WO2017161508A1 - 基于钛酸铜铋钠陶瓷的高介电常数复合材料及其制备方法 - Google Patents
基于钛酸铜铋钠陶瓷的高介电常数复合材料及其制备方法 Download PDFInfo
- Publication number
- WO2017161508A1 WO2017161508A1 PCT/CN2016/077041 CN2016077041W WO2017161508A1 WO 2017161508 A1 WO2017161508 A1 WO 2017161508A1 CN 2016077041 W CN2016077041 W CN 2016077041W WO 2017161508 A1 WO2017161508 A1 WO 2017161508A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- dielectric constant
- composite material
- high dielectric
- material based
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
Definitions
- the present invention relates to a ceramic-based three-phase composite material, and more particularly to a high dielectric constant composite material based on copper titanate sodium silicate ceramic and a preparation method thereof, and belongs to the field of high dielectric composite materials.
- the ceramic volume fraction needs to reach 50% or more to reflect the effect of high dielectric constant.
- the dielectric constant of the composite increases, and the dielectric loss also It will increase accordingly, and since the elastic modulus of the ceramic material is much larger than the elastic modulus of the polymer matrix, the flexibility of the composite material is deteriorated, which affects the practical application, so it is necessary to develop a larger dielectric constant and maintain Composite materials with lower dielectric loss and excellent processability.
- a method for preparing a high dielectric constant composite material based on a copper strontium titanate ceramic comprising the following steps: [0007] (1) using CuO, Ti0 2 , 0 3 and ⁇ 2 0 3 as raw materials, Preparation of copper titanate sodium ceramic powder by solid phase method;
- step (3) (4) tiling the composite of step (3), vacuum drying to obtain a composite dielectric film; then placing the composite dielectric film into a mold, hot press forming a high dielectric constant composite based on copper strontium titanate ceramic material.
- di-n-hexylamine, copper strontium titanate ceramic powder, N-formylmorpholine, active silver particles, 5,5,-bis(triethoxysilyl)-3,3, - the mass ratio of bipyridine, diisoprene diepoxide, 3-trifluorohexyl propylene is (0.4 ⁇ 0.6): (1.2 ⁇ 1.5) : (0.5 ⁇ 0.6) : (0.02 ⁇ 0.03) : ( 0.5 to 0.8) :1: (0.2 ⁇ 0.3);
- the particle size of the copper strontium titanate ceramic powder is 320 to 450 nm, and the particle size of the nano silver particles is 80 to 120 nm;
- the high dielectric constant is based on the copper strontium titanate ceramic
- the high dielectric constant composite has a thickness of 1 to 3 mm.
- the proportion of ceramics is less than half, which is much lower than the proportion of ceramics in the existing high dielectric composite materials, and the dielectric constant of up to 138 can still be obtained;
- the nano silver is uniformly dispersed in In the network of organic-inorganic hybrid materials, a synergistic hot spot effect is formed, which can exert the dipole action between the components of the composite material, which is beneficial to improve the dielectric properties of the material; and the composite material of the invention has good application performance and good brittle resistance. , not easy to damage.
- the nano silver solution is prepared, and the ultrasonic dispersion is used to make it uniform, and the ultrasonic time is 0.5. ⁇ lh is suitable, and the nano silver particles are uniformly dispersed by ultrasonication; the stirring speed is 800 rpm, and the stirring time is 4 hours.
- the mass ratio of the nano silver to the isomeric tridecyl polyoxyethylene ether is 1:0.25, and the isomeric tridecanol polyoxyethylene ether may be a liquid or a solid.
- the solid phase method for preparing the copper strontium titanate ceramic powder is specifically mixing CuO, Ti0 2 , Na 2CO 2 0 3 ; mixing the raw materials into a ball mill tank, dispersing with anhydrous ethanol The agent is subjected to wet ball milling, the ball mill is 4 ⁇ 6h, the ball to material ratio is (1 ⁇ 3):1, after the grinding is completed, the mixture is placed in an oven at 60 ⁇ 80 °C for drying for 36 ⁇ 48h; then at 900° A copper barium titanate ceramic powder was prepared by keeping the temperature at C ⁇ 950 ° C for 10 ⁇ 16 h.
- the stirring is stirred by a power agitator.
- the stirring speed of stirring and mixing for 1 hour is 1200 rpm, and the stirring speed of stirring for 2 hours is 1800 rpm.
- the interfacial bonding force between the raw materials is the key to achieving excellent performance of the three-phase composite material.
- the present invention preferably mixes various raw materials, and the stirring speed changes, thereby avoiding powder/particle agglomeration caused by too slow and too fast, thereby The problem of large interface defects between the raw materials after the molding of the composite material is avoided; the obtained product is guaranteed to have a high dielectric constant, a low dielectric loss, and excellent processing properties.
- the vacuum drying temperature is 125 ° C
- the daytime is 2.2 h
- the hot press forming temperature is 22 0 ° C
- the daytime is 42 minutes
- the pressure is automatically compensated by the spring fixed in the body
- the film can be made denser by vacuum drying.
