H2からスクロールユニット1側への流れを規制する逆止弁)16が吐出通路L2の開口を覆うように設けられている。吐出室H2内には、両渦巻きラップ2b,3b間に形成される密閉空間Sで圧縮された冷媒が吐出通路L2及び一方向弁16を介して吐出される。また、リアハウジング12には、吐出室H2と外部(冷媒回路の高圧側)とを連通する吐出ポートP2が形成されている。吐出室H2内の圧縮冷媒は、この吐出ポートP2を介して冷媒回路の高圧側に吐出される。
 なお、図示を省略するが、例えば、吐出ポートP2内には、吐出ポートP2に流入した圧縮冷媒から潤滑油を分離するための適宜のオイルセパレータが設けられる。このオイルセパレータにより潤滑油が分離された冷媒(微量の潤滑油が残存する冷媒を含む)が吐出ポートP2を介して冷媒回路の高圧側に吐出される。一方、オイルセパレータにより分離された潤滑油は、後述する圧力供給通路L3へ導かれる。
 前記電動モータ20は、駆動軸21と、ロータ22と、ロータ22の径方向外側に配置されるステータコアユニット23とを含んで構成され、例えば、三相交流モータが適用される。例えば車両のバッテリー(図示省略)からの直流電流が、インバータ40により交流電流に変換され、電動モータ20へ給電される。
 前記駆動軸21は、可動スクロール3にクランク機構を介して連結され、電動モータ20の回転力を可動スクロール3に伝達するものである。駆動軸21の一端部(つまり、可動スクロール3側端部)は、軸受保持部30に形成された貫通孔を挿通して、ベアリング17によって回動可能に支持され、駆動軸21の他端部(インバータ40側端部)は、支持部11b1に嵌合されるベアリング15によって回転可能に支持される。本実施形態において、上記ベアリング17が本発明に係る「軸受部」に相当する。
 前記ロータ22は、その径方向中心に形成された軸孔に嵌合(例えば圧入)される駆動軸21を介して、ステータコアユニット23の径方向内側で回転可能に支持される。インバータ40からの給電によりステータコアユニット23に磁界が発生すると、ロータ22に回転力が作用して駆動軸21が回転駆動される。
 前記軸受保持部30は、フロントハウジング11内に設けられ、駆動軸21の可動スクロール3側端部を回動可能に支持する軸受部としてのベアリング17を保持するものである。軸受保持部30は、例えば、固定スクロール2の底板2aの外径と合わせた外径を有する有底筒状に形成され、円筒部30aと、円筒部30aの一端側に位置する底壁部30bとを有する。円筒部30aは、その開口側の内径が底壁部30b側の内径より大きくなるように拡径され、その大径部位30a1と小径部位30a2の間を接続する肩部30a3を有する。大径部位30a1と肩部30a3とによって区画される空間内に可動スクロール3が収容される。円筒部30aの開口側端部は、底板2aの可動スクロール3側端面のうちの周縁部に当接される。したがって、軸受保持部30の開口は、固定スクロール2によって閉止される。また、円筒部30aの小径部位30a2には、ベアリング17が嵌合される。そして、底壁部30bの径方向中央部には、駆動軸21の可動スクロール3側端部を挿通させるための貫通孔が開口されている。ベアリング17と底壁部30bとの間には適宜のシール部材18aが設けられ、後述する背圧室H3の気密性が確保されている。
 軸受保持部30の肩部30a3と可動スクロール3の底板3aとの間には、環状のスラストプレート19が配置される。肩部30a3は、スラストプレート19を介して可動スクロール3からのスラスト力を受ける。肩部30a3及び底板3aのスラストプレート19と当接する部位には、それぞれシール部材18bが配置される。
 また、シール部材18a,18bにより、底板3aと小径部位30a2との間に、背圧室H3が区画されている。つまり、軸受保持部30は、可動スクロール3との間に背圧室H3を形成する。また、フロントハウジング11の周壁部11aの内周面と軸受保持部30の円筒部30aの外周面との間には、吸入室H1とスクロールユニット1の両渦巻きラップ2b,3bの外周部付近の空間H4とを連通し、吸入室H1から空間H4へ冷媒(詳しくは冷媒と微量の潤滑油との混合流体)を導入するための流体導入通路L1が形成される。つまり、本実施形態では、吸入室H1と空間H4とを連通する流体導入通路L1は、フロントハウジング11の周壁部11aの内周面と軸受保持部30の円筒部30aの外周面とにより協働して形成される。このため、空間H4内の圧力は吸入室H1内の圧力と等しい。
 本実施形態では、前記クランク機構は、底板3aの背面(背圧室H3側端面)に突出形成された円筒状のボス部24と、駆動軸21の可動スクロール3側端部に設けたクランク25に偏心状態で取付けられた偏心ブッシュ26と、ボス部24に嵌合されるすべり軸受27と、を含んで構成される。偏心ブッシュ26はボス部24内にすべり軸受27を介して回転可能に支持される。なお、駆動軸21の可動スクロール3側端部には、可動スクロール3の動作時の遠心力に対向するバランサウエイト28が取付けられる。また、図示を省略したが、可動スクロール3の自転を阻止する自転阻止機構が適宜に備えられる。これにより、可動スクロール3は、その自転が阻止された状態で、前記クランク機構を介して固定スクロール2の軸心周りに公転旋回運動可能に構成される。
 図2は、軸受保持部30の締結状態を説明するための概略断面図であり、軸受保持部30の締結用のボルト14を含む断面位置で示している。
 本実施形態において、軸受保持部30は、図2に示すように、リアハウジング12との間に固定スクロール2を挟んだ状態で、締結用のボルト14により、固定スクロール2及びリアハウジング12と一体的に締結されている。
 具体的には、固定スクロール2は、底板2aの背面のうちの周縁部をリアハウジング12の一端面に当接させると共に、底板2aの可動スクロール3側の端面のうちの周縁部を軸受保持部30の円筒部30aの開口側端部に当接させ、リアハウジング12と軸受保持部30との間に挟持されている。軸受保持部30及び固定スクロール2は、その周縁部(詳しくは円筒部30a及び底板2aの周縁部)の周方向に離間した複数個所にて駆動軸21の延伸方向に延びるように開孔される貫通孔であって、固定スクロール2やリアハウジング12との締結用のボルト14が挿通される貫通孔14aを有している。また、この貫通孔の開口位置に合わせて、雌ネジ部がリアハウジング12の一端面側に形成されている。ボルト14は、円筒部30a及び底板2aの貫通孔14aに挿通され、リアハウジング12の雌ネジ部に螺合される。このようにして、軸受保持部30は固定スクロール2及びリアハウジング12と一体的に締結されている。
 本実施形態では、流体導入通路L1は、軸受保持部30の周縁部(つまり円筒部30a)のうちの貫通孔14aの形成部位の間にて駆動軸21の延伸方向に延びる凹部30c(図1及び後述する図4参照)に沿って伸びている。つまり、流体導入通路L1は、円筒部30aにおいて貫通孔14aの形成部位を避けた部分にて軽量化のため適宜に駆動軸21側に向って凹ませた部位(凹部30c)と、この部位と対面する周壁部11aの内周面の対応部位とにより、主に区画されている。そして、流体導入通路L1の一端部は吸入室H1に開口し、流体導入通路L1の他端部は円筒部30aの端部を貫通して空間H4に開口している。
 図3は、スクロール型圧縮機100における冷媒流れを説明するためのブロック図である。
 冷媒回路の低圧側からの冷媒は、吸入ポートP1を介して吸入室H1に導入され、その後、流体導入通路L1を介してスクロールユニット1の外端部付近の空間H4に導かれる。そして、空間H4内の冷媒は、両渦巻きラップ2b,3b間の密閉空間S内に取り込まれ、この密閉空間S内で圧縮される。圧縮された冷媒は、吐出通路L2及び一方向弁16を経由して吐出室H2に吐出され、その後、吐出室H2から吐出ポートP2を介して冷媒回路の高圧側に吐出される。このようにして、吸入室H1に流入された冷媒を密閉空間S内で圧縮し、この圧縮冷媒を吐出室H2を介して吐出するスクロールユニット1が構成される。
 ここで、図1に戻って、本実施形態におけるスクロール型圧縮機100は、背圧室H3内の圧力調整用の背圧調整弁50を更に備えている。
 本実施形態において、背圧調整弁50は、差圧作動式の逆止弁であり、背圧室H3内の圧力と吸入室H1内の圧力との差圧が所定差圧より大きい場合に、開弁方向に作動し、前記差圧が前記所定差圧以下の場合に、閉弁方向に作動し、背圧室H3内の圧力を吐出室H2内の圧力(高圧)と吸入室H1内の圧力(低圧)との中間の所定圧力(中圧)になるように調整するものである。この背圧調整弁50の配置位置、構造及び背圧調整動作については後に詳述する。
 本実施形態において、スクロール型圧縮機100は、図1~図3に示すように、流体導入通路L1及び吐出通路L2に加えて、圧力供給通路L3及び放圧通路L4を備える。
