CN105744266B - 摄像模组的倾斜测量系统与测量方法 - Google Patents

摄像模组的倾斜测量系统与测量方法 Download PDF

Info

Publication number
CN105744266B
CN105744266B CN201610178871.1A CN201610178871A CN105744266B CN 105744266 B CN105744266 B CN 105744266B CN 201610178871 A CN201610178871 A CN 201610178871A CN 105744266 B CN105744266 B CN 105744266B
Authority
CN
China
Prior art keywords
camera module
object distance
target
tested
measuring method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610178871.1A
Other languages
English (en)
Other versions
CN105744266A (zh
Inventor
丁亮
王明珠
廖海龙
钟凌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Sunny Opotech Co Ltd
Original Assignee
Ningbo Sunny Opotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Sunny Opotech Co Ltd filed Critical Ningbo Sunny Opotech Co Ltd
Priority to CN201610178871.1A priority Critical patent/CN105744266B/zh
Publication of CN105744266A publication Critical patent/CN105744266A/zh
Priority to PCT/CN2017/078037 priority patent/WO2017162201A1/zh
Application granted granted Critical
Publication of CN105744266B publication Critical patent/CN105744266B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一摄像模组的倾斜测量系统及其测量方法,该系统包括一标板、一光源和一物距模拟光学结构,所述光源用于照亮所述标板,所述标板被一被测摄像模组进行拍摄,其中所述物距模拟光学结构模拟所述标板的物距,通过模拟所述标板与所述被测摄像模组的物距在一预定范围内变化,从而能够实现所述被测摄像模组的倾斜计算。

