WO2017150594A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2017150594A1
WO2017150594A1 PCT/JP2017/008036 JP2017008036W WO2017150594A1 WO 2017150594 A1 WO2017150594 A1 WO 2017150594A1 JP 2017008036 W JP2017008036 W JP 2017008036W WO 2017150594 A1 WO2017150594 A1 WO 2017150594A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
fixed scroll
housing
bearing holding
bearing
Prior art date
Application number
PCT/JP2017/008036
Other languages
French (fr)
Japanese (ja)
Inventor
泰造 佐藤
公 塚本
信謙 小此木
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2017150594A1 publication Critical patent/WO2017150594A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor that has a fixed scroll and a movable scroll meshed with each other, and compresses a fluid such as a refrigerant flowing into a space between both scrolls.
  • a scroll compressor described in Patent Document 1 is generally known.
  • the scroll compressor described in Patent Document 1 is incorporated in a refrigerant circuit of an air conditioner mounted on a vehicle and compresses the refrigerant in the refrigerant circuit.
  • This scroll compressor has a housing in which a scroll unit including a fixed scroll and a movable scroll, an electric motor having a drive shaft connected to the movable scroll via a crank mechanism, and one end of the drive shaft are rotated.
  • a bearing holding portion that holds the bearing portion that supports the bearing portion.
  • the scroll compressor compresses the refrigerant flowing into the space (compression chamber) between the two scrolls by driving the electric motor and causing the movable scroll to revolve with respect to the fixed scroll.
  • the refrigerant is discharged.
  • a material for the fixed scroll and the movable scroll an aluminum-based material is generally used.
  • a CO 2 refrigerant may be employed as the refrigerant of the air conditioner.
  • the operating pressure in the scroll compressor is significantly higher than that of a conventional refrigerant such as R134a. Therefore, in this type of scroll compressor, when compressing CO 2 refrigerant, it is necessary to improve the airtightness of the space (compression chamber) formed between the fixed scroll and the movable scroll. It has been demanded.
  • the present invention has been made paying attention to such a situation, and by suppressing the amount of change in the gap between the fixed scroll and the movable scroll, it is possible to improve the airtightness of the space between the scrolls. It is an object of the present invention to provide a scroll type compressor that can be used.
  • a scroll compressor includes a fixed scroll and a movable scroll that are meshed with each other, an electric motor having a drive shaft connected to the movable scroll via a crank mechanism, and the movable scroll side of the drive shaft.
  • a bearing holding portion that holds a bearing portion that rotatably supports the end portion is provided in the housing, and the electric motor is driven to cause the movable scroll to revolve around the axis of the fixed scroll.
  • a scroll compressor that compresses fluid flowing into a space between both scrolls, wherein the housing includes a housing main body that is open at least at one end side, and a lid that closes an opening at one end side of the housing main body.
  • the fixed scroll is disposed between the lid portion and the bearing holding portion, and the lid portion and the Receiving holding portion and integrally fastened, said lid portion, the stationary scroll and the bearing holder is made of the same material of iron.
  • the fixed scroll is provided between the lid portion on one end side of the housing and the bearing holding portion that holds the bearing portion that rotatably supports the movable scroll side end portion of the drive shaft.
  • the lid portion and the bearing holding portion are integrally fastened.
  • a cover part, a fixed scroll, and a bearing holding part consist of the same material of an iron system. That is, according to the scroll compressor according to the one aspect, the fixed scroll can be sandwiched between the lid portion and the bearing holding portion and can be fastened integrally with the lid portion and the bearing holding portion. The rigidity of can be improved.
  • the lid portion and the bearing holding portion that are fastened to the fixed scroll are made of the same material as the fixed scroll, the linear expansion coefficient of the main members (lid portion and bearing holding portion) that come into contact with the fixed scroll And the linear expansion coefficient of the fixed scroll can be matched. Therefore, deformation of the fixed scroll due to the difference between the linear expansion coefficient of the fixed scroll and the linear expansion coefficient of the members around the fixed scroll can be prevented. Furthermore, since an iron-based material having a higher linear expansion coefficient than aluminum is used as the material for the fixed scroll, the deformation amount of the fixed scroll itself due to a temperature change can also be reduced.
  • the scroll compressor according to the one aspect, by devising the fastening structure around the fixed scroll and adopting the same iron-based material as the fixed scroll as the main member material around the fixed scroll, It is possible to improve the rigidity of the fixed scroll and reduce the deformation amount due to the temperature change of the fixed scroll. As a result, the amount of change in the gap (seal gap) allowed between the fixed scroll and the movable scroll during the compression operation can be reduced. Therefore, when compressing the CO 2 refrigerant, in order to increase the airtightness of the space between the two scrolls, the gap is set sufficiently smaller than the gap allowed when compressing the conventional refrigerant such as R134, and The set gap can be easily maintained in an appropriate range during the compression operation.
  • the scroll type compressor which can improve the airtightness of the space between both scrolls by reducing the variation
  • FIG. 1 is a schematic cross-sectional view of a scroll compressor according to this embodiment.
  • the scroll compressor 100 according to the present embodiment is incorporated in a refrigerant circuit of a vehicle air conditioner, for example, and compresses and discharges refrigerant (fluid) sucked from the low pressure side of the refrigerant circuit.
  • the scroll compressor 100 includes a scroll unit 1, a housing 10, an electric motor 20 as a drive unit that drives the scroll unit 1, and one end portion (upper end portion in FIG. 1) of a drive shaft 21 of the electric motor 20.
  • a bearing holding portion 30 for supporting and an inverter 40 for driving control of the electric motor 20 are provided.
  • the scroll compressor 100 will be described by taking a so-called inverter type as an example.
  • the scroll unit 1 includes a fixed scroll 2 and a movable scroll 3 that are meshed with each other.
  • the fixed scroll 2 is formed by integrally forming a spiral wrap 2b on a disk-shaped bottom plate 2a.
  • the movable scroll 3 is formed by integrally forming a spiral wrap 3b on a disk-shaped bottom plate 3a.
  • the bottom plate 2 a of the fixed scroll 2 has a larger diameter than the bottom plate 3 a of the movable scroll 3. Both scrolls 2 and 3 are arranged so that both the spiral wraps 2b and 3b mesh.
  • both the scrolls 2 and 3 have a predetermined gap between the end of the protruding side of the spiral wrap 2 b of the fixed scroll 2 and the bottom plate 3 a of the movable scroll 3 so that the spiral wrap 3 b of the movable scroll 3 protrudes.
  • the side edge is disposed so as to have a predetermined gap with the bottom plate 2 a of the fixed scroll 2. If this gap that can fluctuate during the compression operation is maintained in an appropriate range during the compression operation, the airtightness of the space (compression chamber) S described later is appropriately maintained. Refrigerant compression performance is maintained.
  • the scrolls 2 and 3 are arranged so that the side walls of the spiral wraps 2b and 3b are partially in contact with each other with the circumferential angles of the spiral wraps 2b and 3b shifted from each other. Thereby, a crescent-shaped space (compression chamber) S is formed between the spiral wraps 2b and 3b.
  • the fixed scroll 2 is fixed to a rear housing 12 (to be described later) of the housing 10, and has a groove 2a1 that opens toward the rear housing 12 at the radial center. Specifically, the groove 2a1 is formed on the back surface of the bottom plate 2a (that is, the end surface opposite to the movable scroll 3). The fastening structure and material of the fixed scroll 2 will be described in detail later.
  • the movable scroll 3 is configured to be capable of revolving around the axis of the fixed scroll 2 via a crank mechanism described later in a state in which the rotation is prevented.
  • the scroll unit 1 moves the space S formed between the scrolls 2 and 3, specifically the space between the spiral wraps 2 b and 3 b, to the center, and gradually reduces the volume.
  • the scroll unit 1 compresses the refrigerant flowing into the space S from the outer end side of the spiral wraps 2b and 3b in the space S.
  • the material of the movable scroll 3 will be described in detail later. As shown in FIG.
  • the housing 10 mainly includes a scroll housing 1, an electric motor 20, a bearing holding portion 30, and an inverter 40 inside a front housing 11, a rear housing 12, and an inverter. And a cover 13. These (11, 12, 13) are integrally fastened by fastening means such as bolts 14 to constitute the housing 10 of the scroll compressor 100.
  • the front housing 11 corresponds to a “housing main body” according to the present invention
  • the rear housing 12 corresponds to a “lid” according to the present invention.
  • the material of the housing 10 will be described in detail later.
  • the front housing 11 has a substantially annular peripheral wall portion 11a and a partition wall portion 11b.
  • the interior space of the front housing 11 is divided into an accommodation space for accommodating the scroll unit 1, the electric motor 20, and the bearing holding portion 30 and an accommodation space for accommodating the inverter 40 by the partition wall portion 11 b. Partitioned.
  • the opening on one end side (upper side in FIG. 1) of the peripheral wall portion 11 a is closed by the rear housing 12. Further, the opening on the other end side (the lower side in FIG. 1) of the peripheral wall portion 11 a is closed by the inverter cover 13.
  • a cylindrical support portion 11b1 that holds a bearing 15 that supports the other end portion (the lower end portion in FIG. 1) of the drive shaft 21 is provided at one end side of the peripheral wall portion 11a. Protrusively facing.
  • a refrigerant suction port P1 is formed in the peripheral wall portion 11a. Refrigerant from the low pressure side of the refrigerant circuit is sucked into the front housing 11 through the suction port P1. Therefore, the space in the front housing 11 functions as the suction chamber H1.
  • the electric motor 20 is cooled by circulating the refrigerant around the electric motor 20 in the suction chamber H1.
  • the upper space of the electric motor 20 communicates with the lower space of the electric motor 20 and constitutes one suction chamber H ⁇ b> 1 together with the lower space of the electric motor 20.
  • An appropriate amount of lubricating oil is stored in the suction chamber H1 for lubrication of sliding parts such as the drive shaft 21 that is rotationally driven.
  • the rear housing 12 is formed in a disk shape having an outer diameter that matches the outer diameter of the peripheral wall portion 11 a of the front housing 11.
  • the peripheral edge of the rear housing 12 is fastened to one end of the peripheral wall 11a (upper end in FIG. 1) by fastening means such as a suitable number of bolts 14 and the like. Close.
  • a peripheral edge portion (in other words, a portion surrounding the groove portion 2a1) of the rear surface of the bottom plate 2a of the fixed scroll 2 is in contact with one end surface of the rear housing 12.
  • the one end face of the rear housing 12 and the groove 2a1 of the bottom plate 2a define a refrigerant discharge chamber H2.
  • a compressed refrigerant discharge hole 2a2 is formed at the center of the bottom plate 2a.
  • a one-way valve (a check valve for restricting the flow from the discharge chamber H2 to the scroll unit 1) 16 is provided so as to cover the opening of the discharge hole 2a2.
  • the refrigerant compressed in the space S formed between the spiral wraps 2 b and 3 b is discharged through the discharge hole 2 a ⁇ b> 2 and the one-way valve 16.
  • the compressed refrigerant in the discharge chamber H2 is discharged to the high pressure side of the refrigerant circuit via the discharge passage 12a formed in the rear housing 12 and the discharge port P2.
  • the discharge passage 12a formed in the rear housing 12 is provided with an appropriate separating means for separating the lubricating oil from the compressed refrigerant in the discharge chamber H2.
  • the refrigerant from which the lubricating oil is separated by this separating means (including the refrigerant in which a small amount of lubricating oil remains) is discharged to the high pressure side of the refrigerant circuit via the discharge port P2.
  • the lubricating oil separated by the separating means is guided to a back pressure chamber H3 described later via a pressure supply passage (not shown).
  • the electric motor 20 includes a drive shaft 21, a rotor 22, and a stator core unit 23 disposed on the radially outer side of the rotor 22.
  • a three-phase AC motor is applied.
  • a direct current from a vehicle battery (not shown) is converted into an alternating current by the inverter 40 and supplied to the electric motor 20.
  • the drive shaft 21 is connected to the movable scroll 3 via a crank mechanism, and transmits the rotational force of the electric motor 20 to the movable scroll 3.
  • One end portion of the drive shaft 21 (that is, the end portion on the movable scroll 3 side) is inserted through a through hole formed in the bearing holding portion 30 and is rotatably supported by the bearing 17, and the other end portion of the drive shaft 21.
