WO2017161689A1 - 多人协作式楼层定位方法和系统 - Google Patents
多人协作式楼层定位方法和系统 Download PDFInfo
- Publication number
- WO2017161689A1 WO2017161689A1 PCT/CN2016/084194 CN2016084194W WO2017161689A1 WO 2017161689 A1 WO2017161689 A1 WO 2017161689A1 CN 2016084194 W CN2016084194 W CN 2016084194W WO 2017161689 A1 WO2017161689 A1 WO 2017161689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positioning
- unit
- floor
- target
- server
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/01—Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
- G01S5/013—Identifying areas in a building
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/01—Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
- G01S5/017—Detecting state or type of motion
Definitions
- the present invention relates to wireless information processing technologies, and in particular, to a multi-person collaborative floor positioning method and system.
- the present invention provides a multi-person collaborative floor positioning method and system, which solves the problem of high cost and low precision of floor positioning in the prior art.
- a multi-person collaborative floor positioning method includes the following steps:
- (S1) the target positioning unit and the assisting unit receive each other's wireless signals, collect the signal information, and send the information collected by the inertial sensor to the server;
- the assisting units are three or more and are located on the same floor.
- the step S1 receiving the wireless signals of each other includes:
- the device that is configured by the target positioning unit sends a positioning signal, and is based on a carrier sensing multiple access technology
- the assisting unit that receives the positioning signal sends its own MAC address to the server, and the server selects 3 of them assist the unit and determine the time slice of the transmitted signal;
- the nearby assisting unit sends and receives electromagnetic wave signals according to the provisions of the server, and returns the data to the server.
- the electromagnetic wave data includes received signal strength and arrival time
- the inertial navigation data includes angular acceleration, three directions. Speed, acceleration.
- the floor positioning model is constructed according to the information of the inertial sensor and the electromagnetic wave signal file, and the relevant data of the model is obtained; the data constructed by the device is constructed based on a tetrahedron.
- the model, the derived model data refers to the length of the six sides of the three-dimensional model calculated by the electromagnetic wave phase difference ranging method.
- step (S3) is specifically:
- the invention also provides a multi-person collaborative floor positioning system, comprising:
- the target positioning unit and the equipped device unit are configured to collect the environmental data in which the positioning personnel are located in real time and return to the server;
- a server unit that processes the data that is fed back and is responsible for presenting the results.
- the target positioning unit and the equipped device unit include: an inertial sensor module: mainly by collecting the velocity and acceleration of the target positioning unit for measuring its vertical height with respect to the ground;
- Hazard alarm module manual or automatic alarm for dangerous situations
- Electromagnetic wave transceiver module used to communicate with the server and communicate with the assistance unit;
- Rescue module used to provide rescue information.
- the server unit includes:
- the communication module transmitting and receiving a radio signal, comprising receiving a target positioning unit floor information file sent by the positioning device, and sending the instruction to the positioning device;
- the server After receiving the file sent by the positioning device, the server obtains two pieces of information: (1) the vertical distance h1 of the target positioning unit relative to the ground; (2) the target positioning unit relative to the assisting unit Relative vertical distance h0; the server also stores the vertical height h2 relative to the ground obtained by the previous period of the target positioning unit, and the vertical height h3 of the assisting unit relative to the ground; the server performs principal component analysis based on the four values Obtaining a height h of the target positioning unit relative to the ground;
- a clock synchronization and control module a time slice for transmitting a specific electromagnetic wave signal when the target positioning unit wearing device communicates with the assisting unit, and a period for determining the floor positioning;
- Application display module After the data processing module calculates the height of the current target positioning unit, the module displays the result to the user interface, and the commander observes the floor position of the site target positioning unit.
- the invention has the beneficial effects that the invention is based on a harsh environment such as a fire and a plurality of positioning personnel, and establishes contact between the target positioning personnel and the auxiliary positioning personnel, thereby eliminating the cumulative error of the target positioning personnel, thereby realizing the function of effective floor positioning, and the beneficial effects thereof.
- a harsh environment such as a fire and a plurality of positioning personnel
- the measurement error is small, no need to test in advance, on the basis of the existing communication equipment, slightly improved, the cost is not high. It can locate the location of multiple positioning personnel at the same time, and has a dangerous handling module, which can greatly ensure the safety of the positioning personnel.
- 1 is a stereoscopic three-dimensional model of a positioning personnel positioning algorithm of the present invention.
- a multi-person collaborative floor positioning method includes the following steps:
- (S1) the target positioning unit and the assisting unit receive each other's wireless signals, collect the signal information, and send the information collected by the inertial sensor to the server;
- the assisting units are three or more and are located on the same floor.
- the step S1 receiving the wireless signals of each other includes:
- the device that is configured by the target positioning unit sends a positioning signal, and is based on a carrier sensing multiple access technology
- the assisting unit that receives the positioning signal sends its own MAC address to the server, and the server selects three of the assisting units, and determines a time slice for transmitting the signal;
- the nearby assisting unit sends and receives the electromagnetic wave signal on time according to the provisions of the server, and returns the data to the server, where the electromagnetic wave data includes the received signal strength and the arrival time, and the inertial navigation.
- the data includes angular acceleration, velocity and acceleration in three directions.