 前記圧力供給通路L3は、吐出室H2と背圧室H3とを連通するための通路である。前記オイルセパレータ(図示省略)により吐出ポートP2内の圧縮冷媒から分離された潤滑油は、圧力供給通路L3を介して背圧室H3内へ導かれて、背圧室H3内の各摺動部位の潤滑に供される。また、圧力供給通路L3を介して吐出室H2と背圧室H3が連通されることにより、背圧室H3内の圧力が上昇する。
 本実施形態では、圧力供給通路L3は、具体的には、リアハウジング12に形成される通路であって一端が吐出ポートP2を介して吐出室H2に開口すると共に他端が底板2aとの当接部位に開口する通路と、この通路に接続されると共に底板2aを貫通する通路と、この底板2aを貫通する通路に接続されると共に円筒部30aを貫通して背圧室H3に開口する通路と、を含んで構成される。圧力供給通路L3の途上には、オリフィスOLが設けられる。したがって、吐出室H2内の圧縮冷媒から分離された潤滑オイル等は、オリフィスOLにより適宜に減圧されて圧力供給通路L3を介して背圧室H3内に供給される。
 前記放圧通路L4は、背圧室H3と吸入室H1との間を連通するための通路である。
 本実施形態では、放圧通路L4は、具体的には、円筒部30aのうちの小径部位30a2を貫通し、駆動軸21と直交する方向に延びている。そして、放圧通路L4の一端部は背圧室H3に開口し、放圧通路L4の他端部は流体導入通路L1に開口している。
 次に、本実施形態における背圧調整弁50の配置位置及び構造を図1及び図4を参照して詳述する。図4は、背圧調整弁50を含む要部拡大断面図であり、開弁状態を示している。
 背圧調整弁50は、弁ハウジング51と、弁座ハウジング52と、弁体53と、付勢手段54とを備え、放圧通路L4の流体導入通路L1側開口端に設けられ、放圧通路L4の一部を構成する。
 前記弁ハウジング51は、円筒部51aと、円筒部51aの一端を閉止する底壁部51bとを有し、全体として有底筒状に形成され、内部に弁室51cを有する。
 円筒部51a及び底壁部51bには、流体導入通路L1に開口する出口孔55がそれぞれ形成されている。本実施形態では、出口孔55は、円筒部51aに二つ開口され、底壁部51bに一つ開口されている。出口孔55は、流体導入通路L1内の空間と弁ハウジング51内の弁室51cとを連通する。
 具体的には、出口孔55のうちの円筒部51aに開口される二つの円筒部出口孔55aは、図4に示すように、それぞれの一部が流体導入通路L1内に位置している。一方、出口孔55のうちの底壁部51bに開口される一つの底壁部出口孔55bは、図4に示すように、その全体が流体導入通路L1内に位置している。このように、本実施形態では、圧調整弁50は、出口孔55の少なくとも一部が、流体導入通路L1内に位置するように配置されている。つまり、複数の出口孔55の少なくとも一つ(底壁部出口孔55b)全体が流体導入通路L1内に位置し、円筒部出口孔55aについては、部分的に流体導入通路L1内に位置している。
 より具体的には、背圧調整弁50は、円筒部出口孔55aが流体導入通路L1内における放圧通路L4側に寄せた位置で開口するように配置されている。詳しくは、円筒部出口孔55aは、流体導入通路L1と放圧通路L4との境界を跨ぐように位置している。
 また、円筒部出口孔55aは、円筒部51aの開口端側(弁座ハウジング52側)にて、流体導入通路L1の延伸方向と平行な方向(言い換えると、図4に白抜き矢印で示す流体導入通路L1内を流れる冷媒の流れと平行な方向)に向かって開口している。一方、底壁部出口孔55bは、流体導入通路L1と直交する方向に向かって開口している。このように、本実施形態では、複数の出口孔55の少なくとも一部(円筒部出口孔55a)は、流体導入通路L1の延伸方向と平行な方向に向かって開口している。
 前記弁座ハウジング52は、背圧調整弁50の一端部を構成し、放圧通路L4の流体導入通路L1側の開口端部に嵌合等される。弁座ハウジング52は、例えば、放圧通路L4の内径に合わせた外径を有する有底筒状に形成され、円筒部52aと、円筒部52aの一端側に位置する底壁部52bとを有し、円筒部52aの他端側が弁ハウジング51の開口端側に固定される。円筒部52aの底壁部52b側の部位には、弁体53が接離し円錐状の面を有する弁座部52cが形成される。弁座ハウジング52は、その底壁部52bを貫通して形成され、放圧通路L4の背圧室H3側に開口する入口孔52dを有する。入口孔52dは、一端部が弁座部52cに開口し他端部が放圧通路L4の背圧室H3側の空間に開口する。
 前記弁体53は、入口孔52dを開閉するものであり、ボール状に形成され、付勢手段54により弁座部52c方向に付勢されている。
 前記付勢手段54は、一端部が弁ハウジング51の底壁部51bに当接されるコイルスプリング54aと、コイルスプリング54aの他端部に接続され弁体53を閉弁方向に付勢する付勢ロッド54bとを有し、弁ハウジング51の弁室51c内に配置される。
 本実施形態では、背圧調整弁50は、弁ハウジング51と、弁座ハウジング52と、放圧通路L4の背圧室H3側に開口する入口孔52dと、入口孔52dを開閉する弁体53と、付勢手段54と、流体導入通路L1に開口する出口孔55(55a,55b)と、を有し、背圧室H3内の圧力と吸入室H1内の圧力との差圧が所定差圧より大きい場合に、弁体53を開弁方向に移動させ、前記差圧が前記所定差圧以下の場合に、弁体53を閉弁方向に移動させるように構成される。
 次に、スクロール型圧縮機100における上記構成の背圧調整弁50による背圧室内圧力の調整動作について概略説明する。なお、背圧調整弁50は、閉弁状態にあると共に、背圧室H3が圧力供給通路L3及びオリフィスOLを介して吐出室H2と連通され、背圧室H3内の圧力が潤滑油等により高くなりつつあるものとして、以下説明する。
 まず、背圧調整弁50は、付勢手段54により弁体53を弁座部52cに押し付けて、入口孔52dを閉止しているものとする。この時、弁体53には、付勢手段54のコイルスプリング54aによる付勢力と、流体導入通路L1及び出口孔55を介して伝わる吸入室H1内の圧力とが作用している。この状態で、背圧室H3内の圧力が徐々に高くなり、背圧室H3内の圧力と吸入室H1内の圧力との差圧が付勢手段54の付勢力に基づいて定まる所定差圧より大きくなると、弁体53は付勢手段54の付勢力に抗して開弁方向に移動する。これにより、背圧調整弁50は、背圧室H3内の圧力を減圧させる。背圧調整弁50を介して、流体導入通路L1の途上に導かれた潤滑油等は、流体導入通路L1内の流れにのって、スクロールユニット1側(空間H4側)に戻される。そして、前記差圧が前記所定差圧より小さくなると、弁体53は付勢手段54の付勢力により閉弁方向に移動する。これにより、背圧調整弁50は、背圧室H3内の圧力を昇圧させる。
 本実施形態によるスクロール型圧縮機100によれば、流体導入通路L1を経由して、吸入室H1内の冷媒をスクロールユニット1の外周部付近の空間H4に導き、圧力供給通路L3を経由して、主に吐出室H2内の冷媒に含まれる潤滑油を背圧室H3に導き、放圧通路L4及び背圧調整弁50を経由して、背圧室H3内の潤滑油等を流体導入通路L1の途上に導くと共に流体導入通路L1内の流れにのせてスクロールユニット1側に戻すことができる。これにより、吸入室H1から流体導入通路L1に流れる冷媒中の潤滑油が微量であったとしても、放圧通路L4及び背圧調整弁50を経由して流体導入通路L1の途上に潤滑油等を戻し、この背圧室H3からの潤滑油等を吸入室H1からの微量な潤滑油を含む冷媒と共にスクロールユニット1に供給することができる。
 このようにして、スクロールユニット1の摺動部位の潤滑を適切に行うことが可能なスクロール型圧縮機100を提供することができる。
 また、本実施形態では、流体導入通路L1は、フロントハウジング11の周壁部11aの内周面と軸受保持部30の外周面(詳しくは凹部30cの内面)とにより協働して形成される構成とした。これにより、流体導入通路L1を容易に形成することができる。
 また、本実施形態では、背圧調整弁50は、放圧通路L4の背圧室H3側に開口する入口孔52dと、入口孔52dを開閉する弁体53と、流体導入通路L1に開口する出口孔55と、を有し、背圧室H3内の圧力と吸入室H1内の圧力との差圧が所定差圧より大きい場合に、弁体53を開弁方向に移動させ、前記差圧が前記所定差圧以下の場合に、弁体53を閉弁方向に移動させる、いわゆる差圧作動式の逆止弁を採用した。これにより、電力を必要とせず、単に差圧を感知して背圧室H3内の圧力を自律的に調整可能な、背圧調整弁50を提供することができる。
 ここで、背圧調整弁50が差圧作動式の場合、出口孔55の近傍に、出口孔55から流出する流体の流れを阻害する阻害物が近接していると、弁体53の後流側における圧力損失が過大になることがある。この場合、背圧調整弁50が正常に動作しなくなる可能性がある。