  • the inverter 40 side end portion is rotatably supported by a bearing 15 fitted to the support portion 11b1.
  • the bearing 17 corresponds to a “bearing portion” according to the present invention.
  • the rotor 22 is rotatably supported on the radially inner side of the stator core unit 23 via a drive shaft 21 that is fitted (for example, press-fitted) into a shaft hole formed at the radial center thereof.
  • a magnetic field is generated in the stator core unit 23 by power feeding from the inverter 40, a rotational force is applied to the rotor 22 and the drive shaft 21 is rotationally driven.
  • the bearing holding portion 30 holds the bearing 17 as a bearing portion that rotatably supports the movable scroll 3 side end portion of the drive shaft 21.
  • the bearing holding portion 30 is formed in a bottomed cylindrical shape having an outer diameter combined with the outer diameter of the bottom plate 2a of the fixed scroll 2, for example, and includes a cylindrical portion 30a and a bottom wall portion 30b positioned on one end side of the cylindrical portion 30a. And have.
  • the cylindrical portion 30a has a shoulder portion 30a3 that is expanded so that the inner diameter on the opening side is larger than the inner diameter on the bottom wall portion 30b side, and connects between the large-diameter portion 30a1 and the small-diameter portion 30a2.
  • the movable scroll 3 is accommodated in a space defined by the large-diameter portion 30a1 and the shoulder portion 30a3.
  • the opening-side end portion of the cylindrical portion 30a is in contact with the peripheral edge portion of the end surface on the movable scroll 3 side of the bottom plate 2a. Therefore, the opening of the bearing holding portion 30 is closed by the fixed scroll 2.
  • the bearing 17 is fitted into the small diameter portion 30a2 of the cylindrical portion 30a. And the through-hole for making the movable scroll 3 side edge part of the drive shaft 21 penetrate is opened in the radial direction center part of the bottom wall part 30b.
  • An annular thrust plate 18 is disposed between the shoulder 30 a 3 of the bearing holder 30 and the bottom plate 3 a of the movable scroll 3.
  • the shoulder 30a3 receives a thrust force from the movable scroll 3 via the thrust plate 18.
  • Seal members 19 are respectively disposed at portions of the shoulder 30a3 and the bottom plate 3a that are in contact with the thrust plate 18. By these seal members 19, a back pressure chamber H3 is defined between the bottom plate 3a and the small diameter portion 30a2.
  • the bearing holder 30 is supplied with a refrigerant (specifically, a mixed fluid of refrigerant and lubricating oil) from the suction chamber H1 to the space H4 near the outer ends of the spiral wraps 2b and 3b of the scroll unit 1.
  • a refrigerant introduction passage for introduction is formed. Since the refrigerant introduction passage communicates between the space H4 and the suction chamber H1, the pressure in the space H4 is equal to the pressure in the suction chamber H1 (suction chamber pressure).
  • the crank mechanism has a cylindrical boss portion that protrudes from the back surface (the end surface on the back pressure chamber H3 side) of the bottom plate 3a as shown in FIG. 24, an eccentric bush 26 attached in an eccentric state to a crank 25 provided at the end of the movable scroll 3 of the drive shaft 21, and a slide bearing 27 fitted to the boss portion 24.
  • the eccentric bush 26 is rotatably supported in the boss portion 24 via a slide bearing 27.
  • a balancer weight 28 is attached to the end of the drive shaft 21 on the side of the movable scroll 3 so as to face the centrifugal force during the operation of the movable scroll 3.
  • a rotation prevention mechanism for preventing the rotation of the movable scroll 3 is appropriately provided.
  • the movable scroll 3 is configured to be capable of revolving around the axis of the fixed scroll 2 via the crank mechanism in a state in which the rotation is prevented.
  • the scroll compressor 100 compresses the refrigerant flowing into the space S between the scrolls 2 and 3 by driving the electric motor 20 and causing the orbiting scroll 3 to revolve around the axis of the fixed scroll 2.
  • the flow of the refrigerant in the scroll compressor 100 will be described.
  • Refrigerant from the low pressure side of the refrigerant circuit is introduced into the suction chamber H1 via the suction port P1, and then guided to the space H4 near the outer end of the scroll unit 1 via the refrigerant introduction passage (not shown).
  • the refrigerant in the space H4 is taken into the space S between the spiral wraps 2b and 3b and is compressed in the space S.
  • the compressed refrigerant is discharged to the discharge chamber H2 via the discharge hole 2a2 and the one-way valve 16, and then discharged from the discharge chamber H2 to the high pressure side of the refrigerant circuit via the discharge passage 12a and the discharge port P2.
  • the fastening structure of the fixed scroll 2 in this embodiment will be described.
  • the fixed scroll 2 is fastened integrally with the rear housing 12 and the bearing holding portion 30 while being disposed between the rear housing 12 and the bearing holding portion 30.
  • the fixed scroll 2 causes the peripheral portion of the back surface of the bottom plate 2a to abut one end surface of the rear housing 12, and the peripheral portion of the end surface of the bottom plate 2a on the movable scroll 3 side is used as a bearing holding portion. It is made to contact
  • Through holes for inserting the bolts 14 are opened at a plurality of locations that are appropriately spaced in the circumferential direction in the peripheral portions of the cylindrical portion 30 a of the bearing holding portion 30 and the bottom plate 2 a of the fixed scroll 2.
  • a female screw portion is formed on one end face side of the rear housing 12 in accordance with the opening position of the through hole.
  • the bolt 14 is inserted through the through hole of the cylindrical portion 30 a and the bottom plate 2 a and is screwed into the female screw portion of the rear housing 12.
  • the fixed scroll 2 is sandwiched between the rear housing 12 and the bearing holding portion 30 and is fastened integrally with the rear housing 12 and the bearing holding portion 30.
  • the rear housing 12, the fixed scroll 2, the movable scroll 3, the bearing 17, the thrust plate 18, the seal member 19, the drive shaft 21, and the crank A compression mechanism unit 50 including the mechanism (24, 25, 26, 27, 28) and the bearing holding portion 30 is configured.
  • the compression mechanism unit 50 is detachably attached to the front housing 11.
  • the compression mechanism unit 50 has a peripheral portion of the end face on the fixed scroll 2 side of the rear housing 12 as a fastening means such as a bolt 14 on one end side end portion (opening side end portion) of the peripheral wall portion 11a of the front housing 11. And are removed from the front housing 11 by releasing the fastening. That is, when the scroll compressor 100 is assembled, the compression mechanism unit 50 is incorporated such that a portion other than the rear housing 12 is inserted into the front housing 11.
  • the material of the scroll unit 1, the housing 10, and the bearing holding part 30 in this embodiment will be described.
  • the rear housing 12, the fixed scroll 2, and the bearing holding portion 30 are made of the same iron-based material.
  • the rear housing 12 and the bearing holding portion 30 which are main members fastened to the fixed scroll 2 are made of the same iron-based material as the fixed scroll 2.
  • the movable scroll 3 is not a member that is fastened to the fixed scroll 2. Therefore, the movable scroll 3 may be formed of the same material as the fixed scroll 2 or may be formed of a different material (for example, an aluminum-based material).
  • the front housing 11 and the inverter cover 13 are made of an aluminum-based material. That is, the portion of the housing 10 that is fastened to the fixed scroll 2 (rear housing 12) employs the same material (iron-based material) as the fixed scroll 2 and is not fastened to the fixed scroll 2 of the housing 10.
  • the material (aluminum-type material) different from the fixed scroll 2 is employ
  • the fixed scroll 2 is fastened integrally with the rear housing 12 and the bearing holding portion 30 in a state of being disposed between the rear housing 12 and the bearing holding portion 30.
  • the rear housing 12, the fixed scroll 2, and the bearing holder 30 are made of the same iron-based material. That is, according to the scroll compressor 100, the fixed scroll 2 can be sandwiched between the rear housing 12 and the bearing holding portion 30, and can be fastened integrally with the rear housing 12 and the bearing holding portion 30. The rigidity of the fixed scroll 2 can be improved.
  • the rear housing 12 and the bearing holding portion 30 that are fastened to the fixed scroll 2 are formed of the same material as the fixed scroll 2, main members that contact the fixed scroll 2 (the rear housing 12 and the bearing holding portion).
  • the linear expansion coefficient of the part 30) and the linear expansion coefficient of the fixed scroll 2 can be matched. Therefore, deformation of the fixed scroll 2 due to the difference between the linear expansion coefficient of the fixed scroll 2 and the linear expansion coefficient of members around the fixed scroll 2 can be prevented.
  • an iron-based material having a higher linear expansion coefficient than aluminum is used as the material of the fixed scroll 2, the deformation amount of the fixed scroll 2 itself due to a temperature change can also be reduced.
  • the scroll compressor 100 by devising the fastening structure around the fixed scroll 2 and adopting the same iron-based material as the fixed scroll 2 as the material of the main members around the fixed scroll 2,
  • the rigidity of the fixed scroll 2 can be improved and the amount of deformation due to the temperature change of the fixed scroll 2 can be reduced.
  • a gap (seal gap) allowed between the fixed scroll 2 and the movable scroll 3 during the compression operation. ) Can be reduced. Accordingly, when compressing the CO 2 refrigerant, the gap is set sufficiently smaller than the gap allowed when the refrigerant such as the conventional R134 is compressed in order to increase the airtightness of the space S between the scrolls 2 and 3.
  • the set gap can be easily maintained in an appropriate range during the compression operation.
  • the scroll compressor 100 capable of improving the airtightness of the space S between the scrolls 2 and 3 by reducing the amount of change in the gap between the fixed scroll 2 and the movable scroll 3.
  • the compression mechanism unit 50 having the portion 30 is detachably attached to the front housing 11. Accordingly, the compression mechanism unit 50 can be driven alone by rotating the drive shaft 21 of the compression mechanism unit 50 with a test motor or the like.
  • the test of the compression mechanism unit 50 alone can be easily performed before assembly to the front housing 11 or after removal from the front housing 11.
  • the front housing 11 and the inverter cover 13 of the housing 10 are made of an aluminum-based material (for example, the same aluminum-based material), and the rear housing 12 of the housing 10 is the fixed scroll 2. And made of the same iron-based material.
  • deformation of the fixed scroll 2 can be suppressed by using the same material as that of the fixed scroll 2 for the member fastened to the fixed scroll 2 in the housing 10.
  • the weight increase of the housing 10 whole can be suppressed by using an aluminum-type material.
  • the front housing 11 and the inverter cover 13 may be made of the same iron-based material as that of the fixed scroll 2, for example.
  • this invention is not restrict
  • the movable scroll 3 is accommodated in the bearing holding portion 30 (specifically, the large-diameter portion 30a1).
  • the present invention is not limited to this, and as shown in FIG. It is good also as a structure accommodated.
  • the peripheral portion of the bottom plate 2 a of the fixed scroll 2 is formed with a large diameter portion 2 a 3 that protrudes toward the bearing holding portion 30, and the movable scroll 3 is accommodated in the large diameter portion 2 a 3 of the fixed scroll 2.
  • maintenance part 30 should just be provided with the small diameter part 30a2 which fits the bearing 17 in the cylindrical part 30a.
  • the scroll compressor 100 has been described by taking a so-called inverter-integrated case as an example. However, the present invention is not limited to this, and the scroll compressor 100 may be separate from the inverter 40. In this case, the housing 10 only needs to include the front housing 11 and the rear housing 12.
  • a predetermined gap is simply provided between the protruding edge of the spiral wrap 2b and the bottom plate 3a, or between the protruding edge of the spiral wrap 3b and the bottom plate 2a.
  • the present invention is not limited to this, and a chip seal may be provided so as to fill this gap. If this gap that can fluctuate during the compression operation is maintained in an appropriate range during the compression operation, the airtightness of the space S between the scrolls 2 and 3 is more appropriately maintained by the tip seal.
  • the refrigerant has been assumed to be CO 2 refrigerant is not limited to this, it is possible to apply the appropriate refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a scroll compressor that is capable of improving the airtightness of a space between two scrolls. A scroll compressor 100 compresses a fluid flowing into a space S between two scrolls 2 and 3 by revolving the movable scroll 3 around the axial center of the fixed scroll 2. A housing 10 includes: a front housing (housing body) 11 having an opening on at least one end side thereof; and a rear housing (lid part) 12 that closes an opening on one end side of the front housing 11. The fixed scroll 2 is integrally fastened to the rear housing 12 and a bearing holding part 30 in the state of being arranged between the rear housing 12 and the bearing holding part 30. The rear housing 12, the fixed scroll 2, and the bearing holding part 30 are made of the same iron material.

