WO2017159994A1 - 폴리프로필렌 - Google Patents

폴리프로필렌 Download PDF

Info

Publication number
WO2017159994A1
WO2017159994A1 PCT/KR2017/001550 KR2017001550W WO2017159994A1 WO 2017159994 A1 WO2017159994 A1 WO 2017159994A1 KR 2017001550 W KR2017001550 W KR 2017001550W WO 2017159994 A1 WO2017159994 A1 WO 2017159994A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
formula
alkyl
clause
carbon atoms
Prior art date
Application number
PCT/KR2017/001550
Other languages
English (en)
French (fr)
Inventor
최지호
정인용
노경섭
이원상
전상진
안상은
이상훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170018677A external-priority patent/KR102061282B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/765,762 priority Critical patent/US10604597B2/en
Priority to CN201780003953.5A priority patent/CN108350114B/zh
Priority to EP17766895.1A priority patent/EP3431516B1/en
Publication of WO2017159994A1 publication Critical patent/WO2017159994A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Definitions

  • the present invention relates to polypropylene, which exhibits high transparency and has a very low generation of volatile organic compounds.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics.
  • the Ziegler-Natta catalyst has been widely applied to existing commercial processes since the invention in the 50's, but because it is a multi-site catalyst having many active sites, the molecular weight distribution of the polymer is broad, and the composition of the comonomer There is a problem in that there is a limit in securing the desired physical properties because the distribution is not uniform.
  • the metallocene catalyst is composed of a combination of a main catalyst composed mainly of a transition metal compound and a cocatalyst composed of an organometallic compound composed mainly of aluminum.
  • a catalyst is a homogeneous complex catalyst, which is a single site catalyst.
  • the polymer has a narrow molecular weight distribution and a homogeneous composition distribution of comonomers according to the characteristics of a single active site. It has the property to change.
  • ansa-metallocene compound is an organometallic compound containing two ligands connected to each other by a bridge group, the bridge The bridge group prevents the rotation of the ligand and determines the activity and structure of the metal center.
  • Such ansa-metallocene compound is used as a catalyst for the production of olefinic homopolymers or copolymers.
  • the ansa-metallocene compound containing a cyclopentadienyl-fluorenyl ligand can produce a high molecular weight polyethylene, and it is known that the microstructure of the polypropylene can be controlled. have.
  • ansa-metallocene compound containing an indenyl ligand can produce an olefin polymer having excellent activity and improved stereoregularity.
  • the present invention has completed the present invention by using a metallocene catalyst having a specific structure instead of the Ziegler-Natta catalyst, thereby confirming that polypropylene having high transparency and low generation of volatile organic compounds can be produced. [Measures of problem]
  • the present invention is measured according to VDA277 standardized by the German Automobile Industry Association, and the value of total volatile organic compounds (TVOC), which is the value of hydrocarbons detected per gram of acetone by heating at 120 ° C. for 5 hours, is 60 less than iiglg
  • Haze provides polypropylene with 5% or less.
  • the term 'polypropylene' which is prepared by polymerizing propylene, means a propylene homopolymer or a propylene / ethylene copolymer.
  • the 'polypropylene' prepared in the present invention is polymerized under a metallocene catalyst to be described later, and has a characteristic that the molecular weight distribution (Mw / Mn) is 3.5 or less, or L5 to 3.5, or 1.5 to 3.5.
  • Mw / Mn molecular weight distribution
  • polypropylene made with a Ziegler-Natta catalyst has a wide molecular weight distribution, and thus can be distinguished from polypropylene made with a Ziegler-Natta catalyst by the molecular weight distribution.
  • the polypropylene of one embodiment may exhibit very low volatile organic compound emissions.
  • the amount of volatile organic compound released is measured to confirm the content of the volatile organic compound released under certain conditions (temperature and time, etc.), and can be measured according to VDA277 and VDA278 standardized by the German Automobile Industry Association.
  • 'the amount of volatile organic compounds emissions' means the sum of the TVOC value measured according to VDA277 and the VOC and FOG value measured according to VDA278.
  • the volatile organic compound emission amount may be divided into total volatile organic compounds (TVOC) and volatile organic compounds / fogging (VOC / FOG).
  • TVOC total volatile organic compounds
  • VOC volatile organic compounds
  • VDA278 standardized by the German Automobile Industry Association, and is converted to the content of toluene of 1 to 25 carbon straight chain hydrocarbons detected per gram by heating at 90 ° C for 30 minutes.
  • FOG fluorescence
  • VDA278 standardized by the German Automobile Industry Association, which is heated at 120 ° C for 1 hour to convert 14 to 32 carbon atoms detected per gram into the content of nucleodecane. It means the value.
  • Polypropylene produced using the existing Ziegler-Natta catalyst has a high emission of volatile organic compounds, making it difficult to be applied to automobile interior materials or home appliances.
  • the polypropylene according to the embodiment of the present invention significantly reduces the amount of volatile organic compound emission, and exhibits a very low amount of volatile organic compound emission at high temperature, which significantly reduces the harmfulness to the human body, and thus is useful for automobile interior materials or home appliances. Can be used.
  • the polypropylene according to the embodiment has a TVOC value of 60 g / g or less, which is a value obtained by converting all hydrocarbons detected per 1 g into acetone content by heating at 120 ° C. for 5 hours according to VDA277. 50 // g / g or less, or 40 zg / g or less, or 35 g / g or less.
  • the TVOC value according to VDA277 may be measured using a headspace-GC (gas chromatography) -FID (flame-ionization detector).
  • the polypropylene according to the embodiment is a value of VOC (volatile organic compounds), which is a value obtained by converting a linear hydrocarbon having 1 to 25 carbon atoms detected per 1 g of toluene by heating at 90 ° C. for 30 minutes according to VDA278. It may be up to 30 ig / g, or up to 25 / g / g, or up to 20 / g / g.
  • the lower the VOC value is, the more advantageous it is, so the lower limit may be preferably 0 lg or more, or 1 / g / g or more, or 10 / g / g or more.
  • the polypropylene according to the embodiment has a FOG (fogging) value, which is a value obtained by converting a linear hydrocarbon having 14 to 32 carbon atoms detected per gram by the content of hexadecane, by heating at 120 ° C. for 1 hour according to VDA278. 40 / g / g or less, or 35 / ⁇ g / g or less, or 30 / zg / g or less, or IS! Iglg or less.
  • VOC and FOG values according to VDA278 may be immediately determined using purge & trap-GC (mass chromatography) -MSD (mass selective detector).
  • Polypropylene according to an embodiment of the present invention is the volatile organic
  • the amount of compound released ie, the sum total of TVOC, VOC, and FOG, may be 500 g / g or less, or 300 g / g or less, or 200 / g / g or less, or 100 zg / g or less.
  • the polypropylene of the embodiment is prepared in the presence of a common supported catalyst comprising two metallocene compounds containing a specific transition metal, as described below, compared to a polymer prepared using a conventional Ziegler-Natta catalyst Since it has a significantly low volatile organic compound emission amount, it is advantageous to apply to products such as injection containers or beverage cups that can be in direct contact with the human body.
