WO2017162201A1 - 摄像模组的倾斜测量系统与测量方法 - Google Patents

摄像模组的倾斜测量系统与测量方法 Download PDF

Info

Publication number
WO2017162201A1
WO2017162201A1 PCT/CN2017/078037 CN2017078037W WO2017162201A1 WO 2017162201 A1 WO2017162201 A1 WO 2017162201A1 CN 2017078037 W CN2017078037 W CN 2017078037W WO 2017162201 A1 WO2017162201 A1 WO 2017162201A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
object distance
target
tilt
module according
Prior art date
Application number
PCT/CN2017/078037
Other languages
English (en)
French (fr)
Inventor
丁亮
王明珠
廖海龙
钟凌
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2017162201A1 publication Critical patent/WO2017162201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras

Definitions

  • the invention relates to the field of camera modules, in particular to a tilt measuring system and a measuring method of a camera module.
  • the optical axis of the camera module and the optical axis of the lens are not completely parallel, but there is a certain inclination. This can result in differences in the sharpness of the image at the four corners of the chip.
  • the method of measuring module tilt in the field of camera module is based on the movement of the module motor to change the image distance. Through the change of the image distance, the imaging resolution of the four corners of the chip has a process from small to large to small, according to the four definitions.
  • the curve of the lens displacement can be calculated from the curve of the lens displacement.
  • an AF (Auto Focus) camera curve module motor curve test method based on image MTF (Modulation Transfer Function) evaluation is provided, and the method is used to test the module motor. Performance, the method can accurately detect the tilt between the lens and the sensor and can reflect the performance of the test motor.
  • the test method based on the image MTF evaluation module motor curve includes the following steps: (1) selecting the target and the backlight The light source adjusts the distance from the target plate to the camera test module by using the adjustable height bracket, and the distance corresponds to the focal length position of the test module, and is the focal length position when the motor of the test module runs in the positive direction to half stroke, and the camera is tested.
  • the module is placed in the test position of the image transmission device; (2) the backlight source above the test target is opened, the image transmission device is activated, and the test module is initially set, the target image captured by the test module is square, and then Driving the motor of the camera test module, the image transmission device will mark the test module
  • the image is transmitted to the computer; (3) set the fixed step size, select the image of the test module when the motor runs in both the forward and reverse directions to the set step size, and calculate the MTF value of the image center, and draw the motor forward and reverse.
  • the relationship between the step size of the running direction and the image center MTF, the motor curve fitted according to the image center MTF is similar to the normal distribution curve; (4) the positive distribution curve is analyzed, and the rising position of the normal distribution curve is raised
  • the starting position and the stopping position of the running direction of the motor respectively, the smoothness of the curve reflects the linearity of the motor running, and the difference between the highest point position of the normal distribution curve of the two running directions of the motor is the motor hysteresis.
  • the computer displays an image It is one-eighth the size of the target image captured by the test module.
  • changing the defocus amount of the lens for a fixed object distance can change the sharpness of the module imaging, and can replace the laser ranging by selecting an appropriate sharpness calculation function for testing the consistency of the motor characteristics.
  • the operation of the motor is mainly the displacement.
  • the change of the displacement is the change of the focal length in the lens, and the change of the focal length is reflected in the image. Therefore, the change of the displacement of the MTF can indirectly test the displacement of the motor.
  • the operation of the motor can be judged.
  • An object of the present invention is to provide a tilt measurement system for a camera module and a method thereof.
  • the tilt measurement system and method of the camera module can utilize an optical system structural member to achieve a change in object distance.
  • Another object of the present invention is to provide a tilt measurement system for a camera module and a method thereof.
  • the tilt measurement system of the camera module and the method thereof have high measurement accuracy, high speed and high efficiency.
  • Another object of the present invention is to provide a tilt measurement system for a camera module and a method thereof.
  • the tilt measurement system and method of the camera module do not need to energize the motor, and eliminate the influence of the quality factor of the motor on the test result.
  • Another object of the present invention is to provide a tilt measurement system for a camera module and a method thereof, the tilt measurement system of the camera module and the method thereof can reduce the size of the existing device.
  • Another object of the present invention is to provide a tilt measurement system for a camera module and a method thereof.
  • the tilt measurement system and method of the camera module can simulate a target and a camera by slightly adjusting the relative position of the target and the optical structure. The object distance of the module changes.
  • Another object of the present invention is to provide a tilt measurement system for a camera module and a method thereof.
  • the tilt measurement system and method of the camera module can realize the entire defocusing process of the module image by fine-tuning the target.
  • the present invention provides a tilt measurement system for a camera module, wherein the tilt measurement system of the camera module includes a target, a light source, and an object distance analog optical structure, and the light source is used to illuminate the Descriptive board, the target board is photographed by a camera module under test, wherein the object distance analog optical junction Constructing a simulation of the object distance of the target board, and simulating the object distance of the target board and the measured camera module to change within a predetermined range, thereby realizing the photosensitive chip light of the measured camera module The angle of inclination between the axis and the optical axis of the lens is calculated.
  • the predetermined range is a change from a near object distance to an infinity object distance, or a change from an infinity object distance to a near object distance.
  • the relative position of the target to the object distance analog optical structure is adapted to be adjusted to simulate a change in object distance between the target and the camera module under test.