Description

摄像模组的倾斜测量系统与测量方法
技术领域
本发明涉及摄像模组领域,尤其涉及摄像模组的倾斜测量系统与测量方法。
背景技术
在摄像模组组装过程中,由于来料尺寸公差、组装误差、设备组装精度等因素,通常摄像模组感光芯片光轴与镜头光轴之间并非完全平行,而是存在一定的倾斜,这个倾斜会导致芯片的四角存在成像的清晰度差异。目前摄像模组领域中测量模组倾斜的方法基于模组马达运动以改变像距,通过像距的变化,芯片四角的成像清晰度有个从小到大再到小的过程,根据这四条清晰度与镜头位移的曲线可以计算出摄像模组的倾斜。例如在现有技术中提供了一基于图像MTF(Modulation Transfer Function,调制传递功能)评价的AF(Auto Focus,自动调焦)手机摄像头模组马达曲线测试方法,使用此方法来测试模组马达的性能,所述方法能够准确检测镜头和传感器之间的倾斜并同时能够反映测试马达的性能,所述基于图像MTF评价模组马达曲线的测试方法,包括下列步骤:(1)选择标板和背光光源,利用可调高度支架调整标板到摄像头测试模组的距离,所述距离对应测试模组的焦距位置,是测试模组的马达向正方向运行到一半行程时的焦距位置,将摄像头测试模组放置在图像传输设备的测试位置;(2)打开测试标板上方的背光光源,启动图像传输设备,对测试模组进行初始化设置,所述测试模组拍摄的标板图像是正方形,然后驱动摄像头测试模组的马达运行,所述图像传输设备将测试模组拍摄的标板图像传输到计算机;(3)设置固定步长,选取马达正反两个运行方向都运行到设定步长时的测试模组的图像,并计算图像中心的MTF值,绘制马达正反两个运行方向的步长和图像中心MTF的关系曲线,根据图像中心MTF拟合的马达曲线类似于正态分布曲线;(4)对正太分布曲线进行分析,所述正态分布曲线的两端上升位置分别为马达运行方向的启动位置和停止位置,所述曲线的平滑度反映马达运行的线性度,马达正反两个运行方向的正态分布曲线最高点位置的差为马达迟滞。其中,所述计算机显示的图像是测试模组拍摄到的标板图像的八分之一大小。
在上述专利文件中,针对固定的物距,改变镜头的离焦量能够改变模组成像的清晰度,通过选择合适的清晰度计算函数,能够替代激光测距,用于测试马达特性的一致性。马达的运行主要是位移,位移的变化在镜头的表现是焦距的变化,而焦距的变化在影像上的体现是图像清晰度的变化,所以用MTF的变化情况,能够间接的测试马达的位移变化情况,通过改变马达的相对位置来改变镜头相对于焦距位置的位移变化,再通过计算马达运行在不同位置图像的MTF值,就能判断马达的运行情况。
但是上述专利目前采用的方法有以下缺点:1.只能测量AF模组的倾斜;2.测试过程中需要运动马达,马达的品质问题会影响测试结果;3.需要运动马达,测量时间较长,测试效率低。
发明内容
本发明的一个目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法可以利用一光学系统结构件来实现物距的变化。
本发明的另一目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法中模组倾斜的测量精度高,速度快,效率高。
本发明的另一目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法不需要对马达通电,消除马达的品质因素对测试结果的影响。
本发明的另一目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法可以缩小现有设备的尺寸。
本发明的另一目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法通过小幅调整标板与光学结构的相对位置就能够模拟标板与摄像模组的物距变化。
本发明的另一目的在于提供一摄像模组的倾斜测量系统及其方法,所述摄像模组的倾斜测量系统及其方法通过微调标板即可实现模组影像的整个离焦过程。
为了实现上述目的,本发明提供一摄像模组的倾斜测量系统,其中所述摄像模组的倾斜测量系统包括一标板、一光源和一物距模拟光学结构,所述光源用于照亮所述标板,所述标板被一被测摄像模组进行拍摄,其中所述物距模拟光学结构实现所述标板的物距的模拟,通过模拟所述标板与所述被测摄像模组的物距在一预定范围内变化,从而能够实现所述被测摄像模组的感光芯片光轴与镜头光轴之间的倾斜角度计算。