 この点について、本実施形態では、出口孔55のうちの円筒部出口孔55aは流体導入通路L1内における放圧通路L4側に寄せた位置で開口している。つまり、背圧調整弁50は、円筒部出口孔55a(出口孔の少なくとも一部)が流体導入通路L1内における放圧通路L4側に寄せた位置で開口するように配置されている。これにより、出口孔55のうちの少なくとも一部(55a)を阻害物の無い広い空間に開口させることができる。その結果、弁体53の後流側における圧力損失を低減させることができ、背圧調整弁50を適切に動作させることができる。したがって、本実施形態のように、冷媒としてCO冷媒を採用し、背圧室H3内の圧力と吸入室H1内の圧力との差圧が従来よりも高くなり、背圧調整弁50に高い制御性が求められる場合であっても、所定差圧に応じて、適切に作動することが可能な背圧調整弁50を提供することができる。
 また、本実施形態では、複数の出口孔55の少なくとも一部(円筒部出口孔55a)は、流体導入通路L1の延伸方向と平行な方向に向かって開口している。これにより、放圧通路L4及び背圧調整弁50を介して流体導入通路L1の途上に導いた潤滑油等を流体導入通路L1の流れに確実にのせることができるため、潤滑油等をスクロールユニット1側により確実に戻すことができる。
 また、本実施形態では、流体導入通路L1は、軸受保持部30の周縁部(つまり円筒部30a)のうちの締結用のボルト14が挿通される貫通孔14aの形成部位の間にて駆動軸21の延伸方向に延びる凹部30cに沿って伸びる構成とした。つまり、本実施形態では、流体導入通路L1を、フロントハウジング11の軽量化のために凹ませた部位である凹部30cを利用して形成した。これにより、フロントハウジング11の軽量化を図りつつ、流体導入通路L1を容易に形成することができる。
 以上、本発明の好ましい実施形態について説明したが、本発明は上記実施形態に制限されるものではなく、本発明の技術的思想に基づいて種々の変形及び変更が可能である。
 例えば、本実施形態では、可動スクロール3は軸受保持部30(詳しくは大径部位30a1)内に収容されるものとしたが、これに限らず、図5に示すように、固定スクロール2内に収容される構成としてもよい。この場合、固定スクロール2の底板2aの周縁部が軸受保持部30側に突設されてなる大径部位2a3を形成し、この固定スクロール2の大径部位2a3内に可動スクロール3を収容するように構成する。また、軸受保持部30は、その円筒部30aにベアリング17を嵌合させる小径部位30a2を備えていればよい。そして、この変形例の場合、流体導入通路L1は、フロントハウジング11の周壁部11aの内面と、軸受保持部30の外周面(凹部30cの内面)及び固定スクロール2の外周面(凹部30cと連通して伸びる凹部2cの内面)とにより協働して形成される。
 また、背圧調整弁50の出口孔55の個数、開口位置及び開口方向や、流体導入通路L1の形成位置は、適宜に設定することができる。
 例えば、出口孔55は、三つであるものとしたが、一つや二つであってもよいし、四つ以上であってもよい。また、本実施形態では、円筒部出口孔55aは、流体導入通路L1と放圧通路L4との境界を跨ぐように位置している場合を一例に挙げて説明したが、これに限らず、その全体が流体導入通路L1内に位置するようにしてもよい。円筒部出口孔55aは、流体導入通路L1内における放圧通路L4側に寄せた位置で開口していれば、弁体53の後流側における圧力損失を効果的に低減させることができ、背圧調整弁50を適切に動作させることができる。また、背圧調整弁50が放圧通路L4の流体導入通路側開口端に設けられていれば、流体導入通路L1を経由して背圧室H3内の潤滑油等をスクロールユニット1の摺動部位に戻すことができる。
 また、本実施形態では、スクロール型圧縮機100は、いわゆるインバータ一体型の場合を一例に挙げて説明したが、これに限らず、インバータ40と別体であってもよい。この場合、ハウジング10は、フロントハウジング11とリアハウジング12を備えていればよい。
 また、本実施形態では、冷媒はCO冷媒であるものとしたが、これに限らず、適宜の冷媒を適用することができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic cross-sectional view of a scroll compressor according to this embodiment.
The scroll compressor 100 according to the present embodiment is incorporated in a refrigerant circuit of a vehicle air conditioner, for example, and compresses and discharges refrigerant (fluid) sucked from the low pressure side of the refrigerant circuit.
The scroll compressor 100 includes a scroll unit 1, a housing 10 having a refrigerant suction chamber H 1 and a discharge chamber H 2 therein, an electric motor 20 as a drive unit that drives the scroll unit 1, and driving of the electric motor 20. A bearing holding portion 30 for rotatably supporting one end portion (upper end portion in FIG. 1) of the shaft 21 and an inverter 40 for driving control of the electric motor 20 are provided. In the present embodiment, it is assumed that a CO 2 refrigerant is employed as the refrigerant. Further, the scroll compressor 100 will be described by taking a so-called inverter integrated type as an example.
The scroll unit 1 includes a fixed scroll 2 and a movable scroll 3 that are meshed with each other. The fixed scroll 2 is formed by integrally forming a spiral wrap 2b on a disk-shaped bottom plate 2a. The movable scroll 3 is formed by integrally forming a spiral wrap 3b on a disk-shaped bottom plate 3a. The bottom plate 2 a of the fixed scroll 2 has a larger diameter than the bottom plate 3 a of the movable scroll 3.
Both scrolls 2 and 3 are arranged so that both the spiral wraps 2b and 3b mesh. Specifically, both the scrolls 2 and 3 have a predetermined gap between the end edge of the spiral wrap 2b of the fixed scroll 2 and the bottom plate 3a of the movable scroll 3 so that the spiral wrap 3b of the movable scroll 3 protrudes. The side edge is disposed so as to have a predetermined gap with the bottom plate 2 a of the fixed scroll 2. This gap that may fluctuate during the compression operation is maintained in an appropriate range during the compression operation, and the airtightness of the sealed space (compression chamber) S described later is appropriately maintained.