Description

スクロール型圧縮機Scroll compressor
 本発明は、互いに噛み合わされる固定スクロール及び可動スクロールを有し、両スクロール間の空間に流入する冷媒等の流体を圧縮するスクロール型圧縮機に関する。 The present invention relates to a scroll compressor that has a fixed scroll and a movable scroll meshed with each other, and compresses a fluid such as a refrigerant flowing into a space between both scrolls.
 この種のスクロール型圧縮機としては、例えば、特許文献1に記載されたスクロール型圧縮機が一般的に知られている。特許文献1に記載されたスクロール型圧縮機は、車両に搭載される空調装置の冷媒回路に組み込まれ、この冷媒回路の冷媒を圧縮するものである。このスクロール型圧縮機は、ハウジング内に、固定スクロール及び可動スクロールからなるスクロールユニットと、可動スクロールにクランク機構を介して連結される駆動軸を有する電動モータと、駆動軸の一端部側を回動可能に支持する軸受部を保持する軸受保持部とを備える。そして、このスクロール型圧縮機は、電動モータを駆動させて可動スクロールを固定スクロールに対して公転旋回運動させることにより、両スクロール間の空間(圧縮室)に流入する冷媒を圧縮し、この圧縮した冷媒を吐出するように構成されている。この固定スクロールや可動スクロールの材料としては、一般的にアルミニウム系の材料が用いられている。 As this type of scroll compressor, for example, a scroll compressor described in Patent Document 1 is generally known. The scroll compressor described in Patent Document 1 is incorporated in a refrigerant circuit of an air conditioner mounted on a vehicle and compresses the refrigerant in the refrigerant circuit. This scroll compressor has a housing in which a scroll unit including a fixed scroll and a movable scroll, an electric motor having a drive shaft connected to the movable scroll via a crank mechanism, and one end of the drive shaft are rotated. A bearing holding portion that holds the bearing portion that supports the bearing portion. The scroll compressor compresses the refrigerant flowing into the space (compression chamber) between the two scrolls by driving the electric motor and causing the movable scroll to revolve with respect to the fixed scroll. The refrigerant is discharged. As a material for the fixed scroll and the movable scroll, an aluminum-based material is generally used.
特開2008−082224号公報JP 2008-082224 A
 ところで、特許文献1に記載されているように、空調装置の冷媒としては、CO冷媒が採用される場合がある。
 しかしながら、空調装置の冷媒としてCO冷媒を採用した場合、R134a等の従来の冷媒と比較すると、スクロール型圧縮機における作動圧力が著しく高くなる。そのため、この種のスクロール型圧縮機において、CO冷媒を圧縮する場合は、固定スクロールと可動スクロールとの間に形成される空間(圧縮室)の気密性を向上させる必要があり、その工夫が求められている。
 本発明は、このような実情に着目してなされたものであり、固定スクロールと可動スクロールとの間の隙間の変化量を抑制させることにより、両スクロール間の空間の気密性を向上させることが可能なスクロール型圧縮機を提供することを目的とする。
By the way, as described in Patent Document 1, a CO 2 refrigerant may be employed as the refrigerant of the air conditioner.
However, when a CO 2 refrigerant is employed as the refrigerant of the air conditioner, the operating pressure in the scroll compressor is significantly higher than that of a conventional refrigerant such as R134a. Therefore, in this type of scroll compressor, when compressing CO 2 refrigerant, it is necessary to improve the airtightness of the space (compression chamber) formed between the fixed scroll and the movable scroll. It has been demanded.
The present invention has been made paying attention to such a situation, and by suppressing the amount of change in the gap between the fixed scroll and the movable scroll, it is possible to improve the airtightness of the space between the scrolls. It is an object of the present invention to provide a scroll type compressor that can be used.
 本発明の一側面によるスクロール型圧縮機は、互いに噛み合わされる固定スクロール及び可動スクロール、前記可動スクロールにクランク機構を介して連結される駆動軸を有する電動モータ、及び、前記駆動軸の可動スクロール側端部を回動可能に支持する軸受部を保持する軸受保持部を、ハウジング内に備え、前記電動モータを駆動させて前記可動スクロールを前記固定スクロールの軸心周りに公転旋回運動させることにより、両スクロール間の空間に流入する流体を圧縮するスクロール型圧縮機であって、前記ハウジングは、少なくとも一端側が開口されたハウジング本体と、該ハウジング本体の一端側の開口を閉止する蓋部とを含み、前記固定スクロールは、前記蓋部と前記軸受保持部との間に配置された状態で、前記蓋部及び前記軸受保持部と一体的に締結され、前記蓋部、前記固定スクロール及び前記軸受保持部は、鉄系の同一材料からなる。 A scroll compressor according to one aspect of the present invention includes a fixed scroll and a movable scroll that are meshed with each other, an electric motor having a drive shaft connected to the movable scroll via a crank mechanism, and the movable scroll side of the drive shaft. A bearing holding portion that holds a bearing portion that rotatably supports the end portion is provided in the housing, and the electric motor is driven to cause the movable scroll to revolve around the axis of the fixed scroll. A scroll compressor that compresses fluid flowing into a space between both scrolls, wherein the housing includes a housing main body that is open at least at one end side, and a lid that closes an opening at one end side of the housing main body. The fixed scroll is disposed between the lid portion and the bearing holding portion, and the lid portion and the Receiving holding portion and integrally fastened, said lid portion, the stationary scroll and the bearing holder is made of the same material of iron.
 前記一側面によるスクロール型圧縮機では、固定スクロールは、ハウジングの一端側の蓋部と、駆動軸の可動スクロール側端部を回動可能に支持する軸受部を保持する軸受保持部との間に配置された状態で、蓋部及び軸受保持部と一体的に締結されている。そして、蓋部、固定スクロール及び軸受保持部は鉄系の同一材料からなるものである。つまり、前記一側面によるスクロール型圧縮機によれば、固定スクロールを、蓋部と軸受保持部との間に挟み込んで、蓋部及び軸受保持部と一体的に締結することができるため、固定スクロールの剛性を向上させることができる。その上、この固定スクロールと締結される蓋部及び軸受保持部が、固定スクロールと同一の材料で形成されるため、固定スクロールに接触する主な部材(蓋部及び軸受保持部)の線膨張係数と、固定スクロールの線膨張係数を一致させることができる。そのため、固定スクロールの線膨張係数と固定スクロール周りの部材の線膨張係数の違いによる固定スクロールの変形を防止することもできる。さらに、アルミニウムより線膨張係数が高い鉄系の材料を固定スクロールの材料として用いたため、温度変化による固定スクロール自体の変形量も低減させることができる。
 このように、前記一側面によるスクロール型圧縮機によれば、固定スクロール周りの締結構造を工夫すると共に固定スクロール周りの主な部材の材料として固定スクロールと同一の鉄系材料を採用することにより、固定スクロールの剛性の向上及び固定スクロールの温度変化による変形量の低減を図ることができる。その結果、圧縮運転中において固定スクロールと可動スクロールとの間に許容される隙間(シール隙間)の変化量を低減させることができる。したがって、CO冷媒を圧縮する場合に、両スクロール間の空間の気密性を高めるべく、上記隙間を従来のR134等の冷媒を圧縮する際に許容される隙間より十分に小さく設定し、且つ、その設定された隙間を圧縮運転中において容易に適切な範囲に維持させることができる。
 このようにして、固定スクロールと可動スクロールとの間の隙間の変化量を低減させることにより、両スクロール間の空間の気密性を向上させることが可能なスクロール型圧縮機を提供することができる。
In the scroll compressor according to the one aspect, the fixed scroll is provided between the lid portion on one end side of the housing and the bearing holding portion that holds the bearing portion that rotatably supports the movable scroll side end portion of the drive shaft. In the disposed state, the lid portion and the bearing holding portion are integrally fastened. And a cover part, a fixed scroll, and a bearing holding part consist of the same material of an iron system. That is, according to the scroll compressor according to the one aspect, the fixed scroll can be sandwiched between the lid portion and the bearing holding portion and can be fastened integrally with the lid portion and the bearing holding portion. The rigidity of can be improved. In addition, since the lid portion and the bearing holding portion that are fastened to the fixed scroll are made of the same material as the fixed scroll, the linear expansion coefficient of the main members (lid portion and bearing holding portion) that come into contact with the fixed scroll And the linear expansion coefficient of the fixed scroll can be matched. Therefore, deformation of the fixed scroll due to the difference between the linear expansion coefficient of the fixed scroll and the linear expansion coefficient of the members around the fixed scroll can be prevented. Furthermore, since an iron-based material having a higher linear expansion coefficient than aluminum is used as the material for the fixed scroll, the deformation amount of the fixed scroll itself due to a temperature change can also be reduced.
Thus, according to the scroll compressor according to the one aspect, by devising the fastening structure around the fixed scroll and adopting the same iron-based material as the fixed scroll as the main member material around the fixed scroll, It is possible to improve the rigidity of the fixed scroll and reduce the deformation amount due to the temperature change of the fixed scroll. As a result, the amount of change in the gap (seal gap) allowed between the fixed scroll and the movable scroll during the compression operation can be reduced. Therefore, when compressing the CO 2 refrigerant, in order to increase the airtightness of the space between the two scrolls, the gap is set sufficiently smaller than the gap allowed when compressing the conventional refrigerant such as R134, and The set gap can be easily maintained in an appropriate range during the compression operation.
Thus, the scroll type compressor which can improve the airtightness of the space between both scrolls by reducing the variation | change_quantity of the clearance gap between a fixed scroll and a movable scroll can be provided.
本発明の一実施形態によるスクロール型圧縮機の概略断面図である。It is a schematic sectional drawing of the scroll compressor by one Embodiment of this invention. 上記スクロール型圧縮機の要部断面図である。It is principal part sectional drawing of the said scroll compressor. 上記スクロール型圧縮機の要部の変形例を示した要部断面図である。It is principal part sectional drawing which showed the modification of the principal part of the said scroll compressor.
 以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
 図1は、本実施形態に係るスクロール型圧縮機の概略断面図である。
 本実施形態によるスクロール型圧縮機100は、例えば車両用空調装置の冷媒回路に組み込まれ、冷媒回路の低圧側から吸入した冷媒(流体)を圧縮して吐出するものである。このスクロール型圧縮機100は、スクロールユニット1と、ハウジング10と、スクロールユニット1を駆動させる駆動部としての電動モータ20と、電動モータ20の駆動軸21の一端部(図1では上端部)を支持するための軸受保持部30と、電動モータ20の駆動制御用のインバータ40と、を備えている。なお、本実施形態においては、前記冷媒としてCO冷媒が採用されているものとする。また、スクロール型圧縮機100は、いわゆるインバーター体型の場合を一例に挙げて説明する。
 前記スクロールユニット1は、互いに噛み合わされる固定スクロール2及び可動スクロール3を有する。固定スクロール2は、円盤状の底板2a上に渦巻きラップ2bが一体形成されてなる。可動スクロール3は、円盤状の底板3a上に渦巻きラップ3bが一体形成されてなる。また、固定スクロール2の底板2aは可動スクロール3の底板3aより大きな径を有する。
 両スクロール2,3は、その両渦巻きラップ2b,3bを噛み合わせるように配置される。詳しくは、両スクロール2,3は、固定スクロール2の渦巻きラップ2bの突出側の端縁が可動スクロール3の底板3aとの間に所定の隙間を有し、可動スクロール3の渦巻きラップ3bの突出側の端縁が固定スクロール2の底板2aとの間に所定の隙間を有するように配設される。圧縮運転中に変動し得るこの隙間が圧縮運転中に適切な範囲に維持されていれば、後述する空間(圧縮室)Sの気密性が適切に維持され、その結果、スクロール型圧縮機100における冷媒の圧縮性能が維持される。
 また、両スクロール2,3は、両渦巻きラップ2b,3bの周方向の角度が互いにずれた状態で、両渦巻きラップ2b,3bの側壁が互いに部分的に接触するように配設される。これにより、両渦巻きラップ2b,3b間に三日月状の空間(圧縮室)Sが形成される。
 固定スクロール2は、ハウジング10の後述するリアハウジング12に固定されると共に、その径方向中央部に、リアハウジング12側に開口する溝部2a1を有する。詳しくは、この溝部2a1は、底板2aの背面(つまり、可動スクロール3とは反対側の端面)に形成されている。この固定スクロール2の締結構造及び材質については後に詳述する。 可動スクロール3は、その自転が阻止された状態で、後述するクランク機構を介して、固定スクロール2の軸心周りに公転旋回運動可能に構成されている。これにより、スクロールユニット1は、両スクロール2,3間、詳しくは、両渦巻きラップ2b,3b間に形成される空間Sを中央部に移動させ、その容積を徐々に減少させる。その結果、スクロールユニット1は、渦巻きラップ2b,3bの外端部側から空間S内に流入する冷媒を空間S内で圧縮する。また、可動スクロール3の材質については後に詳述する。
 前記ハウジング10は、図1に示すように、主に、スクロールユニット1、電動モータ20、軸受保持部30、及び、インバータ40を、その内側に収容するフロントハウジング11と、リアハウジング12と、インバータカバー13と、を有する。そして、これら(11,12,13)がボルト14などの締結手段によって一体的に締結されてスクロール型圧縮機100のハウジング10が構成される。なお、本実施形態において、フロントハウジング11が本発明に係る「ハウジング本体」に相当し、リアハウジング12が本発明に係る「蓋部」に相当する。また、ハウジング10の材質については後に詳述する。
 前記フロントハウジング11は、概ね円環状の周壁部11aと仕切壁部11bとを有する。フロントハウジング11は、その内部空間が、仕切壁部11bにより主にスクロールユニット1、電動モータ20、及び、軸受保持部30を収容するための収容空間とインバータ40を収容するための収容空間とに仕切られる。周壁部11aの一端側(図1では上側)の開口はリアハウジング12によって閉止される。また、周壁部11aの他端側(図1では下側)の開口はインバータカバー13によって閉止される。仕切壁部11bには、その径方向中央部に駆動軸21の他端部(図1では下端部)を支持するベアリング15を保持する筒状の支持部11b1が、周壁部11aの一端側に向って突設されている。