- the floor positioning model is constructed according to the information of the inertial sensor and the electromagnetic wave signal file, and the relevant data of the model is obtained; the data reconstruction model obtained by using the device returns is a stereo model based on a tetrahedron, and the model is obtained.
- the data refers to the length of the six sides of the three-dimensional model calculated by the electromagnetic wave phase difference ranging method.
- the step (S3) is specifically:
- the invention also provides a multi-person collaborative floor positioning system, comprising:
- the target positioning unit and the equipped device unit are configured to collect the environmental data in which the positioning personnel are located in real time and return to the server;
- a server unit that processes the data that is fed back and is responsible for presenting the results.
- the target positioning unit and the equipped device unit include:
- Inertial sensor module mainly by collecting the speed and acceleration of the target positioning unit to measure its vertical height with respect to the ground;
- Hazard alarm module manual or automatic alarm for dangerous situations
- Electromagnetic wave transceiver module used to communicate with the server and communicate with the assistance unit;
- Rescue module used to provide rescue information.
- the server unit includes:
- the communication module transmitting and receiving a radio signal, comprising receiving a target positioning unit floor information file sent by the positioning device, and sending the instruction to the positioning device;
- Data processing module after receiving the file sent by the positioning device, the server obtains two pieces of information: (1) the vertical distance h1 of the target positioning unit relative to the ground; (2) the relative vertical distance h0 of the target positioning unit relative to the assisting unit; The server also stores the vertical height h2 relative to the ground obtained by the previous period of the target positioning unit, and the vertical height h3 of the assisting unit relative to the ground; the server performs principal component analysis according to the four values to obtain the target positioning unit. Current height h relative to the ground;
- a clock synchronization and control module a time slice for transmitting a specific electromagnetic wave signal when the target positioning unit wearing device communicates with the assisting unit, and a period for determining the floor positioning;
- Application display module After the data processing module calculates the height of the current target positioning unit, the module displays the result to the user interface, and the commander observes the floor position of the site target positioning unit.
- the present invention is applicable to (1): a fire scene, in order to use a mobile phone inertial sensor and a device capable of transmitting and receiving electromagnetic waves in a fire environment to realize the floor positioning of each firefighter and display it on the terminal (mobile phone, computer) if When firefighters are in danger, we can quickly find the location of firefighters to maximize the protection of firefighters' lives. It also facilitates commanders to better deploy rescue forces and control fires more quickly.
- (2) Counter-terrorism, with the floor positioning method you can also know the floor where the police are located. Once the police send a warning signal, all personnel can know which floor has terrorists.
- Security in some environments where multi-persons are not allowed to gather, the floor positioning system can be used to detect the total number of people on a specific floor at a certain time. Once more than the threshold, it indicates that there may be multi-person gathering.
- (4) Business can also use the floor positioning method to observe the total number of people on the floor during the day. The more people judge the number, the more the market demand is.
- a person positioning device includes an inertial sensor on a mobile phone, and the inertial sensor is used to measure the height of the person.
- the device has newly added An instrument that transmits and receives electromagnetic waves, which is used to measure the relative vertical height difference between the target locator and the assisted locator.
- a positioning aid that includes an instrument capable of transmitting and receiving electromagnetic waves.
- the application method of the target positioning personnel positioning device described above includes the following steps: S1: The target positioning personnel searches for a person who carries the positioning device nearby, and then the positioning personnel (including the target positioning personnel and the auxiliary positioning personnel) communicate with each other, and The obtained information is sent to the server; S2, the server uses the floor location algorithm, and combines the information sent by the target positioning personnel and the auxiliary positioning personnel to locate the floor where the target positioning personnel are located. S3. From bottom to bottom, the server locates the position of each target positioning person. When all the personnel have been positioned, check whether the positioning personnel are abnormal. If an abnormality occurs, immediately call the auxiliary positioning personnel to specify the floor observation situation. If the abnormality is performed, the next step is performed; S4, the target positioning person sends a signal to the positioning completion as one clock cycle, and in each clock cycle, the above steps S1, S2, and S3 are repeated until the end of the action.
- the target positioning personnel refer to positioning personnel who need to perform floor positioning; nearby personnel act as Auxiliary locator roles, they are on the same floor, and the number is at least three.
- the same person can be a target positioning person in different time periods, and can also be used as an auxiliary positioning person.
- the searching and communication of the assisting positioning personnel in the step S1 includes: S11, the target positioning personnel positioning device sends an electromagnetic wave signal to find a nearby auxiliary positioning personnel; and S12, the auxiliary positioning personnel receiving the electromagnetic wave signal from the target positioning personnel, through the portable body
- the device is worn to send a unique MAC address to the server; S13.
- the server selects three or more auxiliary positioning personnel according to the historical height of the device. And determining a time slice for each positioning personnel (including the target positioning personnel and the auxiliary positioning personnel) to communicate; S14, the positioning personnel's device transmits the electromagnetic wave signal according to the time slice determined by the server, and then the positioning personnel respectively collect the collected inertial sensors. And the information collected by the electromagnetic waves is sent to the server.
- the positioning algorithm utilized in the step S2 is a phase difference ranging algorithm based on electromagnetic waves.