The scrolls 2 and 3 are arranged so that the side walls of the spiral wraps 2b and 3b are partially in contact with each other with the circumferential angles of the spiral wraps 2b and 3b shifted from each other. Thereby, a crescent-shaped sealed space (compression chamber) S is formed between the spiral wraps 2b and 3b.
The fixed scroll 2 is fixed to a rear housing 12 (to be described later) of the housing 10, and has a groove 2a1 that opens toward the rear housing 12 at the radial center. Specifically, the groove 2a1 is formed on the back surface of the bottom plate 2a (that is, the end surface opposite to the movable scroll 3).
The movable scroll 3 is configured to be capable of revolving orbiting around the axis of the fixed scroll 2 via the drive shaft 21 in a state in which the rotation is prevented. Thereby, the scroll unit 1 moves the sealed space S formed between the scrolls 2 and 3, more specifically between the spiral wraps 2b and 3b, to the center, and gradually reduces the volume. As a result, the scroll unit 1 compresses the refrigerant flowing into the sealed space S from the outer end side of the spiral wraps 2b and 3b in the sealed space S.
As shown in FIG. 1, the housing 10 mainly includes a scroll housing 1, an electric motor 20, a bearing holding portion 30, and an inverter 40 inside a front housing 11, a rear housing 12, and an inverter. And a cover 13. These (11, 12, 13) are integrally fastened by fastening means such as bolts 14 to form the housing 10 of the scroll compressor 100.
The front housing 11 has a substantially annular peripheral wall portion 11a and a partition wall portion 11b. The interior space of the front housing 11 is divided into an accommodation space for accommodating the scroll unit 1, the electric motor 20, and the bearing holding portion 30 and an accommodation space for accommodating the inverter 40 by the partition wall portion 11 b. Partitioned. The opening on one end side (upper side in FIG. 1) of the peripheral wall portion 11 a is closed by the rear housing 12. Further, the opening on the other end side (the lower side in FIG. 1) of the peripheral wall portion 11 a is closed by the inverter cover 13. In the partition wall portion 11b, a cylindrical support portion 11b1 that holds a bearing 15 that supports the other end portion (the lower end portion in FIG. 1) of the drive shaft 21 is provided at one end side of the peripheral wall portion 11a. Protrusively facing.
A refrigerant suction port P1 is formed in the peripheral wall portion 11a. Refrigerant from the low pressure side of the refrigerant circuit is sucked into the front housing 11 through the suction port P1. Therefore, the space in the front housing 11 functions as the suction chamber H1. The electric motor 20 is cooled by circulating the refrigerant around the electric motor 20 in the suction chamber H1. In FIG. 1, the upper space of the electric motor 20 communicates with the lower space of the electric motor 20 and constitutes one suction chamber H <b> 1 together with the lower space of the electric motor 20. In the suction chamber H1, the refrigerant flows as a mixed fluid with a small amount of lubricating oil.
The rear housing 12 is formed in a disk shape having an outer diameter that matches the outer diameter of the peripheral wall portion 11 a of the front housing 11. The peripheral edge of the rear housing 12 is fastened to one end of the peripheral wall 11a (upper end in FIG. 1) by fastening means such as a suitable number of bolts 14 and the like. Close.
In addition, a peripheral edge portion (in other words, a portion surrounding the groove portion 2a1) of the rear surface of the bottom plate 2a of the fixed scroll 2 is in contact with one end surface of the rear housing 12. The one end face of the rear housing 12 and the groove 2a1 of the bottom plate 2a define a refrigerant discharge chamber H2. A compressed refrigerant discharge passage L2 is formed at the center of the bottom plate 2a. In the discharge chamber H2, a one-way valve (a check valve for restricting the flow from the discharge chamber H2 to the scroll unit 1) 16 is provided so as to cover the opening of the discharge passage L2. In the discharge chamber H2, the refrigerant compressed in the sealed space S formed between the spiral wraps 2b and 3b is discharged through the discharge passage L2 and the one-way valve 16. The rear housing 12 is formed with a discharge port P2 that communicates the discharge chamber H2 with the outside (the high pressure side of the refrigerant circuit). The compressed refrigerant in the discharge chamber H2 is discharged to the high pressure side of the refrigerant circuit through the discharge port P2.
Although illustration is omitted, for example, an appropriate oil separator for separating the lubricating oil from the compressed refrigerant flowing into the discharge port P2 is provided in the discharge port P2. The refrigerant from which the lubricating oil is separated by the oil separator (including the refrigerant in which a small amount of lubricating oil remains) is discharged to the high pressure side of the refrigerant circuit via the discharge port P2. On the other hand, the lubricating oil separated by the oil separator is guided to a pressure supply passage L3 described later.
The electric motor 20 includes a drive shaft 21, a rotor 22, and a stator core unit 23 disposed on the radially outer side of the rotor 22. For example, a three-phase AC motor is applied. For example, a direct current from a vehicle battery (not shown) is converted into an alternating current by the inverter 40 and supplied to the electric motor 20.
The drive shaft 21 is connected to the movable scroll 3 via a crank mechanism, and transmits the rotational force of the electric motor 20 to the movable scroll 3. One end portion of the drive shaft 21 (that is, the end portion on the movable scroll 3 side) is inserted through a through hole formed in the bearing holding portion 30 and is rotatably supported by the bearing 17, and the other end portion of the drive shaft 21. The inverter 40 side end portion is rotatably supported by a bearing 15 fitted to the support portion 11b1. In the present embodiment, the bearing 17 corresponds to a “bearing portion” according to the present invention.
The rotor 22 is rotatably supported on the radially inner side of the stator core unit 23 via a drive shaft 21 that is fitted (for example, press-fitted) into a shaft hole formed at the radial center thereof. When a magnetic field is generated in the stator core unit 23 by power feeding from the inverter 40, a rotational force is applied to the rotor 22 and the drive shaft 21 is rotationally driven.
The bearing holding portion 30 is provided in the front housing 11 and holds the bearing 17 as a bearing portion that rotatably supports the end portion of the drive shaft 21 on the movable scroll 3 side. The bearing holding portion 30 is formed in a bottomed cylindrical shape having an outer diameter combined with the outer diameter of the bottom plate 2a of the fixed scroll 2, for example, and includes a cylindrical portion 30a and a bottom wall portion 30b positioned on one end side of the cylindrical portion 30a. And have. The cylindrical portion 30a has a shoulder portion 30a3 that is expanded so that the inner diameter on the opening side is larger than the inner diameter on the bottom wall portion 30b side, and connects between the large-diameter portion 30a1 and the small-diameter portion 30a2. The movable scroll 3 is accommodated in a space defined by the large-diameter portion 30a1 and the shoulder portion 30a3. The opening-side end portion of the cylindrical portion 30a is in contact with the peripheral edge portion of the end surface on the movable scroll 3 side of the bottom plate 2a. Therefore, the opening of the bearing holding portion 30 is closed by the fixed scroll 2. The bearing 17 is fitted into the small diameter portion 30a2 of the cylindrical portion 30a. And the through-hole for making the movable scroll 3 side edge part of the drive shaft 21 penetrate is opened in the radial direction center part of the bottom wall part 30b. An appropriate seal member 18a is provided between the bearing 17 and the bottom wall portion 30b to ensure the airtightness of the back pressure chamber H3 described later.
An annular thrust plate 19 is disposed between the shoulder 30 a 3 of the bearing holder 30 and the bottom plate 3 a of the movable scroll 3. The shoulder 30 a 3 receives a thrust force from the movable scroll 3 through the thrust plate 19. Sealing members 18b are disposed at portions of the shoulder 30a3 and the bottom plate 3a that are in contact with the thrust plate 19, respectively.