在一个实施例中,所述预定范围为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化。
在一个实施例中,所述标板与所述物距模拟光学结构的相对位置适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
在一个实施例中,所述物距模拟光学结构与所述被测摄像模组的相对位置适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
在一个实施例中,所述物距模拟光学结构的光学系统内部结构适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
在一个实施例中,所述物距模拟光学结构包括多个镜片,各所述镜片形成一光学系统,用于模拟物距。
在一个实施例中,所述光源为均匀光源。
在一个实施例中,所述光源、所述标版、所述物距模拟结构和所述被测摄像模组按次序自上而下同轴排列。
在一个实施例中,所述物距模拟光学结构的直径在数值上为15cm以内。
在一个实施例中,所述物距模拟光学结构的直径在数值上为7~15cm。
在一个实施例中,所述物距模拟光学结构的高度在数值上为50cm以内。
在一个实施例中,所述物距模拟光学结构的高度在数值上为20~40cm。
在一个实施例中,所述物距模拟光学结构与所述被测摄像模组的间距在数值上为1.5~3cm。
在一个实施例中,所述标板的移动幅度范围在数值上为5cm以内。
可以理解的是,上述数值范围只作为优选举例而并不限制本发明。
根据本发明的另外一方面,本发明还提供一摄像模组的倾斜测量方法,所述摄像模组的倾斜测量方法包括以下步骤:
使一标版和一被测摄像模组的模拟物距藉由提供了一物距模拟光学结构而被调整并在一预定范围内变化;
所述被测摄像模组的感光芯片的四角接收图像;
记录所述感光芯片四角接收的图像随着所述标板移动过程中的清晰度的变化的曲线;以及
计算所述被测摄像模组的感光芯片光轴与镜头光轴之间的倾斜角度。
在一个实施例中,还包括步骤:移动所述标版以使所述标版和所述被测摄像模组的模拟物距产生变化。
在一个实施例中,所述标板垂直于所述被测摄像模组并且移动幅度不超5cm就能实现模拟物距在近物距和无穷远物距之间的变化。
在一个实施例中,其中包括步骤:移动所述被测摄像模组以使所述标版和所述被测摄像模组的模拟物距产生变化。
在一个实施例中,其中包括步骤:使所述物距模拟光学结构相对于所述被测摄像模组的位置被调整以使所述标版和所述被测摄像模组的模拟物距产生变化。
在一个实施例中,其中包括步骤:调整所述物距模拟光学结构的光学系统内部结构以使所述标版和所述被测摄像模组的模拟物距产生变化。
在一个实施例中,其中包括步骤:通过移动镜片、增加或减小镜片来调整所述物距模拟光学结构的光学系统内部结构以使所述标版和所述被测摄像模组的模拟物距产生变化。
在一个实施例中,其中所述预定范围为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化。
在一个实施例中,其中所述近物距的范围在数值上为2cm~20cm。
在一个实施例中,根据Defocus(离焦)原理,结合镜头景深表,能够实现对所述被测摄像模组当前镜头相对于所述感光芯片的位置测定,进而实现所述镜头任意焦点位置的定位。
在一个实施例中,其中通过更改所述标板相对于所述物距模拟光学结构的距离,再结合所述标板的设计,能够实现不同物距的解像力测试。
另外,所述倾斜测量方法适于定焦或动焦摄像模组的倾斜测量。
附图说明
图1是根据本发明的一优选实施例的所述摄像模组的倾斜测量系统的立体示意图。
图2是根据本发明的上述优选实施例的所述摄像模组的倾斜测量系统中标板移动的示意图。
图3是根据本发明的另一优选实施例的所述摄像模组的倾斜测量系统的物距模拟光学结构移动的示意图。
图4是根据本发明的另一优选实施例的所述摄像模组的倾斜测量系统的物距模拟光学结构内部光学系统调整的示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
如图1至图2所示为本发明的一摄像模组的倾斜测量系统的一优选实施例,所述摄像模组的倾斜测量系统应用于一被测摄像模组的倾斜测量,可以利用一光学系统结构件来实现物距的变化,能够缩小现有设备的尺寸,测量精度高,速度快,效率高。本领域的技术人员可以理解的是,本发明的所述摄像模组的倾斜测量系统也可以应用于FF摄像模组(定焦摄像模组)的倾斜测量,也可以应用于AF摄像模组(动焦摄像模组、自动对焦摄像模组)的倾斜测量,本发明并不受此限制。