 また、周壁部11aには、冷媒の吸入ポートP1が形成されている。冷媒回路の低圧側からの冷媒は、この吸入ポートP1を介してフロントハウジング11内に吸入される。したがって、フロントハウジング11内の空間は吸入室H1として機能している。なお、冷媒が吸入室H1内で電動モータ20の周囲等を流通することにより、電動モータ20が冷却されるように構成されている。そして、図1において、電動モータ20の上側の空間は、電動モータ20の下側の空間と連通し、電動モータ20の下側の空間と共に一つの吸入室H1を構成する。また、吸入室H1内には、回転駆動される駆動軸21等の摺動部位の潤滑のために、適量の潤滑オイルが貯留されている。そのため、吸入室H1において、冷媒は潤滑オイルとの混合流体として流れている。
 前記リアハウジング12は、フロントハウジング11の周壁部11aの外径に合わせた外径を有する円盤状に形成されている。そして、このリアハウジング12は、その周縁部が周壁部11aの一端側端部(図1では、上端部)に適宜本数のボルト14等の締結手段によって締結され、フロントハウジング11の一端側の開口を閉止する。
 また、このリアハウジング12の一端面には、固定スクロール2の底板2aの背面のうちの周縁部(言い換えると、溝部2a1を囲む部位)が当接されている。このリアハウジング12の一端面と底板2aの溝部2a1とにより、冷媒の吐出室H2が区画される。底板2aの中心部には、圧縮冷媒の吐出孔2a2が形成される。そして、この吐出室H2には、一方向弁(吐出室H2からスクロールユニット1側への流れを規制する逆止弁)16が吐出孔2a2の開口を覆うように設けられている。吐出室H2内には、両渦巻きラップ2b,3b間に形成される空間Sで圧縮された冷媒が吐出孔2a2及び一方弁16を介して吐出される。吐出室H2内の圧縮冷媒は、リアハウジング12に形成される吐出通路12a及び吐出ポートP2を介して冷媒回路の高圧側に吐出される。
 なお、図示を省略するが、例えば、リアハウジング12に形成された吐出通路12aには、吐出室H2内の圧縮冷媒から潤滑オイルを分離するための適宜の分離手段が設けられる。この分離手段により潤滑オイルが分離された冷媒(微量の潤滑オイルが残存する冷媒を含む)が吐出ポートP2を介して冷媒回路の高圧側に吐出される。一方、分離手段により分離された潤滑オイルは、図示を省略した圧力供給通路を介して後述する背圧室H3へ導かれる。
 前記電動モータ20は、駆動軸21と、ロータ22と、ロータ22の径方向外側に配置されるステータコアユニット23とを含んで構成され、例えば、三相交流モータが適用される。例えば車両のバッテリー(図示省略)からの直流電流が、インバータ40により交流電流に変換され、電動モータ20へ給電される。
 前記駆動軸21は、可動スクロール3にクランク機構を介して連結され、電動モータ20の回転力を可動スクロール3に伝達するものである。駆動軸21の一端部(つまり、可動スクロール3側端部)は、軸受保持部30に形成された貫通孔を挿通して、ベアリング17によって回動可能に支持され、駆動軸21の他端部(インバータ40側端部)は、支持部11b1に嵌合されるベアリング15によって回転可能に支持される。本実施形態において、上記ベアリング17が本発明に係る「軸受部」に相当する。
 前記ロータ22は、その径方向中心に形成された軸孔に嵌合(例えば圧入)される駆動軸21を介して、ステータコアユニット23の径方向内側で回転可能に支持される。インバータ40からの給電によりステータコアユニット23に磁界が発生すると、ロータ22に回転力が作用して駆動軸21が回転駆動される。
 前記軸受保持部30は、駆動軸21の可動スクロール3側端部を回動可能に支持する軸受部としてのベアリング17を保持するものである。軸受保持部30は、例えば、固定スクロール2の底板2aの外径と合わせた外径を有する有底筒状に形成され、円筒部30aと、円筒部30aの一端側に位置する底壁部30bとを有する。円筒部30aは、その開口側の内径が底壁部30b側の内径より大きくなるように拡径され、その大径部位30a1と小径部位30a2の間を接続する肩部30a3を有する。大径部位30a1と肩部30a3とによって区画される空間内に可動スクロール3が収容される。円筒部30aの開口側端部は、底板2aの可動スクロール3側端面のうちの周縁部に当接される。したがって、軸受保持部30の開口は、固定スクロール2によって閉止される。また、円筒部30aの小径部位30a2には、ベアリング17が嵌合される。そして、底壁部30bの径方向中央部には、駆動軸21の可動スクロール3側端部を挿通させるための貫通孔が開口されている。また、軸受保持部30の材質については後に詳述する。
 軸受保持部30の肩部30a3と可動スクロール3の底板3aとの間には、環状のスラストプレート18が配置される。肩部30a3は、スラストプレート18を介して可動スクロール3からのスラスト力を受ける。肩部30a3及び底板3aのスラストプレート18と当接する部位には、それぞれシール部材19が配置される。これらのシール部材19により、底板3aと小径部位30a2との間に、背圧室H3が区画されている。軸受保持部30には、図示を省略するが、吸入室H1からスクロールユニット1の両渦巻きラップ2b,3bの外端部付近の空間H4へ冷媒(詳しくは冷媒と潤滑オイルとの混合流体)を導入するための冷媒導入通路が形成される。この冷媒導入通路は、空間H4と吸入室H1との間を連通するため、空間H4内の圧力は吸入室H1内の圧力(吸入室内圧力)と等しい。
 本実施形態では、前記クランク機構は、このクランク機構を含む要部断面図である図2に示すように、底板3aの背面(背圧室H3側端面)に突出形成された円筒状のボス部24と、駆動軸21の可動スクロール3側端部に設けたクランク25に偏心状態で取付けられた偏心ブッシュ26と、ボス部24に嵌合されるすべり軸受27と、を含んで構成される。偏心ブッシュ26はボス部24内にすべり軸受27を介して回転可能に支持される。
 なお、駆動軸21の可動スクロール3側端部には、可動スクロール3の動作時の遠心力に対向するバランサウエイト28が取付けられる。また、図示を省略したが、可動スクロール3の自転を阻止する自転阻止機構が適宜に備えられる。これにより、可動スクロール3は、その自転が阻止された状態で、前記クランク機構を介して固定スクロール2の軸心周りに公転旋回運動可能に構成される。スクロール型圧縮機100は、電動モータ20を駆動させて可動スクロール3を固定スクロール2の軸心周りに公転旋回運動させることにより、両スクロール2,3間の空間Sに流入する冷媒を圧縮する。
 次に、スクロール型圧縮機100における冷媒の流れを説明する。
 冷媒回路の低圧側からの冷媒は、吸入ポートP1を介して吸入室H1に導入され、その後、冷媒導入通路(図示省略)を介してスクロールユニット1の外端部付近の空間H4に導かれる。そして、空間H4内の冷媒は、両渦巻きラップ2b,3b間の空間S内に取り込まれ、この空間S内で圧縮される。圧縮された冷媒は、吐出孔2a2及び一方弁16を経由して吐出室H2に吐出され、その後、吐出室H2から吐出通路12a及び吐出ポートP2を介して冷媒回路の高圧側に吐出される。
 次に、本実施形態における固定スクロール2の締結構造について説明する。
 固定スクロール2は、リアハウジング12と軸受保持部30との間に配置された状態で、リアハウジング12及び軸受保持部30と一体的に締結されている。
 具体的には、固定スクロール2は、底板2aの背面のうちの周縁部をリアハウジング12の一端面に当接させると共に、底板2aの可動スクロール3側の端面のうちの周縁部を軸受保持部30の円筒部30aの開口側端部に当接させ、リアハウジング12と軸受保持部30との間に挟持されている。軸受保持部30の円筒部30aと固定スクロール2の底板2aの周縁部には、ボルト14挿通用の貫通孔が、周方向に適宜離間した複数個所に開口されている。また、この貫通孔の開口位置に合わせて、雌ネジ部がリアハウジング12の一端面側に形成されている。ボルト14は、円筒部30a及び底板2aの貫通孔に挿通され、リアハウジング12の雌ネジ部に螺合される。このようにして、固定スクロール2は、リアハウジング12と軸受保持部30との間に挟み込まれて、リアハウジング12及び軸受保持部30と一体的に締結されている。
 本実施形態では、上記の締結構造を採用することにより、図2に示すように、リアハウジング12、固定スクロール2、可動スクロール3、ベアリング17、スラストプレート18、シール部材19、駆動軸21、クランク機構(24,25,26,27,28)、軸受保持部30を有してなる圧縮機構ユニット50が構成される。この圧縮機構ユニット50は、フロントハウジング11に対して着脱可能に取付けられる。詳しくは、圧縮機構ユニット50は、リアハウジング12の固定スクロール2側の端面のうちの周縁部をフロントハウジング11の周壁部11aの一端側端部(開口側端部)にボルト14等の締結手段によって締結され、締結解除することによりフロントハウジング11から取り外される。つまり、圧縮機構ユニット50は、スクロール型圧縮機100の組立て時においては、そのリアハウジング12以外の部分をフロントハウジング11内に挿入するようにして組み込まれる。
 次に、本実施形態におけるスクロールユニット1、ハウジング10、及び、軸受保持部30の材質について説明する。
 本実施形態において、リアハウジング12、固定スクロール2及び軸受保持部30は、鉄系の同一材料からなる。つまり、固定スクロール2と締結する主な部材であるリアハウジング12及び軸受保持部30は、固定スクロール2と同一の鉄系材料からなる。なお、可動スクロール3は、固定スクロール2と締結する部材ではない。そのため、可動スクロール3は、固定スクロール2と同一材料で形成されてもよいし、異なる材料(例えば、アルミニウム系の材料)で形成されてもよい。
 また、本実施形態において、フロントハウジング11及びインバータカバー13は、アルミニウム系の材料からなるものとする。つまり、ハウジング10のうちの固定スクロール2と締結する部分(リアハウジング12)については、固定スクロール2と同一の材料(鉄系材料)を採用し、ハウジング10のうちの固定スクロール2と締結しない部分(フロントハウジング11及びインバータカバー13)については、固定スクロール2と異なる材料(アルミニウム系材料)を採用している。
 本実施形態によるスクロール型圧縮機100によれば、固定スクロール2は、リアハウジング12と軸受保持部30との間に配置された状態で、リアハウジング12及び軸受保持部30と一体的に締結されている。そして、リアハウジング12、固定スクロール2及び軸受保持部30は鉄系の同一材料からなるものである。つまり、スクロール型圧縮機100によれば、固定スクロール2を、リアハウジング12と軸受保持部30との間に挟み込んで、リアハウジング12及び軸受保持部30と一体的に締結することができるため、固定スクロール2の剛性を向上させることができる。その上、この固定スクロール2と締結されるリアハウジング12及び軸受保持部30が、固定スクロール2と同一の材料で形成されるため、固定スクロール2に接触する主な部材(リアハウジング12及び軸受保持部30)の線膨張係数と、固定スクロール2の線膨張係数を一致させることができる。そのため、固定スクロール2の線膨張係数と固定スクロール2周りの部材の線膨張係数の違いによる固定スクロール2の変形を防止することもできる。さらに、アルミニウムより線膨張係数が高い鉄系の材料を固定スクロール2の材料として用いたため、温度変化による固定スクロール2自体の変形量も低減させることができる。
 このように、スクロール型圧縮機100によれば、固定スクロール2周りの締結構造を工夫すると共に固定スクロール2周りの主な部材の材料として固定スクロール2と同一の鉄系材料を採用することにより、固定スクロール2の剛性の向上及び固定スクロール2の温度変化による変形量の低減を図ることができ、その結果、圧縮運転中において固定スクロール2と可動スクロール3との間に許容される隙間(シール隙間)の変化量を低減させることができる。したがって、CO冷媒を圧縮する場合に、両スクロール2,3間の空間Sの気密性を高めるべく、上記隙間を従来のR134等の冷媒を圧縮する際に許容される隙間より十分に小さく設定し、且つ、その設定された隙間を圧縮運転中において容易に適切な範囲に維持させることができる。
 このようにして、固定スクロール2と可動スクロール3との間の隙間の変化量を低減させることにより、両スクロール2,3間の空間Sの気密性を向上させることが可能なスクロール型圧縮機100を提供することができる。
 また、本実施形態では、リアハウジング12、固定スクロール2、可動スクロール3、ベアリング17、スラストプレート18、シール部材19、駆動軸21、クランク機構(24,25,26,27,28)、軸受保持部30を有してなる圧縮機構ユニット50が、フロントハウジング11に対して着脱可能に取付けられる構成とした。これにより、圧縮機構ユニット50の駆動軸21を試験用電動機等により回転等させることにより、圧縮機構ユニット50を、単体で駆動させることもできる。そのため、フロントハウジング11への組付け前や、フロントハウジング11から取り外した後に、圧縮機構ユニット50単体の試験を容易に行うことができる。
 また、本実施形態では、ハウジング10のうちのフロントハウジング11及びインバータカバー13は、アルミニウム系の材料(例えば互いに同一のアルミニウム系材料)からなり、ハウジング10のうちのリアハウジング12は、固定スクロール2と同一の鉄系の材料からなるものとした。このように、ハウジング10のうちの固定スクロール2と締結する部材については、固定スクロール2と同一の材料を用いることにより、固定スクロール2の変形を抑制することができる。一方、ハウジング10のうちの固定スクロール2と締結しない部分については、アルミニウム系の材料を用いることにより、ハウジング10全体の重量増加を抑制することができる。なお、フロントハウジング11及びインバータカバー13は、例えば、固定スクロール2と同一の鉄系材料であってもよい。
 以上、本発明の好ましい実施形態について説明したが、本発明は上記実施形態に制限されるものではなく、本発明の技術的思想に基づいて種々の変形及び変更が可能である。
 例えば、本実施形態では、可動スクロール3は軸受保持部30(詳しくは大径部位30a1)内に収容されるものとしたが、これに限らず、図3に示すように、固定スクロール2内に収容される構成としてもよい。この場合、固定スクロール2の底板2aの周縁部が軸受保持部30側に突設されてなる大径部位2a3を形成し、この固定スクロール2の大径部位2a3内に可動スクロール3を収容するように構成する。また、軸受保持部30は、その円筒部30aにベアリング17を嵌合させる小径部位30a2を備えていればよい。
 また、本実施形態では、スクロール型圧縮機100は、いわゆるインバータ一体型の場合を一例に挙げて説明したが、これに限らず、インバータ40と別体であってもよい。この場合、ハウジング10は、フロントハウジング11とリアハウジング12を備えていればよい。
 また、本実施形態では、渦巻きラップ2bの突出側の端縁と底板3aとの間や、渦巻きラップ3bの突出側の端縁と底板2aとの間は、単に、所定の隙間が設けられているものとして説明したが、これに限らず、この隙間を埋めるようにチップシールを設けてもよい。圧縮運転中に変動し得るこの隙間が圧縮運転中に適切な範囲に維持されていれば、このチップシールにより、両スクロール2,3間の空間Sの気密性がより適切に維持される。
 また、本実施形態では、冷媒はCO冷媒であるものとしたが、これに限らず、適宜の冷媒を適用することができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic cross-sectional view of a scroll compressor according to this embodiment.
The scroll compressor 100 according to the present embodiment is incorporated in a refrigerant circuit of a vehicle air conditioner, for example, and compresses and discharges refrigerant (fluid) sucked from the low pressure side of the refrigerant circuit. The scroll compressor 100 includes a scroll unit 1, a housing 10, an electric motor 20 as a drive unit that drives the scroll unit 1, and one end portion (upper end portion in FIG. 1) of a drive shaft 21 of the electric motor 20. A bearing holding portion 30 for supporting and an inverter 40 for driving control of the electric motor 20 are provided. In the present embodiment, it is assumed that a CO 2 refrigerant is employed as the refrigerant. The scroll compressor 100 will be described by taking a so-called inverter type as an example.
The scroll unit 1 includes a fixed scroll 2 and a movable scroll 3 that are meshed with each other. The fixed scroll 2 is formed by integrally forming a spiral wrap 2b on a disk-shaped bottom plate 2a. The movable scroll 3 is formed by integrally forming a spiral wrap 3b on a disk-shaped bottom plate 3a. The bottom plate 2 a of the fixed scroll 2 has a larger diameter than the bottom plate 3 a of the movable scroll 3.
Both scrolls 2 and 3 are arranged so that both the spiral wraps 2b and 3b mesh. Specifically, both the scrolls 2 and 3 have a predetermined gap between the end of the protruding side of the spiral wrap 2 b of the fixed scroll 2 and the bottom plate 3 a of the movable scroll 3 so that the spiral wrap 3 b of the movable scroll 3 protrudes. The side edge is disposed so as to have a predetermined gap with the bottom plate 2 a of the fixed scroll 2. If this gap that can fluctuate during the compression operation is maintained in an appropriate range during the compression operation, the airtightness of the space (compression chamber) S described later is appropriately maintained. Refrigerant compression performance is maintained.
The scrolls 2 and 3 are arranged so that the side walls of the spiral wraps 2b and 3b are partially in contact with each other with the circumferential angles of the spiral wraps 2b and 3b shifted from each other. Thereby, a crescent-shaped space (compression chamber) S is formed between the spiral wraps 2b and 3b.
The fixed scroll 2 is fixed to a rear housing 12 (to be described later) of the housing 10, and has a groove 2a1 that opens toward the rear housing 12 at the radial center. Specifically, the groove 2a1 is formed on the back surface of the bottom plate 2a (that is, the end surface opposite to the movable scroll 3). The fastening structure and material of the fixed scroll 2 will be described in detail later. The movable scroll 3 is configured to be capable of revolving around the axis of the fixed scroll 2 via a crank mechanism described later in a state in which the rotation is prevented. As a result, the scroll unit 1 moves the space S formed between the scrolls 2 and 3, specifically the space between the spiral wraps 2 b and 3 b, to the center, and gradually reduces the volume. As a result, the scroll unit 1 compresses the refrigerant flowing into the space S from the outer end side of the spiral wraps 2b and 3b in the space S. The material of the movable scroll 3 will be described in detail later.