Further, a back pressure chamber H3 is defined between the bottom plate 3a and the small diameter portion 30a2 by the seal members 18a and 18b. That is, the bearing holding part 30 forms a back pressure chamber H <b> 3 with the movable scroll 3. Further, between the inner peripheral surface of the peripheral wall portion 11 a of the front housing 11 and the outer peripheral surface of the cylindrical portion 30 a of the bearing holding portion 30, there is a vicinity of the outer peripheral portion of the spiral wraps 2 b and 3 b of the suction chamber H 1 and the scroll unit 1. A fluid introduction passage L1 is formed in communication with the space H4 and for introducing a refrigerant (specifically, a mixed fluid of a refrigerant and a small amount of lubricating oil) from the suction chamber H1 to the space H4. That is, in this embodiment, the fluid introduction passage L1 that communicates the suction chamber H1 and the space H4 cooperates with the inner peripheral surface of the peripheral wall portion 11a of the front housing 11 and the outer peripheral surface of the cylindrical portion 30a of the bearing holding portion 30. Formed. For this reason, the pressure in the space H4 is equal to the pressure in the suction chamber H1.
In the present embodiment, the crank mechanism includes a cylindrical boss portion 24 projectingly formed on the back surface (the end surface on the back pressure chamber H3 side) of the bottom plate 3a, and a crank 25 provided on the movable scroll 3 side end portion of the drive shaft 21. And an eccentric bush 26 attached in an eccentric state, and a sliding bearing 27 fitted to the boss portion 24. The eccentric bush 26 is rotatably supported in the boss portion 24 via a slide bearing 27. A balancer weight 28 is attached to the end of the drive shaft 21 on the side of the movable scroll 3 so as to face the centrifugal force during the operation of the movable scroll 3. Although not shown, a rotation prevention mechanism for preventing the rotation of the movable scroll 3 is appropriately provided. Thus, the movable scroll 3 is configured to be capable of revolving around the axis of the fixed scroll 2 via the crank mechanism in a state in which the rotation is prevented.
FIG. 2 is a schematic cross-sectional view for explaining a fastening state of the bearing holding portion 30, and shows a cross-sectional position including the fastening bolt 14 of the bearing holding portion 30.
In the present embodiment, as shown in FIG. 2, the bearing holding portion 30 is integrated with the fixed scroll 2 and the rear housing 12 by fastening bolts 14 with the fixed scroll 2 sandwiched between the bearing holding portion 30 and the rear housing 12. Has been concluded.
Specifically, the fixed scroll 2 causes the peripheral portion of the back surface of the bottom plate 2a to abut one end surface of the rear housing 12, and the peripheral portion of the end surface of the bottom plate 2a on the movable scroll 3 side is used as a bearing holding portion. It is made to contact | abut to the opening side edge part of the cylindrical part 30a of 30, and is pinched | interposed between the rear housing 12 and the bearing holding part 30. The bearing holding portion 30 and the fixed scroll 2 are opened so as to extend in the extending direction of the drive shaft 21 at a plurality of locations spaced in the circumferential direction of the peripheral portion (specifically, the peripheral portion of the cylindrical portion 30a and the bottom plate 2a). It has a through hole 14a through which a bolt 14 for fastening with the fixed scroll 2 and the rear housing 12 is inserted. A female screw portion is formed on one end face side of the rear housing 12 in accordance with the opening position of the through hole. The bolt 14 is inserted into the cylindrical portion 30 a and the through hole 14 a of the bottom plate 2 a and is screwed into the female screw portion of the rear housing 12. In this way, the bearing holder 30 is fastened integrally with the fixed scroll 2 and the rear housing 12.
In the present embodiment, the fluid introduction passage L1 is a recess 30c (FIG. 1) extending in the extending direction of the drive shaft 21 between the portions where the through holes 14a are formed in the peripheral edge portion (that is, the cylindrical portion 30a) of the bearing holding portion 30. And (see FIG. 4 described later). That is, the fluid introduction passage L1 includes a portion (concave portion 30c) that is appropriately recessed toward the drive shaft 21 in order to reduce weight at a portion of the cylindrical portion 30a that avoids the formation portion of the through hole 14a, and this portion. It is mainly partitioned by the corresponding part of the inner peripheral surface of the peripheral wall portion 11a facing each other. One end of the fluid introduction passage L1 opens into the suction chamber H1, and the other end of the fluid introduction passage L1 passes through the end of the cylindrical portion 30a and opens into the space H4.
FIG. 3 is a block diagram for explaining the refrigerant flow in the scroll compressor 100.
The refrigerant from the low-pressure side of the refrigerant circuit is introduced into the suction chamber H1 through the suction port P1, and then guided to the space H4 near the outer end of the scroll unit 1 through the fluid introduction passage L1. And the refrigerant | coolant in the space H4 is taken in in the sealed space S between both the spiral wraps 2b and 3b, and is compressed in this sealed space S. The compressed refrigerant is discharged to the discharge chamber H2 via the discharge passage L2 and the one-way valve 16, and then discharged from the discharge chamber H2 to the high pressure side of the refrigerant circuit via the discharge port P2. In this way, the scroll unit 1 that compresses the refrigerant flowing into the suction chamber H1 in the sealed space S and discharges the compressed refrigerant through the discharge chamber H2 is configured.
Here, referring back to FIG. 1, the scroll compressor 100 according to the present embodiment further includes a back pressure adjusting valve 50 for adjusting the pressure in the back pressure chamber H3.
In the present embodiment, the back pressure adjustment valve 50 is a differential pressure actuated check valve, and when the differential pressure between the pressure in the back pressure chamber H3 and the pressure in the suction chamber H1 is larger than a predetermined differential pressure, When the differential pressure is less than or equal to the predetermined differential pressure, the valve operates in the valve closing direction, and the pressure in the back pressure chamber H3 is changed between the pressure (high pressure) in the discharge chamber H2 and the suction chamber H1. The pressure is adjusted to be a predetermined pressure (intermediate pressure) intermediate to the pressure (low pressure). The arrangement position, structure, and back pressure adjustment operation of the back pressure adjustment valve 50 will be described in detail later.
In the present embodiment, the scroll compressor 100 includes a pressure supply passage L3 and a pressure release passage L4 in addition to the fluid introduction passage L1 and the discharge passage L2, as shown in FIGS.
The pressure supply passage L3 is a passage for communicating the discharge chamber H2 and the back pressure chamber H3. The lubricating oil separated from the compressed refrigerant in the discharge port P2 by the oil separator (not shown) is guided into the back pressure chamber H3 through the pressure supply passage L3, and each sliding portion in the back pressure chamber H3. Used for lubrication. Further, the discharge chamber H2 and the back pressure chamber H3 communicate with each other via the pressure supply passage L3, whereby the pressure in the back pressure chamber H3 increases.
In the present embodiment, the pressure supply passage L3 is specifically a passage formed in the rear housing 12, and one end opens to the discharge chamber H2 via the discharge port P2 and the other end contacts the bottom plate 2a. A passage that opens to the contact portion, a passage that is connected to this passage and penetrates the bottom plate 2a, and a passage that is connected to a passage that penetrates the bottom plate 2a and opens to the back pressure chamber H3 through the cylindrical portion 30a And comprising. An orifice OL is provided in the middle of the pressure supply passage L3. Therefore, the lubricating oil or the like separated from the compressed refrigerant in the discharge chamber H2 is appropriately decompressed by the orifice OL and supplied into the back pressure chamber H3 through the pressure supply passage L3.
The pressure relief passage L4 is a passage for communicating between the back pressure chamber H3 and the suction chamber H1.
In the present embodiment, specifically, the pressure release passage L4 passes through the small diameter portion 30a2 of the cylindrical portion 30a and extends in a direction orthogonal to the drive shaft 21. One end of the pressure relief passage L4 opens to the back pressure chamber H3, and the other end of the pressure relief passage L4 opens to the fluid introduction passage L1.
Next, the arrangement position and structure of the back pressure regulating valve 50 in this embodiment will be described in detail with reference to FIGS. FIG. 4 is an enlarged cross-sectional view of the main part including the back pressure regulating valve 50 and shows a valve open state.