具体地,如图1所示,在发明的这个优选实施例中,本发明的所述摄像模组的倾斜测量系统1包括一标板10、一光源20和一物距模拟光学结构30,所述光源20用于照亮所述标板10,便于所述标板10图形的清晰拍摄。可以理解的是,所述标板10可以是反射式、透射式或投影式标板。一被测摄像模组90对所述标板10进行拍摄,所述物距模拟光学结构30能实现所述标板10物距调整的模拟。通过调整所述标板10与所述物距模拟光学结构30的相对位置就能够模拟所述标板10与所述被测摄像模组90的物距变化。在本发明的这个优选实施例中,所述物距模拟光学结构30与所述被测摄像模组90的间距在数值上为1.5-3cm。可以理解的是,上述具体数值只作为举例而并不限制本发明。
值得一提的是,在附图中所示,所述标板10、所述光源20、所述物距模拟光学系统30和所述被测摄像模组90按次序自上而下同轴排列。当然在实际应用中,也可以是沿水平方向前后同轴地排列。
值得一提的是,所述光源20为均匀光源。
进一步地,所述物距模拟光学结构30为圆柱体,包括多个镜片31,各所述镜片形成一光学系统,用于模拟产生物距变化。通过小幅调整所述标板10与所述物距模拟光学结构30的相对位置就能够模拟所述标板10与所述摄像模组90的物距变化。
优选地,在本发明的这个优选实施例中,所述标板10的尺寸在数值上为8-15cm*8-15cm,所述标板10的运动幅度在数值上为5cm以内。优选地,所述物距模拟光学结构30的尺寸较小,直径在数值上为15cm以内,优选为7-15cm,能够实现测量所述被测摄像模组90的视场角范围在数值上为90°以内,所述物距模拟光学结构的高度在数值上为50cm以内,优选范围为20-40cm。
因此,本发明的所述摄像模组的倾斜测量系统1与现有技术相比,能够缩小现有设备的尺寸。
如图2所示为本发明的所述摄像模组的倾斜测量系统1的测量原理。
所述标板10在位置a时,所述被测摄像模组90的感光芯片接收到图像71,所述标板10的模拟物距位于无限远物距处,所述标板10在所述被测摄像模组90中的成像为图像72;当所述标板10在位置b时,所述被测摄像模组90的感光芯片接收到图像81,所述标板10的模拟物距位于近物距处,此时所述标板10在所述被测摄像模组90中的成像为图像82。
在这个实施例中,所述标板10在位置a与位置b两个位置的间距在数值上可以不超过5cm。也就是说,通过所述物距模拟光学结构30,所述标板10只需要从位置a处移到位置b处就能实现所述标板10的虚拟物距从无限远物距处到近物距处的变化。根据所述物距模拟光学结构30的光学特性,所述标板10移动的距离与模拟物距的关系是已知的。根据所述被测摄像模组90的光学特性,物距与像距之间的关系也是已知的,因此调节所述标板10的位置在成像结果上是与调节像距(例如马达通电,移动镜头等)是等效的,而且两者之间的函数关系是已知的。之后就可以根据Defocus曲线的原理将所述被测摄像模组90倾斜角度计算出来,即计算所述被测摄像模组的所述感光芯片光轴与镜头光轴之间的倾斜角度。
也就是说,在计算本发明的这个优选实施例的所述被测摄像模组90倾斜角度的计算与申请号为201310063935.X的专利说明书中揭露的倾斜角度的计算方法类似。根据defocus原理,结合镜头景深表,通过图像采集和显示设备,计算MTF(Modulation TransferFunction,调制传递功能)值并实时绘制曲线,从而分析所有的MTF值后显示测试结果,结合镜头光学特性,计算出倾斜角度。可以理解的是,计算成像质量的方式也可以采用OTF(Optical Transfer Function),SFR(Spatial Frequency Response),CTF(ContrastTransfer Function),TV line,等任何可以表征成像系统解像力的评价方式。
根据本发明的另一方面,本发明还揭露了一摄像模组的倾斜测量方法,所述摄像模组的倾斜测量方法包括以下步骤:
(A)所述标板10与所述被测摄像模组90的模拟物距被调整并在一预定范围内变化;
(B)所述被测摄像模组90的感光芯片的四角接收图像;
(C)记录所述感光芯片四角接收的图像随着所述标板10移动过程中的清晰度的变化的曲线;以及
(D)计算所述被测摄像模组90的倾斜角度,即计算所述被测摄像模组的所述感光芯片光轴与镜头光轴之间的倾斜角度。