  • the polypropylene of the embodiment has a haze of 5% or less, preferably 4.8% or less.
  • polypropylene having a low Haze value is excellent in transparency and is applied to injection products such as cosmetics and food containers. This is easy.
  • the polypropylene may have a flexural strength (measured according to ASTM D790) of 400 kgf / cin 2 or more, preferably 410 kgf / crf to 600 kgf / crf, more preferably 420 to 500 kgf / crf.
  • the polypropylene may have a melting point (Tm) of 130 ° C. to 145 ° C., preferably 140 to 145 ° C., and a flexural modulus (measured according to ASTM D790) of 14,000 kgf / cin 2 or more, preferably May be at least 14,500 kgf / crf, more preferably 15,000 kgf / cin 2 to 20,000 kgf / cuf. That is, in spite of such a low melting point, the polypropylene has a high flexural modulus of 14,000 kg ⁇ cin 2 or more, which has the advantage of saving energy in polypropylene processing.
  • Tm melting point
  • a flexural modulus measured according to ASTM D790
  • the polypropylene of the embodiment may have a MFR (measured at 2.16 kg load at 230 ° C. according to ASTM D1238) of 10 to 25 g / 10min.
  • MFR measured at 2.16 kg load at 230 ° C. according to ASTM D12378
  • a high content of hydrogen should be added in the polymerization step, but as described below, two kinds of metals containing a specific transition metal are used.
  • relatively low content of hydrogen can be added, so that activity control is easy and process stability is low. There is a growing advantage.
  • the polypropylene may have a tensile strength (measured according to ASTM D790) of 300 to 400 kg cuf.
  • the polypropylene of the additive embodiment may have a weight average molecular weight of 100,000 to 500,000 g / mol, preferably 100,000 to 200,000 g / mol.
  • the polypropylene of one embodiment may be prepared by polymerizing propylene in the presence of a common supported catalyst comprising a compound represented by the following Chemical Formula 1, a compound represented by the following Chemical Formula 2, and a carrier:
  • X is the same or different halogen from each other
  • R 2 , R 3 and R 4 are each independently hydrogen, halogen, C ⁇ o alkyl, C: alkenyl
  • A is carbon, silicon or germanium
  • R 5 is C o alkyl substituted with alkoxy
  • R 6 is hydrogen, C o alkyl or C 2-20 alkenyl
  • R ' 2 , R'3 and R'4 are each independently hydrogen, halogen, C 1-20 alkyl, C 2 ⁇ 20 alkenyl, C 1-20 alkylsilyl, C o silylalkyl, C 1-20 alkoxysilyl , C 1-20 ether, C 1-20 silylether, C 1-20 alkoxy, C 6 ⁇ 20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
  • a ' is carbon, silicon or germanium
  • R ' 5 is d_ 20 alkyl substituted with C alkoxy
  • R ' 6 is hydrogen, alkyl or C 2 ⁇ 20 alkenyl.
  • the molar ratio of the compound represented by Formula 1 and the compound represented by Formula 2 is 2: 1 to 1: 5. It may be advantageous in terms of maintaining the activity and economical efficiency of the catalyst by showing the optimum catalytic activity and physical properties in the molar ratio.
  • Formula 1 preferably, is phenyl substituted with tert-butyl. More preferably, the _ ⁇ 4 is tert-butyl-phenyl eu
  • R 2 , R 3 and R 4 are hydrogen.
  • A is silicon
  • R 5 is 6-tert-subspecific-nucleus and R 6 is methyl.
  • Step 1 is a step of preparing the compound represented by Chemical Formula 1-4 by reacting the compound represented by Chemical Formula 1-2 with the compound represented by Chemical Formula 1-3. It is preferable to use alkyllithium (eg, n-butyllithium) in the reaction, and the reaction temperature is -200 to 0 ° C, more preferably -150 to 0 ° C. As the solvent, toluene, THF and the like can be used. At this time, after the organic layer is separated from the product, the step of vacuum drying the separated organic layer and removing excess reactant may be further performed.
  • Step 2 is a step of preparing the compound represented by Chemical Formula 1 by reacting the compound represented by Chemical Formula 1-4 with the compound represented by Chemical Formula 1-5.
  • alkyllithium eg, n-butyllithium
  • the reaction temperature is -200 to 0 ° C., more preferably -150 to 0 ° C.
  • Ether, nucleic acid, etc. can be used as a solvent.
  • is phenyl substituted with tert-butyl. More preferably, silver is 4-tert-butyl-phenyl.
  • R ' 2 , R' 3 and R ' 4 are hydrogen.
  • a ' is silicon.
  • R'5 is 6-tert-butoxy-nuclear and R ' 6 is methyl.
  • Representative examples of the compound represented by Formula 2 are as follows:
  • the step 1 is to prepare a compound represented by the formula 2-4 by reacting the compound represented by the formula 2-2 with the compound represented by the formula 2-3.
  • alkyllithium for example, ⁇ -butyllithium
  • the reaction temperature is -200 to 0 ° C., more preferably -150 to 0 ° C.
  • the solvent toluene, THF and the like can be used.
  • step 2 the compound represented by Chemical Formula 2-4 is reacted with the compound represented by Chemical Formula 2-5 to form a compound represented by Chemical Formula 2 Manufacturing step.
  • alkyllithium eg, n-butyllithium
  • the reaction temperature is -200 to 0 ° C, more preferably -150 to 0 ° C.
  • Ether, nucleic acid, etc. can be used as a solvent.
  • the formula 1 and 2 preferably X and X ', R! And R 'R 2 and R'2, R 3 and R'3, RA and R'4, A and A', R 5 and R ' 5 , and R 6 and R' 6 are the same as each other.
  • the carrier may be a carrier containing a hydroxy group on the surface, and preferably has a semi-reactive hydroxyl group and a siloxane group which are dried to remove moisture on the surface.
  • Carriers may be used.
  • silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, and these are usually oxides, carbonates, such as Na 2 O, K 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 , Sulfate, and nitrate components.
  • the drying temperature of the carrier is preferably 200 to 800 ° C, more preferably 300 to 600 ° C, most preferably 300 to 400 ° C.
  • the drying temperature of the carrier is less than 200 ° C, the moisture is too much and the surface of the carrier reacts with the promoter, and if it exceeds 800 ° C, the surface area decreases as the pores on the surface of the carrier are combined, and the surface is hydroxy on the surface. It is not preferable because there is a lot of groups and only siloxane groups are left to decrease the reaction space with the promoter.
  • the amount of hydroxyl groups on the surface of the carrier is preferably 1 to 10 mmol / g, more preferably 0.5 to 5 mmol / g.
  • the amount of hydroxy groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions, such as silver : time, vacuum or spray drying.
  • the mass ratio of the catalyst (compound represented by the formula (1) and the compound represented by the formula (2)) to the carrier is preferably 1: 1 to 1: 1000.
  • the common supported catalyst may further include a promoter in addition to the compound represented by Formula 1, the compound represented by Formula 2, and a carrier.
  • the promoter may further include one or more of the promoter compounds represented by the following Formula 3, Formula 4 or Formula 5.
  • R 30 may be the same as or different from each other, and each independently halogen; Hydrocarbons having 1 to 20 carbon atoms; Or a hydrocarbon having 1 to 20 carbon atoms substituted with halogen;
  • n is an integer of 2 or more
  • R 31 is as defined in Formula 3 above;
  • J is aluminum or boron
  • E is a neutral or cationic Lewis base
  • H is a hydrogen atom
  • Z is a Group 13 element
  • A may be the same or different from each other, and each independently 1 or more
  • the hydrogen atom is an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with halogen, hydrocarbon having 1 to 20 carbon atoms, alkoxy or phenoxy.
  • Examples of the compound represented by Formula 3 include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane, and the like, and more preferred compound is methyl aluminoxane.