The back pressure adjusting valve 50 includes a valve housing 51, a valve seat housing 52, a valve body 53, and an urging means 54, and is provided at the opening end of the pressure release passage L4 on the fluid introduction passage L1 side. Part of L4.
The valve housing 51 has a cylindrical portion 51a and a bottom wall portion 51b that closes one end of the cylindrical portion 51a, is formed in a bottomed cylindrical shape as a whole, and has a valve chamber 51c inside.
The cylindrical portion 51a and the bottom wall portion 51b are respectively formed with outlet holes 55 that open to the fluid introduction passage L1. In the present embodiment, two outlet holes 55 are opened in the cylindrical portion 51a and one outlet hole 55 is opened in the bottom wall portion 51b. The outlet hole 55 communicates the space in the fluid introduction passage L <b> 1 and the valve chamber 51 c in the valve housing 51.
Specifically, as for the two cylindrical part exit holes 55a opened in the cylindrical part 51a of the outlet holes 55, a part of each is located in the fluid introduction passage L1, as shown in FIG. On the other hand, as shown in FIG. 4, the bottom wall part outlet hole 55b opened in the bottom wall part 51b of the outlet hole 55 is entirely located in the fluid introduction passage L1. Thus, in this embodiment, the pressure regulating valve 50 is disposed so that at least a part of the outlet hole 55 is located in the fluid introduction passage L1. That is, at least one of the plurality of outlet holes 55 (the bottom wall part outlet hole 55b) is entirely located in the fluid introduction passage L1, and the cylindrical part outlet hole 55a is partially located in the fluid introduction passage L1. Yes.
More specifically, the back pressure adjusting valve 50 is disposed so that the cylindrical portion outlet hole 55a opens at a position close to the pressure release passage L4 side in the fluid introduction passage L1. Specifically, the cylindrical portion outlet hole 55a is positioned so as to straddle the boundary between the fluid introduction passage L1 and the pressure release passage L4.
Further, the cylindrical portion outlet hole 55a is formed on the opening end side (valve seat housing 52 side) of the cylindrical portion 51a in a direction parallel to the extending direction of the fluid introduction passage L1 (in other words, a fluid indicated by a white arrow in FIG. 4). It opens toward the direction parallel to the flow of the refrigerant flowing in the introduction passage L1. On the other hand, the bottom wall portion outlet hole 55b opens in a direction orthogonal to the fluid introduction passage L1. Thus, in the present embodiment, at least a part of the plurality of outlet holes 55 (cylindrical part outlet holes 55a) is open in a direction parallel to the extending direction of the fluid introduction passage L1.
The valve seat housing 52 constitutes one end of the back pressure regulating valve 50 and is fitted to the opening end of the pressure release passage L4 on the fluid introduction passage L1 side. The valve seat housing 52 is formed, for example, in a bottomed cylindrical shape having an outer diameter that matches the inner diameter of the pressure release passage L4, and has a cylindrical portion 52a and a bottom wall portion 52b that is located on one end side of the cylindrical portion 52a. The other end side of the cylindrical portion 52 a is fixed to the opening end side of the valve housing 51. A valve seat 52c having a conical surface is formed by contacting and separating the valve body 53 at a portion on the bottom wall 52b side of the cylindrical portion 52a. The valve seat housing 52 has an inlet hole 52d that is formed through the bottom wall portion 52b and opens to the back pressure chamber H3 side of the pressure release passage L4. One end of the inlet hole 52d opens to the valve seat 52c, and the other end opens to the space on the back pressure chamber H3 side of the pressure release passage L4.
The valve body 53 opens and closes the inlet hole 52d, is formed in a ball shape, and is urged toward the valve seat 52c by the urging means 54.
The biasing means 54 is connected to the coil spring 54a whose one end is in contact with the bottom wall 51b of the valve housing 51 and the other end of the coil spring 54a and biases the valve body 53 in the valve closing direction. And a force rod 54b, which is disposed in the valve chamber 51c of the valve housing 51.
In this embodiment, the back pressure regulating valve 50 includes a valve housing 51, a valve seat housing 52, an inlet hole 52d that opens to the back pressure chamber H3 side of the pressure release passage L4, and a valve body 53 that opens and closes the inlet hole 52d. And an urging means 54 and outlet holes 55 (55a, 55b) that open to the fluid introduction passage L1, and the pressure difference between the pressure in the back pressure chamber H3 and the pressure in the suction chamber H1 is a predetermined difference. When the pressure is greater than the pressure, the valve body 53 is moved in the valve opening direction, and when the differential pressure is equal to or less than the predetermined differential pressure, the valve body 53 is moved in the valve closing direction.
Next, the operation of adjusting the pressure in the back pressure chamber by the back pressure adjusting valve 50 having the above-described configuration in the scroll compressor 100 will be schematically described. The back pressure adjusting valve 50 is in a closed state, and the back pressure chamber H3 is communicated with the discharge chamber H2 via the pressure supply passage L3 and the orifice OL, and the pressure in the back pressure chamber H3 is reduced by lubricating oil or the like. It will be described below as it is becoming higher.
First, it is assumed that the back pressure regulating valve 50 closes the inlet hole 52d by pressing the valve body 53 against the valve seat portion 52c by the urging means 54. At this time, the urging force by the coil spring 54a of the urging means 54 and the pressure in the suction chamber H1 transmitted through the fluid introduction passage L1 and the outlet hole 55 act on the valve body 53. In this state, the pressure in the back pressure chamber H3 gradually increases, and a predetermined differential pressure in which the differential pressure between the pressure in the back pressure chamber H3 and the pressure in the suction chamber H1 is determined based on the biasing force of the biasing means 54. When it becomes larger, the valve body 53 moves in the valve opening direction against the urging force of the urging means 54. Thereby, the back pressure adjusting valve 50 reduces the pressure in the back pressure chamber H3. Lubricating oil or the like guided along the fluid introduction passage L1 through the back pressure adjusting valve 50 is returned to the scroll unit 1 side (space H4 side) along the flow in the fluid introduction passage L1. When the differential pressure becomes smaller than the predetermined differential pressure, the valve body 53 moves in the valve closing direction by the urging force of the urging means 54. Thereby, the back pressure regulating valve 50 increases the pressure in the back pressure chamber H3.
According to the scroll compressor 100 according to the present embodiment, the refrigerant in the suction chamber H1 is guided to the space H4 near the outer peripheral portion of the scroll unit 1 via the fluid introduction passage L1, and via the pressure supply passage L3. The lubricating oil mainly contained in the refrigerant in the discharge chamber H2 is guided to the back pressure chamber H3, and the lubricating oil and the like in the back pressure chamber H3 are fluidized through the pressure release passage L4 and the back pressure adjustment valve 50. In addition to being guided in the middle of L1, it can be returned to the scroll unit 1 side on the flow in the fluid introduction passage L1. As a result, even if the amount of lubricating oil in the refrigerant flowing from the suction chamber H1 to the fluid introduction passage L1 is very small, the lubricating oil or the like enters the fluid introduction passage L1 via the pressure release passage L4 and the back pressure adjustment valve 50. , And the lubricating oil or the like from the back pressure chamber H3 can be supplied to the scroll unit 1 together with the refrigerant containing a small amount of lubricating oil from the suction chamber H1.
In this way, it is possible to provide the scroll compressor 100 that can appropriately lubricate the sliding portion of the scroll unit 1.
In the present embodiment, the fluid introduction passage L1 is formed in cooperation with the inner peripheral surface of the peripheral wall portion 11a of the front housing 11 and the outer peripheral surface of the bearing holding portion 30 (specifically, the inner surface of the concave portion 30c). It was. Thereby, the fluid introduction passage L1 can be easily formed.
In the present embodiment, the back pressure adjusting valve 50 opens to the inlet hole 52d that opens to the back pressure chamber H3 side of the pressure release passage L4, the valve body 53 that opens and closes the inlet hole 52d, and the fluid introduction passage L1. An outlet hole 55, and when the differential pressure between the pressure in the back pressure chamber H3 and the pressure in the suction chamber H1 is larger than a predetermined differential pressure, the valve body 53 is moved in the valve opening direction, and the differential pressure A so-called differential pressure actuated check valve that moves the valve body 53 in the valve closing direction when the pressure is not more than the predetermined differential pressure is employed. As a result, it is possible to provide the back pressure adjusting valve 50 that does not require electric power and that can autonomously adjust the pressure in the back pressure chamber H3 by simply sensing the differential pressure.