其中,所述步骤(A)中,所述预定范围为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化。
值得一提的是,本领域的技术人员可以理解的是,所述预定范围并不仅仅局限为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化,也可以根据实际需要为其他范围,本发明并不受此限制。
其中,所述步骤(A)中,所述标板10沿垂直于所述被测摄像模组90的方向移动,其中所述标板10的移动幅度在数值上不超过5cm就能实现所述标板10与所述被测摄像模组90的模拟光学物距从近物距到无穷远物距变化,优选地,其中所述近物距的范围在数值上为2cm-20cm。
其中,所述步骤(D)使用了Defocus原理,与申请号为201310063935.X的专利说明书中揭露的倾斜角度的计算方法类似。
其中,根据defocus原理,结合镜头景深表,可以实现对所述被测摄像模组90当前镜头相对于感光芯片的位置测定,并最终实现镜头任意焦点位置的定位。
其中,通过更改所述标板10相对于所述物距模拟光学结构30的距离,再结合所述标板10的设计,可以实现不同物距的解像力测试。
在本发明的另一实施例中,为了实现所述步骤(A)中的所述标板10与所述被测摄像模组90的模拟物距的改变,通过移动所述标板10和一光源20来实现。也就是说,所述摄像模组的倾斜测量方法包括以下步骤:
(i)一标板10和一光源20相对于所述被测摄像模组90的相对位置被改变,至一标板10与所述被测摄像模组90的模拟物距藉由提供了所述物距模拟光学结构30而被调整并在一预定范围内变化;
(ii)所述被测摄像模组90的感光芯片的四角接收图像;
(iii)记录所述感光芯片四角接收的图像随着所述标板10移动过程中的清晰度的变化的曲线;以及
(iv)计算所述被测摄像模组90的倾斜角度,即计算所述被测摄像模组的所述感光芯片光轴与镜头光轴之间的倾斜角度。
如图3和图4所示,在本发明的其他实施例中,可以对模拟物距的改变方式进行变形实施。
如图3所示,在本发明的另一实施例中揭露了一摄像模组的倾斜测量方法,通过调整所述物距模拟光学结构30与被测摄像模组90的相对位置实现所述标板10与被测摄像模组90的模拟物距的变化。也就是说,在所示标板10没有移动的情况下,所述物距模拟光学结构30的位置发生的变化,从图种的位置c移动到了图中的位置d,从而实现所述模拟物距的变化。
所述摄像模组的倾斜测量方法包括以下步骤:
(a)一物距模拟光学结构30与所述被测摄像模组90的相对位置被改变,至一标板10与所述被测摄像模组90的模拟物距被调整并在一预定范围内变化;
(b)所述被测摄像模组90的感光芯片的四角接收图像;
(c)记录所述感光芯片四角接收的图像随着所述标板10移动过程中的清晰度的变化的曲线;以及
(d)计算被测摄像模组90的倾斜角度,即计算所述被测摄像模组的所述感光芯片光轴与镜头光轴之间的倾斜角度。
如图4所示,在本发明的另一实施例中揭露了一摄像模组的倾斜测量方法,通过调整所述物距模拟光学结构30的光学系统内部结构来实现所述标板10与被测摄像模组90的模拟物距的变化,例如本实施例中通过所述物距模拟光学结构30’添加镜片的方式以调整光学系统内部结构,从而实现所述模拟物距的变化。
值得一提的是,本领域的技术人员可以理解的是,所述物距模拟光学结构30’的光学系统内部结构的调整并不仅仅局限为这个实施例中增加镜片的方式,还可以减少镜片的数量、改变镜片的结构和移动镜片等方式实现,本发明并不受此限制。
所述摄像模组的倾斜测量方法包括以下步骤:
(I)一物距模拟光学结构30’的光学系统内部结构被调整,至一标板10与所述被测摄像模组90的模拟物距被调整并在一预定范围内变化;
(II)所述被测摄像模组90的感光芯片的四角接收图像;
(III)记录所述感光芯片四角接收的图像随着所述标板10移动过程中的清晰度的变化的曲线;以及
(IV)计算被测摄像模组90的倾斜角度,即计算所述被测摄像模组的所述感光芯片光轴与镜头光轴之间的倾斜角度。
值得一提的是,本领域的技术人员可以理解的是,本发明实现标板与被测摄像模组的模拟物距的变化的实施例并不仅限于以上所列举的实施例,还包括其他可实施的实施例,只要能够实现标板与被测摄像模组的模拟物距的变化即可,本发明并不受此限制。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (26)