  • the relative position of the object distance analog optical structure and the camera module to be tested is adapted to be adjusted to simulate a change in the object distance between the target and the camera module to be tested.
  • the optical system internal structure of the object distance analog optical structure is adapted to be adjusted to simulate a change in object distance between the target and the camera module to be tested.
  • the object distance analog optical structure includes a plurality of lenses, each of the lenses forming an optical system for simulating object distance.
  • the light source is a uniform light source.
  • the light source, the stencil, the object distance simulation structure, and the camera module to be tested are coaxially arranged from top to bottom in order.
  • the diameter of the object from the simulated optical structure is within 15 cm of the value.
  • the object has a diameter of from 7 to 15 cm in diameter from the simulated optical structure.
  • the height of the object from the simulated optical structure is within 50 cm of the value.
  • the height of the object from the simulated optical structure is in the range of 20-40 cm.
  • the distance between the object distance analog optical structure and the camera module to be tested is 1.5 to 3 cm in value.
  • the range of movement of the target is within 5 cm of the value.
  • the present invention further provides a tilt measurement method of a camera module, and the tilt measurement method of the camera module includes the following steps:
  • the simulated object distance of a standard plate and a measured camera module is adjusted by providing an object distance analog optical structure and varies within a predetermined range;
  • the method further includes the step of moving the stencil to cause a change in the simulated object distance of the stencil and the camera module to be tested.
  • the target is perpendicular to the camera module to be tested and the movement amplitude is not more than 5 cm to achieve a variation of the simulated object distance between the near object distance and the infinity object distance.
  • the method includes the steps of: moving the measured camera module to change a simulated object distance of the standard plate and the measured camera module.
  • the method includes the steps of: adjusting a position of the object from the simulated optical structure relative to the measured camera module to generate a simulated object distance between the standard plate and the measured camera module Variety.
  • the method includes the steps of: adjusting an internal structure of the optical system of the object from the simulated optical structure to cause a change in the simulated object distance of the plate and the camera module to be tested.
  • the method includes the steps of: adjusting the internal structure of the optical system of the object optics analog optical structure by moving the lens, increasing or decreasing the lens to make the imprint and the simulant of the camera module to be tested The distance changes.
  • the predetermined range is a change from a near object distance to an infinity object distance, or from an infinity object distance to a near object distance.
  • the range of the near object distance is in the range of 2 cm to 20 cm.
  • the position measurement of the current lens of the measured camera module relative to the photosensitive chip can be realized, thereby realizing the arbitrary focus position of the lens. Positioning.
  • the resolution of the different object distances can be achieved by modifying the distance of the target relative to the object from the simulated optical structure, in conjunction with the design of the target.
  • the tilt measurement method is suitable for tilt measurement of a fixed focus or dynamic focus camera module.
  • FIG. 1 is a perspective view of a tilt measuring system of the camera module in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the movement of the target in the tilt measurement system of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the movement of an object distance analog optical structure of the tilt measurement system of the camera module in accordance with another preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram of adjustment of an internal optical system of an object distance analog optical structure of a tilt measuring system of the camera module according to another preferred embodiment of the present invention.
  • a preferred embodiment of the tilt measurement system of the camera module of the present invention is applied to the tilt measurement system of the camera module, and the tilt measurement of the camera module can be utilized.
  • the optical system structural member realizes the change of the object distance, can reduce the size of the existing equipment, has high measurement precision, high speed and high efficiency.
  • the tilt measurement system of the camera module of the present invention can also be applied to the tilt measurement of the FF camera module (fixed focus camera module), and can also be applied to the AF camera module ( The tilt measurement of the moving focus camera module and the auto focus camera module is not limited by the present invention.
  • the tilt measurement system 1 of the camera module of the present invention includes a target 10 , a light source 20 , and an object distance analog optical structure 30 .
  • the light source 20 is used to illuminate the target 10 to facilitate clear shooting of the target 10 graphic.
  • the target 10 can be a reflective, transmissive or projection target.
  • a camera module 90 is tested to capture the target 10, and the object distance analog optical structure 30 can simulate the object distance adjustment of the target 10.
  • the object distance variation between the target 10 and the camera module to be tested 90 can be simulated by adjusting the relative position of the target 10 and the object distance analog optical structure 30.
  • the distance between the object distance analog optical structure 30 and the camera module under test 90 is 1.5-3 cm in value. Can It is to be understood that the above specific values are by way of example only and not limiting of the invention.
  • the target 10 the light source 20, the object distance analog optical system 30 and the measured camera module 90 are arranged coaxially from top to bottom in order.
  • it may be arranged coaxially in the horizontal direction.
  • the light source 20 is a uniform light source.
  • the object distance analog optical structure 30 is a cylinder comprising a plurality of lenses 31, each of which forms an optical system for simulating a change in object distance.
  • the object distance variation between the target 10 and the camera module 90 can be simulated by slightly adjusting the relative position of the target 10 and the object distance analog optical structure 30.
  • the size of the target 10 is 8-15 cm * 8-15 cm in value, and the magnitude of movement of the target 10 is within 5 cm of the value.