  • Examples of the compound represented by Formula 4 include trimethylaluminum triethylaluminum, triisobutylaluminum, tripropylaluminum tributylaluminum, dimethylchloroaluminum, triisopropylaluminum tri-S-butylaluminum, tricyclopentylaluminum, and tripentyl Aluminum triisopentylaluminum, trinuclear silaluminum, trioxalyl aluminum ethyldimethylaluminum, methyldiethylaluminum, triphenylaluminum tri-P-allyl aluminum, dimethylaluminum mesoxide, dimethylaluminum trimethylboron, triethyl boron, Triisobutyl boron, tripropyl boron tributyl boron and the like, and more preferred compounds are selected from trimethylaluminum triethylaluminum and triisobutylaluminum.
  • Examples of the compound represented by Formula 5 include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, and trimethylammonium tetra (P-lryl) Boron,
  • Trimethylammonium tetra ( ⁇ -trifluoromethylphenyl) aluminum Trimethylammonium tetra ( ⁇ -trifluoromethylphenyl) aluminum
  • Triphenylcarbonium tetrapentafluorophenylboron Triphenylcarbonium tetrapentafluorophenylboron, and the like.
  • the common supported catalyst may be prepared by supporting a cocatalyst compound on a carrier, supporting the compound represented by Formula 1 on the carrier, and supporting the compound represented by Formula 2 on the carrier. The order of loading can be changed as needed.
  • a hydrocarbon solvent such as pentane, nucleic acid, heptane, or the like, or an aromatic solvent such as benzene, toluene, or the like may be used.
  • the metallocene compound and the cocatalyst compound can also be used in the form of silica or alumina.
  • the polypropylene of the above embodiment may be prepared by polymerizing propylene in the presence of the above-described common supported catalyst.
  • the method for producing the polypropylene in addition to the propylene, ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene , 1-dodecene, 1-tetradecene, 1-hex-decene, it may be used to add the 1-ahyito metallocene: You may mix and copolymerize 2 or more types of these.
  • the polypropylene according to the invention is a propylene homopolymer, a random copolymer of propylene and ethylene, or a terpolymer of ethylene, propylene and C 4-8 olefins (particularly 1-butene).
  • the polymerization reaction can be carried out by homopolymerization or copolymerization of two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor or a solution reactor.
  • the common supported catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, chlorine such as dichloromethane and chlorobenzene.
  • the solution may be dissolved or diluted in a hydrocarbon solvent substituted with an atom or the like.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
  • the polymerization may be carried out by reacting for 1 to 24 hours at a temperature of 25 to 500 ° C and a pressure of 1 to 100 kgf / cuf.
  • the polymerization reaction temperature is preferably 25 to 200 ° C., more preferably 50 to 100 ° C.
  • the polymerization reaction pressure is preferably 1 to 70 kgf / cirf, more preferably 5 to 40 kgf / crf.
  • the polymerization reaction time is preferably 1 to 5 hours.
  • the polymerization process may control the molecular weight range of the polypropylene finally produced according to hydrogenation or no addition conditions.
  • high molecular weight polypropylene can be produced.
  • low molecular weight polypropylene can be produced even with a small amount of hydrogen.
  • the hydrogen content added to the polymerization process is in the range of 07 L to 4 L at 1 atmosphere of semi-aqueous conditions, or is supplied at a pressure of 1 bar to 40 bar or 168 ppm to 8,000 in the range of molar hydrogen content relative to olefinic monomers. It can be supplied in ppm.
  • the polypropylene according to the present invention exhibits high transparency and a very low generation of volatile organic compounds, it can be used in products such as injection containers or beverage cups that can be in direct contact with the human body.
  • reaction solution was stirred at -78 ° C, and then HC1 ether solution (1 M, 183 mL) was slowly added dropwise and then stirred at 0 ° C. for 1 hour. After filtration and drying in vacuo, hexane was added and stirred to precipitate crystals. The precipitated crystals were filtered and dried under reduced pressure
  • reaction mixture was cooled to -20 ° C, and then 82 g of (6-t-subsidiary nucleus) dichloromethylsilane and 512 mg of CuCN were slowly added dropwise.
  • the reaction solution was warmed to room temperature, stirred for 12 hours, and 500 mL of water was added. After that, the organic layer was separated, dehydrated with MgSO 4 and filtered. The filtrate was distilled under reduced pressure to give a yellow oil.
  • Example 1 In the same manner as in Example 1, except that the amount of hydrogen was changed to 200 ppm in Example 1 was polymerized the olefin resin. Comparative Example 1
  • the 2 L stainless reaction vessel was vacuum dried at 65 ° C. and then cooled, and 1.5 mmol of triethylaluminum, 500 ppm hydrogen, and 770 g of propylene were added at room temperature. After stirring for 10 minutes, 0.01 g of a Ziegler-Natta catalyst was dissolved in 20 mL of TMA-prescribed nucleic acid and added to the reactor under nitrogen pressure. After the reaction temperature was slowly raised to 70 ° C. and then polymerized for 1 hour. After the reaction Uncoated propylene was vented. Comparative Example 2
  • Mn, Mw, and MWD Melt the sample in l, 2,4-Trichlorobenzene containing 0.0125% of BHT using PL-SP260 for 10 hours at 160 ° C for 10 hours, and measure temperature 160 using PL-GPC220. the average molecular weight, weight average molecular weight be in ° C was measured. The molecular weight distribution was expressed as the ratio of weight average molecular weight and number average molecular weight.
  • Tm Melting point
  • Tensile Strength Tensile strength was measured according to ASTM D790.
  • Flexural modulus and flexural strength were measured according to ASTM D790.
  • Haze lights lT (lmm) and 2T (2mm) of the specimen according to ASTM D1003. The degree of refraction (%) of the light at the time of shooting was measured. Haze values can be measured as Td (reflected light) / Tt (passed light) * 100 and the transparency of the specimen can be evaluated.
  • the headspace-GC-FID was used to heat the olefin polymer at 120 ° C. for 5 hours according to VDA277, standardized by the German Automobile Industry Association, and all hydrocarbons detected per gram of sample were converted to the acetone content G « g ).
  • Equation 1 Specifically, after limiting the blank value of the total peak area of the hydrocarbon detected in the empty headspace vessel from the total peak area of the hydrocarbon detected from the sample as shown in Equation 1 below. Divided by the constant (k (G)) obtained from acetone calibration. Then, the obtained value is multiplied by the standard amount of acetone used (acetone 2 per 1g of sample) and the weight ratio of carbon to total weight of acetone (e) 6204 to calculate the acetone content (EG) in terms of hydrocarbons detected per 1g of sample. Obtained.
  • Purge & trap-GC-MSD was used to heat the olefin polymer at 90 ° C for 30 minutes in accordance with VDA278 standardized by the German Automobile Industry Association, and the amount of toluene (up to n-C25) /).
  • the converted value is defined as a VOC value and is shown in Table 2.
  • Equation 2 the total peak area of the hydrocarbon detected from the sample is divided by the content of the sample using the integrated peak area, and in the case of VOC, the Rf (response factor) constant value of toluene is multiplied and In the case of multiplying the Rf constant value of nucleodecane, the hydrocarbon detected per 1 g of the sample was converted into toluene or nucleodecane content (/ g).
  • the polypropylene of the example has excellent elasticity and mechanical properties such as flexural strength, and has a very low amount of volatile organic compound emission. It is advantageous to apply to products such as injection containers or beverage cups that can be in direct contact.