1.一摄像模组的倾斜测量系统,其特征在于,所述摄像模组的倾斜测量系统包括一标板、一光源和一物距模拟光学结构,所述光源用于照亮所述标板,所述标板被一被测摄像模组进行拍摄,其中所述物距模拟光学结构实现所述标板的物距的模拟,通过模拟所述标板与所述被测摄像模组的物距在一预定范围内变化,从而能够实现所述被测摄像模组的感光芯片光轴与镜头光轴之间的倾斜角度计算,其中所述物距模拟光学结构包括多个镜片,各所述镜片形成一光学系统,用于模拟物距。
2.如权利要求1所述的摄像模组的倾斜测量系统,其中所述预定范围为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化。
3.如权利要求1所述的摄像模组的倾斜测量系统,其中所述标板与所述物距模拟光学结构的相对位置适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
4.如权利要求1所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构与所述被测摄像模组的相对位置适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
5.如权利要求1所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构的光学系统内部结构适于被调整以实现模拟所述标板与所述被测摄像模组的物距变化。
6.如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述光源为均匀光源。
7.如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述光源、所述标板、所述物距模拟结构和所述被测摄像模组按次序自上而下同轴排列。
8.如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构的直径在数值上为15cm以内。
9.如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构的直径在数值上为7~15cm。
10.如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构的高度在数值上为50cm以内。
11.如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构的高度在数值上为20~40cm。
12.如权利要求1至5中任一所述的摄像模组的倾斜测量系统,其中所述物距模拟光学结构与所述被测摄像模组的间距在数值上为1.5~3cm。
13.如权利要求3所述的摄像模组的倾斜测量系统,其中所述标板的移动幅度范围在数值上为5cm以内。
14.一摄像模组的倾斜测量方法,所述摄像模组的倾斜测量方法包括以下步骤:
(A)使一标板和一被测摄像模组的模拟物距藉由提供了一物距模拟光学结构而被调整并在一预定范围内变化,其中所述物距模拟光学结构包括多个镜片,各所述镜片形成一光学系统,用于模拟物距;
(B)所述被测摄像模组的感光芯片的四角接收图像;
(C)记录所述感光芯片四角接收的图像随着所述标板移动过程中的清晰度的变化的曲线;以及
(D)计算所述被测摄像模组的感光芯片光轴与镜头光轴之间的倾斜角度。
15.如权利要求14所述的摄像模组的倾斜测量方法,其中包括步骤:移动所述标板以使所述标板和所述被测摄像模组的模拟物距产生变化。
16.如权利要求15所述的摄像模组的倾斜测量方法,其中所述标板垂直于所述被测摄像模组并且移动幅度不超5cm就能实现模拟物距在近物距和无穷远物距之间的变化。
17.如权利要求14所述的摄像模组的倾斜测量方法,其中包括步骤:移动所述被测摄像模组以使所述标板和所述被测摄像模组的模拟物距产生变化。
18.如权利要求14所述的摄像模组的倾斜测量方法,其中包括步骤:使所述物距模拟光学结构相对于所述被测摄像模组的位置被调整以使所述标板和所述被测摄像模组的模拟物距产生变化。
19.如权利要求14所述的摄像模组的倾斜测量方法,其中包括步骤:调整所述物距模拟光学结构的光学系统内部结构以使所述标板和所述被测摄像模组的模拟物距产生变化。
20.如权利要求19所述的摄像模组的倾斜测量方法,其中包括步骤:通过移动镜片、增加或减小镜片来调整所述物距模拟光学结构的光学系统内部结构以使所述标板和所述被测摄像模组的模拟物距产生变化。
21.如权利要求14至20中任一所述的摄像模组的倾斜测量方法,其中所述预定范围为从近物距到无穷远物距变化,或者从无穷远物距到近物距变化。
22.如权利要求21所述的摄像模组的倾斜测量方法,其中所述步骤(A)中近物距的范围在数值上为2cm~20cm。
23.如权利要求21中所述的摄像模组的倾斜测量方法,其中所述步骤(B)至所述步骤(D)中应用Defocus原理。
24.如权利要求21中所述的摄像模组的倾斜测量方法,其中根据Defocus原理,结合镜头景深表,能够实现对所述被测摄像模组当前镜头相对于所述感光芯片的位置测定,进而实现所述镜头任意焦点位置的定位。
25.如权利要求21中所述的摄像模组的倾斜测量方法,其中通过更改所述标板相对于所述物距模拟光学结构的距离,再结合所述标板的设计,能够实现不同物距的解像力测试。
26.如权利要求14至20中任一所述的摄像模组的倾斜测量方法,其中所述倾斜测量方法适于定焦或动焦摄像模组的倾斜测量。
CN201610178871.1A 2016-03-25 2016-03-25 摄像模组的倾斜测量系统与测量方法 Active CN105744266B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610178871.1A CN105744266B (zh) 2016-03-25 2016-03-25 摄像模组的倾斜测量系统与测量方法
PCT/CN2017/078037 WO2017162201A1 (zh) 2016-03-25 2017-03-24 摄像模组的倾斜测量系统与测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610178871.1A CN105744266B (zh) 2016-03-25 2016-03-25 摄像模组的倾斜测量系统与测量方法