  • the object is smaller than the size of the simulated optical structure 30, and the diameter is within 15 cm, preferably 7-15 cm.
  • the measurement of the range of the field of view of the camera module 90 is numerically Within 90°, the height of the object from the simulated optical structure is within 50 cm, preferably in the range of 20-40 cm.
  • the tilt measuring system 1 of the camera module of the present invention can reduce the size of the existing device as compared with the prior art.
  • FIG. 2 shows the measurement principle of the tilt measurement system 1 of the camera module of the present invention.
  • the photosensitive chip of the camera module 90 under test receives the image 71, and the simulated object distance of the target 10 is located at an infinity object distance, and the target 10 is in the
  • the image in the camera module 90 to be tested is an image 72; when the target 10 is at the position b, the photosensitive chip of the camera module 90 to be tested receives the image 81, and the simulated object distance of the target 10 is located. Near the object distance, the image of the target 10 in the camera module 90 to be tested is image 82.
  • the pitch of the target 10 at the two positions of position a and position b may not exceed 5 cm in value. That is to say, by the object distance analog optical structure 30, the target 10 only needs to move from the position a to the position b to realize the virtual object distance of the target 10 from the infinity object distance to the near end. The change in the object distance. Depending on the optical properties of the object distance analog optical structure 30, the relationship between the distance moved by the target 10 and the simulated object distance is known.
  • the relationship between the object distance and the image distance is also known, so that the position of the target 10 is adjusted in the imaging result to adjust the image distance (for example, the motor is energized, Moving lenses, etc.) are equivalent and the functional relationship between the two is known.
  • the measured camera module 90 can be tilted according to the principle of the Defocus curve. The degree is calculated, that is, the tilt angle between the optical axis of the photosensitive chip and the optical axis of the lens of the camera module to be tested is calculated.
  • the calculation of the tilt angle of the camera module 90 to be tested in the preferred embodiment of the present invention is similar to the calculation method of the tilt angle disclosed in the patent specification of the application No. 201310063935.X.
  • the principle of defocus combined with the lens depth table, through the image acquisition and display device, calculate the MTF (Modulation Transfer Function) value and draw the curve in real time, so as to analyze all the MTF values and display the test results, combined with the optical characteristics of the lens, calculate The angle of inclination is out.
  • the method for calculating the imaging quality can also adopt an OTF (Optical Transfer Function), SFR (Spatial Frequency Response), CTF (Contrast Transfer Function), TV line, and the like, which can be used to characterize the imaging system resolution.
  • the present invention also discloses a tilt measurement method of a camera module, and the tilt measurement method of the camera module includes the following steps:
  • the predetermined range is a change from a near object distance to an infinity object distance, or a change from an infinity object distance to a near object distance.
  • the predetermined range is not limited to the change from the object distance to the infinity object distance, or the infinity object distance to the near object distance.
  • the present invention is not limited by this other scope according to actual needs.
  • the target 10 moves in a direction perpendicular to the camera module 90 to be tested, wherein the moving range of the target 10 does not exceed 5 cm in value.
  • the simulated optical object distance of the target 10 from the camera module 90 to be tested varies from a near object distance to an infinite object distance, preferably wherein the range of the near object distance is in the range of 2 cm to 20 cm.
  • step (D) uses the Defocus principle, and is similar to the calculation method of the tilt angle disclosed in the patent specification of the application No. 201310063935.X.
  • the position of the current lens of the measured camera module 90 relative to the photosensitive chip can be measured, and finally the positioning of the arbitrary focus position of the lens can be realized.
  • the tilt measurement method of the camera module includes the following steps:
  • the manner in which the simulated object distance is changed may be modified.
  • a tilt measurement method of a camera module is disclosed.
  • the target is realized by adjusting a relative position of the object distance analog optical structure 30 and the camera module to be tested 90.
  • the variation of the simulated object distance between the board 10 and the camera module 90 under test That is, in the case where the target 10 is not moved, the change in the position of the object from the simulated optical structure 30 is moved from the position c of the figure to the position d in the figure, thereby realizing the simulation.
  • the change in distance is disclosed in another embodiment of the present invention.
  • the tilt measurement method of the camera module includes the following steps:
  • a tilt measurement method of a camera module is disclosed.
  • the target 10 is implemented by adjusting an internal structure of the optical system of the object distance analog optical structure 30.
  • the variation of the simulated object distance of the camera module 90 for example, the method of adding the lens by the object distance analog optical structure 30' in the embodiment to adjust the internal structure of the optical system, thereby realizing the variation of the simulated object distance.
  • the adjustment of the internal structure of the optical system of the object from the analog optical structure 30' is not limited to the way of adding lenses in this embodiment, and can also reduce the lens.
  • the present invention is not limited by the number, the structure of the lens, and the movement of the lens.
  • the tilt measurement method of the camera module includes the following steps:
  • the embodiment of the present invention for realizing the variation of the simulated object distance between the target and the camera module under test is not limited to the above-exemplified embodiments, and includes other In the embodiment, the present invention is not limited to this as long as the variation of the simulated object distance between the target and the camera module to be tested can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一摄像模组的倾斜测量系统及其测量方法,该系统包括一标板、一光源和一物距模拟光学结构,所述光源用于照亮所述标板,所述标板被一被测摄像模组进行拍摄,其中所述物距模拟光学结构模拟所述标板的物距,通过模拟所述标板与所述被测摄像模组的物距在一预定范围内变化,从而能够实现所述被测摄像模组的倾斜计算。

