WO2017159686A1 - 免疫療法のためのモニタリングまたは診断ならびに治療剤の設計 - Google Patents

免疫療法のためのモニタリングまたは診断ならびに治療剤の設計 Download PDF

Info

Publication number
WO2017159686A1
WO2017159686A1 PCT/JP2017/010218 JP2017010218W WO2017159686A1 WO 2017159686 A1 WO2017159686 A1 WO 2017159686A1 JP 2017010218 W JP2017010218 W JP 2017010218W WO 2017159686 A1 WO2017159686 A1 WO 2017159686A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
mutation
subject
disease
peptide
Prior art date
Application number
PCT/JP2017/010218
Other languages
English (en)
French (fr)
Inventor
新井 理
隆二 鈴木
Original Assignee
Repertoire Genesis株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repertoire Genesis株式会社 filed Critical Repertoire Genesis株式会社
Priority to JP2018505954A priority Critical patent/JP6710004B2/ja
Priority to CN201780024830.XA priority patent/CN109072227A/zh
Priority to EP17766684.9A priority patent/EP3431595A4/en
Priority to US16/085,455 priority patent/US12065699B2/en
Publication of WO2017159686A1 publication Critical patent/WO2017159686A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6878Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids in eptitope analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/30Drug targeting using structural data; Docking or binding prediction
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/30Detection of binding sites or motifs
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/10Gene or protein expression profiling; Expression-ratio estimation or normalisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/10Sequence alignment; Homology search
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B45/00ICT specially adapted for bioinformatics-related data visualisation, e.g. displaying of maps or networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • G16B5/20Probabilistic models
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • G16B50/20Heterogeneous data integration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • G16B50/10Ontologies; Annotations

Definitions

  • the present invention relates to the design and manufacture of diagnostic, monitoring and therapeutic agents for immunotherapy. More specifically, the present invention relates to a method of analyzing epitopes based on genome (for example, exome), mRNA information, MHC information and other biological information, and designing peptides useful for immunotherapy based on the results.
  • Non-Patent Document 1 Non-Patent Document 1
  • mutanome analysis For mutant genes, analysis based on an exhaustive database of mutants called mutanome analysis has also been performed. In the mutanome analysis, various amino acid substitution mutations are comprehensively introduced into proteins, the structure and function of each mutant are measured, a database of sequence / structure / function is constructed, this database is analyzed, and sequence information The purpose is to develop a method for predicting the structure / function of a protein only from the above (Non-patent Document 2).
  • the present inventors have developed a method for producing a peptide for treatment, monitoring or diagnosis of a disease in a subject.
  • information on the subject's genome read eg, exome read
  • information on the subject's RNA sequence and information on the subject's MHC type, if necessary, are obtained, , Exome read) and information on the mutation, arbitrary RNA sequence information, information on the MHC type, and information on the disease, an epitope on the mutation is analyzed, and if necessary, on the information on the epitope This is achieved by producing peptides.
  • the present invention provides: (1) A method for producing a peptide for treatment, monitoring or diagnosis of a disease in a subject, the method comprising: A) A step of inputting information relating to a mutation specific to the diseased tissue of the subject and information on the MHC type of the subject to the analysis device; B) causing the analyzer to analyze an epitope relating to the mutation based on information relating to the mutation specific to the diseased tissue, information on the MHC type, and information on the disease; and C) information on the epitope Producing a peptide based thereon.
  • the step (B) includes a step of identifying a candidate mutation by causing the analyzer to perform an annotation based on a reference information database for a mutation specific to the diseased tissue, and then converting the nucleic acid information of the candidate mutation into an amino acid After converting into information, wild type (WT) peptide and mutant type (MT) peptide are produced, and then the MHC type, the WT peptide, and the MT peptide are used to search the epitope for the analyzer.
  • WT wild type
  • MT mutant type
  • the mutation specific to the diseased tissue is derived based on information on the genome read of the subject and the mutation.
  • the genome read includes an exome read.
  • Information on the genome read and its mutation is obtained from a normal sample of the subject and a sample of the subject suffering from the disease, and after mapping the information on the genome read and its mutation, respectively, The method according to any one of the above items, wherein a mutation specific to a diseased tissue is searched and a mutation specific to the diseased tissue is identified.
  • the step A) further includes inputting information on the RNA lead of the subject to the analysis device, and the step B) is based on the information on the RNA lead.
  • RNA lead includes an RNA lead of a diseased tissue, and further comprises a step of mapping the RNA lead of the diseased tissue to search for a mutation and / or deriving an expression level.
  • the method according to item. (8) The information of the RNA lead includes an RNA lead of a normal tissue, maps the RNA lead of the normal tissue to search for somatic mutation, and / or derives an expression level, The method according to any one of the preceding items, further comprising the step of comparing the expression level derived based on the expression level.
  • the B) step is as follows: B-1) Deriving information on a wild-type peptide and a disease-specific mutant peptide by causing the analysis device to perform annotation and nucleic acid amino acid conversion based on an existing database for a mutation specific to the diseased tissue ; B-2) causing the analyzer to search for an epitope specific to the disease using a known database using the MHC type, the wild type peptide and the disease-specific mutant peptide; and B-3 ) In the analysis device, the peptide sequence of the obtained epitope, MHC information (genotype and affinity) and mutation information (chromosome, position, mutation pattern (wild type / mutant type), reliability, priority, and relevant gene A score is calculated from (gene name, expression level)), and includes at least one step selected from the steps of ranking the epitopes to be prioritized, Step C) C-1) comprising producing peptide
  • the rankings are sorted by applying the IC50 value between HLA-peptides, the number of epitope search programs in which hits are found, and the number of mutation search softwares in which hits are found, in the above order.
  • the method according to any one of the above. (28) The method according to any one of the above items, wherein the disease is a tumor or an autoimmune disease.
  • the step A) A-1) Sequencing of the subject's genome is performed on the analysis device to obtain information on the subject's genome read and its mutation, and after mapping the genome read and its mutation information, it is specific to the diseased tissue Searching for a specific mutation and obtaining a mutation specific to the diseased tissue, A-2)
  • the analysis device performs RNA sequencing of the subject to obtain information on the RNA lead of the subject, maps the RNA lead of the diseased tissue to search for a mutation, and / or expression level If necessary, map the RNA lead of normal tissue to search for somatic mutations and / or derive the expression level and compare with the expression level derived based on the RNA lead of the diseased tissue
  • A-3) selecting from the group comprising the step of obtaining MHC type information of the subject by performing MHC typing of the subject using the genome read of the subject as required by the analysis device
  • a method according to any one of the preceding items, comprising performing at least one of the following.
  • a method for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject comprising: A) a step of inputting information relating to a mutation specific to the diseased tissue of the subject and MHC type information of the subject to an analysis device; and B) information relating to a mutation specific to the diseased tissue to the analysis device. And analyzing the epitope related to the mutation based on the information of the MHC type and the information of the disease. (31) The method according to any one of the above items, further comprising the feature according to any one or more of the above items.
  • a device for producing a peptide for treatment, monitoring or diagnosis of a disease in a subject the device: A) An information input unit for inputting information on a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as necessary; B) Epitope analysis unit for analyzing an epitope related to the mutation based on information on the mutation specific to the diseased tissue of the subject, and if necessary, the mRNA sequence information, the MHC type information, and the disease information And C) a device comprising a peptide production unit that produces a peptide based on the epitope information.
  • the apparatus according to any of the above items, wherein the unit B performs a procedure defined in any one or more of the above items.
  • the unit A comprises means for sequencing the subject's genome, means for determining a mutation specific to the diseased tissue of the subject, means for sequencing the subject's RNA, and MHC of the subject.
  • a device for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject A) an information input unit for inputting information relating to a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as necessary; and B) the subject Based on information specific to the disease tissue of the disease, information on the mRNA sequence, information on the MHC type, and information on the disease as necessary, an epitope relating to the mutation is analyzed, and the result is treated for treatment of the disease
  • a device comprising an epitope analysis unit that outputs as a peptide for monitoring or diagnosis.
  • the apparatus according to any one of the above items, wherein a procedure defined in any one or more of the above items is performed in the unit B.
  • the unit A comprises means for sequencing the subject's genome, means for determining a mutation specific to the diseased tissue of the subject, means for sequencing the RNA of the subject, and MHC of the subject.
  • a program for causing a computer to execute a method for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject comprising: A) a step of inputting information relating to a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as required; and B) a disease of the subject Analyzes the epitope related to the mutation based on information on the mutation specific to the tissue, and if necessary, information on the mRNA sequence, information on the MHC type, and information on the disease.
  • a computer-readable recording medium storing a program for causing a computer to execute a method for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject, the method comprising: A) a step of inputting information relating to a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as required; and B) a disease of the subject Analyzes the epitope related to the mutation based on information on the mutation specific to the tissue, and if necessary, information on the mRNA sequence, information on the MHC type, and information on the disease. Or a recording medium comprising a step of outputting as a peptide for diagnosis. (41) The recording medium according to the above item, further having the characteristics described in any one or more of the above items.
  • FIG. 1 illustrates the concept of the present invention.
  • FIG. 2 shows an analysis flow schematic diagram.
  • the central dotted line shows the central flow in the present invention. Areas outside the dotted line indicate optional additional analysis steps.
  • FIG. 3 shows a start screen in the analysis flow.
  • tumor-derived exome, normal tissue-derived exome, tumor-derived RNA sequence, selection of normal tissue-derived RNA sequence, selection of thread number, lead trimming condition, low quality (LQ) region trimming, analysis condition, etc. are selected It can be done.
  • the type of algorithm such as a mapping algorithm and the selection and setting of the condition can be performed.
  • FIG. 4 shows an analysis condition setting screen.
  • FIG. 5 shows an example of the output result.
  • FIG. 6 shows the experimental results of Example 1. The results of ELISPOT assay of interferon ⁇ (sample No. 14, 33, 41) and intracellular interferon ⁇ staining are shown in order from the left.
  • FIG. 7 shows a block diagram of the system of the present invention.
  • gene is used in the normal meaning used in the field, and refers to a collection of all chromosomes possessed by a certain organism.
  • exome is used in the ordinary meaning used in the art, and indicates an exhaustive analysis and analysis of genome exons. Therefore, the exome relates to comprehensive analysis of a part of the genome.
  • gene read and “exome read” refer to a read of a nucleic acid sequence of a genome and an exome, respectively. Usually, it is specified by sequence information based on residues of the base sequence (adenine, cytosine, guanine, thymine (in the case of DNA), uracil (in the case of RNA)).
  • mRNA is an abbreviation for messenger RNA, and is used in the usual meaning used in the art, and refers to RNA having base sequence information and structure that can be translated into protein.
  • RNA read refers to a read of a nucleic acid sequence of mRNA. Usually specified by sequence information.
  • mapping means that an individual element of a set is mechanically associated with or assigned to an element of another set according to a rule.
  • Gene mapping refers to identifying the location of a nucleic acid sequence or gene on the genome or chromosome.
  • MRNA mapping refers to mapping of mRNA reads to the genome, where a large number of reads are mapped alternately and where nothing is mapped, and this is analyzed to correspond to exons and introns, respectively. Can do. In mRNA mapping, mutations can be searched, and the expression level can be derived by calculating the frequency.
  • MHC typing or “HLA typing” refers to identifying the type of human leukocyte antigen.
  • MHC refers to major histocompatibility complex: major histocompatibility complex, also referred to as major histocompatibility complex, and in the case of human, human leukocyte antigen (HLA).
  • MHC typing or HLA typing can be obtained from existing databases or existing personal information, or can be typed in a variety of ways including, for example, serological tests, sequencing Specific oligonucleotide [SSO], sequence-specific primer [SSP], CE sequence-based typing [SBT] and the like can be mentioned.
  • SSO sequencing Specific oligonucleotide
  • SSP sequence-specific primer
  • CE sequence-based typing CE sequence-based typing
  • the analysis can be performed by a typing method provided there.
  • the “database” refers to any database related to genes, and in the present invention, in particular, information including information on disease mutations can be used.
  • databases include the Japan DNA Data Bank (DDBJ, DNA Data Bank of Japan, www.ddbj.nig.ac.jp) database, GenBank (National Center for Biotechnology Information, www.ncbi.nlm.nih.gov/). genbank /) database, ENA (EMBL (European Institute of Molecular Biology), www.ebi.ac.uk/ena) database, IMGT (the international ImmunGeneTics information system, www.imgt.org) database, etc. Yes, but not limited to this.
  • annotation means that information (metadata) related to certain data is given as an annotation.