Here, when the back pressure adjusting valve 50 is of the differential pressure operation type, if an obstruction that obstructs the flow of the fluid flowing out from the outlet hole 55 is in the vicinity of the outlet hole 55, the downstream of the valve body 53 Pressure loss on the side may be excessive. In this case, the back pressure adjustment valve 50 may not operate normally.
Regarding this point, in the present embodiment, the cylindrical portion outlet hole 55a of the outlet holes 55 opens at a position close to the pressure release passage L4 side in the fluid introduction passage L1. That is, the back pressure adjusting valve 50 is disposed so that the cylindrical portion outlet hole 55a (at least a part of the outlet hole) opens at a position close to the pressure release passage L4 side in the fluid introduction passage L1. Thereby, at least a part (55a) of the outlet holes 55 can be opened in a wide space free of obstructions. As a result, the pressure loss on the downstream side of the valve body 53 can be reduced, and the back pressure regulating valve 50 can be operated appropriately. Therefore, as in the present embodiment, CO 2 refrigerant is employed as the refrigerant, and the differential pressure between the pressure in the back pressure chamber H3 and the pressure in the suction chamber H1 is higher than the conventional pressure, and is higher in the back pressure adjustment valve 50. Even when controllability is required, it is possible to provide a back pressure regulating valve 50 that can be appropriately operated according to a predetermined differential pressure.
In the present embodiment, at least a part (cylindrical portion outlet hole 55a) of the plurality of outlet holes 55 is open in a direction parallel to the extending direction of the fluid introduction passage L1. As a result, the lubricating oil or the like guided to the middle of the fluid introduction passage L1 via the pressure release passage L4 and the back pressure adjustment valve 50 can be reliably put in the flow of the fluid introduction passage L1, so that the lubricating oil or the like is scrolled. It can be reliably returned by the unit 1 side.
In the present embodiment, the fluid introduction passage L1 has a drive shaft between the formation portions of the through holes 14a through which the fastening bolts 14 are inserted in the peripheral edge portion (that is, the cylindrical portion 30a) of the bearing holding portion 30. It was set as the structure extended along the recessed part 30c extended in the extending | stretching direction of 21. That is, in the present embodiment, the fluid introduction passage L1 is formed by using the concave portion 30c that is a concave portion for reducing the weight of the front housing 11. Thus, the fluid introduction passage L1 can be easily formed while reducing the weight of the front housing 11.
As mentioned above, although preferable embodiment of this invention was described, this invention is not restrict | limited to the said embodiment, A various deformation | transformation and change are possible based on the technical idea of this invention.
For example, in the present embodiment, the movable scroll 3 is accommodated in the bearing holding portion 30 (specifically, the large-diameter portion 30a1). However, the present invention is not limited to this, and as shown in FIG. It is good also as a structure accommodated. In this case, the peripheral portion of the bottom plate 2 a of the fixed scroll 2 is formed with a large diameter portion 2 a 3 that protrudes toward the bearing holding portion 30, and the movable scroll 3 is accommodated in the large diameter portion 2 a 3 of the fixed scroll 2. Configure. Moreover, the bearing holding | maintenance part 30 should just be provided with the small diameter part 30a2 which fits the bearing 17 in the cylindrical part 30a. In the case of this modification, the fluid introduction passage L1 communicates with the inner surface of the peripheral wall portion 11a of the front housing 11, the outer peripheral surface of the bearing holding portion 30 (the inner surface of the concave portion 30c), and the outer peripheral surface of the fixed scroll 2 (the concave portion 30c). And the inner surface of the recess 2c extending in this manner.
Further, the number of the outlet holes 55 of the back pressure adjusting valve 50, the opening position and the opening direction, and the formation position of the fluid introduction passage L1 can be set as appropriate.
For example, the number of the outlet holes 55 is three, but may be one, two, or four or more. In the present embodiment, the cylindrical portion outlet hole 55a has been described as an example of the case where the cylindrical portion outlet hole 55a is positioned so as to straddle the boundary between the fluid introduction passage L1 and the pressure release passage L4. The entirety may be located in the fluid introduction passage L1. If the cylindrical portion outlet hole 55a is opened at a position close to the pressure release passage L4 in the fluid introduction passage L1, pressure loss on the downstream side of the valve body 53 can be effectively reduced, The pressure regulating valve 50 can be appropriately operated. Further, if the back pressure adjusting valve 50 is provided at the opening end of the pressure release passage L4 on the fluid introduction passage side, the lubricant in the back pressure chamber H3 is slid on the scroll unit 1 through the fluid introduction passage L1. Can be returned to the site.
Further, in the present embodiment, the scroll compressor 100 has been described by taking a so-called inverter-integrated case as an example. However, the present invention is not limited to this, and the scroll compressor 100 may be separate from the inverter 40. In this case, the housing 10 only needs to include the front housing 11 and the rear housing 12.
Further, in the present embodiment, the refrigerant has been assumed to be CO 2 refrigerant is not limited to this, it is possible to apply the appropriate refrigerant.
1・・・・・スクロールユニット
2・・・・・固定スクロール
3・・・・・可動スクロール
10・・・・ハウジング
11a・・・周壁部
14・・・・ボルト
14a・・・貫通孔
17・・・・ベアリング(軸受部)
21・・・・駆動軸
30・・・・軸受保持部
30a・・・円筒部(周縁部)
30c・・・凹部
50・・・・背圧調整弁
52d・・・入口孔
55・・・・出口孔
53・・・・弁体
55a・・・円筒部出口孔(出口孔)
55b・・・底壁部出口孔(出口孔)
100・・・スクロール型圧縮機
H1・・・・吸入室
H2・・・・吐出室
H3・・・・背圧室
H4・・・・空間
L1・・・・流体導入通路
L3・・・・圧力供給通路
L4・・・・放圧通路
S・・・・・密閉空間
DESCRIPTION OF SYMBOLS 1 ... Scroll unit 2 ... Fixed scroll 3 ... Movable scroll 10 ... Housing 11a ... Perimeter wall part 14 ... Bolt 14a ... Through-hole 17- ... Bearings (bearing parts)
21 ··· Drive shaft 30 ··· Bearing holding portion 30a · · · Cylindrical portion (peripheral portion)
30c ... Recess 50 ... Back pressure regulating valve 52d ... Inlet hole 55 ... Outlet hole 53 ... Valve body 55a ... Cylindrical part outlet hole (outlet hole)
55b ... Bottom wall exit hole (exit hole)
DESCRIPTION OF SYMBOLS 100 ... Scroll type compressor H1 ... Suction chamber H2 ... Discharge chamber H3 ... Back pressure chamber H4 ... Space L1 ... Fluid introduction passage L3 ... Pressure Supply passage L4 ... Pressure release passage S ... Sealed space

Claims (6)

  1.  流体の吸入室及び吐出室を内部に有するハウジングと、
     前記ハウジング内に設けられ、互いに噛み合わされる固定スクロール及び可動スクロールを有し、前記可動スクロールが駆動軸を介して前記固定スクロールの軸心周りに公転旋回運動されることにより、前記吸入室に流入された流体を両スクロール間の密閉空間内で圧縮し、この圧縮流体を前記吐出室を介して吐出するスクロールユニットと、
     前記ハウジング内に設けられ、前記駆動軸の可動スクロール側端部を回動可能に支持する軸受部を保持すると共に前記可動スクロールとの間に背圧室を形成する軸受保持部と、
     前記背圧室内の圧力調整用の背圧調整弁と、
     を備えるスクロール型圧縮機において、
     前記吸入室と前記スクロールユニットの外周部付近の空間とを連通する流体導入通路と、
     前記吐出室と前記背圧室とを連通する圧力供給通路と、
     前記背圧室と前記流体導入通路とを連通する放圧通路と、
     を含み、
     前記背圧調整弁は、前記放圧通路の流体導入通路側開口端に設けられる、スクロール型圧縮機。
    A housing having therein a fluid suction chamber and a discharge chamber;
    A fixed scroll and a movable scroll which are provided in the housing and mesh with each other. The movable scroll is revolved around the axis of the fixed scroll via a drive shaft and flows into the suction chamber. A scroll unit that compresses the fluid in a sealed space between the scrolls and discharges the compressed fluid through the discharge chamber;
    A bearing holding portion that is provided in the housing and holds a bearing portion that rotatably supports the movable scroll side end portion of the drive shaft and forms a back pressure chamber between the movable scroll and the movable scroll;
    A back pressure adjusting valve for adjusting the pressure in the back pressure chamber;
    In a scroll compressor comprising:
    A fluid introduction passage communicating the suction chamber and a space near the outer periphery of the scroll unit;
    A pressure supply passage communicating the discharge chamber and the back pressure chamber;
    A pressure release passage communicating the back pressure chamber and the fluid introduction passage;
    Including
    The back pressure regulating valve is a scroll compressor provided at a fluid introduction passage side opening end of the pressure release passage.