Abstract

본 발명은 고투명성을 나타내고, 휘발성 유기 화합물의 발생정도가 매우 낮은 폴리프로필렌에 관한 것으로 독일자동차 산업연합회에서 규격화한 VDA277에 따라 측정한 것으로 12에서 5시간 동안 가열하여 1g당 검출되는 모든 탄화수소를 아세톤의 함량으로 환산한 값인 TVOC(Total Volatile Organic Compounds) 값이 60μg/g이하이고, Haze 값이 5%이하인 것을 특징으로 합니다.

Description

【명세서】
【발명의 명칭】
폴리프로필렌 【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 3월 18일자 한국 특허 출원 제 10-2016-0032962호 및 2017년 2월 10일자 한국 특허 출원 제 10-2017-0018677호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 고투명성을 나타내며, 휘발성 유기 화합물의 발생 정도가 매우 낮은 폴리프로필렌에 관한 것이다.
【발명의 배경이 되는 기술】
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러개 흔재하는 다활성점 촉매 (multi site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 (single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
한편, 안사-메탈로센 (ansa-metallocene) 화합물은 브릿지 그룹에 의해 서로 연결된 두 개의 리간드를 포함하는 유기금속 화합물로서, 상기 브릿지 그룹 (bridge group)에 의해 리간드의 회전이 방지되고, 메탈 센터의 활성 및 구조가 결정된다.
이와 같은 안사-메탈로센 화합물은 올레핀계 호모폴리머 또는 코폴리머의 제조에 촉매로 사용되고 있다. 특히 사이클로펜타디에닐 (cyclopentadienyl)-플루오레닐 (fluorenyl) 리간드를 포함하는 안사-메탈로센 화합물은 고분자량의 폴리에틸렌을 제조할 수 있으며, 이를 통해 폴리프로필렌의 미세 구조를 제어할 수 있음이 알려져 있다. 또한, 인데닐 (indenyl) 리간드를 포함하는 안사-메탈로센 화합물은 활성이 우수하고, 입체 규칙성이 향상된 올레핀계 중합체를 제조할 수 있는 것으로 알려져 있다.
한편, 올레핀계 중합체, 특히 폴리프로필렌을 화장품, 식료품 용기 등에 사용하기 위해서는 고투명성, 낮은 휘발성 유기 화합물의 발생 정도 등이 요구되는데, 종래의 지글러 -나타 촉매를 이용하는 경우, 이러한 특징을 갖는 폴리프로필렌을 높은 생산성 및 수율로 제조하기 어려웠다.
【발명의 내용】
【해결하고자 하는 과제】
이에 본 발명은 지글러 -나타 촉매 대신 특정 구조의 메탈로센 촉매를 사용함으로써, 고투명성을 나타내며, 휘발성 유기 화합물의 발생 정도가 매우 낮은 폴리프로필렌을 제조할 수 있음을 확인하여 본 발명을 완성하였다. 【과제의 해결 수단】
본 발명은 독일자동차 산업연합회에서 규격화한 VDA277에 따라 측정한 것으로, 120°C에서 5시간 동안 가열하여 1 g 당 검출되는 탄화수소를 아세톤의 함량으로 환산한 값인 TVOC(total volatile organic compounds) 값이 60 iiglg 이하이고,
Haze가 5% 이하인 폴리프로필렌을 제공한다.
이하 발명의 구체적인 구현예에 따른 폴리프로필렌에 관하여 보다 상세하게 설명하기로 한다. 본 명세서에서 사용하는 용어 '폴리프로필렌'은, 프로필렌을 중합하여 제조되는 것으로, 프로필렌 호모 중합체이거나 또는 프로필렌 /에틸렌 공중합체를 의미한다. 또한, 본 발명에서 제조하는 '폴리프로필렌'은 후술할 메탈로센 촉매 하에 중합되어 제조되는 것으로, 분자량 분포 (Mw/Mn)가 3.5 이하, 또는 L5 내지 3.5, 또는 1.5 내지 3.5라는 특징이 있다. 일반적으로, 지글러 -나타 촉매로 제조되는 폴리프로필렌은 분자량 분포가 넓게 나타나며, 따라서 상기 분자량 분포에 의하여 지글러 -나타 촉매로 제조되는 폴리프로필렌과 구분될 수 있다.
상기 일 구현예의 폴리프로필렌은 매우 낮은 휘발성 유기 화합물 방출량을 나타낼 수 있다.
상기 휘발성 유기 화합물 방출량은 일정 조건 (온도 및 시간 등)에서 방출되는 휘발성 유기 화합물의 함량을 확인하기 위하여 측정하는 것으로, 독일자동차산업연합회에서 규격화한 VDA277 및 VDA278에 따라 측정할 수 있다. 본 발명의 명세서에서, '휘발성 유기 화합물 방출량 (The amount of volatile organic compounds emissions)'은 VDA277에 따라 측정한 TVOC 값과, VDA278에 따라 측정한 VOC 및 FOG 값와총 합을 의미한다.
보다상세하게, 상기 휘발성 유기 화합물 방출량은 TVOC (total volatile organic compounds)와, VOC/FOG (volatile organic compounds/fogging)로 나눌 수 있다.
TVOC (total volatile organic compounds)는 독일자동차 산업연합회에서 규격화한 VDA277에 따라 측정하며, 120°C에서 5시간 동안 가열하여 1 g 당 검출되는 모든 탄화수소를 아세톤의 함량으로 환산한 값을 의미한다.
VOC (volatile organic compounds)는 독일자동차 산업연합회에서 규격화한 VDA278에 따라 측정하며, 90°C에서 30 분간 가열하여 1 g 당 검출되는 탄소수 1 내지 25의 직쇄 탄화수소를 를루엔의 함량으로 환산한 값을 의미하고, FOG (fogging)는 독일자동차 산업연합회에서 규격화한 VDA278에 따라 측정하며, 120 °C에서 1시간 동안 가열하여 1 g 당 검출되는 탄소수 14 내지 32의 직쇄 탄화수소를 핵사데칸의 함량으로 환산한 값을 의미한다. 기존 지글러 -나타 촉매를 이용하여 제조된 폴리프로필렌은 휘발성 유기 화합물 방출량이 높아 자동차 내장재 흑은 가정용 가전제품 등에 적용하기가 어려웠다. 그러나, 본 발명의 일 구현예에 따른 폴리프로필렌은 휘발성 유기 화합물 방출량이 현저하게 감소하며, 고온에서 매우 낮은 휘발성 유기 화합물 방출량을 나타내 인체에 대한 유해성이 현저히 저감되어 자동차 내장재 혹은 가정용 가전제품 등에 유용하게 사용될 수 있다.
보다 구체적으로, 상기 일 구현예에 따른 폴리프로필렌은 VDA277에 따라 120°C에서 5시간 동안 가열하여 1 g 당 검출되는 모든 탄화수소를 아세톤의 함량으로 환산한 값인 TVOC 값이 60 g/g 이하, 또는 50//g/g 이하, 또는 40 zg/g 이하, 또는 35 g/g 이하일 수 있다. 상기 TVOC 값은 낮을수록 유리하므로 그 하한은 0 / /g 이상, 또는 1 i lg 이상, 또는 10 g/g 이상일 수 있다.
상기 VDA277에 따른 TVOC 값은 headspace-GC (gas chromatography)-FID (flame-ionization detector)를 이용하여 측정할 수 있다. 또한, 상기 일 구현예에 따른 폴리프로필렌은 VDA278에 따라 90°C에서 30 분간 가열하여 1 g 당 검출되는 탄소수 1 내지 25의 직쇄 탄화수소를 를루엔의 함량으로 환산한 값인 VOC(volatile organic compounds) 값이 30 ig/g 이하, 또는 25//g/g 이하, 또는 20/ g/g 이하일 수 있다. 상기 VOC 값은 낮을수록 유리하므로 그 하한은 바람직하게는 0 lg 이상, 또는 1 /g/g 이상, 또는 10 /g/g 이상일 수 있다.
그리고, 상기 일 구현예에 따른 폴리프로필렌은 VDA278에 따라 120 °C에서 1시간 동안 가열하여 1 g 당 검출되는 탄소수 14 내지 32의 직쇄 탄화수소를 헥사데칸의 함량으로 환산한 값인 FOG(fogging) 값이 40/ g/g 이하, 또는 35/^g/g 이하, 또는 30/zg/g 이하, 또는 IS!iglg 이하일 수 있다. 상기 FOG 값은 낮을수록 유리하므로 그 하한은 바람직하게는 0 ig/g 이상, 또는 1 g/g 이상, 또는 10 gig 이상일 수 있다.
상기 VDA278에 따른 VOC 및 FOG 값은 purge & trap-GC (gas chromatography)-MSD (mass selective detector)를 이용하여 즉정할 수 있다.
본 발명의 일 구현예에 따른 폴리프로필렌은 상기 휘발성 유기 화합물 방출량, 즉 TVOC, VOC, 및 FOG의 총 합이 500 g/g 이하, 또는 300 g/g 이하, 또는 200/ g/g 이하, 또는 100 zg/g 이하일 수 있다. 상기 휘발성 유기 화합물 방출량은 낮을수록 유리하므로 그 하한은 바람직하게는 0 /g 이상, 또는 10 /g/g 이상, 또는 50 iig/g 이상일 수 있다.
상기 일 구현예의 폴리프로필렌은 후술할 바와 같이 특정 전이금속을 포함하는 2종의 메탈로센 화합물을 포함하는 흔성 담지 촉매의 존재 하에 제조되어, 기존의 지글러 -나타 촉매를 이용하여 제조되는 고분자에 비하여 현저히 낮은 휘발성 유기 화합물 방출량을 가지므로, 인체와 직접적으로 접촉할 수 있는사출용 용기 혹은음료용 컵 등의 제품에 적용이 유리하다. 또한, 상기 일 구현예의 폴리프로필렌은 Haze가 5% 이하, 바람직하게는 4.8% 이하를 나타내는데, 이와 같이 낮은 Haze 값을 갖는 폴리프로필렌은 투명성이 우수하여, 화장품, 식료품 용기 등의 사출용 제품에 적용이 용이하다.
그리고, 상기 폴리프로필렌은 굴곡 강도 (ASTM D790에 따라 측정)가 400 kgf/cin2 이상, 바람직하게는 410 kgf/crf 내지 600 kgf/crf, 보다 바람직하게는 420 내지 500 kgf/crf 일 수 있다.
또한, 상기 폴리프로필렌은 용융점 (Tm)이 130°C 내지 145 °C , 바람직하게는 140 내지 145 °C일 수 있고, 굴곡 탄성률 (ASTM D790에 따라 측정)이 14,000 kgf/cin2 이상, 바람직하게는 14,500 kgf/crf 이상, 더욱 바람직하게는 15,000 kgf/cin2 내지 20,000 kgf/cuf일 수 있다. 즉, 상기 폴리프로필렌은 이와 같이 낮은 용융점에도 불구하고, 굴곡 탄성률 (flexural modulus)이 14,000 kg^cin2 이상으로 높게 나타나, 폴리프로필렌 가공 시 에너지를 절감할 수 있는 이점이 있다.
그리고, 상기 일 구현예의 폴리프로필렌은 MFR(ASTM D1238에 따라 230°C에서 2.16 kg 하중으로 측정)이 10 내지 25 g/10min 일 수 있다. 이와 같은 범위의 MFR 값을 갖는 폴리프로필렌을 제조하기 위해서는, 지글러 -나타 촉매를 사용하는 경우 중합 단계에서 높은 함량의 수소가 투입되어야 하나, 후술할 바와 같이 특정 전이금속을 포함하는 2종의 메탈로센 화합물을 포함하는 흔성 담지 촉매를 사용하는 경우, 상대적으로 낮은 함량의 수소 투입이 가능하므로, 활성 제어가 용이하고, 공정 안정성이 높아지는 이점이 있다.
또한, 상기 폴리프로필렌은 인장 강도 (ASTM D790에 따라 측정)가 300 내지 400 kg cuf일 수 있다.
그리고, 상가 일 구현예의 폴리프로필렌은 중량평균 분자량이 100,000 내지 500,000 g/mol, 바람직하게는 100,000 내지 200,000 g/mol 일 수 있다. 한편, 상기 일 구현예의 폴리프로필렌은, 하기 화학식 1로 표시되는 화합물, 하기 화학식 2로 표시되는 화합물 및 담체를 포함하는 흔성 담지 촉매의 존재 하에, 프로필렌을 중합하여 제조할 수 있다:
Figure imgf000007_0001
상기 화학식 1에서,
X는 서로 동일하거나상이한 할로겐이고,
^은 .20 알킬로 치환된 C6 20 아릴이고,
R2, R3 및 R4는 각각 독립적으로 수소, 할로겐, C^o 알킬, C: 알케닐
C1-20 알킬실릴, 20실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
A는 탄소, 실리콘또는 게르마늄이고,
R5는 알콕시로 치환된 C o 알킬이고,
R6는 수소, C o 알킬 또는 C2-20 알케닐이고,
[화학식 2]
Figure imgf000008_0001
상기 화학식 2에서,
X'는서로 동일하거나 상이한 할로겐이고,
^은 C o 알킬로 치환된 C6-20 아릴이고,
R'2, R'3 및 R'4는 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2ᅳ 20 알케닐, C1-20 알킬실릴, C o실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20실릴에테르, C1-20 알콕시, C6ᅵ 20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
A'는 탄소, 실리콘또는 게르마늄이고,
R'5는 C o 알콕시로 치환된 d_20 알킬이고,
R'6는 수소, 알킬 또는 C220 알케닐이다.
그리고, 상기 흔성 담지 촉매에서, 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물의 몰비는 2: 1 내지 1 :5인 것이 바람직하다. 상기 몰비에서 최적의 촉매 활성과 물성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다.
상기 화학식 1에서, 바람직하게는, 은 터트-부틸로 치환된 페닐이다. 보다 바람직하게는, ^은 4_터트-부틸 -페닐이다ᅳ
또한 바람직하게는 , R2, R3 및 R4는 수소이다.
또한 바람직하게는, A는 실리콘이다.
또한 바람직하게는, R5는 6-터트-부특시 -핵실이고, R6는 메틸이다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure imgf000009_0001
그리고, 상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같이 제조될 수 있다:
Figure imgf000009_0002
상기 단계 1은, 상기 화학식 1-2로 표시되는 화합물을 상기 화학식 1-3으로 표시되는 화합물을 반웅시켜 상기 화학식 1-4로 표시되는 화합물을 제조하는 단계이다. 상기 반웅에 알킬리튬 (예를 들어, n-부틸리튬)을사용하는 것이 바람직하고, 반응 온도는 -200 내지 0°C , 보다 바람직하게는 -150 내지 0°C이다. 용매로는 를루엔, THF 등을 사용할 수 있다. 이때 생성물에서 유기층을 분리한 후, 분리된 유기층을 진공 건조하고 과량의 반응물을 제거하는 단계를 더욱 수행할 수 있다. 상기 단계 2는, 상기 화학식 1-4로 표시되는 화합물을 상기 화학식 1-5로 표시되는 화합물을 반웅시켜 상기 화학식 1로 표시되는 화합물을 제조하는 단계이다. 상기 반웅에 알킬리튬 (예를 들어, n-부틸리튬)을사용하는 것이 바람직하고, 반웅 온도는 -200 내지 0°C , 보다 바람직하게는 -150 내지 0°C이다. 용매로는 에테르, 핵산 등을 사용할 수 있다. 또한, 상기 화학식 2에서, 바람직하게는, ^은 터트-부틸로 치환된 페닐이다. 보다 바람직하게는, 은 4-터트 -부틸 -페닐이다.
또한 바람직하게는 , R'2, R'3 및 R'4는 수소이다.
또한 바람직하게는 , Α'는 실리콘이다.
또한 바람직하게는, R'5는 6-터트-부톡시 -핵실이고, R'6는 메틸이다. 상기 화학식 2로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure imgf000010_0001
그리고, 상기 화학식 2 표시되는 화합물은 하기 반응식
제조될 수 있다:
Figure imgf000010_0002
2-4 상기 단계 1은, 상기 화학식 2-2로 표시되는 화합물을 상기 화학식 2-3으로 표시되는 화합물을 반웅시켜 상기 화학식 2-4로 표시되는 화합물을 제조하는 단계이다. 상기 반웅에 알킬리튬 (예를 들어 , η-부틸리튬)을 사용하는 것이 바람직하고, 반웅 온도는 -200 내지 0°C, 보다 바람직하게는 -150 내지 0°C이다. 용매로는 를루엔, THF 등을 사용할 수 있다. 이때 생성물에서 유기층을 분리한 후, 분리된 유기층을 진공 건조하고 과량의 반웅물을 제거하는 단계를 더욱 수행할 수 있다.
상기 단계 2는, 상기 화학식 2-4로 표시되는 화합물을 상기 화학식 2-5로 표시되는 화합물을 반웅시켜 상기 화학식 2로 표시되는 화합물을 제조하는 단계이다. 상기 반웅에 알킬리튬 (예를 들어, n-부틸리튬)을사용하는 것이 바람직하고, 반응 온도는 -200 내지 0 °C , 보다 바람직하게는 -150 내지 0 °C이다. 용매로는 에테르, 핵산 등을 사용할 수 있다. 한편, 상기 화학식 1 및 2에서, 바람직하게는 X 및 X', R! 및 R' R2 및 R'2, R3 및 R'3, RA 및 R'4, A 및 A', R5 및 R'5, 및 R6 및 R'6는 각각 서로 동일하다. 즉, 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물에서 금속원자만 상이한구조를 가지는 것이 바람직하다. 상기 일 구현예의 흔성 담지 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반웅성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다. 예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카 -마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20, K2C03, BaS04, 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
상기 담체의 건조 온도는 200 내지 800 °C가 바람직하고, 300 내지 600 °C가 더욱 바람직하며, 300 내지 400 °C가 가장 바람직하다. 상기 담체의 건조 온도가 200 °C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 800 °C를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반웅자리가 감소하기 때문에 바람직하지 않다.
상기 담체 표면의 하이드록시기 양은 으1 내지 10 mmol/g이 바람직하며, 0.5 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드톡시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 은도: 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반웅자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다. 또한, 상기 흔성 담지 촉매에 있어서, 촉매 (상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물) 대 담체의 질량비는 1 :1 내지 1 :1000인 것이 바람직하다. 상기 질량비로 담체 및 촉매를 포함할 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다. 또, 상기 흔성 담지 촉매는 화학식 1로 표시되는 화합물, 화학식 2로 표시되는 화합물 및 담체 이외에, 조촉매를 추가로 포함할 수 있다. 상기 조촉매로는 하기 화학식 3, 화학식 4 또는 화학식 5으로 표시되는 조촉매 화합물 중 1종 이상을 추가로 포함할 수 있다.
[화학식 3]
-[A1(R30)-O]m- 상기 화학식 3에서,
R30은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
m은 2 이상의 정수이며;
[화학식 4]
J(R3l)3
상기 화학식 4에서,
R31는 상기 화학식 3에서 정의된 바와 같고;
J는 알루미늄 또는보론이며;
[화학식 5]
[E-H]+[ZA4]"또는 [E]+[ZA4] 상기 화학식 5에서,
E는 중성 또는 양이온성 루이스 염기이고;
H는 수소 원자이며;
Z는 13족 원소이고;
A는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
상기 화학식 3으로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 더욱 바람직한 화합물은 메틸알루미녹산이다.
상기 화학식 4로 표시되는 화합물의 예로는 트리메틸알루미늄 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄 트리 -S-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄 트리이소펜틸알루미늄, 트리핵실알루미늄, 트리옥될알루미늄 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄 트리 -P-를릴알루미늄, 디메틸알루미늄메특시드, 디메틸알루미늄에특시드 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론 트리부틸보론 등이 포함되며, 더욱 바람직한 화합물은 트리메틸알루미늄 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다.
상기 화학식 5로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라 (P-를릴)보론,
트리메틸암모니움테트라 (ο,ρ-디메틸페닐)보론,
트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리메틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리부틸암모니움테트라펜타플로로페닐보론,
Ν,Ν-디에틸아닐리니움테트라페닐보론,
Ν,Ν-디에틸아닐리니움테트라펜타플로로페닐보론,
디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라 (p-를릴)알루미늄,
트리프로필암모니움테트라 (P-를릴)알루미늄,
트리에틸암모니움테트라 (ο,ρ-디메틸페닐)알루미늄,
트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)알루미늄,
트리메틸암모니움테트라 (Ρ-트리플로로메틸페닐)알루미늄,
트리부틸암모니움테트라펜타플로로페닐알루미늄,
Ν,Ν-디에틸아닐리니움테트라페닐알루미늄,
Ν,Ν-디에틸아닐리니움테트라펜타플로로페닐알루미늄,
디에틸암모니움테트라펜타테트라페닐알루미늄,
트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라 (Ρ-를릴)보론,
트리에틸암모니움테트라 (ο,ρ-디메틸페닐)보론,
트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리페닐카보니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리페닐카보니움테트라펜타플로로페닐보론 등이 있다. 상기 흔성 담지 촉매는 담체에 조촉매 화합물을 담지시키는 단계, 상기 담체에 상기 화학식 1로 표시되는 화합물을 담지시키는 단계, 및 상기 담체에 상기 화학식 2로 표시되는 화합물을 담지시키는 단계로 제조할 수 있으며, 담지 순서는 필요에 따라 바뀔 수 있다.
상기 흔성 담지 촉매의 제조시에 반응 용매로서 펜탄, 핵산, 헵탄 등과 같은 탄화수소계 용매, 또는 벤젠, 를루엔 등과 같은 방향족계 용매가 사용될 수 있다. 또한, 메탈로센 화합물과 조촉매 화합물은 실리카나 알루미나에 담지된 형태로도 이용할 수 있다. 또한, 상기 일 구현예의 폴리프로필렌은 상술한 흔성 담지 촉매의 존재 하에서, 프로필렌을 중합하여 제조될 수 있다.
상기 폴리프로필렌의 제조 방법에 있어서, 상기 프로필렌 외에 에틸렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-아이토센 등을 추가로사용할 수 있으며 : 이들을 2종 이상 흔합하여 공중합할 수도 있다. 바람직하게는, 본 발명에 따른 폴리프로필렌은, 프로필렌 호모 중합체, 프로필렌 및 에틸렌의 랜덤 공중합체, 또는 에틸렌, 프로필렌 및 C4-8 올레핀 (특히, 1-부텐)의 삼원공중합체이다.
상기 중합 반웅은 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반웅기, 기상 반웅기 또는 용액 반웅기를 이용하여 하나의 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체를 공중합하여 진행할 수 있다.
상기 흔성 담지 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.
여기서, 상기 중합은 25 내지 500°C의 온도 및 1 내지 100 kgf/cuf의 압력 하에서 1 내지 24시간 동안 반응시켜 수행될 수 있다. 이때, 상기 중합 반웅 온도는 25 내지 200°C가 바람직하고, 50 내지 100°C가보다 바람직하다. 또한, 상기 중합 반웅 압력은 1 내지 70 kgf/cirf가 바람직하고, 5 내지 40 kgf/crf가 보다 바람직하다. 상기 중합 반웅 시간은 1 내지 5시간이 바람직하다ᅳ
상기 중합 공정은 수소 첨가 또는 미첨가 조건에 따라 최종적으로 생성되는 폴리프로필렌의 분자량 범위를 조절할 수 있다. 특히, 수소를 첨가하지 않은 조건 하에서는 고분자량의 폴리프로필렌을 제조할 수 있으며, 수소를 첨가하면 적은 양의 수소 첨가로도 저분자량의 폴리프로필렌을 제조할 수 있다. 이때, 상기 중합 공정에 첨가되는 수소 함량은 반웅기 조건 1 기압 하에서 으 07 L 내지 4 L 범위이거나, 또는 1 bar 내지 40 bar의 압력으로 공급되거나 올레핀계 단량체 대비 수소 몰 함량 범위로 168 ppm 내지 8,000 ppm으로 공급될 수 있다. 【발명의 효과】
본 발명에 따른 폴리프로필렌은 고투명성을 나타내며, 휘발성 유기 화합물의 발생 정도가 매우 낮기 때문에, 인체와 직접적으로 접촉할 수 있는 사출용 용기 혹은 음료용 컵 등의 제품에 사용될 수 있다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
Figure imgf000016_0001
단계 1)
(6-t-부록시핵실) (메틸) -비스 (2-메틸 -4-터트-부틸-페닐인데닐)실란의 제조 2-메틸 -4-터트-부틸페닐인덴 (20.0 g, 76 mmol)을 를루엔 /THF=10/1 용액 (230 mL)에 용해시킨 후, n-부틸리튬 용액 (2.5 M, 핵산 용매, 22 g)을 0°C에서 천천히 적하나 다음, 상온에서 하루 동안 교반하였다. 그 후, -78 °C에서 상기 흔합 용액에 (6-t-부록시핵실)디클로로메틸실란 (1.27 g)을 천천히 적가하였고, 약 10분 동안 교반한 뒤 상온에서ᅳ하루 동안 교반하였다. 그 후, 물을 가하여 유기층을 분리한 다음, 용매를 감압 증류하여 (64-부특시핵실 )(메틸) -비스 (2_메틸 _4-터트-부틸-페닐인데닐)실란을 얻었다.
1H NMR (500 MHz, CDC13, 7.26 ppm): -0.20-0.03 (3H, m), 1.26 (9H, s), 0.50-1.20 (4H, m), 1.20-1.31 (11H, m), 1.40-1.62 (20H, m), 2.19-2.23 (6H, m), 3.30-3.34 (2H, m), 3.73-3.83 (2H, m), 6.89-6.91 (2H, m), 7.19-7.61 (14H, m) 단계 2) [(6-t-부특시핵실메틸실란-디일) -비스 (2-메틸 -4-터트-부틸페닐인데닐)]지르코륨 디클로라이드의 제조
상기 단계 1에서 제조한
(6 -부특시핵실) (메틸) -비스 (2-메틸 -4-터트-부틸-페닐인데닐)실란을
를루엔 /THF=5/1 용액 (95 mL)에 용해시킨 후, n-부틸리튬 용액 (2.5 M, 핵산 용매, 22 g)을 -78 °C에서 천천히 적가한 후, 상온에서 하루 동안 교반하였다. 반웅액에 비스 (Ν,Ν'-디페닐 -1,3-프로판디아미도)디클로로지르코늄 비스 (테트라하이드로퓨란) [Zr(C5H6NCH2CH2NC5H6)Cl2(C4H80)2]을 를루엔 (229 mL)에 용해시킨 후, -78 °C에서 천천히 적가하고 상온에서 하루 동안 교반하였다ᅳ 반웅액을 -78 °C로 넁각시킨 후, HC1 에테르 용액 (1 M, 183 mL)을 천천히 적가한 후, 0°C에서 1시간 동안 교반하였다. 이후 여과하고 진공 건조한 다음, 헥산을 넣고 교반하여 결정을 석출시켰다. 석출된 결정을 여과 및 감압 건조하여
[(6-t-부록시핵실메틸실란-디일) -비스 (2-메틸 -4-터트-부틸페닐인데닐)]지르코륨 디클로라이드 (20.5 g, 총 61%)를 얻었다. '
1H NMR (500 MHz, CDC13, 7.26 ppm): 1.20 (9H, s), 1.27 (3H, s), 1.34 (18H, s), 1.20-1.90 (10H, m), 2.25 (3H, s), 2.26 (3H, s), 3.38 (2H, t), 7.00 (2H, s), 7.09-7.13 (2H, m), 7.38 (2H, d), 7.45 (4H, d), 7.58 (4H, d), 7.59 (2H, d), 7.65 (2H, d)
Figure imgf000017_0001
단계 1)
(6-t-부록시핵실) (메틸) -비스 (2-메틸 -4-(4-t-부틸페닐)인데닐))실란의 제조 3 L의 쉬링크 풀라스크 (schlenk flask)에 2-메틸 -4-(4-t-부틸페닐) -인덴 150 g을 넣고, 를루엔 /THF(10:1, 1.73 L) 용액을 넣어 상온에서 용해시켰다. 상기 용액을 -20°C로 냉각시킨 후에 n-부틸리튬 용액 (n-BuLi, 2.5 M in hexane) 240 mL을 서서히 적가하고 상온에서 3시간 동안 교반하였다. 그 후에, 반웅액을 -20°C로 넁각시킨 다음, (6-t-부특시핵실)디클로로메틸실란 82 g과 CuCN 512 mg을 서서히 적가하였다. 반응액을 상온으로 승온시킨 후, 12시간 동안 교반하고, 물 500 mL를 첨가하였다. 그 후에, 유기층을 분리하고, MgS04로 탈수 및 여과 처리하였다. 여액을 감압 증류하여 노란색 오일 형태로 얻었다.
Ή NMR (500 MHz, CDC13, 7.26 ppm): -0.09 - -0.05 (3H, m), 0.40-0.60 (2H, m), 0.80-1.51 (26H, m), 2.12-2.36 (6H, m), 3.20-3.28 (2H, m), 3.67-3.76 (2H, m), 6.81-6.83 (2H, m), 7.10-7.51 (14H, m) 단계 2) rac-[(6-t-부록시핵실메틸실란디일) -비스 (2-메틸 -4-(4-t-부틸페닐)인데닐)]하프늄 디클로라이드의 제조
3 L의 쉬링크 플라스크 (schlenk flask)에 앞서 제조한 (6-t-부록시핵실) (메틸)비스 (2-메틸 -4-(4-t-부틸페닐))인데닐실란을 넣고, 디에틸에테르 1 L를 넣어 상온에서 용해시켰다. 상기 용액을 -20°C로 냉각시킨 후, n-부틸리튬 용액 (n-BuLi, 2.5 M in hexane) 240 mL를 서서히 적가하고 상온에서 3시간 동안 교반하였다. 그 후에, 반응액을 -78 °C로 넁각시킨 다음, 하프늄 클로라이드 92 g을 넣었다. 반응 용액을 상온으로 승온시킨 후 12시간 동안 교반하고, 용매를 감압 하에서 제거하였다. 디클로로메탄 1 L를 넣은 다음, 녹지 않은 무기염 등을 여과하여 제거하였다. 여액을 감압 건조하고, 다시 디클로로메탄 300 mL를 넣고 결정을 석출시켰다. 석출된 결정을 여과 및 건조하여 rac-[(6-t-부특시핵실메틸실란디일) -비스 (2-메틸 -4-(4-t-부틸페닐)인데닐)]하프늄 디클로라이드 80 g을 얻었다 (rac:meso = 50:1).
1H NMR(500 MHz, CDC13, 7.26 ppm): 1.19-1.78 (37H, m), 2.33 (3H, s), 2.34 (3H, s), 3.37 (2H, t), 6.91 (2H, s), 7.05-7.71 (14H, m) 제조예 3-흔성 담지 촉매의 제조
실리카 L203F 3 g을 쉬링크 플라스크에 미리 칭량한 후 메틸알루미녹산 (MAO) 10 mtn 을 넣어 95 °C에서 24시간 동안 반웅시켰다. 침전 후 상층부를 제거하고 를루엔으로 1회 세척하였다. 상기 제조예 2에서 제조한 화합물 60 μπιοΐ 을 를루엔에 녹인 후, 75 °C에서 5시간 동안 반웅시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반웅 생성물을 를루엔으로 1회 세척하였다. 이어 제조예 1에서 제조한 화합물 20 μιη이을 를루엔에 녹인 후, 75 °C에서 2시간 동안추가로 반웅시켰다. 반웅 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반웅 생성물을 를루엔으로 1회 세척하였다. 디메틸아닐리니움테트라키스 (펜타플루오로페닐) 보레이트 64 μηι이을 넣고 75 °C에서 5시간 동안 반웅시켰다. 반웅 종료 후 를루엔으로 세척하고, 핵산으로 재차 세척한 후 진공 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매를 얻었다. 실시예 1
2 L 스테인레스 반웅기를 65°C에서 진공 건조한 후 넁각하고, 실온에서 트리에틸알루미늄 1.5 mmol, 수소 337 ppm 및 770 g의 프로필렌을 투입하였다. 이를 10 분 동안 교반한 후, 제조예 3에서 제조한 담지 촉매 0.004 g을 TMA 처방된 핵산 20 mL에 녹여 질소 압력으로 반웅기에 투입하였다. 이후 반웅기 온도를 7(rc까지 서서히 승온한 후 1 시간 동안 중합하였다. 반웅 종료 후 미반웅된 프로필렌은 벤트하였다. 실시예 2
상기 실시예 1에서 수소의 투입량을 200 ppm으로 변경한 것을 제외하고 실시예 1과 동일한 방법으로 을레핀 단량체를 중합하였다. 비교예 1
2 L 스테인레스 반웅기를 65 °C에서 진공 건조한 후 냉각하고, 실온에서 트리에틸알루미늄 1.5 mmol, 수소 500 ppm 및 770 g의 프로필렌을 투입하였다. 이를 10 분 동안 교반한 후, 지글러 -나타 촉매 0.01 g을 TMA 처방된 핵산 20 mL에 녹여 질소 압력으로 반웅기에 투입하였다. 이후 반웅기 온도를 70°C까지 서서히 승온한 후 1 시간 동안 중합하였다. 반웅 종료 후 미반웅된 프로필렌은 벤트하였다. 비교예 2
상기 비교예 1에서 수소의 투입량을 725 ppm으로 변경한 것을 제외하고 비교예 1과 동일한 방법으로 올레핀 단량체를 중합하였다. 실험예
상기 실시예 및 비교예의 폴리프로필렌으로 하기의 물성을 측정하였다.
1) Mn, Mw, 및 MWD: 샘플을 PL-SP260을 이용하여 BHT 0.0125% 포함된 l,2,4-Trichlorobenzene에서 160 °C , 10시간 동안 녹여 전처리하고, PL-GPC220을 이용하여 측정 온도 160°C에서 수평균분자량, 중량평균분자량을 측정하였다. 분자량 분포는 중량 평균분자량과 수 평균분자량의 비로 나타내었다.
2) 용융지수 (MFR, 2.16 kg): ASTM D1238에 따라 230°C에서 2.16 kg 하중으로 측정하였으며, 10분 동안 용융되어 나온 중합체의 무게 (g)로 나타내었다.
3) 용융점 (Tm): 시차주사열량계 (Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 폴리프로필렌의 용융점을 측정하였다. 구체적으로 중합체를 220°C까지 가열한 후 5분 동안 그 온도를 유지하였고, 다시 20°C까지 내린 후 다시 온도를 증가시켰으며, 이때 온도의 상승속도와 하강속도는 각각 10°C/min으로 조절하였다.
4) 인장강도 (Tensile Strength): ASTM D790에 따라 인장강도를 측정하였다.
5) 굴곡 탄성률 (Flexural modulus) 및 굴곡 강도 (Flexural strength): ASTM D790에 따라굴곡 탄성률 및 굴곡 강도를 측정하였다.
6) 충격강도: ASTM D256에 따라 V-Notch를 낸 시편을 고정한 후에 Pendulum을 가하여 시편이 파괴될 때 걸리는 강도를 23 °C에서 측정하였다.
7) Haze: ASTM D1003에 따라 시편의 lT(lmm)와 2T(2mm)에 빛을 쏘았을 때에 빛이 굴절된 정도 (%)를 측정하였다. Haze 값은 Td (굴절된 빛) /Tt (통과한 빛) *100으로 측정할 수 있으며, 시편의 투명도를 평가할 수 있다.
8) 휘발성 유기 화합물 방출량: TVOC (total volatile organic compounds)와, VOC/FOG (volatile organic compounds/fogging) 방줄량을 다음과 같은 조건하에서 측정하였다.
(1) VDA277
독일자동차산업연합회에서 규격화한 VDA277에 따라 headspace-GC-FID를 이용하여 올레핀 중합체를 120°C에서 5 시간 동안 가열하고 샘플 1 g 당 검출되는 모든 탄화수소를 아세톤의 함량 G«g)으로 환산하였다.
구체적으로, 하기 식 1과 같이 샘플로부터 검출되는 탄화수소의 전체 피크 면적을 적분한 값 (total peak area)에서 빈 headspace vessel에서 검출되는 탄화수소의 전체 피크 면적을 적분한 값 (blank value)을 제한 후 이를 아세톤 calibration으로부터 얻은 상수 (k(G))로 나눴다. 그리고, 얻어지는 값에 아세톤 표준 사용량 (샘플 1 g 당 아세톤 2 )과 아세톤 총 무게에 대한 탄소의 무게 비율 값 (으 6204)을 곱하여 샘플 1 g 당 검출되는 탄화수소를 아세톤으로 환산한 함량 (EG)을 구하였다.
이렇게 환산된 값을 TVOC 값으로 규정하고 표 2에 나타내었다. [식 1]
p = 네 peak area - Blank value χ χ Q
ϋ— k(G) .' '
(2) VDA278
독일자동차산업연합회에서 규격화한 VDA278에 따라 purge & trap-GC-MSD를 이용하여 올레핀 중합체를 90 °C에서 30 분간 가열하고 샘플 l g 당 검출되는 탄화수소 (up to n-C25)를 를루엔의 함량 (/ )으로 환산하였다. 이렇게 환산된 값을 VOC 값으로 규정하고 표 2에 나타내었다.
한편, 독일자동차산업연합회에서 규격화한 VDA278에 따라 purge & trap-GC-MSD를 이용하여 올레핀 중합체를 120°C에서 1 시간 동안 가열하고 샘플 1 g 당 검출되는 탄화수소 (n-C14 ~ n-C32)를 핵사데칸의 함량 (/zg)으로 환산하였다. 이렇게 환산된 값을 FOG 값으로 규정하고 표 2에 나타내었다. 구체적으로, 하기 식 2와 같이 샘플로부터 검출되는 탄화수소의 전체 피크 면적을 적분한 값 (Peak area)을 사용한 샘플의 함량으로 나눈 다음 VOC의 경우 를루엔의 Rf (Response factor) 상수 값을 곱하고 FOG의 경우 핵사데칸의 Rf 상수 값을 곱하여 샘플 1 g 당 검출되는 탄화수소를 를루엔 혹은 핵사데칸의 함량 (/ g)으로 환산하였다.
[식 2]
Peak area
Emission = Rf (tolyeoc or cxadeciuie) X ~―
1000 X Test portion sample 상기 측정 결과를 하기 표 1 및 표 2에 나타내었다.
【표 1 1
Figure imgf000022_0001
【표 2]
Figure imgf000022_0002
상기 표 1 및 표 2에 나타난 바와 같이, 특정 전이금속을 포함하는
2종의 메탈로센 화합물을 포함하는 흔성 담지 촉매의 존재 하에 제조된 실시예의 폴리프로필렌은 지글러 -나타 촉매의 존재 하에 제조된 비교예의 폴리프로필렌에 비하여 굴곡 탄성를, 굴곡 강도와 같은 기계적 물성이 우수할 뿐만 아니라, 매우 낮은 휘발성 유기 화합물 방출량을 갖고, 투명성 또한 우수하여 인체와 직접적으로 접촉할 수 있는 사출용 용기 혹은 음료용 컵 등의 제품에 적용이 유리하다.

Claims

【청구범위】
【청구항 1】
독일자동차 산업연합회에서 규격화한 VDA277에 따라 측정한 것으로, 120°C에서 5시간 동안 가열하여 1 g 당 검출되는 모든 탄화수소를 아세톤의 함량으로 환산한 값인 TVOC(total volatile organic compounds) 값이 60 i g/g 이하이고,
Haze가 5% 이하인, 폴리프로필렌.
【청구항 2】
제 1항에 있어서,
독일자동차 산업연합회에서 규격화한 VDA278에 따라 측정한 것으로, 90°C에서 30 분간 가열하여 1 g 당 검출되는 탄소수 1 내지 25의 직쇄 탄화수소를 를루엔의 함량으로 환산한 값인 VOC(volatile organic compounds) 값이 30/ g/g 이하인, 폴리프로필렌.
【청구항 3】
게 1항 또는 게 2항에 있어서,
독일자동차 산업연합회에서 규격화한 VDA278에 따라 측정한 것으로, 120°C에서 1시간 동안 가열하여 1 g 당 검출되는 탄소수 14 내지 32의 직쇄 탄화수소를 핵사데칸의 함량으로 환산한 값인 FOG(fogging) 값이 40//g/g 이하인, 폴리프로필렌.
【청구항 4】
거 U항에 있어서,
굴곡 강도 (ASTM D790에 따라 측정)가 400 kgf/crf 이상인, 폴리프로필렌.
【청구항 5】
거 11항에 있어서,
용융점 (Tm)이 130°C 내지 145 °C이고, 굴곡 탄성률 (ASTM D790에 따라 측정)이 14,000 kg^cin2 이상인, 폴리프로필렌.
【청구항 6】
제 1항에 있어서,
분자량 분포 (Mw/Mn)가 3.5 이하인, 폴리프로필렌.
【청구항 7】
제 1항에 있어서,
MFR(ASTM D1238에 따라 230°C에서 2.16 kg 하중으로 측정)이 10 내지 25 g/10min인, 폴리프로필렌.
【청구항 8】
제 1항에 있어서,
인장 강도 (ASTM D790에 따라 측정)가 300 내지 400 kgf/oif인, 폴리프로필렌.
【청구항 9】
거 11항에 있어서,
상기 폴리프로필렌은 하기 화학식 1로 표시되는 화합물, 하기 화학식
2로 표시되는 화합물 및 담체를 포함하는 흔성 담지 촉매의 존재 하에, 프로필렌을 중합하여 제조되는 것을 특징으로 하는, 폴리프로필렌:
[화학식 1]
Figure imgf000026_0001
상기 화학식 i에서,
X는 서로 동일하거나상이한 할로겐이고,
^은 C1-20 알킬로 치환된 C6-20 아릴이고,
R2, R3 및 R4는 각각독립적으로 수소, 할로겐, C1-20 알킬, C2 20 알케닐,
C1-20 알킬실릴, C1-20실릴알킬, C1-¾) 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
A는 탄소, 실리콘 또는 게르마늄이고,
R5는 C1-20 알콕시로 치환된 C 20 알킬이고,
R6는 수소 , 20 알킬 또는 C2 20 알케닐이고,
Figure imgf000026_0002
상기 화학식 2에서 X'는 서로 동일하거나 상이한 할로겐이고,
! 은 C1-20 알킬로 치환된 C6-20 아릴이고,
R* 2, R'3 및 R'4는 각각 독립적으로 수소, 할로겐, 20 알킬, C2 20 알케닐,
C1-20 알킬실릴, C1-20실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C 20 아릴알킬이고,
A'는 탄소, 실리콘 또는 게르마늄이고,
R'5는 C1-20 알콕시로 치환된 C1-20 알킬이고,
R'6는 수소, C1-20 알킬 또는 C2-20 알케닐이다. 【청구항 10】
거 19항에 있어서,
상기 흔성 담지 촉매는 하기 화학식 3으로 표시되는 화합물, 화학식 4로 표시되는 화합물 및 화학식 5로 표시되는 화합물 중 1종 이상을 추가로 포함하는, 폴리프로필렌:
[화학식 3]
-[A1(R30)-O]m- 상기 화학식 3에서,
R30은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
m은 2 이상의 정수이며;
[화학식 4]
J(R3l)3
상기 화학식 4에서,
R31는 상기 화학식 3에서 정의된 바와 같고;
J는 알루미늄 또는 보론이며;
[화학식 5]
[E-H]+[ZA4]"또는 [E] + [ZA4]
상기 화학식 5에서,
E는 중성 또는 양이온성 루이스 염기이고; H는 수소 원자이며;
Z는 13족 원소이고;
A는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
PCT/KR2017/001550 2016-03-18 2017-02-13 폴리프로필렌 WO2017159994A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/765,762 US10604597B2 (en) 2016-03-18 2017-02-13 Polypropylene
CN201780003953.5A CN108350114B (zh) 2016-03-18 2017-02-13 聚丙烯
EP17766895.1A EP3431516B1 (en) 2016-03-18 2017-02-13 Polypropylene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0032962 2016-03-18
KR20160032962 2016-03-18
KR1020170018677A KR102061282B1 (ko) 2016-03-18 2017-02-10 폴리프로필렌
KR10-2017-0018677 2017-02-10

Publications (1)

Publication Number Publication Date
WO2017159994A1 true WO2017159994A1 (ko) 2017-09-21

Family

ID=59851000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001550 WO2017159994A1 (ko) 2016-03-18 2017-02-13 폴리프로필렌

Country Status (1)

Country Link
WO (1) WO2017159994A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350830B1 (en) * 1998-02-19 2002-02-26 Tagor Gmbh Catalyst system, method for the production thereof and its use for the polymerization of olefins
EP2028122A1 (en) * 2007-08-10 2009-02-25 Borealis Technology Oy Article comprising polypropylene composition
WO2010009827A1 (en) * 2008-07-22 2010-01-28 Borealis Ag Polypropylene composition with improved optics for film and moulding applications
KR20150052803A (ko) * 2013-11-06 2015-05-14 주식회사 엘지화학 폴리프로필렌
KR20160057930A (ko) * 2014-11-14 2016-05-24 주식회사 엘지화학 혼성 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350830B1 (en) * 1998-02-19 2002-02-26 Tagor Gmbh Catalyst system, method for the production thereof and its use for the polymerization of olefins
EP2028122A1 (en) * 2007-08-10 2009-02-25 Borealis Technology Oy Article comprising polypropylene composition
WO2010009827A1 (en) * 2008-07-22 2010-01-28 Borealis Ag Polypropylene composition with improved optics for film and moulding applications
KR20150052803A (ko) * 2013-11-06 2015-05-14 주식회사 엘지화학 폴리프로필렌
KR20160057930A (ko) * 2014-11-14 2016-05-24 주식회사 엘지화학 혼성 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법

Similar Documents

Publication Publication Date Title
JP5676940B2 (ja) 混成担持メタロセン触媒
KR101653356B1 (ko) 고분자량 폴리올레핀 제조용 메탈로센 촉매 및 이의 제조방법
KR101631702B1 (ko) 올레핀 중합용 촉매 및 이를 이용한 폴리올레핀의 제조방법
KR102064411B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법
KR101737568B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
WO2015047030A1 (ko) 프로필렌-1-부텐 공중합체의 제조방법 및 이로부터 수득되는 프로필렌-1-부텐 공중합체
KR102061282B1 (ko) 폴리프로필렌
EP3131911A1 (en) Silyl bis(hexamethylindenyl) complexes of group iva metals as polymerization catalysts
KR102080640B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
CN113840845A (zh) 丙烯-乙烯无规共聚物
CN107406475B (zh) 过渡金属化合物、包含其的催化剂组合物和使用该催化剂组合物制备烯烃聚合物的方法
KR102050071B1 (ko) 프로필렌 중합용 혼성 담지 촉매 시스템 및 이를 이용한 프로필렌 중합체의 제조 방법
KR102338106B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR102117650B1 (ko) 올레핀 중합체 및 이의 제조 방법
KR101969123B1 (ko) 고강성 및 에너지 절감 발포용 폴리프로필렌
KR101723488B1 (ko) 폴리프로필렌의 제조방법 및 이로부터 수득되는 폴리프로필렌
KR101734427B1 (ko) 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
CN108026208B (zh) 制备长纤维增强烯烃聚合物和长纤维的方法
KR102086767B1 (ko) 프로필렌-알파올레핀 공중합체
KR101810316B1 (ko) 프로필렌 중합용 담지 촉매
KR101653357B1 (ko) 고분자량 폴리올레핀 제조용 메탈로센 촉매 및 이의 제조방법
KR102550083B1 (ko) 혼성 담지 촉매 및 이를 이용한 폴리프로필렌의 제조방법
KR102412129B1 (ko) 호모 폴리프로필렌의 제조방법
WO2017159994A1 (ko) 폴리프로필렌
KR20200050844A (ko) 신규 전이금속 화합물 및 이를 이용한 폴리프로필렌의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15765762

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017766895

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766895

Country of ref document: EP

Kind code of ref document: A1