As shown in FIG. 1, the housing 10 mainly includes a scroll housing 1, an electric motor 20, a bearing holding portion 30, and an inverter 40 inside a front housing 11, a rear housing 12, and an inverter. And a cover 13. These (11, 12, 13) are integrally fastened by fastening means such as bolts 14 to constitute the housing 10 of the scroll compressor 100. In the present embodiment, the front housing 11 corresponds to a “housing main body” according to the present invention, and the rear housing 12 corresponds to a “lid” according to the present invention. The material of the housing 10 will be described in detail later.
The front housing 11 has a substantially annular peripheral wall portion 11a and a partition wall portion 11b. The interior space of the front housing 11 is divided into an accommodation space for accommodating the scroll unit 1, the electric motor 20, and the bearing holding portion 30 and an accommodation space for accommodating the inverter 40 by the partition wall portion 11 b. Partitioned. The opening on one end side (upper side in FIG. 1) of the peripheral wall portion 11 a is closed by the rear housing 12. Further, the opening on the other end side (the lower side in FIG. 1) of the peripheral wall portion 11 a is closed by the inverter cover 13. In the partition wall portion 11b, a cylindrical support portion 11b1 that holds a bearing 15 that supports the other end portion (the lower end portion in FIG. 1) of the drive shaft 21 is provided at one end side of the peripheral wall portion 11a. Protrusively facing.
A refrigerant suction port P1 is formed in the peripheral wall portion 11a. Refrigerant from the low pressure side of the refrigerant circuit is sucked into the front housing 11 through the suction port P1. Therefore, the space in the front housing 11 functions as the suction chamber H1. The electric motor 20 is cooled by circulating the refrigerant around the electric motor 20 in the suction chamber H1. In FIG. 1, the upper space of the electric motor 20 communicates with the lower space of the electric motor 20 and constitutes one suction chamber H <b> 1 together with the lower space of the electric motor 20. An appropriate amount of lubricating oil is stored in the suction chamber H1 for lubrication of sliding parts such as the drive shaft 21 that is rotationally driven. Therefore, the refrigerant flows as a mixed fluid with the lubricating oil in the suction chamber H1.
The rear housing 12 is formed in a disk shape having an outer diameter that matches the outer diameter of the peripheral wall portion 11 a of the front housing 11. The peripheral edge of the rear housing 12 is fastened to one end of the peripheral wall 11a (upper end in FIG. 1) by fastening means such as a suitable number of bolts 14 and the like. Close.
In addition, a peripheral edge portion (in other words, a portion surrounding the groove portion 2a1) of the rear surface of the bottom plate 2a of the fixed scroll 2 is in contact with one end surface of the rear housing 12. The one end face of the rear housing 12 and the groove 2a1 of the bottom plate 2a define a refrigerant discharge chamber H2. A compressed refrigerant discharge hole 2a2 is formed at the center of the bottom plate 2a. In the discharge chamber H2, a one-way valve (a check valve for restricting the flow from the discharge chamber H2 to the scroll unit 1) 16 is provided so as to cover the opening of the discharge hole 2a2. In the discharge chamber H <b> 2, the refrigerant compressed in the space S formed between the spiral wraps 2 b and 3 b is discharged through the discharge hole 2 a <b> 2 and the one-way valve 16. The compressed refrigerant in the discharge chamber H2 is discharged to the high pressure side of the refrigerant circuit via the discharge passage 12a formed in the rear housing 12 and the discharge port P2.
Although not shown, for example, the discharge passage 12a formed in the rear housing 12 is provided with an appropriate separating means for separating the lubricating oil from the compressed refrigerant in the discharge chamber H2. The refrigerant from which the lubricating oil is separated by this separating means (including the refrigerant in which a small amount of lubricating oil remains) is discharged to the high pressure side of the refrigerant circuit via the discharge port P2. On the other hand, the lubricating oil separated by the separating means is guided to a back pressure chamber H3 described later via a pressure supply passage (not shown).
The electric motor 20 includes a drive shaft 21, a rotor 22, and a stator core unit 23 disposed on the radially outer side of the rotor 22. For example, a three-phase AC motor is applied. For example, a direct current from a vehicle battery (not shown) is converted into an alternating current by the inverter 40 and supplied to the electric motor 20.
The drive shaft 21 is connected to the movable scroll 3 via a crank mechanism, and transmits the rotational force of the electric motor 20 to the movable scroll 3. One end portion of the drive shaft 21 (that is, the end portion on the movable scroll 3 side) is inserted through a through hole formed in the bearing holding portion 30 and is rotatably supported by the bearing 17, and the other end portion of the drive shaft 21. The inverter 40 side end portion is rotatably supported by a bearing 15 fitted to the support portion 11b1. In the present embodiment, the bearing 17 corresponds to a “bearing portion” according to the present invention.
The rotor 22 is rotatably supported on the radially inner side of the stator core unit 23 via a drive shaft 21 that is fitted (for example, press-fitted) into a shaft hole formed at the radial center thereof. When a magnetic field is generated in the stator core unit 23 by power feeding from the inverter 40, a rotational force is applied to the rotor 22 and the drive shaft 21 is rotationally driven.
The bearing holding portion 30 holds the bearing 17 as a bearing portion that rotatably supports the movable scroll 3 side end portion of the drive shaft 21. The bearing holding portion 30 is formed in a bottomed cylindrical shape having an outer diameter combined with the outer diameter of the bottom plate 2a of the fixed scroll 2, for example, and includes a cylindrical portion 30a and a bottom wall portion 30b positioned on one end side of the cylindrical portion 30a. And have. The cylindrical portion 30a has a shoulder portion 30a3 that is expanded so that the inner diameter on the opening side is larger than the inner diameter on the bottom wall portion 30b side, and connects between the large-diameter portion 30a1 and the small-diameter portion 30a2. The movable scroll 3 is accommodated in a space defined by the large-diameter portion 30a1 and the shoulder portion 30a3. The opening-side end portion of the cylindrical portion 30a is in contact with the peripheral edge portion of the end surface on the movable scroll 3 side of the bottom plate 2a. Therefore, the opening of the bearing holding portion 30 is closed by the fixed scroll 2. The bearing 17 is fitted into the small diameter portion 30a2 of the cylindrical portion 30a. And the through-hole for making the movable scroll 3 side edge part of the drive shaft 21 penetrate is opened in the radial direction center part of the bottom wall part 30b. The material of the bearing holding portion 30 will be described in detail later.
An annular thrust plate 18 is disposed between the shoulder 30 a 3 of the bearing holder 30 and the bottom plate 3 a of the movable scroll 3. The shoulder 30a3 receives a thrust force from the movable scroll 3 via the thrust plate 18. Seal members 19 are respectively disposed at portions of the shoulder 30a3 and the bottom plate 3a that are in contact with the thrust plate 18. By these seal members 19, a back pressure chamber H3 is defined between the bottom plate 3a and the small diameter portion 30a2. Although not shown in the drawings, the bearing holder 30 is supplied with a refrigerant (specifically, a mixed fluid of refrigerant and lubricating oil) from the suction chamber H1 to the space H4 near the outer ends of the spiral wraps 2b and 3b of the scroll unit 1. A refrigerant introduction passage for introduction is formed. Since the refrigerant introduction passage communicates between the space H4 and the suction chamber H1, the pressure in the space H4 is equal to the pressure in the suction chamber H1 (suction chamber pressure).
In the present embodiment, the crank mechanism has a cylindrical boss portion that protrudes from the back surface (the end surface on the back pressure chamber H3 side) of the bottom plate 3a as shown in FIG. 24, an eccentric bush 26 attached in an eccentric state to a crank 25 provided at the end of the movable scroll 3 of the drive shaft 21, and a slide bearing 27 fitted to the boss portion 24. The eccentric bush 26 is rotatably supported in the boss portion 24 via a slide bearing 27.
A balancer weight 28 is attached to the end of the drive shaft 21 on the side of the movable scroll 3 so as to face the centrifugal force during the operation of the movable scroll 3. Although not shown, a rotation prevention mechanism for preventing the rotation of the movable scroll 3 is appropriately provided. Thus, the movable scroll 3 is configured to be capable of revolving around the axis of the fixed scroll 2 via the crank mechanism in a state in which the rotation is prevented. The scroll compressor 100 compresses the refrigerant flowing into the space S between the scrolls 2 and 3 by driving the electric motor 20 and causing the orbiting scroll 3 to revolve around the axis of the fixed scroll 2.
Next, the flow of the refrigerant in the scroll compressor 100 will be described.
Refrigerant from the low pressure side of the refrigerant circuit is introduced into the suction chamber H1 via the suction port P1, and then guided to the space H4 near the outer end of the scroll unit 1 via the refrigerant introduction passage (not shown). The refrigerant in the space H4 is taken into the space S between the spiral wraps 2b and 3b and is compressed in the space S. The compressed refrigerant is discharged to the discharge chamber H2 via the discharge hole 2a2 and the one-way valve 16, and then discharged from the discharge chamber H2 to the high pressure side of the refrigerant circuit via the discharge passage 12a and the discharge port P2.
Next, the fastening structure of the fixed scroll 2 in this embodiment will be described.
The fixed scroll 2 is fastened integrally with the rear housing 12 and the bearing holding portion 30 while being disposed between the rear housing 12 and the bearing holding portion 30.
Specifically, the fixed scroll 2 causes the peripheral portion of the back surface of the bottom plate 2a to abut one end surface of the rear housing 12, and the peripheral portion of the end surface of the bottom plate 2a on the movable scroll 3 side is used as a bearing holding portion. It is made to contact | abut to the opening side edge part of the cylindrical part 30a of 30, and is pinched | interposed between the rear housing 12 and the bearing holding part 30. Through holes for inserting the bolts 14 are opened at a plurality of locations that are appropriately spaced in the circumferential direction in the peripheral portions of the cylindrical portion 30 a of the bearing holding portion 30 and the bottom plate 2 a of the fixed scroll 2. A female screw portion is formed on one end face side of the rear housing 12 in accordance with the opening position of the through hole. The bolt 14 is inserted through the through hole of the cylindrical portion 30 a and the bottom plate 2 a and is screwed into the female screw portion of the rear housing 12. In this manner, the fixed scroll 2 is sandwiched between the rear housing 12 and the bearing holding portion 30 and is fastened integrally with the rear housing 12 and the bearing holding portion 30.
In the present embodiment, by adopting the above fastening structure, as shown in FIG. 2, the rear housing 12, the fixed scroll 2, the movable scroll 3, the bearing 17, the thrust plate 18, the seal member 19, the drive shaft 21, and the crank A compression mechanism unit 50 including the mechanism (24, 25, 26, 27, 28) and the bearing holding portion 30 is configured. The compression mechanism unit 50 is detachably attached to the front housing 11. Specifically, the compression mechanism unit 50 has a peripheral portion of the end face on the fixed scroll 2 side of the rear housing 12 as a fastening means such as a bolt 14 on one end side end portion (opening side end portion) of the peripheral wall portion 11a of the front housing 11. And are removed from the front housing 11 by releasing the fastening. That is, when the scroll compressor 100 is assembled, the compression mechanism unit 50 is incorporated such that a portion other than the rear housing 12 is inserted into the front housing 11.
Next, the material of the scroll unit 1, the housing 10, and the bearing holding part 30 in this embodiment will be described.
In the present embodiment, the rear housing 12, the fixed scroll 2, and the bearing holding portion 30 are made of the same iron-based material. That is, the rear housing 12 and the bearing holding portion 30 which are main members fastened to the fixed scroll 2 are made of the same iron-based material as the fixed scroll 2. The movable scroll 3 is not a member that is fastened to the fixed scroll 2. Therefore, the movable scroll 3 may be formed of the same material as the fixed scroll 2 or may be formed of a different material (for example, an aluminum-based material).
In the present embodiment, the front housing 11 and the inverter cover 13 are made of an aluminum-based material. That is, the portion of the housing 10 that is fastened to the fixed scroll 2 (rear housing 12) employs the same material (iron-based material) as the fixed scroll 2 and is not fastened to the fixed scroll 2 of the housing 10. About the (front housing 11 and the inverter cover 13), the material (aluminum-type material) different from the fixed scroll 2 is employ | adopted.
According to the scroll compressor 100 according to the present embodiment, the fixed scroll 2 is fastened integrally with the rear housing 12 and the bearing holding portion 30 in a state of being disposed between the rear housing 12 and the bearing holding portion 30. ing. The rear housing 12, the fixed scroll 2, and the bearing holder 30 are made of the same iron-based material. That is, according to the scroll compressor 100, the fixed scroll 2 can be sandwiched between the rear housing 12 and the bearing holding portion 30, and can be fastened integrally with the rear housing 12 and the bearing holding portion 30. The rigidity of the fixed scroll 2 can be improved. In addition, since the rear housing 12 and the bearing holding portion 30 that are fastened to the fixed scroll 2 are formed of the same material as the fixed scroll 2, main members that contact the fixed scroll 2 (the rear housing 12 and the bearing holding portion). The linear expansion coefficient of the part 30) and the linear expansion coefficient of the fixed scroll 2 can be matched. Therefore, deformation of the fixed scroll 2 due to the difference between the linear expansion coefficient of the fixed scroll 2 and the linear expansion coefficient of members around the fixed scroll 2 can be prevented. Furthermore, since an iron-based material having a higher linear expansion coefficient than aluminum is used as the material of the fixed scroll 2, the deformation amount of the fixed scroll 2 itself due to a temperature change can also be reduced.
Thus, according to the scroll compressor 100, by devising the fastening structure around the fixed scroll 2 and adopting the same iron-based material as the fixed scroll 2 as the material of the main members around the fixed scroll 2, The rigidity of the fixed scroll 2 can be improved and the amount of deformation due to the temperature change of the fixed scroll 2 can be reduced. As a result, a gap (seal gap) allowed between the fixed scroll 2 and the movable scroll 3 during the compression operation. ) Can be reduced. Accordingly, when compressing the CO 2 refrigerant, the gap is set sufficiently smaller than the gap allowed when the refrigerant such as the conventional R134 is compressed in order to increase the airtightness of the space S between the scrolls 2 and 3. In addition, the set gap can be easily maintained in an appropriate range during the compression operation.
In this way, the scroll compressor 100 capable of improving the airtightness of the space S between the scrolls 2 and 3 by reducing the amount of change in the gap between the fixed scroll 2 and the movable scroll 3. Can be provided.
Further, in the present embodiment, the rear housing 12, the fixed scroll 2, the movable scroll 3, the bearing 17, the thrust plate 18, the seal member 19, the drive shaft 21, the crank mechanism (24, 25, 26, 27, 28), and the bearing holding. The compression mechanism unit 50 having the portion 30 is detachably attached to the front housing 11. Accordingly, the compression mechanism unit 50 can be driven alone by rotating the drive shaft 21 of the compression mechanism unit 50 with a test motor or the like. Therefore, the test of the compression mechanism unit 50 alone can be easily performed before assembly to the front housing 11 or after removal from the front housing 11.
In the present embodiment, the front housing 11 and the inverter cover 13 of the housing 10 are made of an aluminum-based material (for example, the same aluminum-based material), and the rear housing 12 of the housing 10 is the fixed scroll 2. And made of the same iron-based material. As described above, deformation of the fixed scroll 2 can be suppressed by using the same material as that of the fixed scroll 2 for the member fastened to the fixed scroll 2 in the housing 10. On the other hand, about the part which is not fastened with the fixed scroll 2 of the housing 10, the weight increase of the housing 10 whole can be suppressed by using an aluminum-type material. The front housing 11 and the inverter cover 13 may be made of the same iron-based material as that of the fixed scroll 2, for example.
As mentioned above, although preferable embodiment of this invention was described, this invention is not restrict | limited to the said embodiment, A various deformation | transformation and change are possible based on the technical idea of this invention.
For example, in this embodiment, the movable scroll 3 is accommodated in the bearing holding portion 30 (specifically, the large-diameter portion 30a1). However, the present invention is not limited to this, and as shown in FIG. It is good also as a structure accommodated. In this case, the peripheral portion of the bottom plate 2 a of the fixed scroll 2 is formed with a large diameter portion 2 a 3 that protrudes toward the bearing holding portion 30, and the movable scroll 3 is accommodated in the large diameter portion 2 a 3 of the fixed scroll 2. Configure. Moreover, the bearing holding | maintenance part 30 should just be provided with the small diameter part 30a2 which fits the bearing 17 in the cylindrical part 30a.
Further, in the present embodiment, the scroll compressor 100 has been described by taking a so-called inverter-integrated case as an example. However, the present invention is not limited to this, and the scroll compressor 100 may be separate from the inverter 40. In this case, the housing 10 only needs to include the front housing 11 and the rear housing 12.
In the present embodiment, a predetermined gap is simply provided between the protruding edge of the spiral wrap 2b and the bottom plate 3a, or between the protruding edge of the spiral wrap 3b and the bottom plate 2a. However, the present invention is not limited to this, and a chip seal may be provided so as to fill this gap. If this gap that can fluctuate during the compression operation is maintained in an appropriate range during the compression operation, the airtightness of the space S between the scrolls 2 and 3 is more appropriately maintained by the tip seal.
Further, in the present embodiment, the refrigerant has been assumed to be CO 2 refrigerant is not limited to this, it is possible to apply the appropriate refrigerant.
 1・・・スクロールユニット
 2・・・固定スクロール
 3・・・可動スクロール
 10・・・ハウジング
 11・・・ハウジング本体(フロントハウジング)
 12・・・蓋部(リアハウジング)
 20・・・電動モータ
 21・・・駆動軸
 30・・・軸受保持部
 50・・・圧縮機構ユニット
 100・・・スクロール型圧縮機
DESCRIPTION OF SYMBOLS 1 ... Scroll unit 2 ... Fixed scroll 3 ... Movable scroll 10 ... Housing 11 ... Housing main body (front housing)
12 ... Lid (rear housing)
DESCRIPTION OF SYMBOLS 20 ... Electric motor 21 ... Drive shaft 30 ... Bearing holding part 50 ... Compression mechanism unit 100 ... Scroll type compressor