Description

摄像模组的倾斜测量系统与测量方法 技术领域
本发明涉及摄像模组领域,尤其涉及摄像模组的倾斜测量系统与测量方法。
背景技术
在摄像模组组装过程中,由于来料尺寸公差、组装误差、设备组装精度等因素,通常摄像模组感光芯片光轴与镜头光轴之间并非完全平行,而是存在一定的倾斜,这个倾斜会导致芯片的四角存在成像的清晰度差异。目前摄像模组领域中测量模组倾斜的方法基于模组马达运动以改变像距,通过像距的变化,芯片四角的成像清晰度有个从小到大再到小的过程,根据这四条清晰度与镜头位移的曲线可以计算出摄像模组的倾斜。例如在现有技术中提供了一基于图像MTF(Modulation Transfer Function,调制传递功能)评价的AF(Auto Focus,自动调焦)手机摄像头模组马达曲线测试方法,使用此方法来测试模组马达的性能,所述方法能够准确检测镜头和传感器之间的倾斜并同时能够反映测试马达的性能,所述基于图像MTF评价模组马达曲线的测试方法,包括下列步骤:(1)选择标板和背光光源,利用可调高度支架调整标板到摄像头测试模组的距离,所述距离对应测试模组的焦距位置,是测试模组的马达向正方向运行到一半行程时的焦距位置,将摄像头测试模组放置在图像传输设备的测试位置;(2)打开测试标板上方的背光光源,启动图像传输设备,对测试模组进行初始化设置,所述测试模组拍摄的标板图像是正方形,然后驱动摄像头测试模组的马达运行,所述图像传输设备将测试模组拍摄的标板图像传输到计算机;(3)设置固定步长,选取马达正反两个运行方向都运行到设定步长时的测试模组的图像,并计算图像中心的MTF值,绘制马达正反两个运行方向的步长和图像中心MTF的关系曲线,根据图像中心MTF拟合的马达曲线类似于正态分布曲线;(4)对正太分布曲线进行分析,所述正态分布曲线的两端上升位置分别为马达运行方向的启动位置和停止位置,所述曲线的平滑度反映马达运行的线性度,马达正反两个运行方向的正态分布曲线最高点位置的差为马达迟滞。其中,所述计算机显示的图像 是测试模组拍摄到的标板图像的八分之一大小。
在上述专利文件中,针对固定的物距,改变镜头的离焦量能够改变模组成像的清晰度,通过选择合适的清晰度计算函数,能够替代激光测距,用于测试马达特性的一致性。马达的运行主要是位移,位移的变化在镜头的表现是焦距的变化,而焦距的变化在影像上的体现是图像清晰度的变化,所以用MTF的变化情况,能够间接的测试马达的位移变化情况,通过改变马达的相对位置来改变镜头相对于焦距位置的位移变化,再通过计算马达运行在不同位置图像的MTF值,就能判断马达的运行情况。
但是上述专利目前采用的方法有以下缺点:1.只能测量AF模组的倾斜;2.测试过程中需要运动马达,马达的品质问题会影响测试结果;3.需要运动马达,测量时间较长,测试效率低。
发明内容
本发明的一个目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法可以利用一光学系统结构件来实现物距的变化。
本发明的另一目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法中模组倾斜的测量精度高,速度快,效率高。
本发明的另一目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法不需要对马达通电,消除马达的品质因素对测试结果的影响。
本发明的另一目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法可以缩小现有设备的尺寸。
本发明的另一目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法通过小幅调整标板与光学结构的相对位置就能够模拟标板与摄像模组的物距变化。
本发明的另一目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法通过微调标板即可实现模组影像的整个离焦过程。
为了实现上述目的,本发明提供一摄像模组的倾斜测量系统,其中所述摄像模组的倾斜测量系统包括一标板、一光源和一物距模拟光学结构,所述光源用于照亮所述标板,所述标板被一被测摄像模组进行拍摄,其中所述物距模拟光学结 构实现所述标板的物距的模拟,通过模拟所述标板与所述被测摄像模组的物距在一预定范围内变化,从而能够实现所述被测摄像模组的感光芯片光轴与镜头光轴之间的倾斜角度计算。
在一个实施例中,所述预定范围为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化。
在一个实施例中,所述标板与所述物距模拟光学结构的相对位置适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
在一个实施例中,所述物距模拟光学结构与所述被测摄像模组的相对位置适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
在一个实施例中,所述物距模拟光学结构的光学系统内部结构适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
在一个实施例中,所述物距模拟光学结构包括多个镜片,各所述镜片形成一光学系统,用于模拟物距。
在一个实施例中,所述光源为均匀光源。
在一个实施例中,所述光源、所述标版、所述物距模拟结构和所述被测摄像模组按次序自上而下同轴排列。
在一个实施例中,所述物距模拟光学结构的直径在数值上为15cm以内。
在一个实施例中,所述物距模拟光学结构的直径在数值上为7~15cm。
在一个实施例中,所述物距模拟光学结构的高度在数值上为50cm以内。
在一个实施例中,所述物距模拟光学结构的高度在数值上为20~40cm。
在一个实施例中,所述物距模拟光学结构与所述被测摄像模组的间距在数值上为1.5~3cm。
在一个实施例中,所述标板的移动幅度范围在数值上为5cm以内。