- the step S2 includes: S21: the server performs data segmentation according to the MAC address according to the sequence of electromagnetic wave signals sent by the positioning personnel to obtain a subsequence, and uses a phase difference ranging algorithm to calculate a relative distance between any two adjacent positioning personnel to generate a four-sided The body model, and then calculating the height of the tetrahedron, that is, the vertical distance h0 of the target positioning person relative to the auxiliary positioning person; S22, the server calculates the height of each positioning person relative to the ground according to the signal of the inertial sensor sent by the positioning personnel Poor h1. S23.
- the height h2 determined by the server according to the last clock cycle of the positioning personnel is combined with the vertical distance h0 of the target positioning personnel relative to the auxiliary positioning personnel, the height h3 of the auxiliary positioning personnel, and the height h1 of the target positioning personnel relative to the ground, according to a certain weight. Finalize the floor on which the target person is located.
- the step S3 includes: S31.
- the server calculates the floor of the current clock cycle of each positioning personnel in the order from the bottom layer to the top layer according to the floor where the positioning personnel last clock cycle.
- S32. After determining the floor where each positioning person is located, the server refreshes and displays the application of each floor of the positioning personnel in each clock cycle;
- the invention also provides a positioning personnel floor positioning system based on wireless network signal transmission technology, comprising: an electromagnetic wave transceiver module for transmitting electromagnetic wave signals and receiving electromagnetic wave signals; and an inertial sensor module for measuring vertical speed and verticality of the positioning personnel Acceleration; floor positioning module, which is used to eliminate the accumulated error by using the floor positioning algorithm, and calculate the height value with high accuracy; the alarm module is used to judge the positioning personnel to issue a dangerous alarm signal to the server when the danger occurs.
- the two-dimensional dynamic display module is used for real-time display of a current path of each positioning person and a path of the floor where the history is located.
- the invention can also construct a three-dimensional structure of a building in combination with the method of group intelligence sensing (such as using the mobile phone path data of the resident), and encode and store the three-dimensional structure in the database, and when needed, according to the landmarks.
- a process for specifically realizing multi-location personnel floor positioning includes the following steps:
- Step 1 To deploy tasks to all locators, you must specify three of them to be on the first floor or on the lower floor;