  2.  前記流体導入通路は、前記ハウジングの周壁部の内周面と前記軸受保持部の外周面とにより協働して形成される、請求項1に記載のスクロール型圧縮機。 2. The scroll compressor according to claim 1, wherein the fluid introduction passage is formed in cooperation with an inner peripheral surface of a peripheral wall portion of the housing and an outer peripheral surface of the bearing holding portion.
  3.  前記背圧調整弁は、前記放圧通路の背圧室側に開口する入口孔と、前記入口孔を開閉する弁体と、前記流体導入通路に開口する出口孔と、を有し、前記背圧室内の圧力と前記吸入室内の圧力との差圧が所定差圧より大きい場合に、前記弁体を開弁方向に移動させ、前記差圧が前記所定差圧以下の場合に、前記弁体を閉弁方向に移動させる、請求項1又は2に記載のスクロール型圧縮機。 The back pressure adjusting valve has an inlet hole that opens to the back pressure chamber side of the pressure release passage, a valve body that opens and closes the inlet hole, and an outlet hole that opens to the fluid introduction passage. When the differential pressure between the pressure in the pressure chamber and the pressure in the suction chamber is greater than a predetermined differential pressure, the valve body is moved in the valve opening direction, and when the differential pressure is equal to or less than the predetermined differential pressure, the valve body The scroll compressor according to claim 1 or 2, wherein the compressor is moved in a valve closing direction.
  4.  前記背圧調整弁は、前記出口孔の少なくとも一部が前記流体導入通路内における前記放圧通路側に寄せた位置で開口するように配置される、請求項3に記載のスクロール型圧縮機。 4. The scroll compressor according to claim 3, wherein the back pressure adjusting valve is disposed so that at least a part of the outlet hole is opened at a position close to the pressure release passage side in the fluid introduction passage.
  5.  前記出口孔の少なくとも一部は、前記流体導入通路の延伸方向と平行な方向に向かって開口している、請求項4に記載のスクロール型圧縮機。 The scroll compressor according to claim 4, wherein at least a part of the outlet hole is opened in a direction parallel to an extending direction of the fluid introduction passage.
  6.  前記軸受保持部は、その周縁部の周方向に離間した複数個所にて前記駆動軸の延伸方向に延びるように開孔される貫通孔であって、前記固定スクロール及び前記ハウジングとの締結用のボルトが挿通される貫通孔を有し、
     前記流体導入通路は、前記周縁部のうちの前記貫通孔の形成部位の間にて前記駆動軸の延伸方向に延びる凹部に沿って伸びる、請求項1~5のいずれか一つに記載のスクロール型圧縮機。
    The bearing holding portion is a through hole that is opened so as to extend in the extending direction of the drive shaft at a plurality of locations that are spaced apart in the circumferential direction of the peripheral portion thereof, and is used for fastening with the fixed scroll and the housing. Having a through hole through which the bolt is inserted,
    The scroll according to any one of claims 1 to 5, wherein the fluid introduction passage extends along a recess extending in a direction in which the drive shaft extends between the through-hole formation portions of the peripheral portion. Mold compressor.
PCT/JP2017/008395 2016-03-23 2017-02-24 Scroll-type compressor WO2017163814A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017001481.6T DE112017001481T5 (en) 2016-03-23 2017-02-24 Screw-type compressor
CN201780016615.5A CN108779775B (en) 2016-03-23 2017-02-24 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016058323A JP2017172427A (en) 2016-03-23 2016-03-23 Scroll-type compressor
JP2016-058323 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017163814A1 true WO2017163814A1 (en) 2017-09-28

Family

ID=59901276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008395 WO2017163814A1 (en) 2016-03-23 2017-02-24 Scroll-type compressor

Country Status (4)

Country Link
JP (1) JP2017172427A (en)
CN (1) CN108779775B (en)
DE (1) DE112017001481T5 (en)
WO (1) WO2017163814A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473580B2 (en) 2019-08-30 2022-10-18 Kabushiki Kaisha Toyota Jidoshokki Electric compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7280727B2 (en) * 2019-03-22 2023-05-24 サンデン株式会社 scroll compressor
JP7163843B2 (en) * 2019-03-28 2022-11-01 株式会社豊田自動織機 scroll compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059877U (en) * 1983-09-30 1985-04-25 出光石油化学株式会社 check valve
JPS61144290U (en) * 1985-02-27 1986-09-05
JPH01168071U (en) * 1988-05-17 1989-11-27
JP2014169665A (en) * 2013-03-04 2014-09-18 Toyota Industries Corp Scroll type compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147148A (en) * 1992-11-11 1994-05-27 Sanyo Electric Co Ltd Scroll compressor
JP2000257575A (en) * 1999-03-05 2000-09-19 Sanden Corp Compressor
JP2013148020A (en) * 2012-01-19 2013-08-01 Toyota Industries Corp Scroll type fluid machine
JP2015038327A (en) 2013-08-19 2015-02-26 株式会社豊田自動織機 Electric scroll type compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059877U (en) * 1983-09-30 1985-04-25 出光石油化学株式会社 check valve
JPS61144290U (en) * 1985-02-27 1986-09-05
JPH01168071U (en) * 1988-05-17 1989-11-27
JP2014169665A (en) * 2013-03-04 2014-09-18 Toyota Industries Corp Scroll type compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473580B2 (en) 2019-08-30 2022-10-18 Kabushiki Kaisha Toyota Jidoshokki Electric compressor

Also Published As

Publication number Publication date
CN108779775A (en) 2018-11-09
DE112017001481T5 (en) 2018-12-06
CN108779775B (en) 2020-03-27
JP2017172427A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
EP2631484A1 (en) Scroll type compressor
EP2312164B1 (en) Scroll compressor
WO2017163814A1 (en) Scroll-type compressor
EP3584443B1 (en) Compressor
WO2017110475A1 (en) Scroll-type compressor
US6599110B2 (en) Scroll-type compressor with lubricant provision
EP2653649A2 (en) Scroll compressor
JP6738176B2 (en) Scroll compressor
WO2018173543A1 (en) Scroll compressor
WO2018037917A1 (en) Scroll compressor
WO2018008368A1 (en) Compressor
WO2018083965A1 (en) Scroll fluid machine
WO2022064947A1 (en) Scroll-type compressor
JP2019015188A (en) Scroll type compressor
KR101897776B1 (en) Scroll compressor
WO2017150594A1 (en) Scroll compressor
US8944781B2 (en) Electrically driven gas compressor
JP6738174B2 (en) Refrigerant compressor
EP3315781B1 (en) Open type compressor
JP2021021345A (en) Scroll-type compressor
EP3447295A1 (en) Open-type compressor
JP2018053805A (en) Compressor
JP2021032108A (en) Scroll type compressor
JP2021032107A (en) Compressor
MXPA05012962A (en) Open drive scroll machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769859

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769859

Country of ref document: EP

Kind code of ref document: A1