可以理解的是,上述数值范围只作为优选举例而并不限制本发明。
根据本发明的另外一方面,本发明还提供一摄像模组的倾斜测量方法,所述摄像模组的倾斜测量方法包括以下步骤:
使一标版和一被测摄像模组的模拟物距藉由提供了一物距模拟光学结构而被调整并在一预定范围内变化;
所述被测摄像模组的感光芯片的四角接收图像;
记录所述感光芯片四角接收的图像随着所述标板移动过程中的清晰度的变 化的曲线;以及
计算所述被测摄像模组的感光芯片光轴与镜头光轴之间的倾斜角度。
在一个实施例中,还包括步骤:移动所述标版以使所述标版和所述被测摄像模组的模拟物距产生变化。
在一个实施例中,所述标板垂直于所述被测摄像模组并且移动幅度不超5cm就能实现模拟物距在近物距和无穷远物距之间的变化。
在一个实施例中,其中包括步骤:移动所述被测摄像模组以使所述标版和所述被测摄像模组的模拟物距产生变化。
在一个实施例中,其中包括步骤:使所述物距模拟光学结构相对于所述被测摄像模组的位置被调整以使所述标版和所述被测摄像模组的模拟物距产生变化。
在一个实施例中,其中包括步骤:调整所述物距模拟光学结构的光学系统内部结构以使所述标版和所述被测摄像模组的模拟物距产生变化。
在一个实施例中,其中包括步骤:通过移动镜片、增加或减小镜片来调整所述物距模拟光学结构的光学系统内部结构以使所述标版和所述被测摄像模组的模拟物距产生变化。
在一个实施例中,其中所述预定范围为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化。
在一个实施例中,其中所述近物距的范围在数值上为2cm~20cm。
在一个实施例中,根据Defocus(离焦)原理,结合镜头景深表,能够实现对所述被测摄像模组当前镜头相对于所述感光芯片的位置测定,进而实现所述镜头任意焦点位置的定位。
在一个实施例中,其中通过更改所述标板相对于所述物距模拟光学结构的距离,再结合所述标板的设计,能够实现不同物距的解像力测试。
另外,所述倾斜测量方法适于定焦或动焦摄像模组的倾斜测量。
附图说明
图1是根据本发明的一优选实施例的所述摄像模组的倾斜测量系统的立体示意图。
图2是根据本发明的上述优选实施例的所述摄像模组的倾斜测量系统中标板移动的示意图。
图3是根据本发明的另一优选实施例的所述摄像模组的倾斜测量系统的物距模拟光学结构移动的示意图。
图4是根据本发明的另一优选实施例的所述摄像模组的倾斜测量系统的物距模拟光学结构内部光学系统调整的示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
如图1至图2所示为本发明的一摄像模组的倾斜测量系统的一优选实施例,所述摄像模组的倾斜测量系统应用于一被测摄像模组的倾斜测量,可以利用一光学系统结构件来实现物距的变化,能够缩小现有设备的尺寸,测量精度高,速度快,效率高。本领域的技术人员可以理解的是,本发明的所述摄像模组的倾斜测量系统也可以应用于FF摄像模组(定焦摄像模组)的倾斜测量,也可以应用于AF摄像模组(动焦摄像模组、自动对焦摄像模组)的倾斜测量,本发明并不受此限制。
具体地,如图1所示,在发明的这个优选实施例中,本发明的所述摄像模组的倾斜测量系统1包括一标板10、一光源20和一物距模拟光学结构30,所述光源20用于照亮所述标板10,便于所述标板10图形的清晰拍摄。可以理解的是,所述标板10可以是反射式、透射式或投影式标板。一被测摄像模组90对所述标板10进行拍摄,所述物距模拟光学结构30能实现所述标板10物距调整的模拟。通过调整所述标板10与所述物距模拟光学结构30的相对位置就能够模拟所述标板10与所述被测摄像模组90的物距变化。在本发明的这个优选实施例中,所述物距模拟光学结构30与所述被测摄像模组90的间距在数值上为1.5-3cm。可以 理解的是,上述具体数值只作为举例而并不限制本发明。
值得一提的是,在附图中所示,所述标板10、所述光源20、所述物距模拟光学系统30和所述被测摄像模组90按次序自上而下同轴排列。当然在实际应用中,也可以是沿水平方向前后同轴地排列。
值得一提的是,所述光源20为均匀光源。
进一步地,所述物距模拟光学结构30为圆柱体,包括多个镜片31,各所述镜片形成一光学系统,用于模拟产生物距变化。通过小幅调整所述标板10与所述物距模拟光学结构30的相对位置就能够模拟所述标板10与所述摄像模组90的物距变化。
优选地,在本发明的这个优选实施例中,所述标板10的尺寸在数值上为8-15cm*8-15cm,所述标板10的运动幅度在数值上为5cm以内。优选地,所述物距模拟光学结构30的尺寸较小,直径在数值上为15cm以内,优选为7-15cm,能够实现测量所述被测摄像模组90的视场角范围在数值上为90°以内,所述物距模拟光学结构的高度在数值上为50cm以内,优选范围为20-40cm。
因此,本发明的所述摄像模组的倾斜测量系统1与现有技术相比,能够缩小现有设备的尺寸。
如图2所示为本发明的所述摄像模组的倾斜测量系统1的测量原理。
所述标板10在位置a时,所述被测摄像模组90的感光芯片接收到图像71,所述标板10的模拟物距位于无限远物距处,所述标板10在所述被测摄像模组90中的成像为图像72;当所述标板10在位置b时,所述被测摄像模组90的感光芯片接收到图像81,所述标板10的模拟物距位于近物距处,此时所述标板10在所述被测摄像模组90中的成像为图像82。
在这个实施例中,所述标板10在位置a与位置b两个位置的间距在数值上可以不超过5cm。也就是说,通过所述物距模拟光学结构30,所述标板10只需要从位置a处移到位置b处就能实现所述标板10的虚拟物距从无限远物距处到近物距处的变化。根据所述物距模拟光学结构30的光学特性,所述标板10移动的距离与模拟物距的关系是已知的。根据所述被测摄像模组90的光学特性,物距与像距之间的关系也是已知的,因此调节所述标板10的位置在成像结果上是与调节像距(例如马达通电,移动镜头等)是等效的,而且两者之间的函数关系是已知的。之后就可以根据Defocus曲线的原理将所述被测摄像模组90倾斜角 度计算出来,即计算所述被测摄像模组的所述感光芯片光轴与镜头光轴之间的倾斜角度。