- the solvent is volatilized, and the organic matter is continuously reacted, thereby avoiding the problem that the solvent is not volatile or the solvent residual pores are large, and the dense film is obtained by hot pressing to prepare the components with excellent interfacial properties and comprehensive properties.
- a good high dielectric constant composite based on copper barium titanate ceramics provides a favorable basis.
- the epoxy monomer is continuously polymerized in the presence of other organic materials to obtain a three-phase composite material with a modified epoxy resin as the main component, a copper barium titanate sodium ceramic powder filled polymer network, and a uniform dispersion of active silver particles. . Therefore, the present invention also discloses a high dielectric constant composite material based on a copper titanate sodium silicate ceramic prepared according to the above method and the high dielectric constant composite material based on the copper strontium titanate ceramic in the preparation of a high energy storage capacitor.
- the invention adopts a solid phase method for preparing a ceramic raw material, has a simple preparation process, is easy to obtain raw materials and has low cost, and requires no special equipment requirements, and is suitable for large-scale production; the prepared copper strontium titanate ceramic powder has no pollution to the environment, and Without electrostriction effect, the nano-silver particles with good conductivity are introduced as the third phase filler, so that the composite material maintains a low dielectric loss in the same material with high dielectric constant, due to the inorganic component of the composite material.
- the low content of the composite material is advantageous for the composite material to maintain excellent machinability in the high dielectric constant of the same material, and the preparation of the high dielectric constant composite material based on the high titanate of the titanium titanate is not caused by the material. Mechanical fatigue.
- the active silver particles are prepared by adding 10 g of nano silver particles (particle diameter of 80 to 120 nm) to 6 g of N,N-dimethylformamide to obtain a nanosilver solution; and then adding 2.5 g.
- the isomeric tridecanol polyoxyethylene ether was stirred for 2 hours, and then hydrazine, hydrazine-dimethylformamide was removed to obtain active silver particles.
- the vacuum drying temperature was 125 ° C and the crucible was 2.2 h; the hot press forming temperature was 220 ° C and the daytime was 42 minutes, and the pressure was automatically compensated by a spring fixed in the body.
- the active silver particles are mixed with 5 g of 5,5'-bis(triethoxysilyl)-3,3'-bipyridine, and stirred for 2 hours to obtain a mixture; then 10 g of diisoprene diepoxide, 2 g 3 - Decafluorohexylpropene is added to the mixture, and stirred at 170 ° C for 5 minutes to obtain a composite; the composite is tiled and vacuum dried to obtain a composite dielectric film; then the composite dielectric film is placed in a mold, and hot press forming is performed based on titanium.
- Embodiment 4 Weigh 23.87 grams of CuO, 31.95 grams of Ti0 2 , 2.65 grams of Na 2 C0 3 and 11.65 grams of Bi 2 0 3 ; Mixing raw materials into a ball mill jar, wet ball milling with anhydrous ethanol as a dispersing agent The ball mill is 4h, the ball-to-batch ratio is 2:1. After the grinding is completed, the mixture is placed in an oven at 80 ° C for 36 hours; then, at 950 ° C for 10 hours, the copper titanate sodium ceramic powder is prepared. The particle size of the copper strontium titanate ceramic powder is controlled to be 32 0 to 450 nm.
- the composite is obtained; the composite is tiled, and the composite dielectric film is obtained by vacuum drying; then the composite dielectric film is placed in a mold, and a high dielectric constant composite material based on copper barium titanate ceramic is obtained by hot press forming; The surface was coated with conductive silver paste. After drying at 40 ° C, the dielectric properties of the sample were tested by a broadband dielectric resistance spectrometer. The relative dielectric constant and dielectric loss of the product are shown in Table 1.
- Table 1 shows the relative dielectric constant and dielectric loss values of the above composite materials.
- the high dielectric constant composite material based on the copper titanate sodium silicate ceramic prepared by the invention has a high dielectric constant value under the armpit, much larger than the ceramic/polymer material, and has a low dielectric loss. , Suitable for capacitors and other fields.
- the high dielectric constant composite material prepared by the invention is based on the low dielectric content of the high dielectric constant composite material, which is beneficial to the processing and molding of the product, the equipment used is simple, the preparation process is not complicated, and the molding conditions are not harsh, avoiding
- the existing ceramic polymer high dielectric constant material has the defects of high processing temperature, large energy consumption and complicated process.
- the three-phase composite material prepared by the same method has good mechanical properties and overcomes the existing high dielectric constant ceramic polymer.
- the material is fragile and prone to cracking, and at a lower ceramic powder content, a high dielectric constant is still obtained, and an unexpected technical effect is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
一种基于钛酸铜铋钠陶瓷的高介电常数复合材料、其制备方法及其应用。该基于钛酸铜铋钠陶瓷的高介电常数复合材料由钛酸铜铋钠陶瓷粉末、聚合物和纳米银粒子混合均匀后经热压成型制得。该基于钛酸铜铋钠陶瓷的高介电常数复合材料相对介电常数在1KHz下可达138,在高储能电容器等领域具有广阔的应用前景。
Description
说明书
发明名称:基于钛酸铜铋钠陶瓷的高介电常数复合材料及其制备方 法
技术领域
[0001] 本发明涉及一种陶瓷基三相复合材料, 具体涉及一种基于钛酸铜铋钠陶瓷的高 介电常数复合材料及其制备方法, 属于高介电复合材料领域。
背景技术
[0002] 近年来, 随着电子设备发展的日新月异, 广泛使用的电容器向高储能、 小型化 以及有利于环保的方向发展, 幵发具有良好介电性能, 同吋又具有较高力学强 度和可加工性能的介电材料, 特别是高介电常数聚合物基复合材料成为近些年 研究的热点之一。 陶瓷电介质材料具有非常优异的介电性能, 但是多层陶瓷电 容器在制造过程中需要丝网电极进行共烧, 耗能大, 工艺复杂, 而且这种介质 材料的柔韧性差, 在经受机械撞击或者剧烈的温度变化吋可能产生裂纹, 影响 了电容器的使用。 聚合物材料具有优良的加工性能、 较低的加工温度和较低的 介电损耗。 但聚合物材料介电常数普遍较低, 为了弥补单一组分材料的缺陷, 将两种或两种以上的材料进行混合, 有望制备出具有优越性能的陶瓷 /聚合物基 复合材料。
技术问题
[0003] 但是陶瓷体积分数需要达到 50%以上才会体现高介电常数的效果, 通常情况下 , 随着陶瓷填料体积分数的增加, 复合材料的介电常数增加的同吋, 介电损耗 也会相应增加, 并由于陶瓷材料的弹性模量远大于聚合物基质的弹性模量, 这 就使得该类复合材料的柔顺性变差, 影响到实际应用, 所以需要研发更大介电 常数且保持较低介电损耗、 优良加工性能的复合材料。
问题的解决方案
技术解决方案
[0004] 本发明的目的是要提供一种制备工艺简单、 原料易得, 且具有高介电常数的基
于钛酸铜铋钠陶瓷的高介电常数复合材料及其制备方法; 本发明方法能够获得 相对介电常数在 ΙΚΗζ下高达 138的三相复合材料, 在相同介电常数下, 由于复合 材料含有陶瓷填充量低, 因此具有非常好的加工性能, 比较低的加工温度, 同 吋材料的介电损耗很低, 成本也相对较低。
[0005] 为实现本发明目的, 本发明采用以下技术方案:
[0006] 一种基于钛酸铜铋钠陶瓷的高介电常数复合材料的制备方法, 包括以下步骤: [0007] (1) 以 CuO、 Ti0 2、 0 3和^ 20 3为原料, 采用固相法制备出钛酸铜铋钠 陶瓷粉末;
[0008] (2) 将纳米银粒子加入 Ν,Ν-二甲基甲酰胺中, 得到纳米银溶液; 然后再加入 异构十三醇聚氧乙烯醚, 搅拌 2小吋, 然后除去 Ν,Ν-二甲基甲酰胺, 得到活性银 粒子;
[0009] (3) 将二正己胺、 钛酸铜铋钠陶瓷粉末搅拌混合 1小吋, 再依次加入 Ν-甲酰吗 啉、 活性银粒子与 5,5'-双 (三乙氧基硅基) -3,3'-联吡啶, 搅拌混合 2小吋得到混 合物; 然后依次将二异戊二烯二环氧化物、 3-十三氟己基丙烯加入混合物中, 于 170°C搅拌 5分钟, 得到复合物;
[0010] (4) 平铺步骤 (3) 的复合物, 真空干燥得到复合介质膜; 然后将复合介质膜 置入模具中, 热压成型得到基于钛酸铜铋钠陶瓷的高介电常数复合材料。
[0011] 上述技术方案中, 二正己胺、 钛酸铜铋钠陶瓷粉末、 N-甲酰吗啉、 活性银粒子 、 5,5,-双 (三乙氧基硅基) -3,3,-联吡啶、 二异戊二烯二环氧化物、 3-十三氟己 基丙烯的质量比为 (0.4〜0.6) : (1.2〜1.5) : (0.5〜0.6) : (0.02〜0.03) : (0.5 〜0.8) :1: (0.2〜0.3) ; 钛酸铜铋钠陶瓷粉末的粒径为 320〜450nm, 纳米银粒 子的粒径为 80〜120nm; 高介电常数基于钛酸铜铋钠陶瓷的高介电常数复合材料 的厚度为 l〜3mm。 本发明的复合材料中, 换算成体积比, 陶瓷占比不到一半, 远低于现有高介电复合材料中的陶瓷占比, 依然可以取得高达 138的介电常数; 纳米银均匀分散于有机无机杂化材料的网络中, 形成协同热点效应, 能够发挥 复合材料各组分之间的偶极作用, 有利于提高材料的介电性能; 而且本发明的 复合材料应用性能良好, 抗脆性好、 不易损坏。
[0012] 上述技术方案中, 制备纳米银溶液吋, 采用超声分散使其均匀, 超声吋间以 0.5
〜lh为宜, 通过超声后有助于纳米银粒子均匀分散; 搅拌速度为 800rpm, 搅拌 吋间为 4h。 纳米银与异构十三醇聚氧乙烯醚的质量比为 1:0.25, 异构十三醇聚氧 乙烯醚可以为液体也可以为固体。
[0013] 上述技术方案中, 固相法制备出钛酸铜铋钠陶瓷粉末具体为将 CuO、 Ti0 2、 Na 2CO 20 3混合; 将混合原料放入球磨罐中, 以无水乙醇为分散剂进行湿法 球磨, 球磨吋间为 4〜6h, 球料比为 (1〜3) :1, 研磨完成后将混合料置于烘箱 中 60〜80°C干燥 36〜48h; 然后于 900°C〜950°C下保温 10〜16h小吋制备出钛酸铜 铋钠陶瓷粉末。
[0014] 上述技术方案中, 搅拌采用电动搅拌器搅拌, 步骤 (3) 中, 搅拌混合 1小吋的 搅拌速度为 1200rpm, 搅拌混合 2小吋的搅拌速度为 1800rpm。 先混合小分子有机 物与陶瓷粉体, 增加陶瓷粉体的表面效应, 从而在与其他有机组分混合吋, 产 生极强的界面效应; 对纳米银粒子先进行活化处理, 然后在 N-甲酰吗啉加入后 接着加入活化后的纳米银粒子, 可以有效增加银粒子的反应性, 有利于纳米银 离子在陶瓷聚合物网络中分散均匀, 极好的发挥提升介电性能的效果。
[0015] 原料之间的界面结合力是三相复合材料取得优异性能的关键, 本发明优选各种 原料混合吋, 搅拌速度变化, 避免了过慢、 过快导致的粉体 /粒子团聚, 从而避 免了复合材料成型后, 各原料之间的界面缺陷大的问题; 保证得到的产品具有 高的介电常数、 低的介电损耗, 还具有优异的加工性能。
[0016] 上述技术方案中, 真空干燥的温度为 125°C, 吋间为 2.2h; 热压成型的温度为 22 0°C, 吋间为 42分钟, 压力由固定在机体内的弹簧自动补偿; 通过真空干燥后可 以使膜变得更致密。 通过控制干燥温度与吋间, 使得溶剂挥发的同吋, 有机物 不断反应, 从而避免溶剂挥发不尽或者溶剂残孔大的问题, 得到致密的薄膜为 热压制备各组分界面性能优异、 综合性能良好的基于钛酸铜铋钠陶瓷的高介电 常数复合材料提供有利的基础。 在高温压制下, 环氧单体在其他有机物存在下 , 不断聚合, 得到以改性环氧树脂为主体, 钛酸铜铋钠陶瓷粉末填充聚合物网 络、 活性银粒子均匀分散的三相复合材料。 因此, 本发明还公幵了根据上述方 法制备的基于钛酸铜铋钠陶瓷的高介电常数复合材料以及该基于钛酸铜铋钠陶 瓷的高介电常数复合材料在制备高储能电容器中的应用。
发明的有益效果
有益效果
[0017] 本发明采用固相法制备陶瓷原料, 制备工艺简单, 所用原料易得且成本低廉, 无需特殊设备要求, 适合大规模生产; 制备的钛酸铜铋钠陶瓷粉末对环境无污 染, 且不具有电致伸缩效应, 以导电性好的纳米银粒子作为第三相填料引入后 , 使得复合材料在拥有高介电常数的同吋保持较低的介电损耗, 由于复合材料 的无机组分的含量低, 有利于复合材料在拥有高介电常数的同吋保持优异的机 械加工性能, 并且制备的基于钛酸铜铋钠陶瓷的高介电常数复合材料长吋间使 用不会导致材料的机械疲劳。
本发明的实施方式
[0018] 本实施例中, 活性银粒子的制备为, 将 10g纳米银粒子 (粒径为 80〜120nm) 加入 6gN,N-二甲基甲酰胺中, 得到纳米银溶液; 然后再加入 2.5g异构十三醇聚氧 乙烯醚, 搅拌 2小吋, 然后除去 Ν,Ν-二甲基甲酰胺, 得到活性银粒子。 真空干燥 的温度为 125°C, 吋间为 2.2h; 热压成型的温度为 220°C, 吋间为 42分钟, 压力由 固定在机体内的弹簧自动补偿。
[0019] 实施例一
[0020] 分别称取 CuO 23.87克、 Ti0 2 31.95克、 Na 2CO 32.65克和 Bi 20 3 11.65克混合; 将混合原料放入球磨罐中, 以无水乙醇为分散剂进行湿法球磨, 球磨吋间为 4h , 球料比为 1:1, 研磨完成后将混合料置于烘箱中 60°C干燥 48h; 然后于 950°C下 保温 10h小吋制备出钛酸铜铋钠陶瓷粉末, 控制钛酸铜铋钠陶瓷粉末的粒径为 32 0〜450nm; 将 4g二正己胺、 12g钛酸铜铋钠陶瓷粉末搅拌混合 1小吋, 再依次加 入 5gN-甲酰吗啉、 0.2g活性银粒子与 5g5,5'-双 (三乙氧基硅基) -3,3'-联吡啶, 搅拌混合 2小吋得到混合物; 然后依次将 10g二异戊二烯二环氧化物、 2g3-十三氟 己基丙烯加入混合物中, 于 170°C搅拌 5分钟, 得到复合物; 平铺复合物, 真空干 燥得到复合介质膜; 然后将复合介质膜置入模具中, 热压成型得到基于钛酸铜 铋钠陶瓷的高介电常数复合材料; 然后在样品表面涂导电银浆, 待 40°C干燥后用 宽频介电阻抗谱仪测试样品的介电性能, 产品的相对介电常数及介电损耗如表 1
所示。
[0021] 实施例二
[0022] 分别称取 CuO 23.87克、 Ti0 2 31.95克、 Na 2CO 32.65克和 Bi 20 3 11.65克混合; 将混合原料放入球磨罐中, 以无水乙醇为分散剂进行湿法球磨, 球磨吋间为 6h , 球料比为 2:1, 研磨完成后将混合料置于烘箱中 60°C干燥 45h; 然后于 950°C下 保温 12h小吋制备出钛酸铜铋钠陶瓷粉末, 控制钛酸铜铋钠陶瓷粉末的粒径为 32 0〜450nm。 将 6g二正己胺、 15g钛酸铜铋钠陶瓷粉末搅拌混合 1小吋, 再依次加 入 6gN-甲酰吗啉、 0.3g活性银粒子与 8g5,5'-双 (三乙氧基硅基) -3,3'-联吡啶, 搅拌混合 2小吋得到混合物; 然后依次将 10g二异戊二烯二环氧化物、 3g3-十三氟 己基丙烯加入混合物中, 于 170°C搅拌 5分钟, 得到复合物; 平铺复合物, 真空干 燥得到复合介质膜; 然后将复合介质膜置入模具中, 热压成型得到基于钛酸铜 铋钠陶瓷的高介电常数复合材料; 然后在样品表面涂导电银浆, 待 40°C干燥后用 宽频介电阻抗谱仪测试样品的介电性能, 产品的相对介电常数及介电损耗如表 1 所示。
[0023] 实施例三
[0024] 分别称取 CuO 23.87克、 Ti0 2 31.95克、 Na 2CO 32.65克和 Bi 20 3 11.65克混合; 将混合原料放入球磨罐中, 以无水乙醇为分散剂进行湿法球磨, 球磨吋间为 5h , 球料比为 3:1, 研磨完成后将混合料置于烘箱中 70°C干燥 40h; 然后于 900°C下 保温 16h小吋制备出钛酸铜铋钠陶瓷粉末, 控制钛酸铜铋钠陶瓷粉末的粒径为 32 0〜450nm。 将 5g二正己胺、 12g钛酸铜铋钠陶瓷粉末搅拌混合 1小吋, 再依次加 入 5gN-甲酰吗啉、 0.2g活性银粒子与 7g5,5'-双 (三乙氧基硅基) -3,3'-联吡啶, 搅拌混合 2小吋得到混合物; 然后依次将 10g二异戊二烯二环氧化物、 2g3-十三氟 己基丙烯加入混合物中, 于 170°C搅拌 5分钟, 得到复合物; 平铺复合物, 真空干 燥得到复合介质膜; 然后将复合介质膜置入模具中, 热压成型得到基于钛酸铜 铋钠陶瓷的高介电常数复合材料; 然后在样品表面涂导电银浆, 待 40°C干燥后用 宽频介电阻抗谱仪测试样品的介电性能, 产品的相对介电常数及介电损耗如表 1 所示。
[0025] 实施例四
[0026] 分别称取 CuO 23.87克、 Ti0 2 31.95克、 Na 2C0 32.65克和Bi 20 3 11.65克混合; 将混合原料放入球磨罐中, 以无水乙醇为分散剂进行湿法球磨, 球磨吋间为 4h , 球料比为 2:1, 研磨完成后将混合料置于烘箱中 80°C干燥 36h; 然后于 950°C下 保温 10h小吋制备出钛酸铜铋钠陶瓷粉末, 控制钛酸铜铋钠陶瓷粉末的粒径为 32 0〜450nm。 将 5g二正己胺、 15g钛酸铜铋钠陶瓷粉末搅拌混合 1小吋, 再依次加 入 6gN-甲酰吗啉、 0.2g活性银粒子与 8g5,5'-双 (三乙氧基硅基) -3,3'-联吡啶, 搅拌混合 2小吋得到混合物; 然后依次将 10g二异戊二烯二环氧化物、 2g3-十三氟 己基丙烯加入混合物中, 于 170°C搅拌 5分钟, 得到复合物; 平铺复合物, 真空干 燥得到复合介质膜; 然后将复合介质膜置入模具中, 热压成型得到基于钛酸铜 铋钠陶瓷的高介电常数复合材料; 然后在样品表面涂导电银浆, 待 40°C干燥后用 宽频介电阻抗谱仪测试样品的介电性能, 产品的相对介电常数及介电损耗如表 1 所示。
[0027] 实施例五
[0028] 分别称取 CuO 23.87克、 Ti0 2 31.95克、 Na 2C0 32.65克和Bi 20 3 11.65克混合; 将混合原料放入球磨罐中, 以无水乙醇为分散剂进行湿法球磨, 球磨吋间为 6h , 球料比为 2:1, 研磨完成后将混合料置于烘箱中 60°C干燥 45h; 然后于 950°C下 保温 12h小吋制备出钛酸铜铋钠陶瓷粉末, 控制钛酸铜铋钠陶瓷粉末的粒径为 32 0〜450nm。 将 5g二正己胺、 13g钛酸铜铋钠陶瓷粉末搅拌混合 1小吋, 再依次加 入 5.5gN-甲酰吗啉、 0.25g活性银粒子与 6g5,5'-双 (三乙氧基硅基) -3,3'-联吡啶 , 搅拌混合 2小吋得到混合物; 然后依次将 10g二异戊二烯二环氧化物、 2.2g3-十 三氟己基丙烯加入混合物中, 于 170°C搅拌 5分钟, 得到复合物; 平铺复合物, 真 空干燥得到复合介质膜; 然后将复合介质膜置入模具中, 热压成型得到基于钛 酸铜铋钠陶瓷的高介电常数复合材料; 然后在样品表面涂导电银浆, 待 40°C干燥 后用宽频介电阻抗谱仪测试样品的介电性能, 产品的相对介电常数及介电损耗 如表 1所示。
[0029] 对比例一
23.87克、 Ti0 2 31.95克、 Na 2CO 32.65克和 Bi 20 3 11.65克混合; 将混合原料放入
球磨罐中, 以无水乙醇为分散剂进行湿法球磨, 球磨吋间为 5h, 球料比为 2: 1 , 研磨完成后将混合料置于烘箱中 80°C干燥 48h; 然后于 950°C下保温 10h制备出 钛酸铜铋钠陶瓷粉末, 控制钛酸铜铋钠陶瓷粉末的粒径为 320〜450nm。
[0031] 称取聚偏氟乙烯粉末 0.65克溶于 Ν,Ν-二甲基甲酰胺中, 待聚偏氟乙烯充分溶解 后加入上述方法制备的钛酸铜铋钠陶瓷粉末 2.10克, 用电动搅拌机搅拌, 搅拌转 速为 700
rpm, 搅拌吋间为 7h; 待搅拌完成后, 将原料混合液平铺在玻璃板上, 60°C真空 干燥 24小吋后从玻璃板上揭下复合介质膜, 将其放入热压成型模具中进行压制 , 热压温度为 210°C, 保压吋间为 40min, 制成钛酸铜铋钠 /聚偏氟乙烯复合材料 ; 然后在样品表面涂覆导电银浆, 待 40°C干燥后用宽频介电阻抗谱仪测试样品的 介电性能, 产品的相对介电常数及介电损耗如表 1所示。
[0032] 对比例二
23.87克、 Ti0 2 31.95克、 Na 2CO 32.65克和 Bi 20 3 11.65克混合; 将混合原料放入 球磨罐中, 以无水乙醇为分散剂进行湿法球磨, 球磨吋间为 6h, 球料比为 2: 1 , 研磨完成后将混合料置于烘箱中 70°C干燥 48h; 然后于 950°C下保温 12h制备出 钛酸铜铋钠陶瓷粉末, 控制钛酸铜铋钠陶瓷粉末的粒径为 320〜450nm。
[0034] 称取聚偏氟乙烯粉末 0.84克溶于 Ν,Ν-二甲基甲酰胺中, 待聚偏氟乙烯充分溶解 后加入上述方法制备的钛酸铜铋钠陶瓷粉末 1.80克, 用电动搅拌机搅拌, 搅拌转 速为 700
rpm, 搅拌吋间为 7h; 待搅拌完成后, 将原料混合液平铺在玻璃板上, 60°C真空 干燥 24小吋后从玻璃板上揭下复合介质膜, 将其放入热压成型模具中进行压制 , 热压温度为 210°C, 保压吋间为 40min, 制成钛酸铜铋钠 /聚偏氟乙烯复合材料 ; 然后在样品表面涂覆导电银浆, 待 40°C干燥后用宽频介电阻抗谱仪测试样品的 介电性能, 产品的相对介电常数及介电损耗如表 1所示。
表 1为上述复合材料的相对介电常数以及介电损耗数值。 以上结果可以看出, 本发明制备的基于钛酸铜铋钠陶瓷的高介电常数复合材料在 ΙΚΗζ下具有高的介 电常数值, 远大于陶瓷 /聚合物材料, 并且具有低的介电损耗, 适用于电容器等 领域。 尤其是, 本发明制备基于钛酸铜铋钠陶瓷的高介电常数复合材料中无机 材料的含量偏低, 有利于产品的加工成型, 所用设备简单、 制备工艺不复杂、 成型条件不苛刻, 避免了现有陶瓷聚合物高介电常数材料带来的加工温度高、 耗能大、 工艺复杂的缺陷, 同吋制备的三相复合材料机械性能好, 克服了现有 高介电常数陶瓷聚合物材料易脆、 易裂的问题, 而且在较低陶瓷粉末含量下, 依然得到高的介电常数, 取得了意想不到的技术效果。
Claims
[权利要求 1] 一种基于钛酸铜铋钠陶瓷的高介电常数复合材料的制备方法, 其特征 在于, 包括以下步骤:
(1) 以 CuO、 Ti0 2、 Na 2C0 3和Bi 20 3为原料, 采用固相法制备出钛 酸铜铋钠陶瓷粉末;
(2) 将纳米银粒子加入 Ν,Ν-二甲基甲酰胺中, 得到纳米银溶液; 然 后再加入异构十三醇聚氧乙烯醚, 搅拌 2小吋, 然后除去 Ν,Ν-二甲基 甲酰胺, 得到活性银粒子;
(3) 将二正己胺、 钛酸铜铋钠陶瓷粉末搅拌混合 1小吋, 再依次加入 Ν-甲酰吗啉、 活性银粒子与 5,5'-双 (三乙氧基硅基) -3,3'-联吡啶, 搅拌混合 2小吋得到混合物; 然后依次将二异戊二烯二环氧化物、 3- 十三氟己基丙烯加入混合物中, 于 170°C搅拌 5分钟, 得到复合物;
(4) 平铺步骤 (3) 的复合物, 真空干燥得到复合介质膜; 然后将复 合介质膜置入模具中, 热压成型得到基于钛酸铜铋钠陶瓷的高介电常 数复合材料。
[权利要求 3] 根据权利要求 1所述基于钛酸铜铋钠陶瓷的高介电常数复合材料的制 备方法, 其特征在于: 步骤 (2) 中, 纳米银溶液制备吋, 采用超声 分散的方式, 超声分散吋间为 0.5〜lh; 搅拌速度为 800rpm, 搅拌吋 间为 4h; 纳米银与异构十三醇聚氧乙烯醚的质量比为 1:0.25。
[权利要求 4] 根据权利要求 1所述基于钛酸铜铋钠陶瓷的高介电常数复合材料的制 备方法, 其特征在于: 步骤 (3) 中, 搅拌混合 1小吋的搅拌速度为 12 OOrpm, 搅拌混合 2小吋的搅拌速度为 1800rpm。
[权利要求 5] 根据权利要求 1所述基于钛酸铜铋钠陶瓷的高介电常数复合材料的制 备方法, 其特征在于: 步骤 (3) 中, 二正己胺、 钛酸铜铋钠陶瓷粉 末、 N-甲酰吗啉、 活性银粒子、 5,5,-双 (三乙氧基硅基) -3,3,-联吡 啶、 二异戊二烯二环氧化物、 3-十三氟己基丙烯的质量比为 (0.4〜0. 6) : ( 1.2〜1.5) : (0.5〜0.6) : (0.02〜0.03) : (0.
5〜0.8) : 1: (0.2〜 0.3) 。
[权利要求 6] 根据权利要求 1所述基于钛酸铜铋钠陶瓷的高介电常数复合材料的制 备方法, 其特征在于: 步骤 (4) 中, 真空干燥的温度为 125°C, 吋间 为 2.2h; 热压成型的温度为 220°C, 吋间为 42分钟。
[权利要求 7] 根据权利要求 1所述基于钛酸铜铋钠陶瓷的高介电常数复合材料的制 备方法, 其特征在于: 所述钛酸铜铋钠陶瓷粉末的粒径为 320〜450n m; 纳米银粒子的粒径为 80〜120nm。
[权利要求 8] 根据权利要求 1〜7所述任意一种基于钛酸铜铋钠陶瓷的高介电常数复 合材料的制备方法制备的基于钛酸铜铋钠陶瓷的高介电常数复合材料
[权利要求 9] 根据权利要求 8所述基于钛酸铜铋钠陶瓷的高介电常数复合材料, 其 特征在于: 所述基于钛酸铜铋钠陶瓷的高介电常数复合材料的厚度为 权利要求 8所述基于钛酸铜铋钠陶瓷的高介电常数复合材料在制备高 储能电容器中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/077041 WO2017161508A1 (zh) | 2016-03-22 | 2016-03-22 | 基于钛酸铜铋钠陶瓷的高介电常数复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/077041 WO2017161508A1 (zh) | 2016-03-22 | 2016-03-22 | 基于钛酸铜铋钠陶瓷的高介电常数复合材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017161508A1 true WO2017161508A1 (zh) | 2017-09-28 |
Family
ID=59899848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/077041 WO2017161508A1 (zh) | 2016-03-22 | 2016-03-22 | 基于钛酸铜铋钠陶瓷的高介电常数复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017161508A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101661991A (zh) * | 2009-09-16 | 2010-03-03 | 四川大学 | 无铅压电陶瓷与聚乙烯醇压电复合材料及其制备方法 |
CN101671178A (zh) * | 2009-09-24 | 2010-03-17 | 华中科技大学 | 一种Bi0.5Na0.5Cu3Ti4O12巨介电非线性压敏陶瓷的制备方法 |
CN101712784A (zh) * | 2009-10-29 | 2010-05-26 | 西安交通大学 | 一种核壳结构填料/聚合物基复合材料及其制备方法 |
CN102219508A (zh) * | 2011-03-16 | 2011-10-19 | 陕西师范大学 | 镧取代钛酸铜铋钠巨介电陶瓷材料及其制备方法 |
CN102249596A (zh) * | 2011-03-25 | 2011-11-23 | 四川大学 | 高介电常数铌酸盐系无铅压电陶瓷-聚合物三相复合材料 |
CN104844195A (zh) * | 2015-04-28 | 2015-08-19 | 苏州大学 | 一种制备钛酸铜铋钠陶瓷的方法 |
-
2016
- 2016-03-22 WO PCT/CN2016/077041 patent/WO2017161508A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101661991A (zh) * | 2009-09-16 | 2010-03-03 | 四川大学 | 无铅压电陶瓷与聚乙烯醇压电复合材料及其制备方法 |
CN101671178A (zh) * | 2009-09-24 | 2010-03-17 | 华中科技大学 | 一种Bi0.5Na0.5Cu3Ti4O12巨介电非线性压敏陶瓷的制备方法 |
CN101712784A (zh) * | 2009-10-29 | 2010-05-26 | 西安交通大学 | 一种核壳结构填料/聚合物基复合材料及其制备方法 |
CN102219508A (zh) * | 2011-03-16 | 2011-10-19 | 陕西师范大学 | 镧取代钛酸铜铋钠巨介电陶瓷材料及其制备方法 |
CN102249596A (zh) * | 2011-03-25 | 2011-11-23 | 四川大学 | 高介电常数铌酸盐系无铅压电陶瓷-聚合物三相复合材料 |
CN104844195A (zh) * | 2015-04-28 | 2015-08-19 | 苏州大学 | 一种制备钛酸铜铋钠陶瓷的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dang et al. | Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3 | |
CN102010685B (zh) | 一种环氧树脂导电胶粘剂及其制备方法 | |
CN104530616B (zh) | 一种高介电性能低损耗片状钛酸钡基/聚合物复合材料及其制备方法 | |
CN101712784A (zh) | 一种核壳结构填料/聚合物基复合材料及其制备方法 | |
CN108570202A (zh) | 聚四氟乙烯复合基板材料的制备方法 | |
CN105038045A (zh) | 一种氧化石墨烯/聚偏氟乙烯复合薄膜的制备方法 | |
CN102702652A (zh) | 一种高介电常数低损耗金属/聚合物复合材料及其制备方法 | |
CN108501488A (zh) | 一种高频高速覆铜板及其制备方法 | |
CN106519516B (zh) | 一种基于石蜡包覆钛酸钡纳米颗粒的介电复合材料及其制备方法 | |
CN109897341B (zh) | 一种改性石墨烯增强环氧树脂的复合材料及制备方法 | |
CN103087449A (zh) | 一种高导热高介电低损耗聚合物纳米复合材料的制备方法 | |
CN112063085B (zh) | 复合柔性高介电薄膜及其制备方法和应用 | |
CN108546124B (zh) | 一种bczt基无铅压电陶瓷的制备方法 | |
CN104292764A (zh) | 一种用于高储能电容器的复合介电材料及其制备方法 | |
CN109698040A (zh) | 一种水基电子浆料及其制备方法 | |
Shifeng et al. | Poling process and piezoelectric properties of lead zirconate titanate/sulphoaluminate cement composites | |
Wang et al. | Fabrications and dielectric performances of novel composites: Calcium copper titanate/Polyvinylidene fluoride | |
CN103467986A (zh) | 有机小分子修饰的纳米碳化钛/聚酰亚胺复合材料 | |
CN108003520B (zh) | 一种高介电性能聚偏氟乙烯碳化钛纳米片复合材料的制备方法 | |
Chen et al. | Pluronic F127‐modified BaTiO3 for ceramic/polymer nanocomposite dielectric capacitor with enhanced energy storage performance | |
CN103587170A (zh) | 一种电绝缘复合材料及其制备方法 | |
CN102936351A (zh) | 一种聚偏氟乙烯/钛酸钡复合膜材料的制备方法 | |
Fu et al. | Improved dielectric stability of epoxy composites with ultralow boron nitride loading | |
WO2017161508A1 (zh) | 基于钛酸铜铋钠陶瓷的高介电常数复合材料及其制备方法 | |
CN115073932B (zh) | 一种高介电液晶高分子复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16894863 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16894863 Country of ref document: EP Kind code of ref document: A1 |