Publications (2)

Publication Number Publication Date
CN105744266A CN105744266A (zh) 2016-07-06
CN105744266B true CN105744266B (zh) 2018-09-04

Family

ID=56251981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610178871.1A Active CN105744266B (zh) 2016-03-25 2016-03-25 摄像模组的倾斜测量系统与测量方法

Country Status (2)

Country Link
CN (1) CN105744266B (zh)
WO (1) WO2017162201A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105744266B (zh) * 2016-03-25 2018-09-04 宁波舜宇光电信息有限公司 摄像模组的倾斜测量系统与测量方法
CN107343197A (zh) * 2017-07-26 2017-11-10 深圳天珑无线科技有限公司 移动终端摄像头的角度校准方法、装置及存储介质
CN107741206B (zh) * 2017-09-20 2020-02-11 宁波舜宇仪器有限公司 平行光管及含该光管的标靶单元及模组检测方法
CN109660703B (zh) * 2017-10-12 2021-10-26 台湾东电化股份有限公司 光学机构的补正方法
CN107991841A (zh) * 2017-11-10 2018-05-04 苏州灵猴机器人有限公司 景深自动测试装置
CN107728422A (zh) * 2017-11-23 2018-02-23 广东弘景光电科技股份有限公司 应用于摄像模组自动调焦装配设备上的调焦光源
CN108107362B (zh) * 2017-12-26 2020-06-26 信利光电股份有限公司 一种音圈马达特性曲线的二次斜率判断方法、装置及设备
CN108259894B (zh) * 2018-03-31 2019-12-31 歌尔科技有限公司 一种摄像头模组组装误差的测试装置及测试方法
CN110855856B (zh) * 2018-08-21 2021-06-18 宁波舜宇光电信息有限公司 基于组成马达光学组件的多群组光学镜头的装配方法
CN111263136B (zh) * 2018-11-30 2022-04-01 欧菲影像技术(广州)有限公司 检测成像场曲的方法、检测成像倾斜的方法及成像检测仪
CN111757092A (zh) * 2019-03-28 2020-10-09 宁波舜宇光电信息有限公司 摄像模组对焦组装系统和方法、镜头组件参数获取装置和感光组件参数获取装置
CN113365045B (zh) * 2020-03-04 2022-10-11 余姚舜宇智能光学技术有限公司 摄像模组检测方法、装置及系统
CN113766210B (zh) * 2021-07-21 2024-05-10 歌尔光学科技有限公司 测试方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191755B (zh) * 2006-11-22 2010-09-29 鸿富锦精密工业(深圳)有限公司 调制传递函数值量测板及使用该量测板的测量装置
JP2008151822A (ja) * 2006-12-14 2008-07-03 Pentax Corp 像ブレ補正装置
CN101493646B (zh) * 2008-01-21 2012-05-23 鸿富锦精密工业(深圳)有限公司 光学镜头检测装置及方法
CN101957553B (zh) * 2009-07-17 2014-02-19 鸿富锦精密工业(深圳)有限公司 测量镜头的调制传递函数值的方法
JP5357688B2 (ja) * 2009-10-01 2013-12-04 日本放送協会 基準映像表示装置の調整装置、撮像装置の調整装置および表示装置の調整装置
EP2549227B1 (en) * 2011-07-21 2013-09-11 Axis AB Method for determining the tilt of an image sensor
CN102662293B (zh) * 2012-05-21 2015-06-24 信利光电股份有限公司 一种近景调焦装置,及方法
CN103149789B (zh) * 2013-02-28 2015-08-26 宁波舜宇光电信息有限公司 基于图像mtf评价模组马达曲线的测试方法
CN105025290B (zh) * 2014-04-23 2017-07-04 宁波舜宇光电信息有限公司 一种自动调整摄像模组传感器与镜头之间倾斜的方法
KR20160027852A (ko) * 2014-09-02 2016-03-10 삼성전기주식회사 렌즈의 틸트각 측정 및 보정 시스템 및 그 방법
CN105744266B (zh) * 2016-03-25 2018-09-04 宁波舜宇光电信息有限公司 摄像模组的倾斜测量系统与测量方法

Also Published As

Publication number Publication date
WO2017162201A1 (zh) 2017-09-28
CN105744266A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105744266B (zh) 摄像模组的倾斜测量系统与测量方法
CN102483511B (zh) 用于将透镜与光学系统对准的方法和设备
US8339463B2 (en) Camera lens calibration system
CN108012147B (zh) Ar成像系统虚像距测试方法及装置
CN105675266A (zh) 无限共轭光路测量光学镜头的调制传递函数的装置及方法
TW584736B (en) Shape measurement device of dual-axial anamorphic image magnification
CN104089628B (zh) 光场相机的自适应几何定标方法
CN104122077A (zh) 无限共轭光路测量光学镜头的调制传递函数的方法及装置
CN109587475B (zh) 数字相机动态分辨率测量方法
CN110376208A (zh) 点胶装置与其点胶尺寸的检测方法及点胶设备
CN109883391A (zh) 基于微透镜阵列数字成像的单目测距方法
TW200825450A (en) Automatic focus device and method thereof
CN110612428A (zh) 使用特征量的三维测量方法及其装置
CN104697470A (zh) 一种太阳能槽式聚光镜拼接角度检测装置以及检测方法
CN103606155B (zh) 摄像机视场标定方法和装置
TWI323125B (en) An method for auto-adjusting the focus of the digital camera
CN105301279B (zh) 一种基于摄像头的速度测量方法、装置及移动终端
CN105093479A (zh) 用于显微镜的自动对焦方法和装置
CN103983608A (zh) 成像法测量玻璃微珠折射率
WO2022126430A1 (zh) 辅助对焦方法、装置及系统
CN103838088A (zh) 一种调焦调平装置及调焦调平方法
CN205538161U (zh) 一种无限共轭光路测量光学镜头的调制传递函数的装置
CN108007387B (zh) 基于结构光照明的面形测量装置和方法
CN107806855B (zh) 一种复合目标源及光电经纬仪成像质量测试系统
CN113532274B (zh) 光学影像测量设备、方法、存储介质和终端

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant