WO2017162092A1 - 基于表达HBsAg和HBcAg的失活全重组汉逊酵母细胞的乙肝治疗疫苗 - Google Patents

基于表达HBsAg和HBcAg的失活全重组汉逊酵母细胞的乙肝治疗疫苗 Download PDF

Info

Publication number
WO2017162092A1
WO2017162092A1 PCT/CN2017/076936 CN2017076936W WO2017162092A1 WO 2017162092 A1 WO2017162092 A1 WO 2017162092A1 CN 2017076936 W CN2017076936 W CN 2017076936W WO 2017162092 A1 WO2017162092 A1 WO 2017162092A1
Authority
WO
WIPO (PCT)
Prior art keywords
hepatitis
hbsag
recombinant
hansenula
therapeutic vaccine
Prior art date
Application number
PCT/CN2017/076936
Other languages
English (en)
French (fr)
Inventor
汪和睦
王昌华
杨珺
Original Assignee
汪和睦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汪和睦 filed Critical 汪和睦
Priority to EP17769369.4A priority Critical patent/EP3434282A4/en
Priority to EA201892172A priority patent/EA201892172A1/ru
Priority to US16/088,217 priority patent/US11191829B2/en
Priority to SG11201808267SA priority patent/SG11201808267SA/en
Priority to JP2019500716A priority patent/JP6818122B2/ja
Publication of WO2017162092A1 publication Critical patent/WO2017162092A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • A61K39/292Serum hepatitis virus, hepatitis B virus, e.g. Australia antigen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/02Hepadnaviridae, e.g. hepatitis B virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/165Yeast isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01023Orotidine-5'-phosphate decarboxylase (4.1.1.23)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/521Bacterial cells; Fungal cells; Protozoal cells inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55588Adjuvants of undefined constitution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/78Hansenula

Definitions

  • Hepatitis B therapeutic vaccine based on inactivated and fully recombinant Hansenula cells expressing HBsAg and HBcAg
  • the invention belongs to the field of genetic engineering and relates to a vaccine for inactivating fully recombinant Hansenula cells expressing HBsAg and HBcAg for treating hepatitis B vaccine. Background technique
  • Hepatitis B virus (HBV) infection is a serious public health problem.
  • WHO World Health Organization
  • HBV World Health Organization
  • 3 billion of the world's 6 billion people have been infected with HBV, of which 350 million are chronic HBV infections, and about 1 million people die each year from livers caused by HBV infection.
  • China is a endemic area of HBV infection.
  • the Ministry of Health of China incorporated hepatitis B vaccine into planned immunization management in 1992.
  • hepatitis B surface antigen (HBsAg) in the whole population has dropped from 9.75% in 1992 to 7.18%.
  • HBsAg hepatitis B surface antigen carrying rate of children under 5 years old has been From 9.67% to 0.96%.
  • Hepatitis B vaccine immunization prevention and treatment is the most effective way to reduce the burden of disease.
  • HBsAg VLP virus-like particle hepatitis B surface antigen
  • the pathogenesis of hepatitis B identified according to the prior art is as follows: after human infection with HBV, it can generally be divided into an immune tolerance period, an immune clearance period, and an inactive or low (non-) replication period.
  • the immune tolerance period is characterized by active HBV replication, positive HBsAg and HBeAg, high HBV DNA titer (> 10 5 copies/ml), and normal serum alanine aminotransferase (ALT) levels. There was no obvious abnormality in liver histology.
  • the immune clearance period is characterized by serum HBV DNA titer > 10 5 copies/ml, but generally lower than the immune tolerance period, aspartate aminotransferase (AST) is continuously or intermittently elevated, and liver histology has necrotic inflammation.
  • Inactive or low (; non;) replication period showed HBeAg-negative, anti-HBe-positive, HBV DNA undetectable (PCR) method or lower than the lower limit of detection, normal levels, no obvious inflammation of liver histology.
  • HBV infection in adolescents and adults, generally no immune tolerance period is the initial stage of immune clearance, manifested as acute hepatitis B, of which only 5%-10% develop chronic. However, its exact pathogenesis is still unknown.
  • Anti-hepatitis B virus treatment is currently the main treatment for hepatitis B virus infection and hepatitis B patients.
  • anti-hepatitis B virus drugs mainly include interferon-based immunomodulators and nucleotide analogues against HBV DNA polymerase. Although they have certain curative effects, they are not satisfactory, and most patients cannot be cured. Although interferon can make HBsAg disappear or serological transformation in a small number of patients, it is expensive, requires injection, and has certain side effects. Nucleotide analogs act on HBV DNA polymerase, which can only inhibit viral replication and cannot completely eliminate HBV. And cccDNA, and long-term application is likely to lead to viral resistance mutations.
  • HBV Hepatitis B virus
  • CHB chronic hepatitis B
  • HBV immune tolerance is not only reflected in the liver local anti-HBV immune response can not effectively eliminate the virus, leading to persistent infection; also reflected in the persistence of HBV, and then induce the systemic immune system to respond to HBV, such as HBV-tolerant patients to HBsAg vaccine No response. This is also the main reason why current therapeutic vaccines are difficult to succeed in CHB patients. Liver-induced immune tolerance and its reversal mechanism will provide a theoretical basis for the development of hepatitis B vaccine.
  • HBV antigen encounters immunity-induced efficient primary activation of HBV CTLs in the lymph nodes outside the liver, and then into the liver, which also increases the number of surviving CTLs, more effective CTLs, and also leads to liver immune response, clearing infected HBV.
  • This immune mechanism for the two sites provides a theoretical basis for the development of subcutaneous, intramuscular injection of hepatitis B vaccine, which leads to liver immune response and HBV clearance.
  • the GS4774 has been designated as a therapeutic vaccine for hepatitis B, and the other expressed HBV antigen is an xs-core antigen as a fusion protein.
  • This yeast vector can provide a variety of antigens into the MHC class I and class II antigen presentation pathways, stimulating potent CD4+ and CD8+ cell responses. And can break the tolerance of antigens in immunological mouse models.
  • the yeast vector is also not easily neutralized in the body, and is therefore suitable for repeated administration to obtain long-term immunological stress, ideally eliminating chronic intracellular infections such as HCV and P HBV.
  • ⁇ -glucan particles purified from the cell wall of S. cerevisiae, which has 1,3-D-glucan polymer >85%, 2% chitin, 1% lipids and protein, and Most of the rest is ash and moisture.
  • OVA ovalbumin
  • GP-OVA hollow GPS shell
  • free OVA was used as a control antigen.
  • GPS-OVA stimulated ⁇ - ⁇ or ⁇ - ⁇ ⁇ cell proliferation in a concentration range from 0.03 to 0.5 ⁇ g/ml; conversely, free OVA failed to stimulate OT-I or ⁇ - ⁇ T cell proliferation.
  • Viral-like particle GPS is a highly potent agonist of the Dectin-1 receptor
  • the virus-like particle GP-OVA delivers an antigen that is more DCs (dendritic cells) than the free OVA antigen. Process and present efficiently.
  • cccDNA clearance is a two-step process mediated by cellular immune responses: Cell damage is reduced by more than 90% of the pool of cccDNA molecules, thereby eliminating the precursor of HBV-relaxed circular deoxyribonucleic acid. The second step increases the process of destroying infected hepatocytes and triggers immune reversal.
  • HBV was continuously carried by hydrodynamic method to simulate the immune tolerance status of chronically infected HBV patients. It was found that IL-12 pretreatment was co-injected with IL-12 and HBsAg VLP vaccine. The combination of treatment, called IL-12-based vaccine therapy, can effectively reverse HBV systemic immune tolerance, which in turn leads to HBV clearance. It was found that HBV mice experienced significant expansion of follicular-like helper T cells (Tfh) and germinal center B cells (GC B) in lymph nodes after undergoing IL-12-based vaccine therapy, corresponding to spleen cells. HBsAg-specific IgG-producing cells were also significantly increased.
  • Tfh follicular-like helper T cells
  • GC B germinal center B cells
  • mice showed protective antibody anti-HBs in the serum of the late treatment.
  • proliferation ability of sputum cells to HBsAg stimuli in vitro was also significant after IL-12 combination vaccine treatment. restore.
  • a hepatitis B therapeutic vaccine having better curative effect is provided, and the technical scheme adopted by the present invention is:
  • a hepatitis B therapeutic vaccine based on inactivated fully recombinant Hansenula cells expressing HBsAg and HBcAg, characterized in that: the hepatitis B therapeutic vaccine uses HBsAg and HBcAg expressed in recombinant Hansenula cells as an antigen; and contains 19 HBsAg A specific CTL epitope and 19 HBcAg-specific CTL epitopes; the hepatitis B therapeutic vaccine is adjuvanted with heat-killed recombinant Hansenula fine.
  • the hepatitis B therapeutic vaccine is characterized in that the HBsAg expressed by the recombinant Hansenula is an adw subtype, and the DNA sequence of the recombinant Hansenula expressing HBsAg is as shown in SEQ ID NO: 1; the recombinant Hansenula expression HBsAg The amino acid sequence is shown as SEQ ID NO: 2.
  • the hepatitis B therapeutic vaccine is characterized in that the DNA sequence of the recombinant Hansenula expressing HBcAg is represented by SEQ ID NO: 3; the amino acid sequence of the recombinant Hansenula expressing HBcAg is as shown in SEQ ID NO: 4. .
  • the hepatitis B therapeutic vaccine is characterized in that the HBsAg expressed by the recombinant Hansenula is a virus-like particle structure, and is composed of HBsAg inserted into Hansenula lipid, and the HBsAg has 9 to 12 of 14 cysteic acids. Forming a disulfide bond; the HBsAg expressed by the recombinant Hansenula is a virus-like particle structure.
  • the hepatitis B therapeutic vaccine characterized in that the inactivation condition of the inactivated recombinant Hansenula is: inactivation temperature
  • the hepatitis B therapeutic vaccine is characterized in that the HBsAg expressed by the recombinant Hansenula contains the following 19 CTL epitopes: VLQAGFFLL ⁇ PFVQWFVGL, FLLTRILTK WYWGPSLYSI, SLNFLGGSPV, FLGGSPVCL, LYSIVSPF, LYSIVSPFI, PFIPLLPIF, LLLCLIFLL ⁇ LLCLIFLLV
  • LLDYQGMLPV LVLLDYQGML ⁇ VLLDYQGML
  • WLSLLVPFV LLVPFVQWFV GLSPTVWLSA
  • SIVSPFIPLL LLPIFFCLWV.
  • the hepatitis B therapeutic vaccine is characterized in that the HBcAg expressed by the recombinant Hansenula contains the following 19 CTL epitopes: SFLPSDFF, FLPSDFFPSK DFFPSIRDLL, FFPSIRDLL ⁇ SYVNV MGL, SYVNV MGLKK YVNVNMG, YVNVNMGLK, WFHISCLTF, CLTFGRETV,
  • the hepatitis B therapeutic vaccine is characterized in that the dosage form of the hepatitis B therapeutic vaccine is selected from the group consisting of a prefilled injection solution, an injection solution or a lyophilized powder injection.
  • the hepatitis B therapeutic vaccine is characterized in that it further contains one of HBsAg stock solution or aluminum adjuvant HBsAg.
  • the present invention also provides a recombinant Hansenula polymorpha, wherein the recombinant H. polymorpha contains the sequence of SEQ 11) ⁇ «): 1 .
  • the DNA sequence of SEQ ID NO: 1 is integrated into the genome of the recombinant H. polymorpha.
  • the present invention also provides a recombinant Hansenula bacterium of Hansenula polymorpha, wherein the recombinant H. polymorpha contains the DNA sequence of SEQ ID NO : 3.
  • the DNA sequence of SEQ ID NO: 3 is integrated into the genome of the recombinant H. polymorpha.
  • the host Hansenula polymorpha of the above-mentioned recombinant Hansenula is HU-11, and the preservation number is
  • the present invention provides therapeutic HBV vaccine, comprising 6-10 ⁇ ⁇ ⁇ recombinant Hansenula based on 5 ⁇ ⁇
  • 108 cells may be used as adjuvants in the conventional full recombinant Hansenula cells
  • the injection amount of HBsAg is maximized, and the effect of reversing the immune tolerance state of hepatitis B patients is improved.
  • Inactivation of fully recombinant Hansenula cells is a potent agonist of the Dectin-1 receptor, the most important professional antigen presenting cell (DC).
  • HBsAg-specific CTL cells target HBV-infected hepatocytes to release IFN- ⁇ :
  • the first step of non-hepatocyte damage reduces its pool of cccDNA molecules by more than 90%, and the second step increases the process of destroying infected liver cells and triggers HBV immune reversal.
  • the HBsAg expressed by the recombinant Hansenula cells as an antigen contains at least 19 CTL epitopes, which can improve the immunogenicity and reactivity of HBsAg.
  • the immunogenicity and reactivity of the preferred HBsAg are further improved by preferably expressing the DNA sequence of HBsAg (SEQ ID NO: 1), preferably 19 CTL epitopes in 21 CTLs.
  • HBsAg-inactivated Hansenula inactivated cells are used in combination with inactivated cells of recombinant Hansenula producing HBsAg, and HBcAg (high immunoreactivity) preferred code gene and C2 genotype, subtype double representative sequence are used.
  • the HBcAg particle structure was determined according to the cryo-EM image reconstruction technique.
  • the HBcAg dimers each contain four ⁇ -helices, that is, each HBcA subunit forms a dimer interface through two long ⁇ -helices;
  • the alpha helix, head and tail are limited by Pros in positions 50 and 79. Deeply buried inside the dimer, there is no CTL epitope.
  • the 01 helix is the so-called 3.6 helix, in which each amino acid rotates 100°, 3.6 amino acids rotates 360°, and the original 51-78 amino acids form 18 amino acids to form a 5-week ⁇ -helix; the missing 59-69 positions: ILCWGELMNLA 1 1 After the amino acids, the remaining 7 amino acids form an alpha helix that is rotated for 2 weeks.
  • the other long alpha helix that forms the interface of the HBcAg dimer terminates at position 111 without any change in Gly. Therefore, this patent does not change the two long alpha helices to form a dimer interface.
  • the above-mentioned 1 amino acid HBcAg can still assemble into virus-like particles (VLP) in recombinant Hansenula cells; it still maintains its thermal stability.
  • VLP virus-like particles
  • the results of immunoreactivity assay showed that the recombinant Hansenula HBcAg engineering strain (HC-40-25, 172 amino acids) with the above amino acid deletion was compared with the recombinant Hansenula HBcAg engineering strain (183 amino acids) HC-43 with full-length amino acids. : The former has more than three times the immunoreactivity of the latter. Based on the preferred CTL epitopes, expression sequences and recombinant Hansenula engineering strains, the present invention also optimizes the inactivation process of recombinant Hansenula cells to ensure the efficacy and safety of the vaccine.
  • hepatitis B therapeutic vaccine based on the inactivated fully recombinant Hansenula cells expressing HBsAg and HBcAg provided by the present invention will have higher immunogenicity and can be better used for the treatment of hepatitis B.
  • Figure 1 is a schematic diagram showing the construction process of plasmid pMPT-HBS-adw;
  • Figure 2 is a physical map of the pMPT-HBC plasmid
  • Figure 3 is a photomicrograph showing the PCR amplification product of the engineered strain HS604-5;
  • Figure 4 is an electron micrograph of the pure (stock solution) of recombinant HBsAg obtained from recombinant Hansenula;
  • Fig. 5 is a flow chart showing the steps of transformation and screening of recombinant Hansenula in the construction of recombinant Hansenula HBsAg engineering strain in Example 2.
  • the Hansenula expression system consists of two main components:
  • a vector system that initiates efficient expression of a foreign gene; (2) a host cell having a specific selection marker.
  • the Hansenula MOX (methanol oxidase) promoter 1.5 kb
  • Hansenula MOX (methanol oxidase) terminator 350 bp
  • Hansenula autonomous replication sequence HARS 1.0 kb
  • Saccharomyces cerevisiae uracil gene ScURA31.1kb The above 5 parts of the genetic elements are closely linked and then inserted into the pBluescrip II plasmid.
  • the shuttle plasmid pMPT-02 was constructed. This is the applicant's non-exclusive proprietary technology.
  • the DNA sequencing result of the URA3 gene of Hansen yeast gene disrupted host strain HU11 strain indicates that the gene is destroyed and the 31st base is inserted, and GAAGT five is inserted.
  • the insertion of five bases of GAAGT produces a frameshift mutation.
  • the frameshift mutation results in the replacement of all 254 codons after the 11th position.
  • the probability of simultaneous reversion of five bases of GAAGT is extremely small.
  • the back mutation rate of the host strain HU11 is zero; this host strain with a "0" back mutation rate is particularly advantageous for transformation screening.
  • Knockout technology established ⁇ 3 ⁇ 4 ⁇ 3 auxotrophic host cell line HU-11 (CGMCC No.1218)
  • the patent application filed by the patentee is CN1651570A.
  • Host Hansenula HU-11 orotate-5-phosphate Decarboxylase gene (// ⁇ / ⁇ 43)
  • the disrupted DNA sequence is SEQ ID NO: 5.
  • the DNA sequence of the recombinant Hansenula expressing hepatitis B surface antigen (HBsAg) provided by the present invention is designed based on the HBsAg adw2 subtype, as shown in SEQ ID NO: 1, the amino acid sequence of the HBsAg is SEQ ID NO: 2.
  • the DNA sequence of the recombinant Hansenula recombinant hepatitis B core antigen (HBcAg) provided by the present invention is as shown in SEQ ID NO: 3, and the amino acid sequence of the HBcAg is SEQ ID NO: 4
  • a synthetic nucleotide sequence according to the sequence shown in SEQ ID NO: 1 (hereinafter referred to as HBsAg adw2 gene and constructed into a glycerol bacterium containing the HBsAg adw2 gene plasmid; the plasmid after correct sequencing is digested with EcoR I / BamH I, and digested The product was cut into 701 bp of the desired fragment DNA.
  • the correct plasmid pHMPT-02 was digested with EcoR 1 1 BamH I, and the vector DNA obtained after the gel extraction was ligated to obtain the Hansenula intracellular plasmid pMPT-HBS-adw, and the plasmid pMPT-HBS was obtained.
  • -adw was heat-transformed into E. coli Competent Cell JM109 (Code No. D9052), and the cells were cultured overnight. Single colonies were picked from the transformation plates, and plasmid DNA was extracted and digested with EcoR I / BamH I. The results of the digestion showed positive clones. Sequencing confirmed that the plasmid pMPT-HBS-adw was correct.
  • the HBsAg adw2 gene was inserted into the multiple cloning site of the Hansenula expression system intracellular plasmid pMPT-02: between EcoR I and BamH I.
  • the plasmid pMPT-HBS-adw has a full length of 7665 bp.
  • a schematic diagram of the construction process of the plasmid pMPT-HBS-adw is shown in Fig. 1.
  • the plasmid pMPT-HBC based on the sequence shown in SEQ ID NO: 3 was constructed in the same manner as in the construction of plasmid pMPT-HBS-adw.
  • the physical map of the pMPT-HBC plasmid is shown in Figure 2.
  • Hansenula hepatitis B virus surface antigen (HBsAg) engineering strain the cell electroporation technology developed by the applicant was applied, and the RC pulse: amplitude 1500V, capacitance 22 ⁇ , time constant 3-5ms electric shock 1 time, using pMPT- HBS-
  • the adw plasmid was transformed into Hansenula cells of the HU-11 strain (CGMCC No. 1218) from which the URA3-gene was knocked out.
  • the single colony transformants were picked from the MD selection culture plate and transferred to the MD liquid medium for serial subculture.
  • the adw2 subtype HBsAg gene and the corresponding regulatory components were multi-copy and exogenously integrated into the host Hansenula cell chromosome. in. After a single colony of more than one thousand transformant single colonies, the following three steps were screened:
  • the PCR technique was used to compare the electrophoretic band luminance of the HBsAg gene and the single copy number MOX (methanol oxidase) gene, and the HBsAg gene copy number was semi-quantitatively determined.
  • the amplified HBsAg fragment was 800 bp in length and the amplified MOX fragment was 2000 bp in length.
  • primer forward 5 '-TCAAAAGCGGTATGTCCTTCCACGT-'3
  • PCR product agarose gel electrophoresis Engineering bacteria HBsAg gene amplification product size of about 800bp, Hansenula single copy gene MOX gene amplification product size of about 2000bp.
  • the final screened recombinant Hansenula hepatitis B virus surface antigen (HBsAg) engineered strain was numbered HS604-5.
  • Fig. 3 The electrophoresis photograph of the PCR amplification product of the engineered strain constructed and screened by the same method using the plasmid pMPT-HBC to construct the recombinant Hansenula HBsAg adw2 subtype engineering strain is shown in Fig. 3.
  • Fig. 3 1 is the final recombinant Han of Marke.
  • the yeast strain HBcA engineering strain is numbered HBC-40-25.
  • Adw2 subtype HBsAg hepatitis B surface antigen lyophilized standard provided by Tiantan Biotechnology 10 ⁇ ⁇ Diluted with dilution solution to 1024ng/mL, 512ng/mL, 256ng/mL, 128ng/mL, 64ng/mL, 32ng/mL, 16 ng/mL, 8 ng/mL, 4 ng/mL, 2 ng/mL, Ong/mL (diluent) were 11 standard points, and the HBsAg reaction was detected by the radioimmunoassay kit.
  • the recombinant strains of Hansenula engineering pilot-scale fermentation 87 hours sampling 10 OD 6. .
  • the sample was diluted 200 times and the standard was simultaneously involved in the radioimmunoassay reaction.
  • the expression of HBsAg antigen obtained by the ⁇ -counter auto-completed curve was 126.9 ( Ng/mL).
  • the amount of HBsAg antigen expressed in recombinant Hansenula was calculated as follows:
  • FIG. 4 An electron micrograph of the pure (stock solution) of the recombinant HBsAg obtained by recombining the Hansinensis HBsAg adw2 subtype engineering strain fermentation broth is shown in FIG. 4 .
  • the results showed that the high purity, high concentration and virus-like particle (VLP) structure of recombinant HBsAg were stable.
  • the expression of HBcAgVLP in the fermentation broth of recombinant Hansenula HBcAg engineering strain was determined by the same method. 8 ⁇ 12 g/10 8 cells.
  • VLP virus-like particles
  • the HBcAg protein molecule consists of a primary sequence of 183 or 185 amino acid residues, which determines the secondary, tertiary and quaternary structure of HBcAg.
  • the base consists of 90 homodimers with a diameter of 30 nm and a surface with 90 condyles.
  • the immunoreactivity of HBC-40-25 strain was more than three times that of the other six strong positive strains.
  • the following requirements should be met: (1) The survival rate of inactivated recombinant Hansenula can be reduced; ( 2 ) Maintaining the complete recombinant Hansenula cell structure, yeast intracellular antigen (3) Maintaining the expression of HBsAg virus-like particles (VLP) and HBcAg virus-like particles (VLP) in the recombinant Hansenula cells is not stable, and the antigenic reactivity is not decreased.
  • the thermal stability of HBsAg and HBcAg virus-like particles (VLP) in the inactivated recombinant Hansenula cells has become the first problem to be solved.
  • the extracellular HBsAg and HBcAg antigen reactivity was extremely low over the entire temperature and time range of the inactivation assay, indicating that the intracellular VLP did not leak, keeping the inactivated recombinant Hansenula cells intact.
  • the survival rate of inactivated cells was as low as 50,000 at 56 ° C for 3 h. This provides a basis for optimizing the conditions for inactivation of recombinant Hansenula cells.
  • HBsA and HBcAg-specific CTL T cells trigger immune reversal in non-cell damage
  • HBV capsid antigen (Pre-Sl-Pre-S2-HBsAg) does not repeat CTL epitopes A total of 23.
  • the HBsAg amino acid sequence of the present application contains the following 19 CTL epitopes: VLQAGFFLL, PFVQWFVGL, FLLLILLTI, WYWGPSLYSI, SLNFLGGSPV, FLGGSPVCL, LYSIVSPF, LYSIVSPFI, PFIPLLPIF, LLLCLIFLL LLCLIFLL V LLDYQGMLPV, LVLLDYQGML, VLLDYQGML, WLSLLVPFV, LLVPFVQWFV, GLSPTVWLSA, SIVSPFIPLL, LLPIFFCLWV.
  • the HBcAg amino acid sequence of the present application contains the following 19 CTL epitopes: SFLPSDFF, FLPSDFFPSK DFFPSIRDLL, FFPSIRDLL ⁇ SYVNVNMGL, SYVNV MGLKK YVNVNMG, YVNV MGLK, WFHISCLTF, CLTFGRETV, VLEYLVSFGV, EYLVSFGVW, EYLVSFGVWI, AYRPPNAPI, AYRPPNAPIL, APILSTLPE, ILSTLPETTV, STLPETTVVRR , RGRSPRRRTPc
  • the hepatitis B therapeutic vaccine product provided by the invention is preferably a prefilled injection solution:
  • Pre-filled syringe 1 needle 1 box easy to use, easy to use and essential to use, disposable syringe, can not be reused. There is no need for a separate syringe for vaccination, which prevents the use of glass syringes to completely infect infections or spread infectious diseases, and improper needle selection affects the inoculation effect, avoiding the risk of repeated use of disposable syringes.
  • the pMPT-HBS-adw plasmid (i.e., the expression vector comprising the SEQ ID NO: 1) constructed based on the SEQ ID NO: 1. Construction of the plasmid pMPT-HBS-adw includes the following:
  • the HBsAg adw2 gene was synthesized according to our designed sequence of SEQ ID NO: 1; and a glycerol strain containing the HBsAg adw2 gene plasmid was constructed and named MC407B-16.
  • the correctly sequenced MC407B-16 plasmid was digested with EcoR II BamH I, and the digested product was recovered by TaKaRa PCR Fragment Recovery Kit (Code No. D301).
  • the 701 bp target fragment DNA was called Inset.
  • the plasmid pHMPT-02 was digested with EcoR I / BamH I, and the vector DNA obtained after the gel extraction was called Vector DNA6.
  • Inset DNA6 was ligated with Vector DNA6 using Solution in TaKaRa DNA Ligation Kit (Code No. D6022), and then thermally transformed into E. coli Competent Cell JM109 (Code No. D9052), and the plate was coated overnight to culture the cells. Single colonies were selected from the transformation plates, and plasmid DNA was extracted and digested with EcoR I / BamH I. The results showed that: MC407A+B+C+D-77 ⁇ 80 were positive clones.
  • the plasmid MC407A+B+C+D-77 was used with primers RV-M, Ml 3 -47, MC407P1 , MC407P2, respectively.
  • the MC407BR11 was sequenced and the plasmid pMPT-HBS-adw was confirmed to be correct.
  • Recombinant Hansenula Hepatitis B vaccine transformation and screening diagram The transformation and screening process of recombinant Hansenula is shown in Figure 5 - specifically
  • the pMPT-HBS-adw plasmid was transformed into the URA3-auxotrophic Hansenula cell line HU-11 (CGMCC ⁇ . 1218) of the host cell by cell electroporation.
  • the culture medium was selected using a selection medium (MD liquid medium).
  • the single colony transformants were picked from the MD selection culture plate and transferred to the MD liquid medium for continuous subculture.
  • the adw2 subtype HBsAg gene and the corresponding regulatory components were multi-copy and exogenously integrated into the host Hansenula cell chromosome. in.
  • Colonies with fast growth rate of bacteria were selected. After detecting the brightness of HBsAg gene band by PCR, colonies with a large number of copies were selected, and single colonies were shake-cultured in a selective medium, and 20 400 generations were successively subcultured;
  • radioimmunoassay or radioimmunoassay was used to determine the expression level of HBsAg released after disruption of transformant cells;
  • the clones screened by the step (2) were cultured in YPD complete medium for 48 hours, and then transferred to a selection medium for cloning and culture, and HBsAg gene copy number was detected by quantitative PCR, and HBsAg expression level was detected by RIA.
  • step (3) Based on the test result of step (3), a primary strain of genetically stabilized recombinant Hansenula HBsAg engineering bacteria was selected.
  • Example 3 30 liters of pilot fermentation (recombinant Hansenula HBcAg engineering strain and recombinant Hansenula HBsAg engineering strain using the same fermentation process)
  • the feeding operation of the growth phase is to be significantly reduced when the dissolved oxygen is consumed, and the basic medium is consumed when it starts, and The increase of the consumption of the basic medium gradually increases the flow acceleration, and the addition is completed 2-3 hours before the dissolved oxygen rises.
  • the dissolved oxygen begins to rise after the end of the flow.
  • the methanol-inducing solution is started to be added, and the methanol concentration is controlled to 3-5%.
  • the flow acceleration is controlled by the methanol detection flow controller.
  • Methanol addition was stopped 2-3 hours before the end of the fermentation to reduce methanol residue during cell harvesting.
  • Biotin was first dissolved in 10 ml of 50% isopropanol, and then dissolved in Thiamin HC1, and then dissolved in deionized water to a volume of 100 ml.
  • the weighed reagent is placed in a cleaned triangular flask, and an appropriate amount of deionized solution is added to dilute the water to a volume of 50 ml t or more.
  • the weighed reagent was placed in a cleaned triangular flask, dissolved in deionized water and dissolved to a volume of 1600 ml.
  • HBsAg Purification, HBsAg and HBcAg use the same purification process, taking HBsAg as an example, the process is as follows:
  • the above harvested cells can be crushed by a homogenizer to release HBsAg; 0.22 ⁇
  • the cell filter was removed by filtration through a pore filter; the small molecular impurities were removed by ultrafiltration with a 300 ⁇ ultramicrofilter; HBsAg was extracted by silica gel adsorption treatment; and finally purified by butyl agarose hydrophobic chromatography.
  • VLP virus-like particle
  • Recombinant Hansenula HBsAg engineered bacteria (HS604-5 strain) Cell culture was induced by fermentation or shake flask. The cells were washed three times with centrifugation in phosphate buffered saline (PBS) and the precipitated Hansenula was suspended in a calculated volume of PBS. The cells were counted using OD 6 () Qnm , diluted to 10 OD 6QQnm / ml in PBS, 2 ml per tube; 2 test tubes were broken and not broken in each test group; 32 test tubes were prepared in 16 test groups.
  • PBS phosphate buffered saline
  • the inactivated recombinant Hansenula should be cultured for 3 days at 37 ° C in a chloramphenicol complete medium agar dish; the survival rate is counted.
  • Heat-killed Hansenula is stored at 4 degrees Celsius for further use.
  • Bo wen DG et.al Intrahepatic immunity: a tale of two sites? Bo wen DG et.al, Trends Immunol. 2005, 26(10): 512-7.
  • Haibin Huang et.al Robust Stimulation of Humoral and Cellular Immune Responses Following Vaccination with Antigen -Loaded ⁇ -Glucan Particles, 2010, MBio.asm.org, 1 (3): 1-7.
  • CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection; J Virol. 2003 Jan; 77(l): 68-76.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了基于表达HBsAg和HBcAg的失活全重组汉逊酵母细胞的乙肝治疗疫苗,以重组汉逊酵母胞内表达的HBsAgVLP和和HBcAgVLP为抗原,重组汉逊酵母表达的HBsAg的氨基酸序列中共含有19个CTL表位。重组汉逊酵母表达的HBcAg的氨基酸序列中共含有19个CTL表位,以失活全重组汉逊酵母细胞为佐剂。

Description

基于表达 HBsAg和 HBcAg的失活全重组汉逊酵母细胞的乙肝治疗疫苗 技术领域
本发明属基因工程领域,涉及疫苗为失活全重组汉逊酵母细胞表达 HBsAg 和 HBcAg 治疗乙肝疫苗。 背景技术
乙型肝炎病毒 (hepatitis B virus, HBV)感染是一个严重的公共卫生问题。据世界卫生组 织 (World Health Oganization , WHO)报道, 全球 60亿人口中, 约 20亿人曾感染过 HBV, 其 中 3.5亿人为慢性 HBV感染, 每年约有 100万人死于 HBV感染所致的肝衰竭、 肝硬化和原 发性肝细胞癌 (肝癌)。 全球肝癌患者中, 75 % 以上是由 HBV所致。 我国属 HBV感染地方 性流行区。 我国卫生部于 1992年将乙型肝炎疫苗纳入计划免疫管理。 2001年 12月国务院正 式批准将乙型肝炎疫苗纳入儿童计划免疫, 要求各省市自治区从 2002年起, 除收取少量手 续费外, 给所有新生儿免费接种乙型肝炎疫苗。 按照 2005年 3月制订的计划免疫条例,自 2005年 6月 1日起, 所有新生儿乙型肝炎疫苗免疫完全免费。 经过近 15年的努力, 我国一般 人群, 尤其是 15岁以下儿童, 乙型肝炎病毒感染率明显下降。 据 2006年全国乙型肝炎血清 流行病学调查表明,全人群乙型肝炎表面抗原 (HBsAg)携带率己由 1992年 9.75%降至 7.18%,5 岁以下儿童的乙型肝炎表面抗原携带率已由原来 9.67%降至 0.96%。 据此推算, 我国现有的 慢性 HBV感染者约 9300万人, 其中慢性乙型肝炎患者约 2000万例。每年因 HBV导致的肝硬 化和肝癌死亡 30余万例, 新发乙型肝炎病例 50万 -100万例。 因此, 本病是我国当前和今后 相当长时期内危害人民健康、 阻碍社会发展、影响社会稳定的重要因素, 是一个严重的公 共卫生问题, 也是我国在建立以人为本的和谐社会过程中, 需要优先解决的一个重大健康 问题。我国人群 HBV感染的流行率高,给国家带来了沉重的经济负担。据调查. 我国每年因 慢性乙肝 (包括肝硬化、肝癌) 的直接和间接医疗费用约 6800亿元。 乙肝疫苗免疫预防与治 疗是降低疾病负担最有效的方法。
基因重组技术是现代生物技术的核心技术; 也是规模化生产乙肝疫苗主要组份一病 毒样颗粒乙肝表面抗原 (HBsAg VLP) 的唯一技术。 本专利权人从 1995年开始从事汉逊 酵母重组乙肝疫苗研发工作。 1998-2002 年在大连高新生物制药有限公司, 主持开发的汉 逊酵母重组 HBsAg adw2乙肝疫苗, HBsAg VLP抗原纯品 (原液) 产率为 40mg /升; 于 2002年起经国家审批上市。 2003-2006年本人为北京天坛生物制品股份有限公司协议开发 的重组汉逊酵母 HBsAg-adr2乙型肝炎疫苗。其 HBsAg VLP抗原纯品(原液)产率为 85mg/ 升以上; 已于 2015 年申报国家新药审评, 以该疫苗为基础申请的中国专利公开号为
Figure imgf000003_0001
根据现有技术查明的乙型肝炎发病机制如下:人感染 HBV后, 一般可分为免疫耐受期、 免疫清除期和非活动或低 (非)复制期。 免疫耐受期的特点是 HBV复制活跃, 血清 HBsAg 和 HBeAg阳性 ,HBV DNA滴度较高 (〉 105拷贝 /ml),血清丙氨酸氨基转移酶 (ALT)水平正常, 肝组织学无明显异常。 免疫清除期表现为血清 HBV DNA滴度〉 105拷贝 /ml , 但一般低于 免疫耐受期,天门冬氨酸氨基转移酶 (AST)持续或间歇升高, 肝组织学有坏死炎症等表现。 非活动或低 (;非;)复制期表现为 HBeAg阴性, 抗 -HBe阳性, HBV DNA检测不到 (PCR)法或低 于检测下限,水平正常, 肝组织学无明显炎症。但在青少年和成人期感染 HBV, —般无免疫 耐受期, 一开始即为免疫清除期,表现为急性乙型肝炎, 其中仅 5%-10%发展成慢性。 但其 确切的发病机制仍不了解。
抗乙型肝炎病毒治疗是目前对乙肝病毒感染者及乙肝患者的主要治疗手段。 目前抗乙型 肝炎病毒药物主要有以干扰素类为主的免疫调节剂和针对 HBV DNA多聚酶的核苷酸类似物 两大类,虽有一定疗效, 但尚不满意, 多数患者不能被治愈。 干扰素虽可使少数患者 HBsAg消 失或血清学转化, 但费用较高, 需要注射, 且有一定副作用; 核苷酸 类似物则作用于 HBV DNA聚合酶, 只能抑制病毒复制, 不能彻底清除 HBV和 cccDNA, 且长期应用易导致病毒耐药 变异。
因此, 为了彻底清除 HBV和 cccDNA, 亟待开发新的更有效的 HBV治疗乙肝疫苗。 人 体肝脏为一免疫耐受器官;肝脏移植免疫排斥反应低充分表明这一点。乙型肝炎病毒 (HBV) 感染人的部位为肝脏; 因此对 HBV的免疫耐受为其主要特征。 逆转 HBV免疫耐受是开发 慢性乙型肝炎患者 (CHB) 免疫治疗疫苗的立足点。 HBV免疫耐受不仅体现在肝脏局部 anti-HBV免疫应答不能有效清除病毒, 导致持续感染; 也体现在 HBV持续存在, 进而诱导 全身性免疫系统对 HBV无应答, 如 HBV耐受期病人对 HBsAg疫苗无应答。 这也是当前治 疗性疫苗在 CHB病人中难以成功的主要原因。肝脏诱导的免疫耐受及其逆转机制研究将为 研制治疗乙肝疫苗提供了理论依据。
2005年 Bowen提出: 肝内的免疫环境与诱导耐受性相关, 但仍保持了维持对病原体有 效反应的能力。 这种二分法的机制尚不清楚。 最近的数据表明, 初始 CD8+T (CTL)细胞 活化在肝脏内发生, 同时肝脏预先有炎症(即天然免疫活化); 则存活的 CTLs增多, CTLs 更有效,导致肝脏免疫应答,清除感染的 HBV;而在预先肝脏无炎症(即天然免疫未活化, 如婴幼儿时) , 则 CTL功能受损和 CTL半寿命短, 导致肝脏对 HBV免疫耐受。 然而, 初始 HBV抗原相遇免疫诱导高效的主要激活 HBV CTLs存在于肝脏外的淋巴结内, 然后再进入 肝脏, 则也使存活的 CTLs增多, CTLs更有效, 也导致肝脏免疫应答, 清除感染的 HBV。 这一关于两个部位的免疫机制为研制皮下、 肌肉注射治疗乙肝疫苗, 导致肝脏免疫应答、 清除感染的 HB V提供了理论依据。
2014年美国 Thomas H. King报道: "A Whole Recombinant Yeast-Based Therapeutic Vaccine that is comprised of heat-inactivated, whole recombinant Saccharomyces cerevisiae yeast cells expressing disease- related antigens"; 为一种由失活、 全重组酿酒酵母细胞-表 达与疾病相关抗原为基础的治疗性疫苗。该研究开创了以胞内重组表达蛋白为抗原, 以酿 酒酵母细胞为佐剂的治疗性疫苗平台。在此平台下已有编号为 GS4774为乙型肝炎治疗性 疫苗, 其他表达的 HBV抗原为一种作为融合蛋白的 x-s-core抗原。 这一酵母载体可以提 供多种抗原进入 MHC I类和 II类抗原提呈途径, 剌激强有力的 CD4+和 CD8+细胞反应, 并能打破免疫学小鼠模型中抗原的耐受性。该酵母载体也不容易在体内被中和, 因此适合 于重复用药, 使之获得长期的免疫压力, 理想地清除慢性细胞内感染, 如 HCV禾 P HBV。
2010年 Huang报道: 啤酒酵母细胞壁纯化而得的 β-葡聚糖颗粒 (GPS ), 其中具有 1,3-D-glucan 聚合物 >85%, 2%甲壳素, 1%脂类和蛋白质, 与其余的大部分是灰和水分。 进行的体外 T细胞增殖实验中, 将卵清蛋白 (OVA) 复合至空心 GPS壳内 (GP-OVA) 组成的疫苗, 并采用游离 OVA为对照抗原。 GPS-OVA在从 0.03到 0.5μ克 /毫升的浓度范 围内, 剌激 ΟΤ-Ι或 ΟΤ-Π Τ细胞增殖; 相反, 游离 OVA未能剌激 OT-I或 ΟΤ-Π T细胞性 增殖。 为了实现 GP-OVA相似的剌激效应, 要求游离 OVA浓度提高百倍至数百倍。 这些 结果表明: (1 )病毒样颗粒 GPS是 Dectin-1受体的高效激动剂; (2)病毒样颗粒 GP-OVA 传递的抗原与游离 OVA抗原相比, 能被 DCs (树突细胞) 更高效地处理和提呈。
2003-2005年期间美国科学家报道了: 乙肝病毒感染黑猩猩系列研究结果。 控制疾病 的机制是肝细胞核 HBV池的共价闭合环状 DNA (cccDNA 由于产生 IFN-γ的 HBV特 异性 CD8+ T, 即 CTL细胞, 大量涌入肝内, 靶向感染 HBV的肝细胞; 对 cccDNA的清 除、 肝细胞感染 HBV逆转都与肝脏 CD8+ T细胞产生的 IFN-γ涌入等相关。 集合这些结 果表明, cccDNA的清除是一个由细胞免疫反应介导的两步的过程: 第一步非细胞损伤地 减少 90%以上 cccDNA分子池, 从而消除 HBV松弛的环状脱氧核糖核酸的前体。第二步 提高了这个过程中损毁受感染的肝细胞, 并触发免疫逆转。
2014年中国科技大学博士曾筑天报道:通过水动力法建立了 HBV持续携带小鼠来模 拟 HBV慢性感染者的免疫耐受状态, 发现 IL-12预处理与 IL-12同 HBsAg VLP疫苗共注 射的联合治疗方式,称为基于 IL-12的疫苗疗法,可以有效逆转 HBV系统性免疫耐受,进而 导致 HBV清除。发现 HBV小鼠经历过基于 IL-12的疫苗疗法之后,淋巴结内滤泡样辅助 T 细胞 (Tfh)以及生发中心 B细胞 (GC B)都发生显著扩增,与之相对应地,脾细胞中 HBsAg 特异性 IgG生成细胞也显著增加,大部分小鼠在治疗后期血清中出现保护性抗体 anti-HBs ; 此外 ,Τ细胞体外对 HBsAg剌激的增殖能力在 IL-12联合疫苗治疗之后也得到显著恢复。 这些结果充分证实 HBV耐受小鼠在 IL-12联合治疗过程中,对外周 HBsAg疫苗的应答得 以恢复,从而提示 HBV诱导的系统性免疫耐受已被逆转。基于现有技术文献可以得出提供 —种具有更好疗效的乙肝治疗疫苗成为现有技术中亟待解决的问题。
发明内容
为解决前述技术问题, 提供一种具有更好疗效的乙肝治疗疫苗, 本发明采用的技术方 案为:
提供一种基于表达 HBsAg和 HBcAg的失活全重组汉逊酵母细胞的乙肝治疗疫苗,其 特征在于: 所述乙肝治疗疫苗以重组汉逊酵母细胞内表达的 HBsAg及 HBcAg为抗原; 含有 19个 HBsAg特异性 CTL表位和 19个 HBcAg特异性 CTL表位;所述乙肝治疗疫苗 以热灭全重组汉逊酵母细为佐剂。
所述乙肝治疗疫苗, 其特征是所述重组汉逊酵母表达的 HBsAg为 adw亚型, 所述重组 汉逊酵母表达 HBsAg的 DNA序列如 SEQ ID NO: 1所示; 所述重组汉逊酵母表达的 HBsAg的 氨基酸序列如 SEQ ID NO: 2所示。
所述的乙肝治疗疫苗, 其特征是所述重组汉逊酵母表达 HBcAg的 DNA序列为 SEQ ID NO: 3 所示; 所述重组汉逊酵母表达的 HBcAg的氨基酸序列如 SEQ ID NO: 4所示。
所述的乙肝治疗疫苗,其特征在于所述重组汉逊酵母表达的 HBsAg为病毒样颗粒结构, 由 HBsAg插入汉逊酵母类脂组成, 所述 HBsAg的 14个半胱酸中有 9~12个形成二硫键; 所述 重组汉逊酵母表达的 HBcAg为病毒样颗粒结构。
所述的乙肝治疗疫苗, 其特征在于的失活重组汉逊酵母的失活条件为: 失活温度
52 V -56 °C, 失活时间 1小时 -3小时。
所述的乙肝治疗疫苗, 其特征在于所述重组汉逊酵母表达的 HBsAg共含有如下 19个 CTL表位: VLQAGFFLL^ PFVQWFVGL, FLLTRILTK WYWGPSLYSI、 SLNFLGGSPV、 FLGGSPVCL, LYSIVSPF , LYSIVSPFI, PFIPLLPIF , LLLCLIFLL^ LLCLIFLLV
LLDYQGMLPV 、 LVLLDYQGML^ VLLDYQGML、 WLSLLVPFV LLVPFVQWFV、 GLSPTVWLSA, SIVSPFIPLL、 LLPIFFCLWV。
所述的乙肝治疗疫苗, 其特征在于所述重组汉逊酵母表达的 HBcAg共含有如下 19个 CTL表位: SFLPSDFF、 FLPSDFFPSK DFFPSIRDLL, FFPSIRDLL^ SYVNV MGL, SYVNV MGLKK YVNVNMG、 YVNVNMGLK, WFHISCLTF, CLTFGRETV、
VLEYLVSFGV、 EYLVSFGVW、 EYLVSFGVWK AYRPPNAPI、 AYRPPNAPIL、 APILSTLPE、 ILSTLPETTV、 STLPETTVVRR、 RGRSPRRRTP。
所述的乙肝治疗疫苗, 其特征在于所述乙肝治疗疫苗的剂型选自预充式注射液剂、注 射液剂或冻干粉针剂。
所述的乙肝治疗疫苗, 其特征在于还含有 HBsAg原液或铝佐剂 HBsAg中的一种。
本发明还提供了一种重组多形汉逊酵母菌, 所述的重组多形汉逊酵母菌中含有 SEQ 11) ^«): 1所示1^ 序列。 优选所述的重组多形汉逊酵母菌的基因组中整合有 SEQ ID NO: 1 所示 DNA序列。
本发明还提供了一种重组多形汉逊酵母菌一种重组汉逊酵母菌,所述的重组多形汉逊 酵母菌中含有 SEQ ID NO:3所示 DNA序列。 优选所述的重组多形汉逊酵母菌的基因组中整 合有 SEQ ID NO :3所示 DNA序列。
以上任一所述重组汉逊酵母的宿主多形汉逊酵母细胞株为 HU-11 , 保藏编号为
CGMCC No.1218, 所述宿主多形汉逊酵母的乳清酸苷 -5-磷酸脱羧酶基因被破坏的 DNA序 列如 SEQ ID NO: 5所示。
本发明提供的乙肝治疗疫苗, 在一种每 108细胞中含有 6-10μ§ ΗΒ5Α§的重组汉逊酵 母菌基础上, 可以在现有的作为佐剂的全重组汉逊酵母细胞的人体注射上限范围内, 最大 限度提高 HBsAg的注射量, 提高其扭转乙肝患者免疫耐受状态的效果。 失活全重组汉逊 酵母细胞为最主要专职抗原递呈细胞 (DC) 的 Dectin-1受体的高效激动剂。 HBsAg特异 性 CTL细胞靶向感染 HBV的肝细胞释放 IFN-γ: 第一步非肝细胞损伤地减少其 90%以上 cccDNA分子池, 第二步提高了过程中损毁受感染的肝细胞, 并触发 HBV免疫逆转。 同 时我们提供的重组汉逊酵母细胞表达的作为抗原的 HBsAg中至少含有 19个 CTL表位, 可以提高 HBsAg的免疫原性和反应性。 在优选的技术方案中的通过优选表达 HBsAg的 DNA序列 (SEQ ID NO: 1 ), 优选了 21个 CTL中的 19个 CTL表位, 进一步提高了优选 HBsAg的免疫原性和反应性。
同时采用了能够产生 HBcAg重组汉逊酵母失活细胞与产生 HBsAg的重组汉逊酵母的 失活细胞进行配伍, 采用的 HBcAg (高免疫反应活性)优选码基因与 C2基因型、 亚型双 代表序列 AF100309.1比较; 缺失 59-69位: ILCWGELMNLA共 1 1个氨基酸。 根据冷冻 电镜图像重建技术确定 HBcAg颗粒结构; 显示 HBcAg二聚体各包含 4条 α螺旋,即每个 HBcA 亚基通过两个长 α螺旋形成二聚体界面; 其中位于第 51 78位氨基酸的长 α螺旋, 头尾被第 50和 79位保守的 Pro所限制。 深埋在二聚体内部, 不存在 CTL表位。 01螺旋即 所谓的 3.6螺旋,其中每个氨基酸旋转 100°, 3.6个氨基酸旋转 360°原来的 51~78位共 18 个氨基酸形成旋转 5周的 α螺旋; 缺失 59-69位: ILCWGELMNLA共 1 1个氨基酸后, 剩 余的 7个氨基酸形成旋转 2周的 α螺旋。 而另一个形成 HBcAg二聚体界面的长 α螺旋, 即位于第 82-110位的纽结状 a螺旋,终止于第 111位 Gly没有任何改变。 因此本专利基本 未改变两个长 α螺旋形成二聚体界面,上述缺失 1 1个氨基酸的 HBcAg在重组汉逊酵母细胞 中仍能组装成病毒样颗粒 (VLP ) ; 仍保持其热稳定性。 免疫反应检测结果表明: 上述缺 失氨基酸的重组汉逊酵母 HBcAg工程菌株 (HC-40-25 , 172个氨基酸) 与全长氨基酸的 重组汉逊酵母 HBcAg工程菌株(183个氨基酸) HC-43相比: 前者免疫反应原性为后者的 三倍以上。 在优选了 CTL表位、 表达序列及重组汉逊酵母工程菌株的基础上, 本发明还 优选了重组汉逊酵母细胞的失活工艺, 保证了疫苗的疗效与安全性。
预期本发明提供的基于表达 HBsAg和 HBcAg的失活全重组汉逊酵母细胞的乙肝治疗 疫苗将具有更高的免疫原性, 能够更好的用于乙肝的治疗。
附图说明
图 1为质粒 pMPT-HBS-adw的构建过程示意图;
图 2为 pMPT-HBC质粒的物理图谱;
图 3为筛选得到工程菌株 HS604-5的 PCR扩增产物电泳照片;
图 4为重组汉逊酵母得到的重组 HBsAg的纯品 (原液) 的电镜照片;
图 5为实施例 2中重组汉逊酵母 HBsAg工程菌株的构建中重组汉逊酵母的转化与筛选步骤 流程图。
具体实施方式
汉逊酵母胞内质粒 pMPT-02的开发:
汉逊酵母表达系统包括两个主要元件:
( 1 )启动外源基因高效表达的载体系统(质粒); ( 2)具有特定筛选标记的宿主细胞。 应用基因合成技术, 将汉逊酵母 MOX (甲醇氧化酶) 启动子 1.5kb、 汉逊酵母 MOX (甲醇氧化酶) 终止子 350bp、 汉逊酵母自主复制序列 HARS, 1.0kb、 和酿酒酵母脲嘧啶 基因 ScURA31.1kb ; 将以上 5部分基因元件紧密相连后, 再插入 pBluescrip II质粒中, 构 建成穿梭质粒 pMPT-02。 为本申请人的非独占专有技术。
脲嘧啶营养缺陷型 URA3宿主细胞株 HU-11的开发:
利用同源序列介导的同源整合构建了乳清酸苷 -5-磷酸脱羧酶基因 HURA3 被破坏的 重组多形汉逊酵母菌株 HU-11 ( CGMCC Νο.1218 该菌株与目前国内外所用由诱变产生 的营养缺陷型宿主菌株相比, 具有遗传稳定性高, 回复突变率低的特点; 便于进行遗传转 化和重组菌株的筛选, 并保持了野生型菌株的生理生化特性, 有利于重组菌株培养和外源 蛋白的高效表达, 具有较高的工业应用价值。 汉逊酵母基因被破坏宿主菌 HU11株 URA3 基因的 DNA测序结果表明:基因被破坏结果导致第 31位碱基后,插入 GAAGT五个碱基。 GAAGT五个碱基的插入产生移码突变。移码突变导致第 11位后的 254个密码子全部被置 换。 GAAGT五个碱基同时产生回复突变的概率极小, 实验检测也证明宿主菌 HU11株的 回复突变率为零; 这种" 0" 回复突变率的宿主菌对转化筛选特别有利。 应用上述基因敲除 技术建立的 υ¾Α3 ·营养缺陷型宿主细胞株 HU-11 ( CGMCC No.1218 )本专利权人已申请 的发明专利为 CN1651570A。宿主汉逊酵母菌 HU-11乳清酸苷 -5-磷酸脱羧酶基因 (//ί/Λ43 ) 被破坏的 DNA序列为 SEQ ID NO : 5。
重组汉逊酵母 HBsAg-adw2优选码基因浙:
本发明提供的重组汉逊酵母表达乙肝表面抗原 (HBsAg) 的 DNA序列基于 HBsAg adw2亚型设计, 如 SEQ ID NO : 1所示, 所述 HBsAg的氨基酸序列为 SEQ ID NO: 2。
本发明提供的重组汉逊酵母表达乙肝核心抗原(HBcAg)的 DNA序列如如 SEQ ID NO : 3所示, 所述 HBcAg的氨基酸序列为 SEQ ID NO : 4
汉逊酵母胞内型质粒 pMPT-HBS-adw和 pMPT-HBC的构建:
按照 SEQ ID NO: 1所示序列的合成核苷酸序列 (以下简称 HBsAg adw2基因 并构建成 含 HBsAg adw2基因质粒的甘油菌; 测序正确后的质粒用 EcoR I / BamH I双酶切, 酶切产物 切胶回收 701bp的目的片段 DNA。
将酶切鉴定正确的质粒 pHMPT- 02用 EcoR 1 1 BamH I双酶切, 切胶回收后所得到的载 体 DNA连接后得到汉逊酵母胞内型质粒 pMPT-HBS-adw, 将质粒 pMPT-HBS-adw热转化 至 E.coli Competent Cell JM109(Code No.D9052)中, 涂布平板过夜培养菌体。从转化平板上挑 选单菌落, 提取质粒 DNA后用 EcoR I / BamH I双酶切, 酶切结果表明均为阳性克隆。 测序 证明质粒 pMPT-HBS-adw结果正确。
HBsAg adw2基因插入汉逊酵母表达系统胞内型质粒 pMPT-02的多克隆位点: EcoR I和 BamH I之间。质粒 pMPT-HBS-adw全长为 7665bp。质粒 pMPT-HBS-adw的构建过程示意图 如图 1所示。
按照与构建质粒 pMPT-HBS-adw同样的的方法, 构建基于 SEQ ID NO : 3所示序列的 质粒 pMPT-HBC。 pMPT-HBC质粒的物理图谱如图 2所示。
重组汉逊酵母 HBsA 工程菌柳重组汉逊酵母 HBcA 工程菌株的构建:
为了构建重组汉逊酵母乙型肝炎病毒表面抗原 (HBsAg)工程菌株, 应用申请人开发的细 胞电穿孔技术,经 RC脉冲:幅度 1500V,电容 22μ ,时间常数 3-5ms电击 1次,采用 pMPT-HBS- adw质粒, 转化已敲除 URA3-基因的 HU-11株(CGMCC No.1218) 的汉逊酵母细胞。 在 MD 选择培养系平皿上挑取生长的单菌落转化子, 转接 MD液体培养基后连续传代培养, 使 adw2 亚型 HBsAg基因及相应调控组件多拷贝、外源整合入宿主汉逊酵母细胞染色体中。经过对一 千余株转化子单菌落进行如下三步筛选:
(1)转化子单菌落大、 细胞生长快的克隆株为多拷贝的机率大。
(2)应用 PCR技术对比 HBsAg基因和单拷贝数 MOX (甲醇氧化酶) 基因的电泳条带亮 度, 半定量地确定 HBsAg基因拷贝数。
(3)检测经甲醇诱导、 摇瓶培养 72小时的转化子细胞破碎后释放出 HBsAg的表达水平。 将 PCR技术应用于转化子筛选为本申请的一项新创造;对确定外源基因 HBsAg多拷贝、 异源整合在汉逊酵母染色体中, 而汉逊酵母染色体中 MOX基因完整存在, 未被破坏, 都具 有重要作用; 它们体现了汉逊酵母表达系统独优势。 为此设计了一对引物可同时扩增汉逊酵 母染色体中 MOX基因 (单拷贝) 和异源整合 HBsAg外源基因 (多拷贝)。 通过比较扩增产 物在琼脂糖凝胶电泳中条带的亮度可大致判断 HBsAg基因是否为多拷贝。此方法用于工程菌 HBsAg基因多拷贝菌株的初步筛选。 所扩增的 HBsAg片段长度为 800bp, 扩增的 MOX片段 长度为 2000bp。
设计使用引物序列: primer forward: 5 '-TCAAAAGCGGTATGTCCTTCCACGT-'3
primer reverse: 5 '-TACTGCTGCCAGTGCACGGTG-'3
PCR产物琼脂糖凝胶电泳: 工程菌 HBsAg基因扩增产物大小约 800bp, 汉逊酵母单拷贝 基因 MOX基因扩增产物大小约 2000bp。 最终筛选得到的重组汉逊酵母乙型肝炎病毒表面抗 原 (HBsAg)工程菌株编号为 HS604-5。
采用质粒 pMPT-HBC, 以构建重组汉逊酵母 HBsAg adw2亚型工程菌株同样的方法 构建并篩选得到的工程菌株 PCR扩增产物电泳照片如图 3所示, 图 3中 1为 Marke 最 终重组汉逊酵母 HBcA 工程菌株编号为 HBC-40-25。
重组汉逊酵母 HBsAg adw2亚型工程菌株发酵液胞內 HBsAgVLP表达量的测定
以天坛生物提供的 adw2亚型 HBsAg乙肝表面抗原冻干标准品 10μ§用稀释液溶解对 倍稀释成 1024ng/mL、 512ng/mL、 256ng/mL、 128ng/mL、 64ng/mL、 32ng/mL、 16ng/mL、 8ng/mL、 4ng/mL、 2ng/mL、 Ong/mL (稀释液) 共 11个标准点, 放免试剂盒检测 HBsAg 反应。
重组汉逊酵母工程菌株进行中试规模发酵,发酵 87小时取样 10 OD6。。nmlmL,玻璃珠破 碎细胞 (细胞破碎率为 65%) 后, 样品稀释 200倍与标准品同时参与放免试剂盒反应, 由 γ-计数器自动完成拟合曲线得出的 HBsAg抗原表达量为 126.9 (ng/mL)。 以此计算重组 汉逊酵母胞内 HBsAg抗原表达量为:
126.96 (ng/mL) χ200 ÷10><4.0>< 107><65%/ mL=9.8 g/108细胞
重组汉逊酵母 HBsAg adw2亚型工程菌株发酵液得到的重组 HBsAg的纯品(原液)的电 镜照片如图 4所示。结果显示重组 HBsAg的高纯度、高浓度和病毒样颗粒(VLP)结构稳定。 经同样方法测定重组汉逊酵母 HBcAg工程菌株发酵液胞内 HBcAgVLP的表达量, 为 8~12 g/108细胞。
重组汉逊酵母 HBcAg细胞内病毒样颗粒 (VLP) 的表达
近代分子生物学的中心法则为: DNA— > RNA— >氨基酸一级序列一 >蛋白分子高级 结构一 >蛋白分子功能; 符号一 >表示: 决定。
不同基因型乙肝病毒核心抗原 HBcAg蛋白分子由 183或 185个氨基酸残基组成一级序列, 从而决定了 HBcAg的二级结构、 三级结构和四级结构。 实验表明: 不管是分离的乙肝病毒 颗粒、还是感染细胞内、 重组大肠杆菌及重组酵母菌分离的 HBcAg均发现其可装配成大小 两种颗粒: T=3型由 180个分子量 21kD的相同蛋白质亚基即 90个同型二聚体构成,直径为 30nm,4表面有 90个剌突; T=4型由 240分子量 21kD的相同蛋白质亚基即 120个同型二聚体构 成,直径为 34nm,表面有 120个剌突。
本专利 HBC-40-25工程菌细胞破碎液粗提液的透射电镜照片明显可见 HBcAg病毒样 颗粒。 上述缺失氨基酸的重组汉逊酵母 HBcAg工程菌株 (HC-40-25 , 172个氨基酸) , 与 全长氨基酸的重组汉逊酵母 HBcAg ( 183个氨基酸) 的 HBC-17等 6个强阳性株相比 (摇瓶 培养甲醇诱导 3天的 1 0D6QQnm.ml细胞,经玻璃珠破碎, 1000倍稀释样品),检测免疫反应原 性 (单位为 NCU/mL) 结果如下:
HBC-40-25 HBC-17 HBC-31 HBC-36 HBC-39 HBC-41 HBC-51
35.21 5.83 5.64 5.64 6.34 8.99 5.75
HBC-40-25株的免疫反应原性为其它 6个强阳性株的三倍以上。
优化的失活重组汉逊酵母 HBsA 和 HBcAg细胞条件
为了确定失活重组汉逊酵母的最佳条件, 应满足以下要求: (1 ) 失活重组汉逊酵母 的成活率尽可降低; (2) 保持全重组汉逊酵母细胞结构, 酵母细胞内抗原不泄漏; (3 ) 保持重组汉逊酵母细胞内表达 HBsAg病毒样颗粒 (VLP) 和 HBcAg病毒样颗粒 (VLP ) 热稳定, 使其抗原反应活性不下降。 其中失活重组汉逊酵母细胞内 HBsAg和 HBcAg病 毒样颗粒(VLP)的热稳定性成为首次要解决的问题。为此设计了 16组不同温度(50°C、 52°C、 54°C、 56°C和 58°C ), 及不同时间 (lh、 2h和 3h) 的重组 HBsAg和 HBcAg汉逊 酵母的失活试验, 并设 20°C为对照组。 通过检测: 随着失活温度、 时间的昇高, 导致细 胞壁外层溶解度加大, 细胞破碎率增加, 胞内 HBsAgVLP抗原反应性在 52°C、 lh出现倍 增的峰值; 而 HBcAg抗原反应性在 56°C、 lh出现倍增的峰值。 胞外 HBsAg和 HBcAg 抗原反应性在失活试验的全部温度与时间范围内均极低, 表明胞内 VLP未外泄, 保持失 活重组汉逊酵母细胞完整。 失活细胞成活率在 56°C、 3h条件下已低至 50,000之 1。 从而 为优化失活重组汉逊酵母细胞的条件提供了依据。
HBsA 及 HBcAg特异性 CTL T细胞非细胞损伤地触发免疫逆转
乙肝病毒感染黑猩猩系列研究结果表明: HBsAg特异性 CTL T细胞,靶向感染 HBV 的肝细胞释放 IFN-γ; 第一步非肝细胞损伤地减少其 90%以上 cccDNA分子池, 第二步提 高了这个过程中损毁受感染的肝细胞, 并触发免疫逆转。 依据 CTL表位的实验综述、 预 测和专利发明等三篇文报道: HBV衣壳抗原 (Pre-Sl- Pre-S2-HBsAg) 不重复 CTL表位 共 23个。 本申请的 HBsAg氨基酸序列中共含有以下 19个 CTL表位: VLQAGFFLL、 PFVQWFVGL、FLLTRILTI、WYWGPSLYSI、 SLNFLGGSPV、 FLGGSPVCL , LYSIVSPF , LYSIVSPFI , PFIPLLPIF , LLLCLIFLL LLCLIFLL V LLDYQGMLPV 、LVLLDYQGML、 VLLDYQGML、 WLSLLVPFV、 LLVPFVQWFV、 GLSPTVWLSA、 SIVSPFIPLL、 LLPIFFCLWV。本申请的 HBcAg氨基酸序列中共含有以下 19个 CTL表位: SFLPSDFF、 FLPSDFFPSK DFFPSIRDLL、 FFPSIRDLL^ SYVNVNMGL、 SYVNV MGLKK YVNVNMG、 YVNV MGLK、 WFHISCLTF、 CLTFGRETV、 VLEYLVSFGV、 EYLVSFGVW、 EYLVSFGVWI、 AYRPPNAPI 、 AYRPPNAPIL 、 APILSTLPE 、 ILSTLPETTV、 STLPETTVVRR、 RGRSPRRRTPc
本发明提供的乙肝治疗疫苗产品优先为预充式注射液剂:
实验证明常规分装重组乙肝疫苗(酵母)预充注射液剂, 37 °C放置 45天的热稳定性 实验表明疫苗的体外相对效力(RP)均符合要求,而常规分装乙肝疫苗在相同保存条件下 RP 均不符合要求。预充注射器分装的重组乙肝疫苗(酵母) 可在短时间内脱离冷链运输、 保存和使用。
预充注射器 1针 1盒, 使用方便、 使用方法和要领易于掌握, 为一次性注射器, 不能 重复使用。疫苗接种时不需另备注射器, 可防止使用玻璃注射器消毒不彻底造成感染或传 播传染病以及针头选择不当影响接种效果, 避免一次性注射器被重复使用的危险。
预充注射器分装的乙肝疫苗全程接种具有良好的综合费用效益比。
下面结合实施例, 对本发明进一步说明, 下述实施例是说明性的, 不是限定性的, 不 能以下述实施例来限定本发明的保护范围。
实施例 1
基于所述 SEQ ID NO : 1构建的 pMPT-HBS-adw质粒 (即包含所述 SEQ ID NO: 1的表 达载体) 。 质粒 pMPT-HBS-adw的构建工作包含以下内容:
按照我们设计的 SEQ ID NO : 1序列合成了 HBsAg adw2基因; 并构建成含 HBsAg adw2基因质粒的甘油菌, 将其命名为 MC407B-16。
测序正确后的 MC407B-16号质粒用 EcoR I I BamH I双酶切, 酶切产物用 TaKaRa PCR Fragment Recovery Kit(Code No.D301) 切胶回收 701bp的目的片段 DNA称为 Inset 将酶切鉴定正确的质粒 pHMPT- 02用 EcoR I / BamH I双酶切, 切胶回收后所得到的 载体 DNA称为 Vector DNA6。
使用 TaKaRa DNA Ligation Kit(Code No. D6022)中的 Solution,将 Inset DNA6与 Vector DNA6连接后,热转化至 E.coli Competent Cell JM109(Code No.D9052)中,涂布平板过夜培 养菌体。从转化平板上挑选单菌落, 提取质粒 DNA后用 EcoR I / BamH I双酶切, 酶切结 果表明: MC407A+B+C+D-77^ 80均为阳性克隆。
将 MC407A+B+C+D-77号质粒分别用引物 RV-M, Ml 3 -47, MC407P1 , MC407P2,
MC407P3, MC407P4, MC407P5, MC407P6, MC407P7, MC407P8, MC407P9, MC407BF 11, MC407BR11测序, 证明质粒 pMPT-HBS-adw结果正确。
以同样的方法, 基于所述 SEQ ID NO: 3构建的 pMPT-HBC质粒。
实施例 2
重组汉逊酵母 HBsAg工程菌株的构建。
重组汉逊酵母乙型肝炎疫苗的转化与筛选图示说明: 重组汉逊酵母的转化与筛选过程如 图 5所示- 具体包括
1 ) 应用细胞电穿孔法, 将 pMPT-HBS-adw质粒, 转化作为宿主细胞的 URA3-营养缺陷 型汉逊酵母细胞株 HU-11 (CGMCC Νο.1218)。采用选择培养基(MD液体培养基)平皿培养。 在 MD选择培养系平皿上挑取生长的单菌落转化子, 转接 MD液体培养基后连续传代培养, 使 adw2亚型 HBsAg基因及相应调控组件多拷贝、 外源整合入宿主汉逊酵母细胞染色体中。
2) 菌株筛选包括以下步骤
( 1 ) 选择尿嘧啶原养型转化子单菌落
挑选菌体生长速度快的菌落, 应用 PCR技术检测 HBsAg基因条带亮度后, 挑选拷贝数 多的菌落, 采用选择培养基对单菌落进行摇瓶培养, 连续传代培养 20 400个世代;
(2)筛选多拷贝异源整合转化克隆株,
经过步骤 (1 ) 传代培养后, 经甲醇诱导培养 72 小时后, 采用 /放射免疫分析 (Radio immunoassay or radioimmunoassay, RIA)测定转化子细胞破碎后释放出 HBsAg的表达水平;
(3)筛选去除游离质粒的高拷贝、 高表达克隆株
将经过步骤(2)筛选的克隆株, 采用 YPD完全培养基培养 48小时后, 转接选择培养基 平皿克隆化培养, 并采用定量 PCR检测 HBsAg基因拷贝数, 以 RIA检测 HBsAg表达水平。
(4)在步骤(3 ) 的检测结果基础上, 选择遗传稳定的重组汉逊酵母 HBsAg工程菌的原 代菌株。
按照同样的方法, 构建并筛选重组汉逊酵母 HBcAg工程菌株。
实施例 3、 30升中试发酵(重组汉逊酵母 HBcAg工程菌株和重组汉逊酵母 HBsAg工程 菌株采用相同的发酵工艺方法)
主要工艺 和操作要点:
1 ) 以 200ml种子培养基解冻贮存菌种, 接种至培养基中, 均分两个 0.5L摇瓶, 3 C培 养 22小时作为一级种子; '
2)以 1600ml种子培养基将一级种子转接入二级种子培养基中, 均分 6个 1L摇瓶, 3 C 培 20小时作为二级种子;
3 )将 12L发酵培养基调 pH至 5.5加入 30L发酵罐中, 将二级种子接入后, 30-3 C经甘 油、 甲醇两碳源, 生长、 去阻遏和诱导三时相, 共培养 85-96小时, 在停止诱导 2-3小时后 收获细胞。 将冷冻的细胞匀浆。
操作要点:
( 1 ) 生长时相的补料操作要待溶氧有明显下降, 基础培养基消耗时开始进行, 并且随 着基础培养基消耗量的增加逐步提高流加速度, 待溶氧回升前 2-3小时流加完毕。
(2) 生长时相的后期要注意溶氧回升, 记录溶氧最低值, 溶氧回升至 70-80% 时开始 流加, 进入去阻遏时相。
(3 ) 去阻遏时相后期, 流加结束后, 溶氧开始回升。 溶氧回升至 70-80%%时开始流加 甲醇诱导溶液, 将甲醇浓度控制在 3-5%。, 由甲醇检测流加控制器控制流加速度。
发酵结束前 2-3小时停止甲醇流加, 以减少细胞收获时甲醇残留。
1. 氯化钙溶液的配制
准确称量 CaCl2 11.33g, 放入洗净的三角瓶中 加适量去离子水溶解后定容至 200ml t 2. 微量元素溶液的配制
准确称量以下试剂:
(NH4)2Fe(S04)2'6H20 lOOOmg
CuS04'5H20 80mg
ZnS04'7H20 300mg
MnS04'H20 400mg
EDTA lOOOmg
将称量后的试剂放入洗净的::角瓶中, 加适】 :去离子水溶解后定容至 200ml t 3. 维生素溶液的配制
准确称量以下试剂:
d-Biotin 6mg
Thiamin HCl 2000mg
将生物素首先溶解在 10ml的 50%异丙醇中, 待溶解后再加入 Thiamin HC1, 然后加适 去离子溶解后水定容至 100ml。
4. 痕量元素溶液的配制
准确称量以下试剂:
NiS04*6H20 10mg
CoCl2'6H20 10mg
Figure imgf000013_0001
Na2Mo04*2H20 lOmg
KI lOmg
将称量后的试剂放入洗净的三角瓶中, 加适量去离子溶解后水定容至 50mlt 以上四种溶液分别除菌过滤备用。
5. 种子盐溶液的配制
准确称量以下试剂:
H4H2P04 80g
MgS04'7H20 18g
KC1
NaCl 将称量后的试剂放入洗净的三角瓶中, 加适量去离子水溶解后定容至 1600ml。
6. 用 2000ml三角瓶称取甘油 27g, 混合盐溶液 360mL, 加去离子水定容至 1800ml,等量 分装于两个 2000ml三角瓶中, 110°C、 30分钟高压蒸汽灭菌。
110°C、 30分钟高压蒸汽灭菌空消 500ml三角瓶 2个, 1000ml三角瓶 6个, 100ml 和 500ml量筒各一个。
7. 一级种子培养基
在超净台中, 无菌操作量取灭菌后的甘油水溶液各 100ml , 分别置于灭菌后
的 2个 500ml三角瓶中, 并分别加入:
氯化钙溶液 1ml
微量元素溶液 1ml
维生素溶液 0.5ml
痕量元素溶液 0.25ml
将加入的溶液摇匀。
8. 二级种子培养基
在超净台中以无菌操作技术取灭菌后的甘油水溶液 1600ml置于灭菌后的 2000ml三角 瓶中, 并分别加入:
氯化钙溶液 16ml
微量元素溶液 16ml
维生素溶液 8ml
痕量元素溶液 4ml
9. 发酵培养基
准确称量以下试剂并溶解于 2000ml去离子水中。
H4H2P04 175g
MgS04'7H20 40g
KC1 44g
NaCl 4.4g
取一个 500ml小烧杯称取 520g甘油, 加泡敌 10ml在线灭菌, 然后加:
氯化钙溶液 175ml
微量元素溶液 175ml
维生素溶液 88ml
痕量元素溶液 44ml
10. 补料培养基
取一个 1000ml三角瓶, 量取 87g H4H2P04、 260g甘油, 加去离子水 500ml, 加入包裹好 的补料管线, 110°C、 30分钟灭菌。
11 . 去阻遏溶液
用 5000ml三角瓶,量取甘油 1800g,加去离子水 660ml ,加入包裹好的补料管线, 110°C、 30分钟灭菌, 冷却后无菌操作加入过滤除菌的盐溶液 540ml。
12. 诱导溶液
用 1000ml三角瓶, 量取甘油 400ml, 加入包裹好的补料管线, 110°C、 30分钟灭菌, 冷 却后无菌操作加入甲醇 1600ml。
实施例 4
纯化, HBsAg和 HBcAg采用同样的纯化工艺, 以 HBsAg为例, 工艺如下:
将实施例 3得到的重组汉逊酵母 HBsAg工程菌株发酵液经收获细胞并洗涤细胞, 纯 化的详细步骤可参见参考文献: 李津, 孔艳. 重组乙型肝炎疫苗生产工艺. 见李津, 俞詠 霆,董德祥主编:生物制药设备和分离纯化技术. 第 1 版. 北京:化学工业出版社, 2003 : 348-349. 其中可将上述收获的细胞经过匀浆器破碎, 释放出 HBsAg ; 以 0.22μιη 微孔滤 器过滤去除细胞碎片; 再以 300Κ超微滤器超滤去除小分子杂质; 以硅胶吸附处理法提取 HBsAg ; 最后以丁基琼脂糖疏水层析方法精制纯化。
实施例 5
失活重组汉逊酵母细胞最隹条件试验
为了确定失活重组汉逊酵母的最佳条件应满足以下要求:
( 1 ) 失活重组汉逊酵母的成活率尽可降低; 使之小于 5%。
(2) 保持完整的细胞结构; 发挥多价位失活重组汉逊酵母佐剂活性作用;
(3 )保持重组汉逊酵母细胞内表达的病毒样颗粒(VLP )完整,使其抗原性不下降。 以上三点是失活重组汉逊酵表达 HBsAg和 HBcAg生产工艺主要条件; 将为制定疫 苗制造及检定规程提供依据。其中失活重组汉逊酵母细胞内病毒样颗粒(VLP)的热稳定 性成为首次要解决的问题。
( 1 )、 优化条件的失活重组汉逊酵母细胞制备。
重组汉逊酵母 HBsAg工程菌 (HS604-5株) 细胞培养经发酵或摇瓶诱导培养结束后。 细胞用离心法在磷酸盐缓冲液(PBS )中洗涤三次, 将沉淀的汉逊酵母悬浮在计算体积的 PBS中。 细胞使用 OD6()Qnm计数, PBS稀释为 10 OD6QQnm/毫升,每支试管 2毫升; 每试验组设 破碎与不破碎 2支试管; 16个试验组共需制备 32支细胞样品试管。
放在设定温度水浴, 经设定间时失活重组汉逊酵母。
失活重组汉逊酵母应在加有氯霉素完全培养基琼脂皿于 37°C培养 3天; 计数其成活 率。
热灭活汉逊酵母储存在 4摄氏度以供进一步使用。
(2)、 重组汉逊酵母 HBsAg工程菌 (HS604-5株) 细胞热灭活试验组设立:
20°C 室温组一支 (对照)
50°C 1小时组 2小时组 3小时组
52 °C 1小时组 2小时组 3小时组
54 °C 1小时组 2小时组 3小时组
56°C 1小时组 2小时组 3小时组 58°C 1小时组 2小时组 3小时组
共 16个试验组。 热灭活后采用放免 HBsAg试剂检测 HBsAg抗原活性; 1 : 100稀释 和 1 : 1000稀释, 设复管。 检测结果用于分析确定本项新乙肝疫苗汉逊酵母失活的优化 工艺条件。
(3 )、 重组汉逊酵母 HBcAg工程菌细胞热灭活试验组设立
20°C 室温组一支 (对照)
50°C 1小时组 2小时组 3小时组
52 °C 1小时组 2小时组 3小时组
54 °C 1小时组 2小时组 3小时组
56°C 1小时组 2小时组 3小时组
58°C 1小时组 2小时组 3小时组
共 16个试验组。热灭活后采用放免 HBcAg试剂检测 HBcAg抗原活性; 1 : 100稀释 和 1 : 1000稀释, 设复管。 检测结果用于分析确定本项新乙肝疫苗汉逊酵母失活的优化 工艺条件。
文献
1、 齐小秋等, 全国人群乙型病毒性肝炎血清流行病学调查报告, 2011年 4月第 1版, 人民卫生出版社。
2、 Bo wen DG et.al,Intrahepatic immunity: a tale of two sites? Bo wen DG et.al, Trends Immunol. 2005 ,26(10):512-7.
3、 Thomas H. Kingl,et.al,A Whole Recombinant Yeast-Based Therapeutic Vaccine Elicits HBV X, S and Core Specific T Cells in Mice and Activates Human T Cells Recognizing Epitopes Linked to
Viral Clearance, 2014, POLS o
4、 Haibin Huang et.al, Robust Stimulation of Humoral and Cellular Immune Responses following Vaccination with Antigen -Loaded β-Glucan Particles, 2010 , MBio.asm.org, 1 ( 3 ): 1-7。
Figure imgf000016_0001
during Acute Hepatitis B Virus Infection, JOURNAL OF VIROLOGY, 2003, p.68— 76。
6 Stefan F. Wieland et.al,Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc Natl Acad Sci U S A. 2004 Feb 17; 101(7): 2129—2134。
7、 John M. Murray et.al,Dynamics of hepatitis B virus clearance in chimpanzees,
2005 Dec 6; Proc Natl Acad Sci U S A. 102(49): 17780-17785。
8、 Thimme R et.al, CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection; J Virol. 2003 Jan; 77(l):68-76。
9、 曾筑天, 肝脏诱导系统性免疫耐受及其逆转研究, 中国科学技术大学博士学位论文, 10、 申请人: 复旦大学, 一种控制乙型肝炎病毒持续性感染的疫苗, 2009年, 申请公 布号: CN102038948
11、 Florian K Bihl et.al, Simultaneous assessment of cytotoxic T lymphocyte responses against multiple viral infections by combined usage of optimal epitope matrices, anti- CD 3 mAb T-cell expansion and "RecycleSpot" ; Journal of Translational Medicine 2005, 3: 20 1-19。
12、 Yuji Sobao et.al, Identification of hepatitis B virus-specific CTL epitopes presented by HLA-A*2402, the most common HLA class I allele in East Asia, Journal of Hepatol ogy , 2001, 34: 922-929
16、发明人 吴玉章等; 用于生产治疗用乙型肝炎疫苗或药物的免疫原及其制备方法和用 途; 公开号: CN1483736A。
17、 邓小燕, 人全基因组乙型肝炎病毒基因 (亚) 型间重组体研究, 重庆医科大学博士 学位论文, 2012 年 5 月。
打印件 (原件为电子形式)
-1 PCT/RO/134表 (SAFE)有关保藏的微生物
或其他生物材料的说明 (PCT细则笫 13条
之二)
-1-1 软件版本 CEPCT
版本 1.01.00 MT/FOP 20140331/0.20.5.21
-2 国际申请号
-3 申请人或代理人的档案号 AJ1737585 下面的说明与本申请说明书中此处提到的
保藏的微生物或其他生物材料相关:
-1 页码
-2 行号:
-3 保藏事项
-3-1 保藏单位名称 中国微生物菌种保藏管理委员会普通微生物中心-3-2 保藏单位地址 中国微生物菌种保藏委员会,中国北京市 2714信箱,邮政 编码: 100080, Beijing (CN)。
-3-3 保藏日期 2004年 9月 13日(13.09.2004)
-3-4 保藏号 CGMCC 1218
-4 补充说明
-5 本说明是对下列指定国 所有指定国
-6 单独提交的说明
这些说明将随后提交给国际局 由受理局填写 -4 本表格与国际申请一起收到:
(是或否)
-4-1 受权官员 由国际局填写 -5 国际局收到本表格日期: -5-1 受权官员

Claims

权 利 要 求 书
1. 基于表达 HBsAg和 HBcAg的失活全重组汉逊酵母细胞的乙肝治疗疫苗,其特征在于- 所述乙肝治疗疫苗以重组汉逊酵母细胞内表达的 HBsAg及 HBcAg为抗原; 含有 16-21 个 HBsAg特异性 CTL表位和 15-21个 HBcAg特异性 CTL表位;所述乙肝治疗疫苗以失 活全重组汉逊酵母细胞为佐剂。
2. 根据权利要求 1 所述乙肝治疗疫苗, 其特征是所述重组汉逊酵母表达的 HBsAg为 adw 亚型, 所述重组汉逊酵母表达 HBsAg的 DNA序列如 SEQ ID ΝΟ: 1所示。
3. 根据权利要求 2所述的乙肝治疗疫苗,其特征是所述重组汉逊酵母表达的 HBsAg的氨基 酸序列如 SEQ ID NO: 2所示。
4.根据权利要求 1 所述的乙肝治疗疫苗, 其特征是所述重组汉逊酵母表达 HBcAg的 DNA 序列为 SEQ ID NO: 3 所示。
5. 根据权利要求 4所述的乙肝治疗疫苗,其特征是所述重组汉逊酵母表达的 HBcAg的氨基 酸序列如 SEQ ID NO: 4所示。
6. 如权利要求 1所述的乙肝治疗疫苗, 其特征在于所述重组汉逊酵母表达的 HBsAg为病 毒样颗粒结构, 由 HBsAg插入汉逊酵母类脂组成, 所述 HBsAg的 14个半胱酸中有 9~12个 形成二硫键; 所述重组汉逊酵母表达的 HBcAg为病毒样颗粒结构。
7.根据权利要求 1所述的乙肝治疗疫苗,其特征在于的失活重组汉逊酵母的失活条件为- 失活温度 52°C-56°C, 失活时间 1小时 -3小时。
8. 根据权利要求 1-3任一所述乙肝治疗疫苗,其特征在于所述重组汉逊酵母表达的 HBsAg 共含有如下 19个 CTL表位: VLQAGFFLL、 PFVQWFVGLv FLLTRILTK WYWGPSLYSI、 SLNFLGGSPVv FLGGSPVCL、 LYSIVSPF、 LYSIVSPFK PFIPLLPIF LLLCLIFLL, LLCLIFLLV、 LLDYQGMLPV 、 LVLLDYQGML> VLLDYQGML、 WLSLLVPFV、 LLVPFVQWFV、 GLSPTVWLSA、 SIVSPFIPLL、 LLPIFFCLWV。
9. 根据权利要求 1、 4、 5任一所述乙肝治疗疫苗, 其特征在于所述重组汉逊酵母表达的 HBcAg共含有如下 19个 CTL表位: SFLP SDFF ^ FLP SDFFP SK DFFP S IRDLL v FFP SIRDLL , SYVNV MGL、 SYV VNMGLKK YV VNMG、 YVNVNMGLK, WFHISCLTF 4 CLTFGRETV、 VLEYLVSFGV、 EYLVSFGVW、 EYLVSFGVWK AYRPPNAPK
AYRPPNAPIL, APILSTLPEv ILSTLPETTV、 STLPETTVV R、 G SPRRRTPc
10. 根据权利要求 1所述的乙肝治疗疫苗, 其特征在于所述重组汉逊酵母的宿主多形汉逊 酵母细胞株为 HU-11 , 保藏编号为 CGMCC No.1218, 所述宿主多形汉逊酵母的乳清酸苷 -5-磷酸脱羧酶基因被破坏的 DNA序列如 SEQ ID NO: 5所示。
11. 根据权利要求 1 所述的乙肝治疗疫苗,其特征在于所述乙肝治疗疫苗的剂型选自预充 式注射液剂、 注射液剂或冻干粉针剂。
12.根据权利要求 1所述的乙肝治疗疫苗, 其特征在于还含有 HBsAg原液或铝佐剂 HBsAg 中的一种。
13. 一种重组多形汉逊酵母菌, 其特征在于所述的重组多形汉逊酵母菌中含有 SEQ ID NO : 1所示 DNA序列。
14. 根据权利要求 13所述的重组多形汉逊酵母菌,其特征在于在所述的重组多形汉逊酵母 菌的基因组中整合有 SEQ ID NO:l所示 DNA序列。
15. 一种重组多形汉逊酵母菌, 其特征在于所述的重组多形汉逊酵母菌中含有 SEQ ID NO :3所示 DNA序列。
16. 根据权利要求 10所述的重组多形汉逊酵母菌,其特征在于所述的重组多形汉逊酵母菌 的基因组中整合有 SEQ ID NO:3所示 DNA序列。
PCT/CN2017/076936 2016-03-25 2017-03-16 基于表达HBsAg和HBcAg的失活全重组汉逊酵母细胞的乙肝治疗疫苗 WO2017162092A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17769369.4A EP3434282A4 (en) 2016-03-25 2017-03-16 THERAPEUTIC VACCINE AGAINST HEPATITIS B BASED ON AN INACTIVATED WHOLE RECOMBINANT HANSENULA CELL EXPRESSING HBSAG AND HBCAG
EA201892172A EA201892172A1 (ru) 2016-03-25 2017-03-16 Вакцина для лечения гепатита b на основе инактивированных цельных рекомбинантных клеток hansenula, которые экспрессируют hbsag и hbcag
US16/088,217 US11191829B2 (en) 2016-03-25 2017-03-16 Hepatitis B treatment vaccine base on inactivated whole recombinant Hansenula polymorpha cells which expresses HBsAg and HBcAg
SG11201808267SA SG11201808267SA (en) 2016-03-25 2017-03-16 Hepatitis b treatment vaccine based on inactivated whole recombinant hansenula cell which expresses hbsag and hbcag
JP2019500716A JP6818122B2 (ja) 2016-03-25 2017-03-16 HBsAg及びHBcAgを発現する失活化全組換えハンセヌラ・ポリモルファ細胞によるB型肝炎治療ワクチン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610176389.4 2016-03-25
CN201610176389.4A CN105727279B (zh) 2016-03-25 2016-03-25 基于表达HBsAg和HBcAg的热失活全重组汉逊酵母细胞的乙肝治疗疫苗

Publications (1)

Publication Number Publication Date
WO2017162092A1 true WO2017162092A1 (zh) 2017-09-28

Family

ID=56251451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076936 WO2017162092A1 (zh) 2016-03-25 2017-03-16 基于表达HBsAg和HBcAg的失活全重组汉逊酵母细胞的乙肝治疗疫苗

Country Status (7)

Country Link
US (1) US11191829B2 (zh)
EP (1) EP3434282A4 (zh)
JP (1) JP6818122B2 (zh)
CN (1) CN105727279B (zh)
EA (1) EA201892172A1 (zh)
SG (1) SG11201808267SA (zh)
WO (1) WO2017162092A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651570A (zh) * 2004-09-30 2005-08-10 天津博荟生物技术有限公司 一种重组多形汉逊酵母菌及其构建方法与应用
US20060292118A1 (en) * 2002-11-22 2006-12-28 Shunichi Kuroda Hollow nanoparticles of protein and drug using the same
CN102038948A (zh) * 2009-10-10 2011-05-04 复旦大学 一种控制乙型肝炎病毒持续性感染的疫苗

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196194A (en) * 1979-05-24 1993-03-23 The Regents Of The University Of California Vaccines containing Hepatitis B S-protein
CN1107681C (zh) * 2000-08-11 2003-05-07 中国科学院微生物研究所 乙肝病毒抗原多肽与热休克蛋白的复合物及其应用
CA2422506A1 (en) * 2000-09-08 2002-03-14 Epimmune Inc. Inducing cellular immune responses to hepatitis b virus using peptide and nucleic acid compositions
CN101314761B (zh) * 2007-05-31 2012-05-30 上海生物制品研究所有限责任公司 高拷贝表达重组乙肝表面抗原的毕赤酵母及其制法和应用
CN102462840B (zh) * 2010-11-09 2014-03-19 南通生物科技园开发投资有限公司 乙肝治疗性疫苗
CN102226154B (zh) * 2011-05-12 2013-02-06 中国科学院微生物研究所 具有双重筛选标记的多形汉逊酵母菌及其应用
CN104232661A (zh) * 2013-06-08 2014-12-24 北京天坛生物制品股份有限公司 重组dna序列、酵母菌、乙肝表面抗原制备方法及疫苗
CN105727280B (zh) * 2016-03-25 2021-01-19 汪和睦 基于表达HBsAg的热失活全重组汉逊酵母细胞的乙肝治疗疫苗
CN105797151A (zh) * 2016-03-25 2016-07-27 汪和睦 一种基于重组汉逊酵母的高剂量乙型肝炎疫苗

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060292118A1 (en) * 2002-11-22 2006-12-28 Shunichi Kuroda Hollow nanoparticles of protein and drug using the same
CN1651570A (zh) * 2004-09-30 2005-08-10 天津博荟生物技术有限公司 一种重组多形汉逊酵母菌及其构建方法与应用
CN102038948A (zh) * 2009-10-10 2011-05-04 复旦大学 一种控制乙型肝炎病毒持续性感染的疫苗

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3434282A4 *

Also Published As

Publication number Publication date
JP2019510089A (ja) 2019-04-11
EP3434282A1 (en) 2019-01-30
CN105727279A (zh) 2016-07-06
CN105727279B (zh) 2019-01-15
US20200376115A1 (en) 2020-12-03
SG11201808267SA (en) 2018-11-29
JP6818122B2 (ja) 2021-01-20
EA201892172A1 (ru) 2019-07-31
EP3434282A4 (en) 2019-10-30
US11191829B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
JP2021182922A (ja) B型肝炎ウイルスに対するワクチン
Sominskaya et al. Construction and immunological evaluation of multivalent hepatitis B virus (HBV) core virus-like particles carrying HBV and HCV epitopes
EP1294893B1 (en) Modification of hepatitis b core antigen
WO2017162091A1 (zh) 基于表达HBsAg的失活全重组汉逊酵母细胞的乙肝治疗疫苗
Wang et al. Heat shock protein gp96 enhances humoral and T cell responses, decreases Treg frequency and potentiates the anti-HBV activity in BALB/c and transgenic mice
JP2021073261A (ja) 組換えハンセヌラ・ポリモルファによる高用量b型肝炎ワクチン
EP2198020A1 (en) Polynucleotides allowing the expression and secretion of recombinant pseudo-virus containing foreign epitopes, their production, and use
CN101309931B (zh) 包含截短的hbc核心蛋白和基于皂苷的佐剂的疫苗
WO2017162092A1 (zh) 基于表达HBsAg和HBcAg的失活全重组汉逊酵母细胞的乙肝治疗疫苗
CN102199217B (zh) 乙型肝炎病毒多表位融合蛋白及其制备方法和应用
Sanyal et al. A review of multiple approaches towards an improved hepatitis B vaccine
Rizzetto et al. Progress in the prevention and control of viral hepatitis type B: closing remarks
EP2484343A1 (en) Hepatitis b virus antigen formulation for cell stimulation followed by therapeutic immunization
CN107648602B (zh) 二价乙肝疫苗及其制备方法
Guan et al. Construction and characterization of an experimental ISCOMS-based hepatitis B polypeptide vaccine
CN117903321A (zh) 一种结核病毒样颗粒及其制备方法与应用
WO2005117960A1 (fr) Vaccin adn contre le sras et procede de preparation de celui-ci, utilisation de gene glycoproteine spicule (spike) des coronavirus pour vaccin
Schumann Hepatitis B virus specific adoptive immune transfer in living liver donation and characterization of a prophylactic/therapeutic vaccine against Hepadnaviral infection
JP2014500875A (ja) B型肝炎の予防及び治療のためのdnaワクチン組成物
Shih Virion Secretion of Naturally Occurring Core Antigen Variants of Human Hepatitis B Virus

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019500716

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201892172

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2017769369

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769369

Country of ref document: EP

Effective date: 20181025

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769369

Country of ref document: EP

Kind code of ref document: A1