- Step 2 The other multiple positioning personnel start from the bottom layer, each positioning personnel is equipped with a positioning device, starts the server positioning application, and sets the current positioning personnel as the first positioning personnel;
- Step 3 The server sends an activation command to enable the positioning personnel to position the device to emit an electromagnetic wave signal, similar to carrier sense access (OFDM), to find an auxiliary positioning personnel;
- OFDM carrier sense access
- Step 4 The positioning personnel receiving the electromagnetic wave signal sends the MAC address to the server, and the server selects three auxiliary positioning personnel; and determines the time when the four devices, that is, the destination positioning personnel and the nearby three positioning personnel, transmit the electromagnetic wave signal. sheet;
- Step 5 The relevant positioning device sends an electromagnetic wave signal according to the instruction of the server and collects the electromagnetic wave signal, and sends it back to the server together with the information of the inertial sensor module;
- Step 6 The server collects information and calculates the vertical height of the current relative ground of the target positioning person by using the floor positioning algorithm, and detects whether an abnormality occurs. If an abnormality occurs, the above emergency measures are taken;
- Step 7 Repeat steps 3 to 6 above to calculate the position of other positioning personnel. When the position calculation of all positioning personnel is completed, proceed to the next step;
- Step 8 Check if the rescue operation is over; if it is over, terminate the application; if it is not finished, enter Enter the next clock cycle and repeat steps 2-7 of the above steps.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
发明涉及无线信息处理技术,其公开了一种多人协作式楼层定位方法和系统,包括如下步骤:(S1)目标定位单元以及协助单元互相接收彼此的无线信号,收集信号信息,连同惯性传感器采集的信息一并发送到服务器端;(S2)构建楼层定位模型,获取模型数据信息;(S3)计算出楼层定位算法的系统参数,并得到目标定位单元的最终的高度值。本发明的有益效果:本发明基于火灾等恶劣环境和多名定位人员,将目的定位人员与辅助定位人员建立联系,消除目的定位人员的累积误差,从而实现有效的楼层定位的功能,能够极大地保证定位人员的生命安全。
Description
本发明涉及无线信息处理技术,尤其涉及一种多人协作式楼层定位方法和系统。
随着经济的高速发展,建筑变得越来越高且越来越庞大,于是室内定位成为了一个新的研究课题,并且目前已取得了一定的结果。楼层定位属于室内定位的一种,目前存在很多技术瓶颈。首先,GPS不能应用于室内定位;因为GPS只适用于视距的定位,但是建筑会有很多墙壁阻挡。其次,传统的WiFi三点定位模型和红外线定位技术并不能应用于楼层定位。此外,目前的研究大部分是局限于平面内的,对于楼层定位来说,它是一种立体模型,因此需要新的方法。为了定位目标人员的所在楼层,人们提出了各种解决办法,其中不乏结合三轴陀螺仪传感器、气压计等装置来实现定位人员的定位,但这种方法要么造价极高,或者是需要训练,并且精度不能达到要求。因此,我们急切需要找到一种可靠的,适应多种环境的定位目标定位人员所在楼层的方法和系统。
发明内容
为了克服上述所指的现有技术中的不足之处,本发明提供一种多人协作式楼层定位方法及系统,解决现有技术中楼层定位造价高且精度较低的问题。
本发明是通过以下技术方案实现的:
一种多人协作式楼层定位方法,包括如下步骤:
(S1)目标定位单元以及协助单元互相接收彼此的无线信号,收集信号信息,连同惯性传感器采集的信息一并发送到服务器端;
(S2)构建楼层定位模型,获取模型数据信息;
(S3)计算出楼层定位算法的系统参数,并得到目标定位单元的最终的高度值。
作为本发明的进一步改进:所述协助单元为三个或者三个以上,且位于同一楼层。
作为本发明的进一步改进:所述步骤S1互相接收彼此的无线信号包括:
S11、目标定位单元所配装置发送定位信号,基于载波侦听多路访问技术;
S12、接收到定位信号的协助单元发送自己的MAC地址给服务器,服务器选择
其中的3位协助单元,并确定发送信号的时间片;
S13、附近的协助单元按照服务器的规定按时发送以及接收电磁波信号,并将数据返回给服务器,所述的电磁波数据包括接收信号强度、到达时间,所述的惯导数据包括角加速度,三个方向的速度、加速度。
作为本发明的进一步改进:所述步骤2中,根据惯性传感器的信息以及电磁波信号文件构建楼层定位模型,并得出模型的相关数据;利用装置返回得到的数据构建模型是基于四面体的一个立体模型,所述得出模型数据是指利用电磁波相位差测距法计算出立体模型六条边的长度。
作为本发明的进一步改进:所述步骤(S3)具体为:
S31、通过惯性传感器采集的数据计算出目标定位单元相对地面的高度;
S32、根据楼层定位模型以及得出的模型的边长,利用欧拉四面体公式以及解三角形的方法计算出模型的高;
S33、利用卡尔曼数据分析算法以及主成分数据分析方法,对所计算出的高度进行分析,确定该测量系统的参数,并最终得出当前目标当前的高度。
本发明同时提供了一种多人协作式楼层定位系统,包括:
目标定位单元以及配备装置单元,用于采集定位人员实时所处的环境数据并返回给服务器;
服务器单元,用于处理回馈过来的数据并负责将结果展示出来。
作为本发明的进一步改进:所述的目标定位单元以及配备装置单元包括:惯性传感器模块:主要通过收集目标定位单元的速度和加速度,以用来测量其相对于地面的垂直高度;
危险报警模块:用于危险情况的手动或自动报警;
电磁波收发模块:用来跟服务器通讯和跟协助单元通讯;
救援模块:用于提供救援信息。
作为本发明的进一步改进:所述的服务器单元包括:
通讯模块:收发无线电信号,包括接收定位装置发送过来的目标定位单元楼层信息文件,以及发送指令给定位装置;
数据处理模块:服务器收到定位装置发送过来的文件以后,得到两个信息:(1)目标定位单元相对于地面的垂直距离h1;(2)目标定位单元相对于协助单元的
相对垂直距离h0;服务器还存储了该目标定位单元的上一周期所得到的相对于地面的垂直高度h2,以及协助单元相对于地面的垂直高度h3;服务器根据这四个值,进行主成分分析,得到目标定位单元当前相对于地面的高度h;
时钟同步与控制模块:用来控制目标定位单元佩戴装置与协助单元通讯时的具体发送电磁波信号的时间片,以及确定楼层定位的周期;
应用程序显示模块:数据处理模块计算出当前目标定位单元的高度以后,该模块将结果显示到用户界面,指挥人员观察现场目标定位单元的所在楼层位置。
本发明的有益效果:本发明基于火灾等恶劣环境和多名定位人员,将目的定位人员与辅助定位人员建立联系,消除目的定位人员的累积误差,从而实现有效的楼层定位的功能,其有益效果包括:在火场等恶劣环境中定位系统依旧有效,测量误差小,不需要预先试验,在现有的通讯设备的基础上,进行稍微改进,造价不高。可以同时定位多名定位人员的所在楼层,并具备危险处理模块,能够极大地保证定位人员的生命安全。
图1本发明的定位人员定位算法的立体三维模型。
下面结合附图和实施例对本发明作进一步的描述。
一种多人协作式楼层定位方法,包括如下步骤:
(S1)目标定位单元以及协助单元互相接收彼此的无线信号,收集信号信息,连同惯性传感器采集的信息一并发送到服务器端;
(S2)构建楼层定位模型,获取模型数据信息;
(S3)计算出楼层定位算法的系统参数,并得到目标定位单元的最终的高度值。
所述协助单元为三个或者三个以上,且位于同一楼层。
所述步骤S1互相接收彼此的无线信号包括:
S11、目标定位单元所配装置发送定位信号,基于载波侦听多路访问技术;
S12、接收到定位信号的协助单元发送自己的MAC地址给服务器,服务器选择其中的3位协助单元,并确定发送信号的时间片;
S13、附近的协助单元按照服务器的规定按时发送以及接收电磁波信号,并将数据返回给服务器,所述的电磁波数据包括接收信号强度、到达时间,所述的惯导
数据包括角加速度,三个方向的速度、加速度。
所述步骤2中,根据惯性传感器的信息以及电磁波信号文件构建楼层定位模型,并得出模型的相关数据;利用装置返回得到的数据构建模型是基于四面体的一个立体模型,所述得出模型数据是指利用电磁波相位差测距法计算出立体模型六条边的长度。
所述步骤(S3)具体为:
S31、通过惯性传感器采集的数据计算出目标定位单元相对地面的高度;
S32、根据楼层定位模型以及得出的模型的边长,利用欧拉四面体公式以及解三角形的方法计算出模型的高;
S33、利用卡尔曼数据分析算法以及主成分数据分析方法,对所计算出的高度进行分析,确定该测量系统的参数,并最终得出当前目标当前的高度。
本发明同时提供了一种多人协作式楼层定位系统,包括:
目标定位单元以及配备装置单元,用于采集定位人员实时所处的环境数据并返回给服务器;
服务器单元,用于处理回馈过来的数据并负责将结果展示出来。
所述的目标定位单元以及配备装置单元包括:
惯性传感器模块:主要通过收集目标定位单元的速度和加速度,以用来测量其相对于地面的垂直高度;
危险报警模块:用于危险情况的手动或自动报警;
电磁波收发模块:用来跟服务器通讯和跟协助单元通讯;
救援模块:用于提供救援信息。
所述的服务器单元包括:
通讯模块:收发无线电信号,包括接收定位装置发送过来的目标定位单元楼层信息文件,以及发送指令给定位装置;
数据处理模块:服务器收到定位装置发送过来的文件以后,得到两个信息:(1)目标定位单元相对于地面的垂直距离h1;(2)目标定位单元相对于协助单元的相对垂直距离h0;服务器还存储了该目标定位单元的上一周期所得到的相对于地面的垂直高度h2,以及协助单元相对于地面的垂直高度h3;服务器根据这四个值,进行主成分分析,得到目标定位单元当前相对于地面的高度h;
时钟同步与控制模块:用来控制目标定位单元佩戴装置与协助单元通讯时的具体发送电磁波信号的时间片,以及确定楼层定位的周期;
应用程序显示模块:数据处理模块计算出当前目标定位单元的高度以后,该模块将结果显示到用户界面,指挥人员观察现场目标定位单元的所在楼层位置。
本发明适用于(1):火灾场景,以便在大火环境中,利用手机惯性传感器以及能够收发电磁波的装置,实现对每一个消防员的楼层定位,并显示在终端(手机,电脑)上,如果消防员发生危险,我们就可以快速地找到消防员所在位置,最大程度地保护消防员的生命;同时也方便指挥人员更好地对救援力量进行有效率的调度部署,更快地控制火灾。(2)反恐,有了楼层定位方法,同样可以知道警察的所在楼层,一旦收到警察发过来的报警信号,所有人员就可以知道哪个楼层有恐怖分子。(3)安防,在一些不允许多人聚集的环境下,使用楼层定位系统,可以检测某时刻具体楼层的总人数,一旦多于阀值,表明有可能出现多人聚集情况。(4)商业也可以利用楼层定位方法来观察一天时间内楼层的总人数情况,判断人数越多,说明市场需求也有可能更大。
在一实施例中,一种人员定位装置,包括了手机上的惯性传感器,惯性传感器用来测量人员的所在的高度,同时,为了提高楼层定位的精度,降低错误率,装置上新增了能够收发电磁波的仪器,它用来测量目标定位人员与辅助定位人员的相对垂直高度差。此外,还需一种定位辅助装置,它包括了能够收发电磁波的仪器。
以上所述目标定位人员定位装置的应用方法,包括以下步骤:S1、目标定位人员寻找附近携带了定位装置的人员,然后定位人员之间(包括目标定位人员和辅助定位人员)互相通信,并将所获信息发送到服务器;S2、服务器利用楼层定位算法,结合目标定位人员和辅助定位人员发送过来的信息,定位出目标定位人员所在的楼层。S3、自底向上地,服务器定位每一位目标定位人员的位置,当所有人员都已经定位完成,检查定位人员是否出现异常,如果出现异常,马上叫辅助定位人员去指定楼层观察情况,如果没有异常,执行下一步骤;S4、将目标定位人员发送信号到定位完成视为一个时钟周期,在每个时钟周期里,重复上述步骤S1、S2、S3,直到行动结束。
所述的目标定位人员是指需要做楼层定位的定位人员;附近的人员充当
辅助定位人员的角色,他们为同一楼层,且数目至少为3个。同一个人不同时间内可以做目标定位人员,也可以做辅助定位人员。
所述步骤S1里面辅助定位人员的寻找和通讯包括:S11、目标定位人员定位装置发送电磁波信号来寻找附近的辅助定位人员;S12、接收到来自目标定位人员的电磁波信号的辅助定位人员,通过随身佩戴装置,发送唯一的MAC地址给服务器;S13、服务器根据装置的历史高度选取3个或者3个以上的辅助定位人员。并决定每位定位人员(包括目标定位人员和辅助定位人员)通讯发生的时间片;S14、定位人员们的装置按照服务器确定的时间片发送电磁波信号,然后定位人员们将各自收集的包括惯性传感器和电磁波收集的信息发送到服务器。
所述步骤S2利用的定位算法是基于电磁波的相位差测距算法。所述步骤S2包括:S21、服务器根据由定位人员发送过来的电磁波信号序列根据MAC地址实施数据分割得到子序列,用相位差测距算法计算任意相邻两个定位人员的相对距离,生成一个四面体模型,然后计算该四面体的高,即为目标定位人员相对辅助定位人员的垂直距离h0;S22、服务器在根据由定位人员发送过来的惯性传感器的信号计算出每位定位人员相对地面的高度差h1。S23、服务器在根据定位人员的上一个时钟周期确定的高度h2,结合目标定位人员相对辅助定位人员的垂直距离h0,、辅助定位人员的高度h3、目标定位人员相对地面的高度h1,按照一定权重最终确定目标定位人员所在的楼层。
所述步骤S3包括:S31、服务器根据定位人员上一个时钟周期所在楼层,按从底层到顶层的顺序,计算出每一个定位人员当前时钟周期的所在楼层。S32、服务器确定好每一位定位人员所在的楼层后,在每个时钟周期下刷新显示每位定位人员所在楼层的应用程序;S33、定位人员另外带有报警器,如果定位人员30秒静止不动,将会自动报警,另外如果定位人员觉得有危险,也可以手动报警,服务器将收到定位人员的报警信号,然后服务器选择并告知最靠近目标定位人员的辅助定位人员,让其对目标定位人员进行救援。
如图2,给出的是一个四面体的模型,该模型用来计算目标定位人员相对于辅助定位人员的相对垂直距离h0;首先,服务器根据接收的文件使用电磁波相位差测距算法计算出六条边的长度,即AB、AC、AD、BC、BD、CD;根据欧拉四面体公式,得到该模型的体积V,再利用解三角形的方法计算出底面积S,
根据等体积法:V=(1/3)*S*h0得出目标定位人员相对于辅助定位人员的相对垂直距离h0。
本发明还提供了一种定位人员楼层定位系统,基于无线网络信号传输技术,包括:电磁波收发模块,用于发送电磁波信号和接收电磁波信号;惯性传感器模块,用于测量定位人员的垂直速度和垂直加速度;楼层定位模块,用于利用楼层定位算法消除累积误差,计算精确度较高的高度值;警报模块,用于判断定位人员发生危险时,向服务器发出危险警报信号。二维动态显示模块,用于实时显示每位定位人员的当前所在楼层以及历史所在楼层的一条路径。
本发明还可以结合群智感知的方法(如利用居民的手机路径数据)构造出一个建筑的三维结构,并对给这个三维结构建筑编码并存储于数据库中,等需要的时候,按照地标调出三维结构,辅助楼层定位进行多人定位。
在又一实施例中,一种具体实现多定位人员楼层定位的流程,具体包括以下步骤:
步骤1:给所有的定位人员部署任务,必须指定其中三位定位人员在一楼或者在低层楼;
步骤2:其他多个定位人员从底层出发,每位定位人员配备定位装置,启动服务器定位应用程序,设置当前定位人员为第一个定位人员;
步骤3:服务器发送激活指令让定位人员定位装置发出电磁波信号,类似于载波侦听访问(OFDM),寻找辅助定位人员;
步骤4:接收到电磁波信号的定位人员发送MAC地址给服务器,服务器选择三个辅助定位人员;并决定这四个装置,即目的定位人员和附近的三位定位人员的装置,发送电磁波信号的时间片;
步骤5:相关的定位装置按照服务器的指令发送电磁波信号并收集电磁波信号,连同惯性传感器模块的信息一并发送回给服务器;
步骤6:服务器收集信息并使用楼层定位算法计算出目的定位人员的当前相对地面的垂直高度,同时检测是否出现异常,如果出现异常,采取上述的应急措施;
步骤7:重复上述步骤3~6,计算其他定位人员的位置,当所有定位人员的位置计算完成,进入下一步骤;
步骤8:检查救援行动是否结束;如果结束,终止应用程序;如果没有结束,进
入下一个时钟周期,重上述步骤的2~7。
以上内容是结合具体实现方式对本发明做的进一步阐述,不应认定本发明的具体实现只局限于以上说明。对于本技术领域的技术人员而言,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,均应视为有本发明所提交的权利要求确定的保护范围之内。
Claims (8)
- 一种多人协作式楼层定位方法,其特征在于:包括如下步骤:(S1)目标定位单元以及协助单元互相接收彼此的无线信号,收集信号信息,连同惯性传感器采集的信息一并发送到服务器端;(S2)构建楼层定位模型,获取模型数据信息;(S3)计算出楼层定位算法的系统参数,并得到目标定位单元的最终的高度值。
- 根据权利要求1所述的多人协作式楼层定位方法,其特征在于:所述协助单元为三个或者三个以上,且位于同一楼层。
- 根据权利要求1所述的多人协作式楼层定位方法,其特征在于,所述步骤S1互相接收彼此的无线信号包括:S11、目标定位单元所配装置发送定位信号,基于载波侦听多路访问技术;S12、接收到定位信号的协助单元发送自己的MAC地址给服务器,服务器选择其中的3位协助单元,并确定发送信号的时间片;S13、附近的协助单元按照服务器的规定按时发送以及接收电磁波信号,并将数据返回给服务器,所述的电磁波数据包括接收信号强度、到达时间,所述的惯导数据包括角加速度,三个方向的速度、加速度。
- 根据权利要求1所述的多人协作式楼层定位方法,其特征在于:所述步骤2中,根据惯性传感器的信息以及电磁波信号文件构建楼层定位模型,并得出模型的相关数据;利用装置返回得到的数据构建模型是基于四面体的一个立体模型,所述得出模型数据是指利用电磁波相位差测距法计算出立体模型六条边的长度。
- 根据权利要求1所述的多人协作式楼层定位方法,其特征在于:所述步骤(S3)具体为:S31、通过惯性传感器采集的数据计算出目标定位单元相对地面的高度;S32、根据楼层定位模型以及得出的模型的边长,利用欧拉四面体公式以及解三角形的方法计算出模型的高;S33、利用卡尔曼数据分析算法以及主成分数据分析方法,对所计算出的高度进行分析,确定该测量系统的参数,并最终得出当前目标当前的高度。
- 一种多人协作式楼层定位系统,其特征在于,包括:目标定位单元以及配备装置单元,用于采集定位人员实时所处的环境数据并返回给服务器;服务器单元,用于处理回馈过来的数据并负责将结果展示出来。
- 根据权利要求6所述的多人协作式楼层定位系统,其特征在于,所述的目标 定位单元以及配备装置单元包括:惯性传感器模块:主要通过收集目标定位单元的速度和加速度,以用来测量其相对于地面的垂直高度;危险报警模块:用于危险情况的手动或自动报警;电磁波收发模块:用来跟服务器通讯和跟协助单元通讯;救援模块:用于提供救援信息。
- 根据权利要求6所述的多人协作式楼层定位系统,其特征在于:所述的服务器单元包括:通讯模块:收发无线电信号,包括接收定位装置发送过来的目标定位单元楼层信息文件,以及发送指令给定位装置;数据处理模块:服务器收到定位装置发送过来的文件以后,得到两个信息:(1)目标定位单元相对于地面的垂直距离h1;(2)目标定位单元相对于协助单元的相对垂直距离h0;服务器还存储了该目标定位单元的上一周期所得到的相对于地面的垂直高度h2,以及协助单元相对于地面的垂直高度h3;服务器根据这四个值,进行主成分分析,得到目标定位单元当前相对于地面的高度h;时钟同步与控制模块:用来控制目标定位单元佩戴装置与协助单元通讯时的具体发送电磁波信号的时间片,以及确定楼层定位的周期;应用程序显示模块:数据处理模块计算出当前目标定位单元的高度以后,该模块将结果显示到用户界面,指挥人员观察现场目标定位单元的所在楼层位置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610175217.5 | 2016-03-25 | ||
CN201610175217.5A CN105938189B (zh) | 2016-03-25 | 2016-03-25 | 多人协作式楼层定位方法和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017161689A1 true WO2017161689A1 (zh) | 2017-09-28 |
Family
ID=57152520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/084194 WO2017161689A1 (zh) | 2016-03-25 | 2016-05-31 | 多人协作式楼层定位方法和系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105938189B (zh) |
WO (1) | WO2017161689A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108965459A (zh) * | 2018-08-02 | 2018-12-07 | 上海伟赛智能科技有限公司 | 一种基于射频技术的人员活动行为侦测系统 |
TWI671539B (zh) * | 2018-07-16 | 2019-09-11 | 劉勉志 | 消防員定位系統 |
CN114339609A (zh) * | 2021-12-23 | 2022-04-12 | 浙江中控技术股份有限公司 | 一种人员定位方法及装置 |
CN117641235A (zh) * | 2023-11-24 | 2024-03-01 | 深圳市南科物联科技有限公司 | 基于无线信号强度的楼层三维空间定位方法及系统 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108112002A (zh) * | 2017-12-28 | 2018-06-01 | 成都三朵云科技有限公司 | 一种应用于公安消防环境的定位方法及系统 |
CN108513259B (zh) * | 2018-02-07 | 2021-04-23 | 平安科技(深圳)有限公司 | 电子装置、楼层定位方法和计算机可读存储介质 |
CN108489484A (zh) * | 2018-03-12 | 2018-09-04 | 中国电子科技集团公司第二十八研究所 | 一种基于单兵智能可视眼镜的记忆路径导航方法 |
CN111541988B (zh) * | 2020-04-17 | 2021-11-23 | 北京理工大学重庆创新中心 | 一种基于重心坐标结合Taylor展开的三维室内定位方法 |
CN112716779A (zh) * | 2020-12-30 | 2021-04-30 | 南京航空航天大学 | 一种心肺复苏板及其监测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103957510A (zh) * | 2014-05-16 | 2014-07-30 | 南京工程学院 | 基于协作通信的环境自适应的室内定位算法 |
CN103994767A (zh) * | 2014-05-12 | 2014-08-20 | 东北大学 | 一种救援人员室内协同定位装置及方法 |
US20140274151A1 (en) * | 2013-03-15 | 2014-09-18 | Nextnav, Llc | Systems and Methods for Using Three-Dimensional Location Information to improve Location Services |
CN104205960A (zh) * | 2012-01-23 | 2014-12-10 | 诺基亚公司 | 收集定位参考数据 |
CN104656058A (zh) * | 2015-01-27 | 2015-05-27 | 谢之恒 | 分布式多移动节点协作定位系统 |
CN105044669A (zh) * | 2015-05-22 | 2015-11-11 | 中国电子科技集团公司第十研究所 | 三站测时差立体定位方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102264127B (zh) * | 2009-12-10 | 2014-08-06 | 浙江工业大学 | 基于共面度的无线传感网络的三维定位方法 |
CN102175240B (zh) * | 2011-02-28 | 2014-01-15 | 北京航空航天大学 | 消防员现场位置实时感知系统及其使用方法 |
CN104457750B (zh) * | 2014-11-17 | 2017-10-20 | 南京沃旭通讯科技有限公司 | 一种应急救援的人员定位系统及方法 |
CN204556817U (zh) * | 2015-02-10 | 2015-08-12 | 深圳市盛思维科技有限公司 | 基于信号能量序列的应急室内三维定位系统 |
-
2016
- 2016-03-25 CN CN201610175217.5A patent/CN105938189B/zh active Active
- 2016-05-31 WO PCT/CN2016/084194 patent/WO2017161689A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104205960A (zh) * | 2012-01-23 | 2014-12-10 | 诺基亚公司 | 收集定位参考数据 |
US20140274151A1 (en) * | 2013-03-15 | 2014-09-18 | Nextnav, Llc | Systems and Methods for Using Three-Dimensional Location Information to improve Location Services |
CN103994767A (zh) * | 2014-05-12 | 2014-08-20 | 东北大学 | 一种救援人员室内协同定位装置及方法 |
CN103957510A (zh) * | 2014-05-16 | 2014-07-30 | 南京工程学院 | 基于协作通信的环境自适应的室内定位算法 |
CN104656058A (zh) * | 2015-01-27 | 2015-05-27 | 谢之恒 | 分布式多移动节点协作定位系统 |
CN105044669A (zh) * | 2015-05-22 | 2015-11-11 | 中国电子科技集团公司第十研究所 | 三站测时差立体定位方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI671539B (zh) * | 2018-07-16 | 2019-09-11 | 劉勉志 | 消防員定位系統 |
CN108965459A (zh) * | 2018-08-02 | 2018-12-07 | 上海伟赛智能科技有限公司 | 一种基于射频技术的人员活动行为侦测系统 |
CN114339609A (zh) * | 2021-12-23 | 2022-04-12 | 浙江中控技术股份有限公司 | 一种人员定位方法及装置 |
CN114339609B (zh) * | 2021-12-23 | 2023-06-13 | 浙江中控技术股份有限公司 | 一种人员定位方法及装置 |
CN117641235A (zh) * | 2023-11-24 | 2024-03-01 | 深圳市南科物联科技有限公司 | 基于无线信号强度的楼层三维空间定位方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN105938189A (zh) | 2016-09-14 |
CN105938189B (zh) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017161689A1 (zh) | 多人协作式楼层定位方法和系统 | |
AU2021201818B2 (en) | Tracking and accountability device and system | |
US8744765B2 (en) | Personal navigation system and associated methods | |
CN104457750B (zh) | 一种应急救援的人员定位系统及方法 | |
US20040021569A1 (en) | Personnel and resource tracking method and system for enclosed spaces | |
EP2491343A1 (en) | Navigational system initialization system, process, and arrangement | |
US20170301207A1 (en) | Impact Force Estimation And Event Localization | |
CN102007426A (zh) | 用于人员的位置监视装置 | |
CN105574797A (zh) | 一种面向消防员协同的头戴式信息集成装置及方法 | |
JP2004518201A (ja) | 密閉空間用の人及び資源追跡方法及びシステム | |
CN108413958A (zh) | 应用于消防人员灾害现场实时跟踪的定位系统和方法 | |
US9858791B1 (en) | Tracking and accountability device and system | |
KR101063095B1 (ko) | 구조자 위치 실시간 추적관리 시스템 | |
KR20120055336A (ko) | 구조물 실내 위치 추적시스템 | |
TWI666618B (zh) | 救災防護裝置及其系統 | |
KR102398564B1 (ko) | 화재현장의 인명 구조를 위한 구조대원 투입 인원수 산출시스템 | |
Shuiqing et al. | Design of low cost pedestrian location system based on inertial navigation | |
Oyama et al. | Remote monitoring system with multi sensors on mobile communication for rescue operations | |
Tateno et al. | Remote monitoring system for rescue operations with wireless sensor network | |
Tateno et al. | Remote monitoring system with mobile communication for rescue operations | |
Desai et al. | Indoor localization for global information service using acoustic wireless sensor network | |
Okamoto et al. | Remote monitoring system with wireless network to support rescue operations | |
KR20200055373A (ko) | 소방대원의 실시간 상태 확인 및 실내 위치 트래킹 정보를 활용한 소방 지휘 시스템 | |
Karim et al. | Smartphone-based Indoor Tracking System for Firefighters in Action | |
AU2002245025A1 (en) | Personnel and resource tracking method and system for enclosed spaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16895041 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.02.2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16895041 Country of ref document: EP Kind code of ref document: A1 |