也就是说,在计算本发明的这个优选实施例的所述被测摄像模组90倾斜角度的计算与申请号为201310063935.X的专利说明书中揭露的倾斜角度的计算方法类似。根据defocus原理,结合镜头景深表,通过图像采集和显示设备,计算MTF(Modulation Transfer Function,调制传递功能)值并实时绘制曲线,从而分析所有的MTF值后显示测试结果,结合镜头光学特性,计算出倾斜角度。可以理解的是,计算成像质量的方式也可以采用OTF(Optical Transfer Function),SFR(Spatial Frequency Response),CTF(Contrast Transfer Function),TV line,等任何可以表征成像系统解像力的评价方式。
根据本发明的另一方面,本发明还揭露了一摄像模组的倾斜测量方法,所述摄像模组的倾斜测量方法包括以下步骤:
(A)所述标板10与所述被测摄像模组90的模拟物距被调整并在一预定范围内变化;
(B)所述被测摄像模组90的感光芯片的四角接收图像;
(C)记录所述感光芯片四角接收的图像随着所述标板10移动过程中的清晰度的变化的曲线;以及
(D)计算所述被测摄像模组90的倾斜角度,即计算所述被测摄像模组的所述感光芯片光轴与镜头光轴之间的倾斜角度。
其中,所述步骤(A)中,所述预定范围为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化。
值得一提的是,本领域的技术人员可以理解的是,所述预定范围并不仅仅局限为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化,也可以根据实际需要为其他范围,本发明并不受此限制。
其中,所述步骤(A)中,所述标板10沿垂直于所述被测摄像模组90的方向移动,其中所述标板10的移动幅度在数值上不超过5cm就能实现所述标板10与所述被测摄像模组90的模拟光学物距从近物距到无穷远物距变化,优选地,其中所述近物距的范围在数值上为2cm-20cm。
其中,所述步骤(D)使用了Defocus原理,与申请号为201310063935.X的专利说明书中揭露的倾斜角度的计算方法类似。
其中,根据defocus原理,结合镜头景深表,可以实现对所述被测摄像模组90当前镜头相对于感光芯片的位置测定,并最终实现镜头任意焦点位置的定位。
其中,通过更改所述标板10相对于所述物距模拟光学结构30的距离,再结合所述标板10的设计,可以实现不同物距的解像力测试。
在本发明的另一实施例中,为了实现所述步骤(A)中的所述标板10与所述被测摄像模组90的模拟物距的改变,通过移动所述标板10和一光源20来实现。也就是说,所述摄像模组的倾斜测量方法包括以下步骤:
(i)一标板10和一光源20相对于所述被测摄像模组90的相对位置被改变,至一标板10与所述被测摄像模组90的模拟物距藉由提供了所述物距模拟光学结构30而被调整并在一预定范围内变化;
(ii)所述被测摄像模组90的感光芯片的四角接收图像;
(iii)记录所述感光芯片四角接收的图像随着所述标板10移动过程中的清晰度的变化的曲线;以及
(iv)计算所述被测摄像模组90的倾斜角度,即计算所述被测摄像模组的所述感光芯片光轴与镜头光轴之间的倾斜角度。
如图3和图4所示,在本发明的其他实施例中,可以对模拟物距的改变方式进行变形实施。
如图3所示,在本发明的另一实施例中揭露了一摄像模组的倾斜测量方法,通过调整所述物距模拟光学结构30与被测摄像模组90的相对位置实现所述标板10与被测摄像模组90的模拟物距的变化。也就是说,在所示标板10没有移动的情况下,所述物距模拟光学结构30的位置发生的变化,从图种的位置c移动到了图中的位置d,从而实现所述模拟物距的变化。
所述摄像模组的倾斜测量方法包括以下步骤:
(a)一物距模拟光学结构30与所述被测摄像模组90的相对位置被改变,至一标板10与所述被测摄像模组90的模拟物距被调整并在一预定范围内变化;
(b)所述被测摄像模组90的感光芯片的四角接收图像;
(c)记录所述感光芯片四角接收的图像随着所述标板10移动过程中的清晰度的变化的曲线;以及
(d)计算被测摄像模组90的倾斜角度,即计算所述被测摄像模组的所述感光芯片光轴与镜头光轴之间的倾斜角度。
如图4所示,在本发明的另一实施例中揭露了一摄像模组的倾斜测量方法,通过调整所述物距模拟光学结构30的光学系统内部结构来实现所述标板10与被测摄像模组90的模拟物距的变化,例如本实施例中通过所述物距模拟光学结构30’添加镜片的方式以调整光学系统内部结构,从而实现所述模拟物距的变化。
值得一提的是,本领域的技术人员可以理解的是,所述物距模拟光学结构30’的光学系统内部结构的调整并不仅仅局限为这个实施例中增加镜片的方式,还可以减少镜片的数量、改变镜片的结构和移动镜片等方式实现,本发明并不受此限制。
所述摄像模组的倾斜测量方法包括以下步骤:
(I)一物距模拟光学结构30’的光学系统内部结构被调整,至一标板10与所述被测摄像模组90的模拟物距被调整并在一预定范围内变化;
(II)所述被测摄像模组90的感光芯片的四角接收图像;
(III)记录所述感光芯片四角接收的图像随着所述标板10移动过程中的清晰度的变化的曲线;以及
(IV)计算被测摄像模组90的倾斜角度,即计算所述被测摄像模组的所述感光芯片光轴与镜头光轴之间的倾斜角度。
值得一提的是,本领域的技术人员可以理解的是,本发明实现标板与被测摄像模组的模拟物距的变化的实施例并不仅限于以上所列举的实施例,还包括其他可实施的实施例,只要能够实现标板与被测摄像模组的模拟物距的变化即可,本发明并不受此限制。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (27)

  1. 一摄像模组的倾斜测量系统,其特征在于,所述摄像模组的倾斜测量系统包括一标板、一光源和一物距模拟光学结构,所述光源用于照亮所述标板,所述标板被一被测摄像模组进行拍摄,其中所述物距模拟光学结构实现所述标板的物距的模拟,通过模拟所述标板与所述被测摄像模组的物距在一预定范围内变化,从而能够实现所述被测摄像模组的感光芯片光轴与镜头光轴之间的倾斜角度计算。
  2. 如权利要求1所述的摄像模组的倾斜测量系统,其中所述预定范围为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化。
  3. 如权利要求1所述的摄像模组的倾斜测量系统,其中所述标板与所述物距模拟光学结构的相对位置适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
  4. 如权利要求1所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构与所述被测摄像模组的相对位置适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
  5. 如权利要求1所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构的光学系统内部结构适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
  6. 如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构包括多个镜片,各所述镜片形成一光学系统,用于模拟物距。
  7. 如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述光源为均匀光源。
  8. 如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述光源、所述标版、所述物距模拟结构和所述被测摄像模组按次序自上而下同轴排列。
  9. 如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构的直径在数值上为15cm以内。
  10. 如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构的直径在数值上为7~15cm。
  11. 如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构的高度在数值上为50cm以内。
  12. 如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构的高度在数值上为20~40cm。
  13. 如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构与所述被测摄像模组的间距在数值上为1.5~3cm。
  14. 如权利要求3所述的摄像模组的倾斜测量系统,其中所述标板的移动幅度范围在数值上为5cm以内。
  15. 一摄像模组的倾斜测量方法,所述摄像模组的倾斜测量方法包括以下步骤:
    (A)使一标版和一被测摄像模组的模拟物距藉由提供了一物距模拟光学结构而被调整并在一预定范围内变化;
    (B)所述被测摄像模组的感光芯片的四角接收图像;
    (C)记录所述感光芯片四角接收的图像随着所述标板移动过程中的清晰度的变化的曲线;以及
    (D)计算所述被测摄像模组的感光芯片光轴与镜头光轴之间的倾斜角度。
  16. 如权利要求15所述的摄像模组的倾斜测量方法,其中包括步骤:移动所述标版以使所述标版和所述被测摄像模组的模拟物距产生变化。
  17. 如权利要求16所述的摄像模组的倾斜测量方法,其中所述标板垂直于所述被测摄像模组并且移动幅度不超5cm就能实现模拟物距在近物距和无穷远物距之间的变化。
  18. 如权利要求15所述的摄像模组的倾斜测量方法,其中包括步骤:移动所述被测摄像模组以使所述标版和所述被测摄像模组的模拟物距产生变化。
  19. 如权利要求15所述的摄像模组的倾斜测量方法,其中包括步骤:使所述物距模拟光学结构相对于所述被测摄像模组的位置被调整以使所述标版和所述被测摄像模组的模拟物距产生变化。
  20. 如权利要求15所述的摄像模组的倾斜测量方法,其中包括步骤:调整所述物距模拟光学结构的光学系统内部结构以使所述标版和所述被测摄像模组的模拟物距产生变化。
  21. 如权利要求20所述的摄像模组的倾斜测量方法,其中包括步骤:通过移动镜片、增加或减小镜片来调整所述物距模拟光学结构的光学系统内部结构以使所述标版和所述被测摄像模组的模拟物距产生变化。
  22. 如权利要求15至21中任一所述的摄像模组的倾斜测量方法,其中所述预定范围为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化。
  23. 如权利要求22所述的摄像模组的倾斜测量方法,其中所述步骤(A)中近物距的范围在数值上为2cm~20cm。
  24. 如权利要求22中所述的摄像模组的倾斜测量方法,其中所述步骤(B)至所述步骤(D)中应用Defocus原理。
  25. 如权利要求22中所述的摄像模组的倾斜测量方法,其中根据Defocus原理,结合镜头景深表,能够实现对所述被测摄像模组当前镜头相对于所述感光芯片的位置测定,进而实现所述镜头任意焦点位置的定位。
  26. 如权利要求22中所述的摄像模组的倾斜测量方法,其中通过更改所述标板相对于所述物距模拟光学结构的距离,再结合所述标板的设计,能够实现不同物距的解像力测试。
  27. 如权利要求15至21中任一所述的摄像模组的倾斜测量方法,其中所述倾斜测量方法适于于定焦或动焦摄像模组的倾斜测量。
PCT/CN2017/078037 2016-03-25 2017-03-24 摄像模组的倾斜测量系统与测量方法 WO2017162201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610178871.1 2016-03-25
CN201610178871.1A CN105744266B (zh) 2016-03-25 2016-03-25 摄像模组的倾斜测量系统与测量方法

Publications (1)

Publication Number Publication Date
WO2017162201A1 true WO2017162201A1 (zh) 2017-09-28

Family

ID=56251981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078037 WO2017162201A1 (zh) 2016-03-25 2017-03-24 摄像模组的倾斜测量系统与测量方法

Country Status (2)

Country Link
CN (1) CN105744266B (zh)
WO (1) WO2017162201A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728422A (zh) * 2017-11-23 2018-02-23 广东弘景光电科技股份有限公司 应用于摄像模组自动调焦装配设备上的调焦光源
CN111757092A (zh) * 2019-03-28 2020-10-09 宁波舜宇光电信息有限公司 摄像模组对焦组装系统和方法、镜头组件参数获取装置和感光组件参数获取装置
CN113766210A (zh) * 2021-07-21 2021-12-07 歌尔光学科技有限公司 测试方法及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105744266B (zh) * 2016-03-25 2018-09-04 宁波舜宇光电信息有限公司 摄像模组的倾斜测量系统与测量方法
CN107343197A (zh) * 2017-07-26 2017-11-10 深圳天珑无线科技有限公司 移动终端摄像头的角度校准方法、装置及存储介质
CN107741206B (zh) * 2017-09-20 2020-02-11 宁波舜宇仪器有限公司 平行光管及含该光管的标靶单元及模组检测方法
CN109660703B (zh) * 2017-10-12 2021-10-26 台湾东电化股份有限公司 光学机构的补正方法
CN107991841A (zh) * 2017-11-10 2018-05-04 苏州灵猴机器人有限公司 景深自动测试装置
CN108107362B (zh) * 2017-12-26 2020-06-26 信利光电股份有限公司 一种音圈马达特性曲线的二次斜率判断方法、装置及设备
CN108259894B (zh) * 2018-03-31 2019-12-31 歌尔科技有限公司 一种摄像头模组组装误差的测试装置及测试方法
CN110855856B (zh) * 2018-08-21 2021-06-18 宁波舜宇光电信息有限公司 基于组成马达光学组件的多群组光学镜头的装配方法
CN111263136B (zh) * 2018-11-30 2022-04-01 欧菲影像技术(广州)有限公司 检测成像场曲的方法、检测成像倾斜的方法及成像检测仪
CN113365045B (zh) * 2020-03-04 2022-10-11 余姚舜宇智能光学技术有限公司 摄像模组检测方法、装置及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080145041A1 (en) * 2006-12-14 2008-06-19 Pentax Corporation Anti-shake apparatus
CN101957553A (zh) * 2009-07-17 2011-01-26 鸿富锦精密工业(深圳)有限公司 测量镜头的调制传递函数值的方法
CN102662293A (zh) * 2012-05-21 2012-09-12 信利光电(汕尾)有限公司 一种近景调焦装置,及方法
CN102889879A (zh) * 2011-07-21 2013-01-23 安讯士有限公司 用于确定图像传感器的倾斜的方法
CN103149789A (zh) * 2013-02-28 2013-06-12 宁波舜宇光电信息有限公司 基于图像mtf评价模组马达曲线的测试方法
CN105025290A (zh) * 2014-04-23 2015-11-04 宁波舜宇光电信息有限公司 一种自动调整摄像模组传感器与镜头之间倾斜的方法
CN105744266A (zh) * 2016-03-25 2016-07-06 宁波舜宇光电信息有限公司 摄像模组的倾斜测量系统与测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191755B (zh) * 2006-11-22 2010-09-29 鸿富锦精密工业(深圳)有限公司 调制传递函数值量测板及使用该量测板的测量装置
CN101493646B (zh) * 2008-01-21 2012-05-23 鸿富锦精密工业(深圳)有限公司 光学镜头检测装置及方法
JP5357688B2 (ja) * 2009-10-01 2013-12-04 日本放送協会 基準映像表示装置の調整装置、撮像装置の調整装置および表示装置の調整装置
KR20160027852A (ko) * 2014-09-02 2016-03-10 삼성전기주식회사 렌즈의 틸트각 측정 및 보정 시스템 및 그 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080145041A1 (en) * 2006-12-14 2008-06-19 Pentax Corporation Anti-shake apparatus
CN101957553A (zh) * 2009-07-17 2011-01-26 鸿富锦精密工业(深圳)有限公司 测量镜头的调制传递函数值的方法
CN102889879A (zh) * 2011-07-21 2013-01-23 安讯士有限公司 用于确定图像传感器的倾斜的方法
CN102662293A (zh) * 2012-05-21 2012-09-12 信利光电(汕尾)有限公司 一种近景调焦装置,及方法
CN103149789A (zh) * 2013-02-28 2013-06-12 宁波舜宇光电信息有限公司 基于图像mtf评价模组马达曲线的测试方法
CN105025290A (zh) * 2014-04-23 2015-11-04 宁波舜宇光电信息有限公司 一种自动调整摄像模组传感器与镜头之间倾斜的方法
CN105744266A (zh) * 2016-03-25 2016-07-06 宁波舜宇光电信息有限公司 摄像模组的倾斜测量系统与测量方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728422A (zh) * 2017-11-23 2018-02-23 广东弘景光电科技股份有限公司 应用于摄像模组自动调焦装配设备上的调焦光源
CN111757092A (zh) * 2019-03-28 2020-10-09 宁波舜宇光电信息有限公司 摄像模组对焦组装系统和方法、镜头组件参数获取装置和感光组件参数获取装置
CN113766210A (zh) * 2021-07-21 2021-12-07 歌尔光学科技有限公司 测试方法及装置
CN113766210B (zh) * 2021-07-21 2024-05-10 歌尔光学科技有限公司 测试方法及装置

Also Published As

Publication number Publication date
CN105744266A (zh) 2016-07-06
CN105744266B (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2017162201A1 (zh) 摄像模组的倾斜测量系统与测量方法
US8339463B2 (en) Camera lens calibration system
CN105675266B (zh) 无限共轭光路测量光学镜头的调制传递函数的装置及方法
CN103149789B (zh) 基于图像mtf评价模组马达曲线的测试方法
US7228069B2 (en) Focusing method for digital camera using plural spatial frequencies
CN104122077A (zh) 无限共轭光路测量光学镜头的调制传递函数的方法及装置
WO2014106303A1 (en) Panoramic lens calibration for panoramic image and/or video capture apparatus
CN109724540A (zh) 二维mems扫描反射镜转角标定系统及标定方法
CN104122072A (zh) 镜头模组检测装置
CN101673043B (zh) 广角畸变测试系统及方法
TW200825450A (en) Automatic focus device and method thereof
CN110501026A (zh) 基于阵列星点的相机内方位元素标定装置及方法
TW201024701A (en) A lens test apparatus and a method thereof
JPH0868721A (ja) 光学系のピント評価方法、調整方法、ピント評価装置、調整装置、およびチャート装置
CN103606155A (zh) 摄像机视场标定方法和装置
JP7323443B2 (ja) 平面状傾斜パターン表面を有する較正物体を用いて可変焦点距離レンズシステムを較正するためのシステム及び方法
CN101339002A (zh) 大角度麦克尔逊式剪切散斑干涉仪
CN208383290U (zh) 伞状反射器振动测量装置
CN108007387B (zh) 基于结构光照明的面形测量装置和方法
CN113596441B (zh) 光轴调整装置、方法、系统及可读存储介质
CN107806855B (zh) 一种复合目标源及光电经纬仪成像质量测试系统
CN113888651B (zh) 一种动静态视觉检测系统
CN216132665U (zh) 一种光学镜头温漂检测装置
KR100953885B1 (ko) 렌즈 모듈 광축 정렬 장치 및 방법
CN106768872B (zh) 一种自动焦距测量仪

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769478

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769478

Country of ref document: EP

Kind code of ref document: A1