Claims (3)

  1.  互いに噛み合わされる固定スクロール及び可動スクロール、前記可動スクロールにクランク機構を介して連結される駆動軸を有する電動モータ、及び、前記駆動軸の可動スクロール側端部を回動可能に支持する軸受部を保持する軸受保持部を、ハウジング内に備え、前記電動モータを駆動させて前記可動スクロールを前記固定スクロールの軸心周りに公転旋回運動させることにより、両スクロール間の空間に流入する流体を圧縮するスクロール型圧縮機であって、
     前記ハウジングは、少なくとも一端側が開口されたハウジング本体と、該ハウジング本体の一端側の開口を閉止する蓋部とを含み、
     前記固定スクロールは、前記蓋部と前記軸受保持部との間に配置された状態で、前記蓋部及び前記軸受保持部と一体的に締結され、
     前記蓋部、前記固定スクロール及び前記軸受保持部は、鉄系の同一材料からなる、スクロール型圧縮機。
    A fixed scroll and a movable scroll meshed with each other; an electric motor having a drive shaft coupled to the movable scroll via a crank mechanism; and a bearing portion for rotatably supporting the movable scroll side end of the drive shaft. A bearing holding portion for holding is provided in the housing, and the electric motor is driven to cause the movable scroll to revolve around the axis of the fixed scroll, thereby compressing the fluid flowing into the space between the two scrolls. A scroll compressor,
    The housing includes a housing main body having at least one end opened, and a lid for closing the opening on the one end of the housing main body,
    The fixed scroll is fastened integrally with the lid portion and the bearing holding portion in a state of being arranged between the lid portion and the bearing holding portion,
    The lid part, the fixed scroll, and the bearing holding part are scroll type compressors made of the same iron-based material.
  2.  前記ハウジング本体は、アルミニウム系の材料からなる、請求項1に記載のスクロール型圧縮機。 The scroll compressor according to claim 1, wherein the housing body is made of an aluminum-based material.
  3.  少なくとも、前記蓋部、前記固定スクロール、前記可動スクロール、前記クランク機構、前記軸受部及び前記軸受保持部を有してなる圧縮機構ユニットは、前記ハウジング本体に対して着脱可能に取付けられる、請求項1又は2に記載のスクロール型圧縮機。 The compression mechanism unit including at least the lid portion, the fixed scroll, the movable scroll, the crank mechanism, the bearing portion, and the bearing holding portion is detachably attached to the housing body. The scroll compressor according to 1 or 2.
PCT/JP2017/008036 2016-02-29 2017-02-21 Scroll compressor WO2017150594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-037639 2016-02-29
JP2016037639A JP2017155618A (en) 2016-02-29 2016-02-29 Scroll type compressor

Publications (1)

Publication Number Publication Date
WO2017150594A1 true WO2017150594A1 (en) 2017-09-08

Family

ID=59743064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008036 WO2017150594A1 (en) 2016-02-29 2017-02-21 Scroll compressor

Country Status (2)

Country Link
JP (1) JP2017155618A (en)
WO (1) WO2017150594A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934905A (en) * 1989-04-28 1990-06-19 Tecumseh Products Company Oil turbulence minimizer for a hermetic compressor
JPH09287585A (en) * 1996-04-24 1997-11-04 Denso Corp Enclosed electric compressor
JPH11218085A (en) * 1997-12-15 1999-08-10 Scroll Technol Scroll compressor
JP2000213463A (en) * 1999-01-25 2000-08-02 Matsushita Electric Ind Co Ltd Hermetic compressor and assembling method of the same
JP2005054667A (en) * 2003-08-04 2005-03-03 Sanden Corp Scroll type electric fluid machinery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934905A (en) * 1989-04-28 1990-06-19 Tecumseh Products Company Oil turbulence minimizer for a hermetic compressor
JPH09287585A (en) * 1996-04-24 1997-11-04 Denso Corp Enclosed electric compressor
JPH11218085A (en) * 1997-12-15 1999-08-10 Scroll Technol Scroll compressor
JP2000213463A (en) * 1999-01-25 2000-08-02 Matsushita Electric Ind Co Ltd Hermetic compressor and assembling method of the same
JP2005054667A (en) * 2003-08-04 2005-03-03 Sanden Corp Scroll type electric fluid machinery

Also Published As

Publication number Publication date
JP2017155618A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
EP3584443B1 (en) Compressor
KR101963529B1 (en) Electrically-Driven Compressor for Vehicle
EP2864635B1 (en) Scroll compressor with slider block
US9739279B2 (en) Lubrication reservoir and recirculation arrangement for scroll compressor bearing
US10132317B2 (en) Oil return with non-circular tube
US9885359B2 (en) Motor-driven compressor
WO2017163814A1 (en) Scroll-type compressor
WO2017150594A1 (en) Scroll compressor
JP7534951B2 (en) Scroll Compressor
JP6738176B2 (en) Scroll compressor
JP6738174B2 (en) Refrigerant compressor
JP2016079809A (en) Compressor
WO2018221282A1 (en) Compressor
JP2012145120A (en) Scroll compressor
WO2018083965A1 (en) Scroll fluid machine
US10253773B2 (en) Attachment structure for compressor
WO2022064947A1 (en) Scroll-type compressor
JP3243014U (en) electric compressor
US20230258185A1 (en) Scroll electric compressor
US11976653B2 (en) Scroll compressor with suppressed reduction of rotational moment
WO2021015115A1 (en) Compressor
JP2019056361A (en) Scroll type fluid machine
JP5836845B2 (en) Scroll compressor
KR101897776B1 (en) Scroll compressor
WO2022113558A1 (en) Scroll fluid machine

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760058

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760058

Country of ref document: EP

Kind code of ref document: A1