  • information gene function or the like
  • information on the searched mutation can be added using a reference information database (DB). Additional information includes location (exons, introns, regulatory regions, intergenic regions, etc.), whether amino acid mutations are involved, known information related to the mutations (disease relevance, racial frequency, etc.), etc.
  • DB reference information database
  • databases examples include a database of gene structures (refGene, ensEmbl, etc.), a database of known mutation information (dbSNP, cosmic, 1000 genomes, whole exo features, etc.), and the like.
  • Software for performing annotations such as ANNOVAR and snpEff can be used.
  • ANNOVAR is used, but not limited thereto.
  • assignment refers to assigning information such as a specific gene name, function, characteristic region (eg, domain or binding region) to a certain sequence (eg, nucleic acid sequence, protein sequence, etc.). Specifically, this can be achieved by inputting or linking specific information to a certain array.
  • nucleic acid amino acid conversion refers to conversion of nucleic acid sequence information into an amino acid sequence based on codon conversion.
  • peptides before the change (WT) and after the change (MT) can be derived for mutations involving amino acid changes. It is a simple character string conversion, which can be organized by ordinary programming, and is often an accompanying function in standard software.
  • disease-specific peptide refers to a peptide that increases in frequency (preferably appears specifically) as compared to a normal subject when a subject suffers from a certain disease.
  • the disease-specific peptide is called a cancer-specific peptide and can be used as an anticancer agent.
  • the “subject (person)” refers to a subject of diagnosis or detection or treatment of the present invention.
  • test sample or simply “sample” is intended to include a target subject (living body), a cell, or a substance derived therefrom, which enables gene expression. If it is.
  • antigen refers to any substrate that can be specifically bound by an antibody molecule.
  • immunogen refers to an antigen capable of initiating lymphocyte activation that produces an antigen-specific immune response.
  • epitope or “antigenic determinant” refers to a site in an antigen molecule to which an antibody or lymphocyte receptor binds.
  • diagnosis refers to identifying various parameters related to a disease, disorder, or condition in a subject and determining the current state or future of such a disease, disorder, or condition.
  • conditions within the body can be examined, and such information can be used to formulate a disease, disorder, condition, treatment to be administered or prevention in a subject.
  • various parameters such as methods can be selected.
  • diagnosis in a narrow sense means diagnosis of the current state, but in a broad sense includes “early diagnosis”, “predictive diagnosis”, “preliminary diagnosis”, and the like.
  • the diagnostic method of the present invention is industrially useful because, in principle, the diagnostic method of the present invention can be used from the body and can be performed away from the hands of medical personnel such as doctors.
  • “predictive diagnosis, prior diagnosis or diagnosis” may be referred to as “support”.
  • “monitoring” refers to evaluation of a response to a subject such as a drug such as immunotherapy when used for immunotherapy for a disease such as cancer immunity.
  • ELISPOT enzyme immunospot
  • ELISPOT assays can be used to assess a subject's response and effectiveness to vaccines, pharmaceuticals, and biologicals.
  • the ELISPOT assay is one of the most accurate cell assays for detecting and enumerating individual cells that secrete specific proteins in vitro. Based on enzyme immunoassay (ELISA), originally developed for analysis of specific antibody-secreting cells, but to measure the frequency of cells that produce and secrete other effector molecules such as cytokines Is also used. When compared to conventional ELISA assays, the ELISPOT assay is 200-400 times more accurate depending on the cytokine / factor analyzed and can detect cytokine-secreting cells at a frequency as low as a few hundred thousand. Moreover, since the cytokine released in response to the antigen can be mapped to a single cell, the frequency of T cell responders can be calculated. ELISPOT can also indicate the type of cytokine response that is the type of immune response elicited.
  • ELISA enzyme immunoassay
  • the ELISPOT assay is different from ELISA in that cells are measured instead of solutions, but there are many similarities except for that.
  • the test cells are cultured on the well surface coated with a specific capture antibody. After removing the cells, the secreted molecules are detected as in an ELISA. By using a precipitation substrate, spots are formed where the secretory cells were located. Therefore, in the ELISPOT assay, the frequency of secreted cells is measured instead of the concentration of the substance in solution. Furthermore, the size and color development intensity of each spot represent the amount of cytokine secreted from the cell at that position.
  • ELISPOT technology is used to analyze specific immune responses, it takes advantage of the phenomenon that T cells begin to produce cytokines as part of the activation process after antigen challenge. All cells capable of responding to an antigen secrete the corresponding cytokine and can be identified in this way. Therefore, it can be used in any cell, but it is mainly produced in CD8 + T cells that are immunologically involved with cytotoxic T cells (CTLs) in infectious diseases, cancer, and vaccine development research. A method of detecting IFN- ⁇ is frequently used.
  • “therapy” refers to prevention of worsening of a disease or disorder when such a condition or disorder (eg, cancer) occurs, preferably, This refers to maintenance, more preferably reduction, and even more preferably elimination, and includes the ability to exert a symptom-improving effect or a preventive effect on one or more symptoms associated with a patient's disease or disease. Diagnosing in advance and performing appropriate treatment is referred to as “companion treatment”, and the diagnostic agent therefor is sometimes referred to as “companion diagnostic agent”. As used herein, “treatment, treatment” refers to performing some treatment or treatment on a subject at or at risk for a disease or disorder. In a broad sense, “treatment” and “prevention” are included.
  • the term “therapeutic agent (agent)” broadly refers to any drug capable of treating a target condition (for example, a disease such as cancer), and an inhibitor (for example, provided by the present invention) Antibody).
  • the “therapeutic agent” may be a pharmaceutical composition comprising an active ingredient and one or more pharmacologically acceptable carriers.
  • the pharmaceutical composition can be produced by any method known in the technical field of pharmaceutics, for example, by mixing the active ingredient and the carrier.
  • the form of use of the therapeutic agent is not limited as long as it is a substance used for treatment, and it may be an active ingredient alone or a mixture of an active ingredient and an arbitrary ingredient.
  • the shape of the carrier is not particularly limited, and may be, for example, a solid or a liquid (for example, a buffer solution).
  • prevention refers to preventing a certain disease or disorder (for example, cancer) from entering such a state before it enters such a state. Diagnosis can be performed using the drug of the present invention, and, for example, cancer or the like can be prevented using the drug of the present invention as needed, or countermeasures for prevention can be taken.
  • a certain disease or disorder for example, cancer
  • prophylactic agent refers to any agent that can prevent a target condition (for example, a disease such as cancer) in a broad sense.
  • drug drug
  • drug may also be a substance or other element (eg energy such as light, radioactivity, heat, electricity).
  • Such substances include, for example, proteins, polypeptides, oligopeptides, peptides, polynucleotides, oligonucleotides, nucleotides, nucleic acids (eg, DNA such as cDNA, genomic DNA, RNA such as mRNA), poly Saccharides, oligosaccharides, lipids, small organic molecules (for example, hormones, ligands, signaling substances, small organic molecules, molecules synthesized by combinatorial chemistry, small molecules that can be used as pharmaceuticals (for example, small molecule ligands, etc.)) , These complex molecules are included, but not limited thereto.
  • a polynucleotide or promoter having complementarity with a certain sequence homology (for example, 70% or more sequence identity) to the sequence of the polynucleotide examples include, but are not limited to, polypeptides such as transcription factors that bind to regions.
  • Factors specific for a polypeptide typically include an antibody specifically directed against the polypeptide or a derivative or analog thereof (eg, a single chain antibody), and the polypeptide is a receptor.
  • specific ligands or receptors in the case of ligands, and substrates thereof when the polypeptide is an enzyme include, but are not limited to.
  • the present invention provides a method of identifying peptides for treatment (including therapy and prevention), monitoring or diagnosis of a disease in a subject.
  • the “analyzer” used in the present invention may have a function of receiving and analyzing information to be analyzed, communicating with other units by communication, etc., and outputting the result (immunotherapy analysis).
  • (Apparatus / System and Analysis Program) are also described in detail, and any embodiment thereof can be adopted, and various units can constitute this analysis apparatus.
  • a schematic diagram of the analyzer is shown in FIG. 7 and is described in detail in (System Configuration).
  • the method of the invention comprises: A) information about the subject's genomic read (eg, exome read) and its mutations, optionally information about the subject's RNA sequence and the subject's A step of inputting MHC type information to an analysis device; and B) the mutation based on information on the genome read and the mutation, if necessary, the RNA sequence information, the MHC type information, and the disease information.
  • the method may include a step of causing the analyzer to analyze the epitope and outputting the result to the analyzer as a peptide for treatment, monitoring or diagnosis of the disease.
  • the present invention provides a method for producing a peptide for treatment, monitoring or diagnosis of a disease in a subject.
  • the method comprises the steps of A) inputting information relating to a mutation specific to the diseased tissue of the subject and MHC type information of the subject to the analysis device; and B) specific to the diseased tissue in the analysis device A step of analyzing an epitope relating to the mutation based on information on the mutation, information on the MHC type, and information on the disease.
  • the method of the invention comprises A) information about the subject's genomic read (eg, exome read) and its mutations, optionally information about the subject's RNA read and the subject's A step of inputting MHC type information to the analysis device; B) based on the information on the genome read and the mutation, if necessary, information on the RNA sequence, information on the MHC type, and information on the disease Analyzing the epitope relating to the mutation; and C) producing a peptide based on the information of the epitope.
  • the subject's genomic read eg, exome read
  • a disease for example, cancer
  • Treatment and diagnosis such as immune monitoring can be performed.
  • this include, for example, the neoantigen technique based on the existence of an immune response targeting individual gene mutations (inherent antigens) and the antitumor effect, and comprehensive analysis of this.
  • Other diseases that can be targeted by the present invention include, for example, autoimmune diseases caused by autoreactive T cells. In this case, in many autoimmune diseases, evidence that T cell abnormalities are associated with etiology Since this is shown, you can make use of this information.
  • the present invention can be applied to the identification and separation of specific T cells that cause a specific disease and the recognition molecule (pathogenic antigen) and determination thereof can be easily performed.
  • a specific disease and the recognition molecule pathogenic antigen
  • rheumatoid arthritis, type 1 diabetes mellitus, and multiple sclerosis are diseases caused by specific T cells against an unknown joint antigen, and thus can be cited as target diseases.
  • autoimmune diseases the self-antigen recognized by T cells by autoimmunity is identified, and the onset is suppressed by inhibiting the activation of self-reactive T cells or inhibiting the activation itself. It is in.
  • the failure of immune tolerance that is originally established against self is thought to be related to induction of autoimmunity, but by comprehensively examining and searching for the presence of somatic mutations on the antigen side that induce autoimmunity,
  • the present invention can identify not only known but also unknown etiological antigens (epitopes), thereby enabling treatment and prevention of diseases.
  • the present invention can also be applied to the diagnosis / prevention of the presence or absence of an etiological antigen of an autoimmune disease, and can also be applied to the development of a therapeutic drug targeting the pathogenic antigen.
  • the step B) implemented in the present invention includes the step of annotating the analysis device with a mutation specific to the diseased tissue based on a reference information database to identify the candidate mutation, and then the candidate Mutation nucleic acid information is converted to amino acid information to produce wild type (WT) peptide and mutant type (MT) peptide, and then analyzed using MHC type (HLA type for humans), WT peptide and MT peptide
  • the method includes performing epitope search on the apparatus, ranking the epitopes, and causing the analysis apparatus to output an epitope list.
  • a mutation specific to a diseased tissue is derived based on information about the subject's genome read and the mutation.
  • the genome read may include a genome read derived from a normal tissue and a genome read derived from a diseased tissue (for example, a tumor or the like).
  • genomic reads that can be used in the present invention include reads that read the genomic DNA sequence of diseased tissue (eg, tumor) or normal tissue.
  • methods for obtaining genome reads include, but are not limited to, whole genome sequencing and exome sequencing. Therefore, information on the genome read and its mutation is obtained from the normal sample of the subject and the sample of the subject affected by the disease, respectively, and after mapping the information on the genome read and its mutation, the disease tissue To identify mutations specific to the diseased tissue.
  • next-generation sequencer for example, Illumina, Roche 454, etc.
  • capillary sequencer for example, a capillary sequencer.
  • the present invention is not limited to these, as long as the nucleic acid sequence (gene sequence) can be read. It is understood that any technique can be used. In particular, exome sequences are typically used.
  • the genomic reads utilized by the present invention include exome reads.
  • Exome is related to the comprehensive analysis or analysis of exons that make up the main part of the genome, and it is not desired to be bound by theory, but it can actually function by investigating exome reads. It is considered that information having a closer relationship with the protein to be investigated can be investigated, and analysis accuracy can be improved.
  • the method of the present invention utilizes the RNA lead information of the subject. Therefore, in a specific embodiment, the step A) further includes inputting information on the RNA lead of the subject to the analyzer, and the step B) is based on the information on the RNA lead in the analyzer. And analyzing the epitope relating to the mutation.
  • the RNA lead comprises an RNA lead of diseased tissue, further comprising mapping the RNA lead of the diseased tissue to search for mutations and / or deriving expression levels.
  • the RNA lead information used in the present invention includes a normal tissue RNA lead, maps the normal tissue RNA lead to search for somatic mutation, and / or derives the expression level
  • the method further includes a step of comparing the expression level derived based on the RNA read of the diseased tissue.
  • RNA reads examples include reads that read RNA sequences of diseased tissues (eg, tumors) and / or normal tissues. Such RNA sequence can be determined by RNA-Seq using a next-generation sequencer as well as EST analysis using a capillary sequencer, but is not limited thereto, and any RNA sequence can be read as long as it can be read. It is understood that techniques can be used. A typical example is RNA-Seq by a next-generation sequencer.
  • Arbitrary typing methods can be used as MHC (HLA) typing that can be implemented in the present invention.
  • typing can be performed using software from genome reads.
  • an assay system such as Luminex method for directly typing from a specimen can be used.
  • the analyzing step B) comprises causing the analysis device to derive information on wild-type peptides and disease-specific mutant peptides; causing the analysis device to search for epitopes specific to the disease And at least one step selected from the steps of causing the analyzer to calculate the score of the obtained epitope and ranking the epitope to be prioritized.
  • the method includes the step of causing the analysis device to identify a disease-specific mutation and the step of causing the analysis device to annotate the disease-specific mutation based on a reference information database to identify candidate mutations, and thereafter , Converting the nucleic acid information of the candidate mutation into amino acid information to generate data on the wild type (WT) peptide and the mutant type (MT) peptide, and then the MHC type (HLA type in the case of human), the WT peptide and the MT peptide And epitope search using the data, ranking the epitopes, and outputting the epitope list.
  • WT wild type
  • MT mutant type
  • epitope search using the data, ranking the epitopes, and outputting the epitope list.
  • the method of the present invention comprises B-1) causing the analyzer to perform annotation and nucleic acid amino acid conversion based on an existing database for mutations specific to the diseased tissue, and to detect wild type peptides and disease specific Step of deriving information of genetically mutated peptides; B-2) Searching for epitopes specific to the disease using a known database using the MHC type, the wild type peptide and the disease-specific mutated peptide in the analysis device And B-3) the peptide sequence of the epitope obtained by the analyzer, MHC information (genotype and affinity) and mutation information (chromosome, position, mutation pattern (wild type / mutant)), reliability , Priorities, and the relevant genes (gene name, expression level)) to calculate the score and rank the epitopes that should be prioritized Having one or more characteristics of at least one step selected from steps.
  • MHC information geneotype and affinity
  • mutation information chromosome, position, mutation pattern (wild type / mutant)
  • the method of the present invention includes, in addition to the above B-1) to B-3), optionally causing the analyzer to perform at least one of the following steps: Obtain information on the genome read and its mutation from the sample and the sample of the subject affected by the disease, map (align) the information on the genome read and the mutation, and then search for the mutation and identify the disease. Identifying a specific mutation, and if necessary, identifying a sequence specific to the disease for information on the RNA lead, mapping this to search for a mutation, and / or deriving an expression level, If necessary, MHC typing is performed from information on the normality and abnormalities specific to the disease to identify the MHC type.
  • step B first, as shown in B-1), the analysis apparatus performs annotation and nucleic acid amino acid conversion based on an existing database for mutations specific to the diseased tissue, Deriving information on disease-specific mutant peptides.
  • existing data may be used, and the following derivation steps may be performed.
  • the derivation step information on the genome read and its mutation is obtained from a normal sample of the subject and a sample of the subject suffering from the disease, respectively, and the information on the genome read and its mutation is mapped (aligned).
  • genome mapping that can be performed in the present invention refers to mapping a genome read to a genome sequence.
  • the read cleanup method can be any method, but typically, it is a region that is more unsuitable for analysis than a genomic read (eg, exome read) and / or RNA read. For example, removing adapter sequences for sequencing (sequencing); removing low quality regions; removing contamination. The removal of contamination is realized by removing inappropriate leads from the lead set instead of trimming a part of the leads. For example, bacterial or viral sequences can be removed prior to human genome analysis.
  • any method known in the art can be used as the method for removing the adapter sequence for sequencing (sequence), but typically, an appropriate length, for example, 12 bp or more (or 10 bp or more, 11 bp or more). For example, if a region matching the adapter sequence is found with a mismatch rate of 10% or less, the region can be removed.
  • the mismatch rate can be changed as appropriate, and may be, for example, 1% or less, 2% or less, 3% or less, 4% or less, 5% or less, 10% or less, 15% or less, 20% or less, or the like.
  • an appropriate length for example, an average quality value of 10 bp is a predetermined value, for example, 12 or less. If a certain area is found from both ends of the lead, the area can be removed.
  • the “average quality value” means a value indicating the quality of the analysis in the gene analysis software, and is appropriately set in the software to be used (for example, sequencing software).
  • the “quality value” used in the present specification is a value obtained by quantifying the reliability of each base on a read output from various sequencers (when the base error rate is X, ⁇ log 10 (X) ⁇ 10 Defined). The error rate of each base varies from sequencer to sequencer, and the error rate is evaluated as a quality value with unique logic for each model. Since the evaluation is performed by the front-end computer that controls the sequencer and the software that runs on the computer, it is set as appropriate in commonly used software (for example, sequencing software).
  • the “average quality value” is a value obtained by arithmetically averaging the quality values in a predetermined length region.
  • the average length when investigating the average quality value may be other than the above, for example, 5 bp, 6 bp, 7 bp, 8 bp, 9 bp, 10 bp, 11 bp, 12 bp, 13 bp, 14 bp, 15 bp, etc., or longer Can be mentioned.
  • Examples of the average quality value include 10 or less, 11 or less, 12 or less, 13 or less, 14 or less, 15 or less.
  • Examples of software that can be used in genome mapping include bwa, bowtie, novalign, and the like, and typically bwa can be used.
  • bwa and bowtie are software that can be released and freely downloaded, and novaalign is also commercially available software available to those skilled in the art.
  • the somatic mutation search in the present invention refers to searching for a mutation found only in the former by comparing a diseased tissue (for example, a tumor tissue) and a normal tissue.
  • a diseased tissue for example, a tumor tissue
  • a normal tissue for example, a normal tissue
  • Such a search can also be realized by software.
  • software examples include mutation search programs such as muTect, VarScan, and lofreq. Typically, muTect is used. be able to. These software can be used together. Reliability can be improved by using two or more types (two types, three types, etc.) of software together.
  • information on the searched mutation can be added using the reference information database.
  • information on the searched mutation can be added using the reference information database.
  • information on the searched mutation can be added using the reference information database.
  • information on the searched mutation can be added using the reference information database.
  • the database to be used include, but are not limited to, refGene, ensEmbl, and the like as gene structures.
  • known information on mutations include, but are not limited to, dbSNP, cosmic, 1000 genomes, whole exome features, and the like.
  • Software that can be used includes, but is not limited to, ANNOVAR, snpEff, etc.
  • ANNOVAR is used.
  • hg19 is a database used further.
  • hg19 is a human genome sequence database, which can usually be used as a background as a reference sequence for mapping.
  • the step B) may also include a step of identifying a sequence specific to the disease for information on the RNA read, mapping it, searching for a mutation, and / or deriving an expression level, if necessary. . Inclusion of RNA lead information can increase accuracy.
  • MRNA mapping can be realized by mapping an RNA read to a genomic sequence in consideration of an exon-intron structure. In some cases, reads may be cleaned up in advance as in the case of genome reads, and such cleanup techniques can use the same materials as in genome reads.
  • mRNA mapping can be realized by software, and examples of software that can be used include TopHat, STAR, and the like, and typically TopHAt is used.
  • RNA reads can be analyzed for normal and diseased tissues (tumors, etc.) as well as genome reads. About these, mRNA mapping can be performed and a mutation search can be performed. In addition to searching for mutations, mutation search can be performed for somatic mutations as well as genome reads, and mutation search can be performed for diseased tissues (for example, tumors).
  • a disease tissue mutation search is a search for mutations found in a single specimen, and typical software that can be used include muTect, VarScan, GATK, samtools, etc. Typically GATK can be used.
  • RNA reads As for RNA reads, a more characteristic feature is that the expression level can be derived and reflected in the analysis.
  • the derivation of the expression level and the comparison of the expression level can be realized by converting the mRNA mapping result into the expression level of each gene.
  • analysis can be performed by regarding the number of reads mapped to each locus as the expression level.
  • FPKM or RPKM Frragments / Reads Per Kilobase of exon per Million mapped reads
  • Expression levels can be compared between specimens, and expression levels can be compared between specimens.
  • Typical software that can be used includes mutation search programs such as CuffLinks and Erange. For example, CuffLinks is typically used, but is not limited thereto.
  • RNA leads from diseased tissues When using RNA leads from diseased tissues together, mRNA mapping of RNA leads from diseased tissues (eg, tumor tissues) is performed, mutation search and expression level derivation are performed, and information on these mutations and expression levels is given priority in the epitope list. Can be used for ranking.
  • diseased tissues eg, tumor tissues
  • mutation search and expression level derivation are performed, and information on these mutations and expression levels is given priority in the epitope list. Can be used for ranking.
  • RNA reads from normal tissues When RNA reads from normal tissues are used in combination, mRNA mapping of RNA reads from normal tissues can be performed, somatic mutation search and expression level derivation can be performed, and this information can be used for prioritizing epitope lists.
  • somatic mutation search and expression level derivation When also using an RNA lead of a diseased tissue, the information on somatic mutation, the expression level derived from the RNA lead derived from the diseased tissue, and the expression level derived from the RNA lead of a normal tissue are compared. Difference information on the expression level between normal and normal tissues can also be used for prioritizing epitope lists.
  • the step may also include a step of identifying the MHC type by causing the analyzer to perform MHC typing from information on the normality and the abnormality specific to the disease, if necessary.
  • MHC typing in the case of humans, HLA typing
  • HLA typing can determine the HLA type from genome reads, but the results of typing in another assay system can also be used.
  • software such as HLAminer, Athlates, Sting HLA, HLA caller, OptiType, omixon, etc. can be used, typically omixon (human), HLA caller ( Mouse) is used.
  • B) step is also a step of B-2) causing the analyzer to search for an epitope specific to the disease using a known database using the MHC type, the wild type peptide and the disease-specific mutant peptide.
  • the specific epitope search can search for a partial peptide having affinity for the designated HLA type from the designated peptide.
  • Examples of software that can be used include, but are not limited to, NetMHCpan, NetHMC, NetMHCcons, PickPocket, and the like.
  • NetMHCpan is used. It is also possible to improve the reliability by using it together, and it can be performed not only for humans but also for mice, rats, rhesus monkeys, chimpanzees, etc. by switching the reference database.
  • Step is also B-3) Peptide sequence of epitope obtained in analyzer, MHC information (genotype and affinity) and mutation information (chromosome, position, mutation pattern (wild type / mutant), reliability And calculating the score from the priority and the gene of interest (gene name, expression level)) and ranking the epitopes to be prioritized.
  • Epitope selection criteria can include prioritization of mutations, presence / absence of gene expression, prioritization of peptides, and the like.
  • mutation prioritization can be mentioned.
  • prioritizing mutations for example, it can be found in a plurality of mutation search software and / or prioritizing that there is evidence of RNA read origin. However, it is not limited to them. Alternatively, it may be considered that the presence of gene expression is given higher priority. The presence / absence of gene expression can be determined based on whether or not the fpkm or rpkm value calculated by mapping the RNA read is positive for the RNA read result. It has been found that by utilizing the result of RNA read, it contributes to improvement of accuracy as shown in Examples. Alternatively, peptide prioritization can be performed.
  • the prioritization of peptides can be determined in consideration of the level of IC50 value between HLA-peptides, for example, IC50 ⁇ 500 nM, preferably IC50 ⁇ 400 nM, IC50 ⁇ 300 nM, IC50 ⁇ 200 nM, IC50 ⁇ 100 nM, IC50 ⁇ 90 nM, IC50 ⁇ 80 nM, IC50 ⁇ 70 nM, IC50 ⁇ 60 nM, IC50 ⁇
  • the threshold value is not limited to these values, and the threshold value is an intermediate value between these values (for example, IC50 ⁇ 54 nM used in the embodiment). Can be adopted.
  • the peptide prioritization is a group consisting of the number of epitope search programs in which hits are found, the number of mutation search software in which hits are found, and the value of IC50 ⁇ 500 nM between HLA-peptides. At least one factor that is more selected is considered. More preferably, the ranking is sorted by applying the IC50 value between HLA-peptides, the number of epitope search programs in which hits are found, and the number of mutation search software in which hits are found. Without wishing to be bound by theory, this sort method can identify surprisingly high precision antigenic peptides.
  • information on the genome read and its mutation is obtained from the same subject.
  • information on the genome read and its mutation is obtained from normal tissue and the diseased tissue.
  • information on the genome read and its mutation is obtained from different subjects.
  • a normal subject is included in a different subject, so that a comparison with a subject suspected of having a disease can be clearly performed.
  • These differences can be identified as disease-specific mutations (for example, tumor-specific mutations in the case of cancer) by searching for somatic mutations after genome mapping.
  • the analyzer is appropriately annotated using a reference information database (DB) to identify candidate mutations and convert them to amino acid information. can do.
  • DB reference information database
  • a wild-type peptide and a mutant peptide can be generated based on the amino acid sequence candidates thus converted.
  • Annotation in the present invention refers to adding information about searched mutations using the reference information DB.
  • Information that can be added includes, for example, position (exons, introns, control regions, intergenic regions, etc.), whether amino acid mutations are involved, known information related to mutations (disease relevance, racial frequency, etc.), etc. It can mention, but it is not limited to these.
  • databases that can be used for annotation include refGene and ensEmbl for the investigation of gene structure, and dbSNP, cosmic, 1000 genomes, whole exome features, etc. are used for known information on mutations. can do. As a whole, ANNOVAR, snpEff, etc. can be used, and it is typical to use ANNOVAR, but it is not limited to this.
  • nucleic acid amino acid conversion (NA-AA conversion) is performed, and this is realized by converting a normal codon code.
  • special software because it is achieved by simple string conversion.
  • mutations that do not vary at the amino acid level can be removed.
  • epitope search can be performed in light of HLA type information.
  • a partial peptide having affinity for a specified HLA type can be searched from the specified peptide.
  • Software that can be used includes, but is not limited to, NetMHCpan, NetHMC, NetMHCcons, PickPocket and the like. Typically, NetMHCpan is used. Also, reliability can be improved by using two or more types together.
  • sequence information of the peptide is given. Therefore, any production method that can be performed based on the sequence information, such as chemical synthesis, production by microorganisms, or larger peptides Production (for example, enzymatic cleavage). Synthesis by peptide synthesis (chemical synthesis) is preferred. These are preferred synthesis methods in terms of mass production and / or accuracy.
  • the present invention can be carried out on animals in the same manner as humans. Examples are described below. 1. It is possible to search for neoantigens for tumors (cancer, sarcoma, leukemia) derived from spontaneous onset, chemical onset, and radiation onset in all strains of mice. 2. Collect tissues from the cancer site of tumor-bearing mice, and collect the same organs and tissues as the tumor site in normal mice. At this time, in a tumor-bearing mouse individual, a tumor site and a non-tumor site (for example, a tumor site and a non-tumor site in the case of colon cancer). When mice are of the same strain, normal tissues can be collected from normal mice. 3.
  • DNA and RNA are extracted from the collected tissues and organs and analyzed for exome seq and RNAseq. 4). Since MHC (major histocompatibility complex) is known for each strain, a search is made for a mutanome that can be used in the present invention, and further, a neoantigen presented on MHC (H-2 in mice). Is identified. 5. Regarding the selection of the neoantigen, the same methodology described in the human tumor exemplified in the Examples can be exemplified. 6).
  • neoantigen For the identified neoantigen, a peptide can be artificially synthesized, added to and cultured in the spleen cells of syngeneic mice, and induction of IFN ⁇ production after the culture can be used as an activity index. 7). Moreover, the cytotoxicity with respect to a tumor is measured using the spleen cell stimulated with neoantigen and cultured. 8). If it is clear from the examination in vitro that the searched neoantigen causes a functional induction of T cells against the tumor, the following is performed. 9. That is, the effect in vivo using the candidate neoantigen is examined. 10.
  • a neoantigen is directly administered to a tumor-bearing mouse (a mouse transplanted with a tumor used for neoantigen search). Moreover, it can be treated using dendritic cell therapy (in vitro, dendritic cells derived from syngeneic mice are stimulated and cultured, and the dendritic cells are administered to tumor-bearing mice).
  • the present invention provides an apparatus or system for producing a peptide for treatment, monitoring or diagnosis of a disease in a subject.
  • This apparatus or system comprises: A) an information input unit for inputting information relating to a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as required; B) Epitope analysis unit for analyzing an epitope related to the mutation based on information on the mutation specific to the diseased tissue of the subject, and if necessary, the mRNA sequence information, the MHC type information, and the disease information And C) comprising a peptide production unit for producing a peptide based on the epitope information.
  • the information input unit, analysis unit and synthesis unit used here may comprise any of the features described in (Methods for identifying and producing immunotherapeutic peptides).
  • the “analysis device” used in the present invention may include an information input unit and an epitope analysis unit. Furthermore, the analysis device of the present invention may include at least one additional unit having other functions. These units are described below.
  • a device or system for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject comprises: A) an information input unit for inputting information relating to a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as required; And B) analyzing the epitope related to the mutation based on the information specific to the disease tissue of the subject, and if necessary, the mRNA sequence information, the MHC type information, and the disease information, It includes an epitope analysis unit that outputs results as peptides for treatment, monitoring or diagnosis of the disease.
  • the information input unit and the analysis unit may comprise any of the features described in (Methods for identifying and producing immunotherapy peptides).
  • the present invention provides a program for causing a computer to execute a method for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject.
  • the method executed by the program includes: A) inputting information on a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject, and information on the MHC type of the subject, if necessary; And B) analyzing the epitope related to the mutation based on the information specific to the disease tissue of the subject, and if necessary, the mRNA sequence information, the MHC type information, and the disease information, Outputting the result as a peptide for treatment, monitoring or diagnosis of the disease.
  • the program may be stored in a recording medium or transmitted by a transmission medium.
  • the method performed here can comprise any of the features described in (Methods for identifying and producing immunotherapeutic peptides).
  • the present invention provides a recording medium storing a program for causing a computer to execute a method for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject.
  • the method executed by the program stored here is as follows: A) information on the mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as necessary. And B) information on the mutation specific to the diseased tissue of the subject, and if necessary, the epitope related to the mutation based on the mRNA sequence information, the MHC type information, and the disease information. Analyzing and outputting the results as peptides for treatment, monitoring or diagnosis of the disease.
  • the recording medium can be a RAM, a ROM, or an external storage device such as a hard disk (HDD), a magnetic disk (DVD, etc.), a flash memory such as a USB memory.
  • the method performed here can comprise any of the features described in (Methods for identifying and producing immunotherapeutic peptides).
  • unit A comprises at least one of means for sequencing a subject's genome, means for sequencing the subject's RNA, and means for MHC typing of the subject. May be included.
  • the A) step executed by the program includes A-1) sequencing the subject's genome to obtain information on the subject's genome read and its mutation, and mapping the genome read and its mutation information.
  • Unit B (analysis unit) may have various functions.
  • the step B) executed by the program performs various functions.
  • the steps or analysis steps performed in the analysis unit can include any step that implements the matter realizing the concept shown in FIG. 1 on a computer, and further realizes any step in the analysis flow shown in FIG. This may include any step of implementing the matter to be performed on a computer.
  • step B) executed by the unit B or the program, a step of inputting or identifying a mutation specific to the disease tissue, and a step of identifying a candidate mutation by annotating the mutation specific to the disease based on the reference information database
  • the nucleic acid information of the candidate mutation is converted to amino acid information to generate data of wild type (WT) peptide and mutant type (MT) peptide, and then MHC type (HLA type in the case of human), WT
  • WT wild type
  • MT mutant type
  • MHC type HLA type in the case of human
  • B-1) Nucleic acid amino acid conversion by annotating mutations specific to diseased tissues based on existing databases To derive information on wild-type peptides and disease-specific mutant peptides, and such steps are performed in the program of the present invention. Details of step B-1) are described in (Methods for identifying and producing immunotherapeutic peptides).
  • the mutation specific to the diseased tissue is derived based on the subject's genome read and information about the mutation.
  • the information on the genome read and its mutation is obtained from the normal sample of the subject and the sample of the subject affected by the disease, and after mapping the information on the genome read and the mutation, the disease A tissue-specific mutation is searched, and a mutation specific to the diseased tissue is identified.
  • the apparatus or system of the present invention may implement analysis of RNA lead information.
  • the apparatus or system of the present invention identifies a sequence specific to the disease with respect to the information of the RNA read, maps it, searches for a mutation, and / or derives an expression level. Steps can be implemented, and such steps can be performed in the program of the present invention. Inclusion of RNA lead information can increase accuracy. Details of the RNA lead information acquisition step are described in (Methods for Identifying and Producing Immunotherapy Peptides).
  • the apparatus or system of the present invention can implement the step of identifying the MHC type by performing MHC typing from the information about the normality and the abnormality specific to the disease, if necessary. Such steps can be performed. Details of the MHC type identification step are described in (Methods for identifying and producing immunotherapeutic peptides).
  • the apparatus or system of the present invention implements B-2) a step of searching for an epitope specific to the disease using a known database using the MHC type, the wild type peptide and the disease-specific mutant peptide. Alternatively, such steps may be performed in the program of the present invention. Thereby, an epitope is searched. Details of step B-2) are described in (Methods for identifying and producing immunotherapeutic peptides).
  • the apparatus or system of the present invention can implement a step of ranking epitopes, and such a step is performed in the program of the present invention. Therefore, the apparatus or system of the present invention provides B-3) peptide sequence of the obtained epitope, MHC information (genotype and affinity) and mutation information (chromosome, position, mutation pattern (wild type / mutant), trust The step of calculating the score from the sex, the priority, and the corresponding gene (gene name, expression level)) and ranking the epitope to be prioritized can be implemented, and such a step can be performed in the program of the present invention. . Details of step B-3) are described in (Methods for identifying and producing immunotherapeutic peptides).
  • the apparatus or system of the present invention When the apparatus or system of the present invention produces a peptide, it may have a peptide production unit that produces a peptide based on epitope information.
  • peptide production units are given peptide sequence information, so any production method that can be performed based on the sequence information, such as chemical synthesis, production by microorganisms, or cleavage of larger peptides (eg enzyme Any unit that realizes production by, for example, general cutting) may be provided.
  • the program of the present invention may be combined with a program that performs peptide production, or a program that realizes a step of executing peptide production may be incorporated as part of the program of the present invention.
  • the system of the present invention includes an external storage device 05 such as a RAM 03, a flash memory such as a ROM, an HDD, a magnetic disk, a USB memory, and an input / output interface (I / F) via a system bus 20 to a CPU 01 built in the computer system. 25 is connected.
  • An input device 09 such as a keyboard and a mouse, an output device 07 such as a display, and a communication device 11 such as a modem are connected to the input / output I / F 25.
  • the external storage device 05 includes an information database storage unit 30 and a program storage unit 40. Both are fixed storage areas secured in the external storage device 05.
  • the database storage unit 30 includes data such as a reference database, an input sequence set, generated genome read data, RNA read data, MHC (HLA) type data, specific mutation data, and software for executing various steps. In some cases, the database is also confirmed, or information acquired via the communication device 11 or the like is written and updated as needed. Information belonging to the sample to be accumulated is defined in each master table by managing information such as each sequence in each input sequence set and each gene information ID of the reference database in each master table as necessary. It is possible to manage based on the assigned ID.
  • the database storage unit 30 as input entry information, information (including ID and the like) about subjects of normal tissue, diseased tissue (for example, cancer tissue), sample information, sequence analysis (lead) information, and various mutations Information, mapping information, annotation information, nucleic acid / amino acid conversion information, expression level information, comparison information, wild peptide, mutant peptide, MHC (HLA) type information, etc. are stored in association with the sample ID. .
  • the analysis result is information obtained by processing according to the processing of the present invention.
  • the computer program stored in the program storage unit 40 configures the computer as the program of the present invention or the apparatus or system of the present invention including processes such as epitope search and epitope prioritization.
  • Each of these functions is an independent computer program, its module, routine, etc., and is executed by the CPU 01 to configure the computer as each system or device.
  • HLA type HLA-A * 02: 01, 24:02
  • DNA was extracted from normal tissue and tumor tissue, and exome sequencing was performed with Illumina sequencer HiSeq2000 using the TruSeq PE kit.
  • the equipment used was Illumina sequencer HiSeq2000, and the software used was the control software of the sequencer.
  • exome lead mapping Next, exome reads from normal tissue and tumor tissue were each mapped with the following parameters using bwa. algorithm: mem read mode: paired end minimum seed length: 19 band width: 100 off diagonal dropoff: 100 match score: 1 mismatch penalty: 4 gap open penalty: 6 gap extension penalty: 1 clipping penalty: 5 unpaired read penalty: 9.
  • FIG. 3 shows a start screen in the analysis flow.
  • tumor-derived exome, normal tissue-derived exome, tumor-derived RNA sequence, selection of normal tissue-derived RNA sequence, selection of thread number, lead trimming condition, low quality (LQ) region trimming, analysis condition, etc. are selected It can be done.
  • the type of algorithm such as a mapping algorithm and the selection and setting of the condition can be performed.
  • FIG. 4 shows an analysis condition setting screen. Software and conditions used for exome mapping and mutation search conditions, RNA mapping and expression analysis, mutation detection, mutation annotation, HLA typing, and epitope prediction (determination) can be selected and set.
  • FIG. 5 is an example of the output result. As a result, 1673 tumor-specific mutations were counted and found.
  • RNA lead normal tissue
  • RNA lead tumor tissue
  • RNA sequencing was performed using the TruSeq RNA Library kit and TruSeq PE kit with Illumina sequencer HiSeq2000.
  • the obtained RNA reads were mapped with the following parameters using TopHat. segment length: 16 maximum mismatch: 2 expected mate pair inner distance: 50 standard deviation of mate pair inner distance: 20.
  • mutation search or somatic mutation search
  • expression level derivation were performed on the data obtained as a result of mRNA mapping. Based on the map results of tumor tissue-derived RNA reads, mutations were searched using muTect and VarScan. Moreover, the gene expression level was calculated using CuffLinks.
  • RNA reads obtained in (4) were analyzed together with those with mutations.
  • mutation annotation was performed using refGene and ensEmbl as a database of gene structure information to identify candidate mutations.
  • Nucleic acid-amino acid return was performed on the identified candidate mutations to define wild type (WT) and mutant (MT) peptides.
  • HLA typing was performed from the exome read using omixon.
  • epitope analysis was performed by combining HLA type information. The results are shown in the following table. The hyphen in the MT sequence in the table indicates that the amino acid between or at the end is mutated as compared with the normal amino acid.
  • HLA allele HLA allele
  • WT peptide sequence Wild type peptide sequence
  • MT peptide sequence Mutant peptide sequence
  • Consensus percentile rank Consensus percentile rank
  • ANN IC50 IC50 calculated by artificial neural network method (optimal value in NetMHCpan)
  • ANN rank Value converted to rank value
  • SMM IC50 IC50 calculated by the stabilized matrix method (or na if it cannot be calculated)
  • SMM rank Value converted to rank value comblib sydney2008 score: IC50 calculated by the sydney2008 method (or na if it cannot be calculated)
  • comblib sydney2008 rank Value converted to rank value mutation information: mutation information chromosome : chromosome start position: start position end position: End position gene name: gene name accession: Accession number exon ID: Exon number position on transcript WT NA: Nucleic acid in wild type MT NA: Nucleic acid in variant start pos.
  • HLA-A * 02: 01 1673 tumor-specific mutations found by analysis using HLA-A * 02: 01, 24:02 individuals were found. Of these, 41 were identified when mutations were found on the RNA lead. Furthermore, when it was narrowed down to those with mutations accompanied by amino acid changes, it was narrowed to 25. When this was counted by the number of peptides, 44 peptides were identified (HLA-A * 02: 01). That is, 44 peptides having an affinity of HLA-A * 02: 01 and IC50 ⁇ 54 nM were found. It should be noted that in the next step, healthy human peripheral blood possessing HLA-A * 02: 01 was used, so the affinity with HLA-A * 02: 01 (instead of HLA-A * 24: 02) Only peptides with) were selected.
  • HLA-A * 02: 01 sample Peripheral blood of a healthy person having the same HLA-A * 02: 01 as the subject data (tumor patient) was used. On the other hand, the reactivity experiment was conducted using the produced peptide.
  • the blood (peripheral blood) of a healthy person having the same HLA type for example, HLA-A * 02: 01
  • the blood of a cancer patient itself can be used.
  • HLA-A * 02: 01 One who has the same HLA-A * 02: 01 can also be used.
  • ELISPOT assay The assays performed were interferon gamma ELISPOT and intracellular interferon gamma staining.
  • ELISPOT sandwich immunosorbent assay
  • MABTECH anti-human IFN- ⁇ mAb 1-D1K, purified (3420-3-250) was used as a capture antibody, and a MILLIPORE MultiScreen HTS 96-well Filtration Plate was used.
  • a cytokine (here, interferon- ⁇ ) specific monoclonal antibody MABTECH anti-human IFN- ⁇ mAb 1-D1K, purified (3420-3-250)
  • MABTECH anti-human IFN- ⁇ mAb 1-D1K purified (3420-3-250)
  • MABTECH anti-human IFN- ⁇ mAb 1-D1K purified (3420-3-250)
  • MILLIPORE MultiScreen HTS 96-well Filtration Plate was used.
  • Detection antibody MABTECH anti-human IFN- ⁇ mAb 7-B6-1, biotinylated (3420-6-250)
  • anti-interferon ⁇ antibody for detection was added.
  • Intracellular interferon gamma staining Moreover, intracellular interferon-gamma staining was performed about the obtained sample. 5 ⁇ 10 5 lymphocytes were cultured for 4 hours in 200 ⁇ l of medium. For stimulation, a neoantigen peptide and a control peptide were added to a final concentration of 1 ⁇ g / ml. Unstimulated controls were also prepared. During stimulation, BioLegend Brefeldin A Solution (1,000 ⁇ ) was added to a final concentration of 5.0 ⁇ g / ml.
  • Fixable Viability Dye eFluor780 eBioscience 65-0865-18
  • FITC-labeled anti-CD4 antibody BD Pharmingen TM 557307
  • ECD-labeled anti-CD8 antibody BECKMAN COULTER 41116015
  • PerCP / CY5.5-labeled Staining was performed at 4 ° C. for 30 minutes with an anti-CD3 antibody (Biolegend 300430).
  • Cells were treated with Intraprep permeabilization reagent (Immunotech, Marseille, France) for 15 minutes. Staining was performed with PE-labeled anti-IL-2 antibody (BD Pharmingen TM 559334), Alexa700-labeled anti-TNF ⁇ antibody (BD Pharmingen TM 557996), and Pacific Blue-labeled anti-IFN- ⁇ antibody (Biolegend 502522) for 15 minutes.
  • Intraprep permeabilization reagent Immunotech, Marseille, France
  • Staining was performed with PE-labeled anti-IL-2 antibody (BD Pharmingen TM 559334), Alexa700-labeled anti-TNF ⁇ antibody (BD Pharmingen TM 557996), and Pacific Blue-labeled anti-IFN- ⁇ antibody (Biolegend 502522) for 15 minutes.
  • MT indicates a mutant type and WT indicates a wild type.
  • pepID is a sample number in the embodiment.
  • IC50 indicates the inhibitory concentration of HLA-peptide binding.
  • ++ indicates that 3/3 produced interferon ⁇ production, and + indicates that 1/3 to 2/3 produced interferon ⁇ production.
  • Example 2 Mutant peptide selection and confirmation of immunogenicity-in the case of mice
  • it can be carried out even when a mouse is used.
  • tumor-bearing mice Collect tissues from the cancer site of tumor-bearing mice, and collect the same organs and tissues as the tumor site in normal mice.
  • the tumor-bearing mouse individual has a tumor site and a non-tumor site (for example, in the case of colon cancer, it means a tumor site and a non-tumor site).
  • mice When mice are of the same strain, normal tissues are collected from normal mice. 3. DNA and RNA are extracted from the collected tissues and organs and analyzed for exome seq and RNAseq. 4). Since the MHC (major histocompatibility complex; major histocompatibility complex) is known for each strain, the mutanome is searched, and the neoantigen displayed on the MHC (H-2 in mice) is further identified. 5. For the selection of the neoantigen, the same methodology as described in Example 1 for human tumors is used.
  • neoantigen search software of Example 1. Identify. 6).
  • a peptide is artificially synthesized, added to and cultured on the spleen cells of syngeneic mice, and induction of IFN ⁇ production after the culture is used as an activity index. 7).
  • the cytotoxicity with respect to a tumor is measured using the spleen cell stimulated with neoantigen and cultured. 8).
  • a neoantigen is directly administered to a tumor-bearing mouse (a mouse transplanted with a tumor used for neoantigen search). Moreover, it can be treated using dendritic cell therapy (in vitro, dendritic cells derived from syngeneic mice are stimulated and cultured, and the dendritic cells are administered to tumor-bearing mice).
  • the effect is determined as follows. 1. After confirming the Elispot assay using C57B1 / 6 mouse-derived spleen cells and cytotoxicity, the effect is determined in vivo. 2. C57BL / 6 mice are transplanted with B16 melanoma cells subcutaneously (1 ⁇ 10 6 ), and the same number of B16 melanoma cells are administered intravenously. 3. After the subcutaneous administration of B16, regarding the therapeutic effect of neoantigen, tumor size and survival rate are used as indices.
  • antigen peptides can be identified and treated in mice in the same manner.
  • SEQ ID NOs: 1 to 12 are amino acid sequences displayed in the epitope analysis result by combining HLA type information in addition to the WT peptide and MT peptide performed in Example 1.
  • SEQ ID NOs: 1, 4, 7, and 10 are the sequences displayed in the first sample (HLA-C * 03: 03), and SEQ ID NOs: 2, 5, 8, and 11 are the second sample (HLA- C * 03: 03).
  • Sequence numbers 3, 6, 9, and 12 are sequences displayed in the third sample (HLA-C * 14: 02).
  • SEQ ID NOs: 1 to 3 are wild-type amino acid sequences
  • SEQ ID NOs: 4 to 6 are mutant amino acid sequences
  • SEQ ID NOs: 7 to 9 are upstream amino acid sequences
  • SEQ ID NOs: 10 to 12 are downstream amino acid sequences.
  • SEQ ID NOs: 13-36 show the amino acid sequences of the actual hit peptides shown in Table 2.
  • SEQ ID NOs: 13 to 24 are mutant amino acid sequences, and show PepID 14, 21, 41, 36, 7, 43, 30, 33, 42, 27, 12, 18 in this order.
  • SEQ ID NOs: 25 to 36 are wild-type amino acid sequences, and show PepID 14, 21, 41, 36, 7, 43, 30, 33, 42, 27, 12, 18 in order.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Databases & Information Systems (AREA)
  • Bioethics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • Hospice & Palliative Care (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)

Abstract

本発明は、被験体における疾患の処置(特に免疫療法)、モニタリングまたは診断のためのペプチドを生産するための方法を提供する。被験体のゲノムリード、例えばエキソームリードおよびその変異に関する情報、必要に応じて該被験体のRNA配列の情報および該被験体のMHC型の情報を入手し、ゲノムリード(例えば、エキソームリード)および該変異に関する情報、任意の該RNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、必要に応じてエピトープの情報に基づいてペプチドを生産することによって達成される。

Description

免疫療法のためのモニタリングまたは診断ならびに治療剤の設計
 本発明は、免疫療法のための診断、モニタリングおよび治療剤の設計および製造に関する。より詳細には、ゲノム(例えば、エキソーム)、mRNAの情報、MHCの情報その他生体情報に基づいて、エピトープを解析し、その結果に基づいて免疫療法に有用なペプチドを設計する方法に関する。
 最近の医学、生物学の発展、特に次世代シーケンサ(NGS)の急速な進歩に伴いがん細胞の全ゲノム解析も比較的容易となり、細胞がん化に関連する遺伝子変化も各個人のレベルで解析することが可能となっている。それに伴い変異遺伝子の機能を制御する分子標的治療薬を用いた個別化治療が臨床医学分野では一般化されつつあるが、変異遺伝子産物(ネオ抗原)を標的とした特異的がん免疫療法に関しては十分には検討されていない(非特許文献1)。
 変異遺伝子については、mutanome解析と呼ばれる、網羅的な変異体のデータベースに基づく解析もなされている。mutanome解析では、タンパク質に様々なアミノ酸置換変異を網羅的に導入し、各変異体の構造と機能を測定することにより、配列・構造・機能のデータベースを構築し、このデータベースを解析し、配列情報のみからタンパク質の構造・機能を予測する方法を開発することが目的とされている(非特許文献2)。
Schumacher TN, et al., (2015) Science, 348(6230), 69-74, doi: 10.1126/science.aaa4971, PMID:25838375 Castle JC, et al., (2012) Cancer Res., 72(5), 1081-1089, doi: 10.1158/0008-5472.CAN-11-3722. Epub 2012 Jan 11., PMID:22237626
 本発明者らは、鋭意検討した結果、被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産するための方法を開発した。ここでは、被験体のゲノムリード(例えば、エキソームリード)およびその変異に関する情報、必要に応じて該被験体のRNA配列の情報および該被験体のMHC型の情報を入手し、ゲノムリード(例えば、エキソームリード)および該変異に関する情報、任意の該RNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、必要に応じてエピトープの情報に基づいてペプチドを生産することによって達成される。
 したがって、例えば、本発明は以下を提供する。
(1)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産するための方法であって、該方法は:
A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;
B)該解析装置に、該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップ;ならびに
C)該エピトープの情報に基づいてペプチドを生産するステップ
を包含する、方法。
(2)前記B)ステップは、前記疾患組織に特異的な変異を参照情報データベースに基づきアノテーションを前記解析装置に行わせ候補変異を同定するステップを含み、その後、該候補変異の核酸情報をアミノ酸情報に変換して野生型(WT)ペプチドおよび変異型(MT)ペプチドを生産し、その後前記MHC型と、該WTペプチドおよび該MTペプチドとを用いて該解析装置にエピトープ探索を行わせた上で、エピトープの順位付けを行って該解析装置にエピトープリストを出力させることを包含する、上記項目に記載の方法。
(3)前記疾患組織に特異的な変異は、前記被験体のゲノムリードおよびその変異に関する情報に基づいて導出されることを包含する、上記項目のいずれか1項に記載の方法。
(4)前記ゲノムリードは、エキソームリードを包含する、上記項目のいずれか1項に記載の方法。
(5)前記ゲノムリードおよびその変異に関する情報は、それぞれ、前記被験体の正常な試料および前記被験体の前記疾患に罹患した試料から得られ、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索し、前記疾患組織に特異的な変異を同定する、上記項目のいずれか1項に記載の方法。
(6)前記A)ステップは、さらに前記被験体のRNAリードの情報を前記解析装置に入力することを包含し、前記B)ステップは該解析装置に該RNAリードの情報にも基づいて前記変異に関するエピトープを解析させることを包含する、上記項目のいずれか1項に記載の方法。
(7)前記RNAリードは疾患組織のRNAリードを含み、該疾患組織のRNAリードをマッピングして変異を探索し、および/または発現量を導出するステップをさらに包含する、上記項目のいずれか1項に記載の方法。
(8)前記RNAリードの情報は正常組織のRNAリードを含み、該正常組織のRNAリードをマッピングして体細胞変異を探索し、および/または発現量を導出し、前記疾患組織のRNAリードに基づいて導出された発現量と比較するステップをさらに包含する、上記項目のいずれか1項に記載の方法。
(9)前記MHC型は、前記被験体のゲノムリードから導出される、上記項目のいずれか1項に記載の方法。
(10)前記B)ステップは、以下:
B-1)前記解析装置に前記疾患組織に特異的な変異に対して、既存のデータベースに基づくアノテーションおよび核酸アミノ酸変換を行わせて、野生型ペプチドおよび疾患特異的変異ペプチドの情報を導出するステップ;
B-2)前記MHC型、該野生型ペプチドおよび該疾患特異的変異ペプチドを用いて、公知のデータベースを用いて該解析装置に該疾患に特異的なエピトープ探索を行わせるステップ;ならびに
B-3)該解析装置に、得られたエピトープのペプチド配列、MHC情報(遺伝子型および親和性)ならびに変異情報(染色体、位置、変異パターン(野生型/変異型)、信頼性、優先度、および該当遺伝子(遺伝子名、発現量))からスコアを算出させ、優先すべきエピトープの順位付けを行うステップ
から選択される少なくとも1つのステップを包含し、
前記C)ステップは、
C-1)該順位付けに基づきペプチドを生産するステップを包含する、
上記項目のいずれか1項に記載の方法。
(11)前記ゲノムリードおよびその変異に関する情報は同じ被験体から得られる、上記項目のいずれか1項に記載の方法。
(12)前記ゲノムリードおよびその変異に関する情報は異なる被験体から得られる、上記項目のいずれか1項に記載の方法。
(13)前記ゲノムリードおよびその変異に関する情報は、正常組織および前記疾患の組織から得られる、上記項目のいずれか1項に記載の方法。
(14)前記ゲノムリードのマッピングはbwa、bowtie、またはnovoalign、あるいはそれらの組合せを用いて行われる、上記項目のいずれか1項に記載の方法。
(15)前記ゲノムリードの変異の探索は、MuTect、VarScanまたはlofreqあるいはそれらの組合せを含む変異探索プログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(16)前記アノテーションは、refGene、ensEmblから選択される遺伝子構造データベース、および/またはdbSNP、cosmic、1000 genomes、およびwhole exome featuresからなる群より選択される変異既知情報のデータベースを用い、ANNOVARおよびsnpEffからなる群より選択されるプログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(17)前記RNAリードのマッピングは、TopHatおよびSTARからなる群より選択されるプログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(18)前記RNAの変異の探索は、MuTect、VarScan、GATKおよびsamtoolsからなる群より選択される変異探索プログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(19)前記RNAの発現量の導出は、CuffLinksおよびErangeからなる群より選択される変異探索プログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(20)前記MHCタイピングはHLAminer、Athlates、Sting HLA、HLA caller、OptiType、およびomixonからなる群より選択されるソフトウエアを用いて行われる、上記項目のいずれか1項に記載の方法。
(21)前記被験体はヒトであり、前記MHCはHLAである、上記項目のいずれか1項のいずれか1項に記載の方法。
(22)前記エピトープ探索は、NetMHCpan、NetHMC、NetMHCcons,およびPickPocketからなる群より選択されるエピトープ探索プログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(23)前記順位付けは、前記変異の優先順位付け、遺伝子発現の有無およびペプチドの優先順位付けからなる群より選択される少なくとも1つの要素を考慮して行われる、上記項目のいずれか1項に記載の方法。
(24)前記変異の優先順位付けは、ヒットが見出される変異探索プログラムの数の多少およびRNAレベルでの変異の証拠の有無からなる群より選択される少なくとも1つの要素が考慮される、上記項目のいずれか1項に記載の方法。
(25)前記遺伝子発現の有無は、前記RNAリードをマッピングし算出されたfpkmもしくはrpkmの値が正であるか否かで判断される、上記項目のいずれか1項に記載の方法。
(26)前記ペプチドの優先順位付けは、ヒットが見出されるエピトープ探索プログラムの数の多少、ヒットが見出される変異探索ソフトウエアの数の多少およびHLA-ペプチド間のIC50<500nMの値からなる群より選択される少なくとも1つの要素が考慮される、上記項目のいずれか1項に記載の方法。
(27)前記順位付けは、HLA-ペプチド間のIC50の値、ヒットが見出されるエピトープ探索プログラムの数、ヒットが見出される変異探索ソフトウエアの数の順に適用することでソートされる、上記項目のいずれか1項に記載の方法。
(28)前記疾患は腫瘍または自己免疫疾患である、上記項目のいずれか1項のいずれか1項に記載の方法。
(29)前記ステップA)は、
A-1)前記解析装置に前記被験体のゲノムの配列決定を行って該被験体のゲノムリードおよびその変異に関する情報を得、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索させ、前記疾患組織に特異的な変異を得るステップ、
A-2)該解析装置に該被験体のRNAの配列決定を行って該被験体のRNAリードの情報を得、該疾患組織のRNAリードをマッピングして変異を探索させ、および/または発現量を導出させ、必要に応じて正常組織のRNAリードをマッピングして体細胞変異を探索させ、および/または発現量を導出させ、該疾患組織のRNAリードに基づいて導出された発現量と比較するステップ、および
A-3)該解析装置に必要に応じて該被験体のゲノムリードを用いて該被験体のMHCタイピングを行わせて該被験体のMHC型の情報を得るステップ
からなる群より選択される少なくとも1つを行うことを包含する、上記項目のいずれか1項に記載の方法。
(30)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定する方法であって、
A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;および
B)該解析装置に該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップを包含する、方法。
(31)上記項目のいずれか1項または複数に記載の特徴をさらに有する、上記項目のいずれか1項に記載の方法。
(32)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産する装置であって、該装置は:
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析するエピトープ解析ユニット;ならびに
C)該エピトープの情報に基づいてペプチドを生産するペプチド生産ユニットを包含する、装置。
(33)前記ユニットBにおいて、上記項目のいずれか1項または複数に規定される手順がなされる、上記項目に記載の装置。
(34)前記ユニットAは、前記被験体のゲノムを配列決定する手段、前記被験体の疾患組織に特異的な変異を決定する手段、前記被験体のRNAの配列決定手段および前記被験体のMHCタイピングの手段の少なくとも1つを含む、上記項目のいずれか1項に記載の装置。
(35)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定する装置であって、
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;ならびに
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するエピトープ解析ユニットを包含する、装置。
(36)前記ユニットBにおいて、上記項目のいずれか1項または複数に規定される手順がなされる、上記項目のいずれか1項に記載の装置。
(37)前記ユニットAは、前記被験体のゲノムを配列決定する手段、前記被験体の疾患組織に特異的な変異を決定する手段、前記被験体のRNAの配列決定手段および前記被験体のMHCタイピングの手段の少なくとも1つを含む、上記項目のいずれか1項に記載の装置。
(38)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定するための方法をコンピュータに実行させるためのプログラムであって、該方法は、
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力するステップ;ならびに
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するステップを包含する、プログラム。
(39)上記項目のいずれか1項または複数に記載の特徴をさらに有する、上記項目に記載のプログラム。
(40)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定するための方法をコンピュータに実行させるためのプログラムを格納したコンピュータ読み取り可能な記録媒体であって、該方法は、
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力するステップ;ならびに
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するステップを包含する、記録媒体。
(41)上記項目のいずれか1項または複数に記載の特徴をさらに有する、上記項目に記載の記録媒体。
 本発明において、上記の1つまたは複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。本発明のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
 本発明により、種々の疾患、例えば、がん等についてより有効な免疫療法や免疫モニタリングが得られる。
図1は、本発明のコンセプトを示す。 図2は、解析フロー模式図を示す。中央の点線は、本発明において中心的なフローを示す。点線外の領域は任意の追加的解析ステップを示す。 図3は、分析フローにおける開始画面を示す。ここでは、腫瘍由来エキソーム、正常組織由来エキソーム、腫瘍由来RNA配列、正常組織由来RNA配列の選択、スレッド数の選択、リードのトリミング条件、低品質(LQ)領域のトリミング、分析の条件等を選択できるようになっている。例えば、分析条件では、マッピングアルゴリズム等のアルゴリズムの種類およびその条件の選択および設定ができるようになっている。 図4は、分析の条件設定の画面を表すものである。エキソームマッピングおよび変異検索の条件、RNAマッピングおよびその発現分析、変異検出、変異のアノテーション、HLAタイピング、エピトープ予測(決定)に用いるソフトウエアおよび条件の選択および設定ができるようになっている。 図5は、出力結果の例を示す。 図6は、実施例1の実験結果を示す。左から順にインターフェロンγのELISPOTアッセイの結果(サンプルNo.14、33、41)、細胞内インターフェロンγの染色を示す。 図7は、本発明のシステムのブロック図を示す。
 以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。従って、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
 本明細書において「ゲノム」とは当該分野で使用される通常の意味で用いられ、ある生物がもつすべての染色体の集合をいう。
 本明細書において「エキソーム」(exome)とは当該分野で使用される通常の意味で用いられ、ゲノムのエキソンを網羅的に解析することおよび解析されたものを示す。したがって、エキソームはゲノムの一部に該当するものを網羅的に解析することに関する。
 本明細書において「ゲノムリード」および「エキソームリード」とは、それぞれゲノムおよびエキソームについて、核酸配列を読み取ったもの(read)をいう。通常は塩基配列の残基(アデニン、シトシン、グアニン、チミン(DNAの場合)、ウラシル(RNAの場合))に基づく配列情報により特定される。
 本明細書において、「mRNA」とは、messenger RNAの省略形であり、当該分野で使用される通常の意味で用いられ、蛋白質に翻訳され得る塩基配列情報と構造を持ったRNAをいう。
 本明細書において「RNAリード」とは、mRNAについて、核酸配列を読み取ったもの(read)をいう。通常は配列情報により特定される。
 本明細書において、「マッピング」とは、ある集合の個々の構成要素に対して、別の集合の要素を規則に従って機械的に対応付けを行ったり割り当てたりすることを意味し、本発明において、「ゲノムマッピング」とは、ある核酸配列または遺伝子のゲノムまたは染色体上の位置を同定することをいう。また「mRNAマッピング」とは、mRNAリードをゲノムにマッピングすることをいい、リードが大量にマッピングされるところと、何もマッピングされないところが交互に繰り返され、これがそれぞれエキソン、イントロンに該当すると分析することができる。mRNAマッピングでは、変異を検索できることの他、頻度を算出することによって発現量を導出することができる。
 本明細書において「MHCタイピング」または「HLAタイピング」とは、ヒト白血球抗原の型を特定することをいう。「MHC」とは、主要組織適合遺伝子複合体:major histocompatibility complex、主要組織適合抗原複合体とも呼ばれる)のことであり、ヒトの場合、ヒト白血球型抗原(Human Leukocyte Antigen;HLA)である。MHCタイピングまたはHLAタイピングは、既存のデータベースまたは既存の個人の情報から入手することができ、あるいは、種々の手法でタイピングすることができ、そのような方法としては、例えば、血清学的検査、配列特異的オリゴヌクレオチド[SSO]、配列特異的プライマー[SSP]、CE配列ベースタイピング[SBT]などを挙げることができる。あるいは次世代シーケンス手法を用いる場合は、例えば、Illuminaの次世代シーケンサを用いる手法を用いる場合、そこで提供されるタイピング手法によって解析することができる。
 本明細書において「データベース」とは、遺伝子に関する任意のデータベースをいい、特に本発明では、疾患の変異に関する情報を含むものが用いられ得る。このようなデータベースとしては、日本DNAデータバンク(DDBJ、DNA Data Bank of Japan,www.ddbj.nig.ac.jp)データベース、GenBank(米国生物工学情報センター、www.ncbi.nlm.nih.gov/genbank/)データベース、ENA(EMBL(欧州分子生物学研究所)、www.ebi.ac.uk/ena)データベース、IMGT(the international ImMunoGeneTics information system, www.imgt.org)データベース、等を挙げることができるがこれに限定されない。
 本明細書において「アノテーション」とは、あるデータに対して関連する情報(メタデータ)を注釈として付与することをいう。バイオインフォマティクスの分野では、遺伝子関連等の生体に関する情報(例えば、配列情報)に別の生体に関する情報(遺伝子機能等)を関連付け注釈として付与することをいう。本発明の方法においては、探索された変異について、参照情報データベース(DB)を用いて情報を追加することができる。追加される情報としては、位置(エキソン、イントロン、制御領域、遺伝子間領域など)、アミノ酸変異を伴うかどうか、変異に関連する既知の情報(疾患関連性、人種別頻度など)等を挙げることができるがこれらに限定されない。使用され得るデータベースの例としては、遺伝子構造のデータベース(refGene、ensEmblなど)、変異の既知情報のデータベース(dbSNP、cosmic、1000 genomes、whole exome featuresなど)などを挙げることができる。ANNOVAR、snpEffなどのアノテーションを行うソフトウエアを用いることができ、典型的には、ANNOVARが用いられるがそれに限定されない。
 本明細書において「アサイン」とは、ある配列(例えば、核酸配列、タンパク質配列等)に、特定の遺伝子名、機能、特徴領域(例えば、ドメインや結合領域など)等情報を割り当てることをいう。具体的には、ある配列に特定の情報を入力またはリンクさせる等により達成することができる。
 本明細書において「核酸アミノ酸変換」(NN-AA変換とも略される。)とは、核酸配列の情報をコドン変換に基づいてアミノ酸配列に変換することをいう。本発明では、アミノ酸変化を伴う変異について、変化前(WT)、変化後(MT)のペプチドを導出することができる。単純な文字列変換であり、通常のプログラミングで組むことができるほか、標準のソフトウエアでは付随する機能であることが多い。
 本明細書において「疾患特異的ペプチド」とは、ある被験体がある疾患に罹患した場合に正常な被験体よりも頻度が増加する(好ましくは特異的に出現する)ペプチドをいう。例えば、疾患ががんである場合は、疾患特異的ペプチドはがん特異的ペプチドと呼ばれ、抗がん剤として使用され得る。
 当該分野では、遺伝子変異由来の抗原(ネオ抗原)を標的とした個別化免疫療法が注目されている。特にがん分野では、従来使用されるがん抗原が免疫原性が低いことから、特異的がん免疫療法の臨床効果は必ずしも良好とはいえなかった。そこで、免疫系からは“非自己”として認識されるために高アビディティ(high avidity)な抗原特異的T細胞が効率よく誘導されるネオ抗原(neoantigen)を用いて、がん悪性化に関与する変異遺伝子(Driver mutation)を標的とすればがん細胞での抗原喪失による免疫監視機構からの逃避も起こりにくいと考えられている。ここで、Driver mutationに由来するT細胞抗原エピトープ等を同定することで、有効な治療法をできることが提唱されており(Yamada T, Azuma K, Muta E, Kim J, Sugawara S, Zhang GL, et al. (2013) PLoS ONE 8(11): e78389. doi:10.1371/journal.pone.0078389)、一部臨床試験も行われている。しかしながら、従来は、個別にペプチド配列を同定する等で対応されており、十分な解析はなされていない。
 本明細書において「被験体(者)」とは、本発明の診断または検出、あるいは治療等の対象をいう。
 本明細書においてここで、「被験試料」または単に「試料」とは、目的とする被験体(生体)、細胞またはそれに由来する物質であって遺伝子発現を可能にするものを含むと考えられる試料であればよい。
 本明細書において「抗原」(antigen)とは、抗体分子によって特異的に結合され得る任意の基質をいう。本明細書において「免疫原」(immunogen)とは、抗原特異的免疫応答を生じるリンパ球活性化を開始し得る抗原をいう。本明細書において「エピトープ」または「抗原決定基」とは、抗体またはリンパ球レセプターが結合する抗原分子中の部位をいう。エピトープの情報を用いてペプチドを生産する(例えば、化学合成または微生物による生産)ことで、免疫療法、例えばがん免疫療法やがん免疫モニタリングに利用することができる。例えば、このようなペプチドをネオ抗原(neoantigen)として用いることで、抗腫瘍効果を発揮させた抗がん剤として用いることができる。
 本明細書において「診断」とは、被験体における疾患、障害、状態などに関連する種々のパラメータを同定し、そのような疾患、障害、状態の現状または未来を判定することをいう。本発明の方法、装置、システムを用いることによって、体内の状態を調べることができ、そのような情報を用いて、被験体における疾患、障害、状態、投与すべき処置または予防のための処方物または方法などの種々のパラメータを選定することができる。本明細書において、狭義には、「診断」は、現状を診断することをいうが、広義には「早期診断」、「予測診断」、「事前診断」等を含む。本発明の診断方法は、原則として、身体から出たものを利用することができ、医師などの医療従事者の手を離れて実施することができることから、産業上有用である。本明細書において、医師などの医療従事者の手を離れて実施することができることを明確にするために、特に「予測診断、事前診断もしくは診断」を「支援」すると称することがある。本明細書において「モニタリング」とは、がん免疫等の疾患に対する免疫療法等に関して用いられる場合、その免疫療法等の医薬等の被験者に対する反応の評価を行うことをいう。モニタリングのためには任意の手法が用いられるが、1つの代表的な例としては酵素免疫スポット(ELISPOT)アッセイが用いられる。ELISPOTアッセイは、ワクチン、医薬品、生物学的製剤に対する被験者の反応や有効性を評価するために利用することができる。ELISPOTアッセイは、in vitroで特定のタンパク質を分泌する個別細胞の検出・列挙において、最も精度の高い細胞アッセイの一つである。酵素免疫アッセイ(ELISA)をベースにしたものであり、当初、特定の抗体分泌細胞の分析のために開発されたが、サイトカインなど他のエフェクタ分子を生成・分泌する細胞の頻度を測定するためにも用いられる。ELISPOTアッセイは従来のELISAアッセイと比較した場合、分析したサイトカイン/因子によって200倍~400倍高い精度を発揮し、最大数十万分の一という低頻度でサイトカイン分泌細胞を検出することができる。また、抗原に反応して放出されるサイトカインは単一細胞にマッピングできるため、T細胞のレスポンダーの頻度を算出することができる。ELISPOTはまた、誘発された免疫反応の種類とされるサイトカイン反応のタイプも示すことができる。
 ELISPOTアッセイは、溶液ではなく細胞を測定対象にしている点でELISAとは異なるが、それ以外は類似する点が多い。
 以下簡単に手順を説明すると、被験細胞を特異的捕捉用抗体でコートされたウェル表面上で培養する。細胞を除去した後、分泌された分子をELISAの要領で検出する。沈殿基質を用いることにより、分泌細胞が位置していた場所にスポットが形成される。従ってELISPOTアッセイにおいて、溶液中の物質の濃度の代わりに、分泌細胞の頻度を測定することになる。さらに、各スポットのサイズや発色強度が、その位置にあった細胞から分泌されたサイトカインの量を表すことになる。ELISPOT技術が特異的免疫応答の解析に利用される場合は、T細胞が、抗原攻撃後の活性化プロセスの一部として、サイトカインの産生を開始するという現象を利用する。ある抗原に応答する能力がある全ての細胞は、対応するサイトカインを分泌するため、この方法で同定することができる。したがって、任意の細胞で利用可能であるが、主な利用分野としては、感染症、癌、ワクチン開発研究において、細胞障害性T細胞(CTL)と免疫的に関与するCD8T細胞で産生されるIFN-γを検出する利用法が、頻繁に用いられる。
 本明細書において「治療」(therapy)とは、ある疾患または障害(例えば、がん)について、そのような状態になった場合に、そのような疾患または障害の悪化を防止、好ましくは、現状維持、より好ましくは、軽減、さらに好ましくは消退させることをいい、患者の疾患、もしくは疾患に伴う1つ以上の症状の、症状改善効果あるいは予防効果を発揮しうることを含む。事前に診断を行って適切な治療を行うことは「コンパニオン治療」といい、そのための診断薬を「コンパニオン診断薬」ということがある。本明細書において「処置」(treatment、treat)とは、ある疾患または障害またはそのリスクがある被験体に対して何らかの処理または手当を行うことをいう。広義には「治療」および「予防」を包含する。
 本明細書において「治療薬(剤)」とは、広義には、目的の状態(例えば、がん等の疾患など)を治療できるあらゆる薬剤をいい、本発明が提供するような阻害剤(例えば、抗体)をいう。本発明の一実施形態において「治療薬」は、有効成分と、薬理学的に許容される1つもしくはそれ以上の担体とを含む医薬組成物であってもよい。医薬組成物は、例えば有効成分と上記担体とを混合し、製剤学の技術分野において知られる任意の方法により製造できる。また治療薬は、治療のために用いられる物であれば使用形態は限定されず、有効成分単独であってもよいし、有効成分と任意の成分との混合物であってもよい。また上記担体の形状は特に限定されず、例えば、固体または液体(例えば、緩衝液)であってもよい。
 本明細書において「予防」とは、ある疾患または障害(例えば、がん)について、そのような状態になる前に、そのような状態にならないようにすることをいう。本発明の薬剤を用いて、診断を行い、必要に応じて本発明の薬剤を用いて例えば、がん等の予防をするか、あるいは予防のための対策を講じることができる。
 本明細書において「予防薬(剤)」とは、広義には、目的の状態(例えば、がん等の疾患など)を予防できるあらゆる薬剤をいう。
 本明細書において「薬剤」、「剤」または「因子」(いずれも英語ではagentに相当する)は、広義には、交換可能に使用され、意図する目的を達成することができる限りどのような物質または他の要素(例えば、光、放射能、熱、電気などのエネルギー)でもあってもよい。そのような物質としては、例えば、タンパク質、ポリペプチド、オリゴペプチド、ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、核酸(例えば、cDNA、ゲノムDNAのようなDNA、mRNAのようなRNAを含む)、ポリサッカリド、オリゴサッカリド、脂質、有機低分子(例えば、ホルモン、リガンド、情報伝達物質、有機低分子、コンビナトリアルケミストリで合成された分子、医薬品として利用され得る低分子(例えば、低分子リガンドなど)など)、これらの複合分子が挙げられるがそれらに限定されない。ポリヌクレオチドに対して特異的な因子としては、代表的には、そのポリヌクレオチドの配列に対して一定の配列相同性(例えば、70%以上の配列同一性)をもって相補性を有するポリヌクレオチド、プロモーター領域に結合する転写因子のようなポリペプチドなどが挙げられるがそれらに限定されない。ポリペプチドに対して特異的な因子としては、代表的には、そのポリペプチドに対して特異的に指向された抗体またはその誘導体あるいはその類似物(例えば、単鎖抗体)、そのポリペプチドがレセプターまたはリガンドである場合の特異的なリガンドまたはレセプター、そのポリペプチドが酵素である場合、その基質などが挙げられるがそれらに限定されない。
 本発明で使用され得る診断薬、治療薬、予防薬等の医薬等としての処方手順は、当該分野において公知であり、例えば、日本薬局方、米国薬局方、他の国の薬局方などに記載され、あるいは他の文献に記載されている。従って、当業者は、本明細書の記載があれば、過度な実験を行うことなく、使用すべき量を決定することができる。
 (好ましい実施形態の説明)
 以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。これらの実施形態について、当業者は適宜、任意の実施形態を組み合わせ得る。
 (免疫療法ペプチドを特定および生産する方法)
 1つの局面において、本発明は、被験体における疾患の処置(治療および予防を含む)、モニタリングまたは診断のためのペプチドを特定する方法を提供する。この方法は、A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;B)該解析装置に、該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップ;ならびにC)該エピトープの情報に基づいてペプチドを生産するステップを包含する。本発明で使用される「解析装置」は、解析すべき情報の入力を受け、解析し、通信などによって他のユニットと連絡を取り、結果を出力する機能などを有し得、(免疫療法解析装置・システム、および解析プログラム)においても詳述されており、その任意の実施形態を採用することができ、各種ユニットはこの解析装置を構成し得る。解析装置の模式的図は図7に示されており、(システム構成)において詳述されている。
 1つの実施形態では、本発明の方法は、A)該被験体のゲノムリード(例えば、エキソームリード)およびその変異に関する情報、必要に応じて該被験体のRNA配列の情報および該被験体のMHC型の情報を解析装置に入力するステップ;ならびにB)該ゲノムリードおよび該変異に関する情報、必要に応じて該RNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析装置に解析させ、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして解析装置に出力させるステップを包含してもよい。
 別の局面において、本発明は、被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産するための方法を提供する。この方法は、A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;およびB)解析装置に該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップを包含する。
 1つの実施形態では、本発明の方法は、A)該被験体のゲノムリード(例えば、エキソームリード)およびその変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を解析装置に入力するステップ;B)解析装置に該ゲノムリードおよび該変異に関する情報、必要に応じて該RNA配列の情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップ;ならびにC)該エピトープの情報に基づいてペプチドを生産するステップを包含してもよい。
 本発明の方法において、上記解析をすることで、体細胞変異(somatic mutation)に起因する疾患(例えば、がん)について特異的なエピトープに関する情報を入手することができ、それにより、免疫療法や免疫モニタリング等の治療、診断を行うことができる。このような例としては、例えば、個別遺伝子変異(固有抗原)を標的とした免疫応答が存在し、抗腫瘍効果が得られることに基づくネオ抗原(Neoantigen)の手法や、これを網羅的に解析するmutanomeに応用することができる。本発明が対象としうる他の疾患としては、例えば、自己反応性T細胞による自己免疫疾患を挙げることができ、この場合、多くの自己免疫疾患でT細胞の異常が病因と関連している根拠は示されているため、これらの情報を活用することができる。本発明は、特定の疾患を起こす特異的T細胞を同定分離すること、また、その認識分子(病因抗原)も決定も容易に行うことができるため応用され得る。例えば、自己反応性T細胞としては、関節リウマチ・1型糖尿病・多発性硬化症は未知の関節の抗原に対して特異的T細胞が起こす疾患であるため、対象疾患として挙げることができる。自己免疫疾患においては、自己免疫でT細胞に認識される自己抗原を同定して、自己反応性T細胞の活性化を抑制したり、活性化そのものを阻害したりすることによって発症を抑制することにある。本来は自己に対して成立している免疫寛容の破綻が自己免疫の誘導に関わると考えられるが、自己免疫を誘導する抗原側の体細胞変異の有無を網羅的に検討・探索することにより、本発明は、既知のみならず未知の病因抗原(エピトープ)の同定することができ、これにより疾患処置や予防を行うことができる。本発明はまた、自己免疫疾患の病因抗原の有無が診断・予防に応用され得、また、病因抗原を標的とした治療薬の開発にも応用することができる。
 1つの実施形態では、本発明で実施されるB)ステップは、解析装置に前記疾患組織に特異的な変異を参照情報データベースに基づきアノテーションを行わせ候補変異を同定するステップを含み、その後、候補変異の核酸情報をアミノ酸情報に変換して野生型(WT)ペプチドおよび変異型(MT)ペプチドを生産し、その後MHC型(ヒトの場合HLA型)と、WTペプチドおよびMTペプチドとを用いて解析装置にエピトープ探索を行った上で、エピトープの順位付けを行って解析装置にエピトープリストを出力させることを包含する。
 特定の実施形態では、疾患組織に特異的な変異は、前記被験体のゲノムリードおよびその変異に関する情報に基づいて導出される。
 1つの実施形態において、前記ゲノムリードは、正常組織に由来するゲノムリードと疾患組織(例えば、腫瘍等)に由来するゲノムリードとを含むことができる。したがって、本発明で使用され得るゲノムリードとしては、疾患組織(例えば、腫瘍)もしくは正常組織のゲノムDNA配列を読んだリードが挙げられる。ゲノムリードの入手方法としては、例えば、全ゲノム配列決定法、エキソーム配列決定法を挙げることができるがこれらに限定されない。したがって、ゲノムリードおよびその変異に関する情報は、それぞれ、前記被験体の正常な試料および前記被験体の前記疾患に罹患した試料から得られ、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索し、前記疾患組織に特異的な変異を同定する。使用され得る使用機器としては任意の次世代シーケンサ(例えば、Illumina、Roche 454等)、あるいはキャピラリーシーケンサ等を挙げることができるがこれらに限定されず、核酸配列(遺伝子配列)を読むことができる限り任意の手法を用いることができることが理解される。特に典型的にはエキソーム配列が使用される。
 1つの実施形態において、本発明が利用するゲノムリードは、エキソームリードを包含する。エキソームはゲノムの主要な部分を構成するエキソンの網羅的な解析または解析した結果に関するものであり、理論に束縛されることを望まないが、エキソームリードを調査対象とすることで、実際に機能するタンパク質とより密接な関連を有する情報を調査対象とすることができ、解析精度を挙げることができると考えられる。
 1つの実施形態では、本発明の方法は、被験体のRNAリードの情報を利用する。したがって、特定の実施形態では、前記A)ステップは、さらに前記被験体のRNAリードの情報を解析装置に入力することを包含し、前記B)ステップは解析装置に該RNAリードの情報にも基づいて前記変異に関するエピトープを解析させることを包含する。具体的な実施形態では、RNAリードは疾患組織のRNAリードを含み、該疾患組織のRNAリードをマッピングして変異を探索し、および/または発現量を導出するステップをさらに包含する。好ましい実施形態は、本発明で使用されるRNAリードの情報は正常組織のRNAリードを含み、該正常組織のRNAリードをマッピングして体細胞変異を探索し、および/または発現量を導出し、前記疾患組織のRNAリードに基づいて導出された発現量と比較するステップをさらに包含する。理論に束縛されることを望まないが、被験体のRNAリード、すなわちmRNAについて、核酸配列を読み取ったもの(read)の情報を含めて利用することにより、得られるエピトープのヒットにおける精度が飛躍的に増加し、実施例において示されているように、30%程度のヒット率(例示的な例として、インターフェロンγ分泌アッセイによる。)が得られた。したがって、従来では得られなかった格別顕著なレベルのヒット率を達成し得ることが判明している。本発明で使用され得るRNAリードとしては、疾患組織(例えば、腫瘍)および/または正常組織のRNA配列を読んだリードを挙げることができる。このようなRNA配列の配列決定には、次世代シーケンサによるRNA-Seqの手法の他、キャピラリーシーケンサによるEST解析を行うことができるがこれらに限定されず、RNA配列を読むことができる限り任意の手法を用いることができることが理解される。次世代シーケンサによるRNA-Seqが代表的である。
 本発明で実施され得るMHC(HLA)タイピングとしては、任意のタイピング手法を用いることができる。例えば、ゲノムリードよりソフトウエアを用いてタイピングすることが可能である。また、Luminex法など、検体より直接タイピングするアッセイ系を用いることができる。
 さらなる特定の実施形態では、解析するステップであるB)ステップは、解析装置に野生型ペプチドおよび疾患特異的変異ペプチドの情報を導出させるステップ;解析装置に該疾患に特異的なエピトープ探索を行わせるステップ;ならびに解析装置に得られたエピトープのスコアを算出させ、優先すべきエピトープの順位付けを行わせるステップから選択される少なくとも1つのステップを包含する。ある好ましい実施形態では、解析装置に疾患に特異的な変異を同定させるステップ、および疾患に特異的な変異を参照情報データベースに基づき解析装置にアノテーションを行わせ候補変異を同定するステップを含み、その後、候補変異の核酸情報をアミノ酸情報に変換して野生型(WT)ペプチドおよび変異型(MT)ペプチドのデータを生成し、その後MHC型(ヒトの場合HLA型)と、WTペプチドおよびMTペプチドのデータとを用いてエピトープ探索を行った上で、エピトープの順位付けを行ってエピトープリストを出力することを包含する。
 好ましい実施形態では、本発明の方法はB-1)解析装置に前記疾患組織に特異的な変異に対して、既存のデータベースに基づくアノテーションおよび核酸アミノ酸変換を行わせて、野生型ペプチドおよび疾患特異的変異ペプチドの情報を導出するステップ;B-2)解析装置に前記MHC型、該野生型ペプチドおよび該疾患特異的変異ペプチドを用いて、公知のデータベースを用いて該疾患に特異的なエピトープ探索を行わせるステップ;ならびにB-3)解析装置に得られたエピトープのペプチド配列、MHC情報(遺伝子型および親和性)ならびに変異情報(染色体、位置、変異パターン(野生型/変異型)、信頼性、優先度、および該当遺伝子(遺伝子名、発現量))からスコアを算出させ、優先すべきエピトープの順位付けを行うステップから選択される少なくとも1つのステップの1つ以上の特徴を有する。
 好ましい実施形態では、本発明の方法は、上記B-1)~B-3)に加え、必要に応じ、解析装置に以下の少なくとも1つのステップを行わせることを含む:前記被験体の正常な試料および前記被験体の前記疾患に罹患した試料からそれぞれ前記ゲノムリードおよびその変異に関する情報を得、該ゲノムリードおよびその変異に関する情報をマッピング(アラインメント)した後前記変異を探索し、該疾患に特異的な変異を同定すること、必要に応じて、前記RNAリードの情報について該疾患に特異的な配列を同定し、これをマッピングし変異を探索し、および/または発現量を導出すること、また必要に応じて、該正常および該疾患に特異的な異常に関する情報からMHCタイピングを行ってMHC型を同定すること。
 より詳細に説明すると、B)ステップではまずB-1)として解析装置に前記疾患組織に特異的な変異に対して、既存のデータベースに基づくアノテーションおよび核酸アミノ酸変換を行わせて、野生型ペプチドおよび疾患特異的変異ペプチドの情報を導出するステップを含む。ここで、使用される疾患に特異的な変異は、すでに存在するデータを利用してもよく、以下の導出ステップを行ってもよい。導出ステップでは、前記ゲノムリードおよびその変異に関する情報は、それぞれ、前記被験体の正常な試料および前記被験体の前記疾患に罹患した試料から得られ、該ゲノムリードおよびその変異に関する情報をマッピング(アラインメント)した後前記変異を探索し、該疾患に特異的な変異を同定し、該疾患に特異的な変異に対して、既存のデータベースに基づいてアノテーションを行い核酸アミノ酸変換を行って、野生型ペプチドおよび疾患特異的変異ペプチドの情報を導出する。これらの野生型ペプチドおよび疾患特異的変異ペプチドの情報を分析することにより、体細胞変異の探索を行うことができる。導出ステップは、ゲノムリードないしエキソームリードを入力とする場合の追加フローということができる。
 ここで、本発明において実施され得るゲノムマッピングは、ゲノムリードをゲノム配列にマッピングすることをいう。好ましくは、事前にリードのクリーンアップを実施することが有利であり得る。
 本発明で使用され得るリードのクリーンアップの手法は、任意の手法を用いることができるが、代表的には、ゲノムリード(例えば、エキソームリード)および/またはRNAリードより、解析に不適な領域を削除すること、例えば、配列決定(シーケンス)用アダプタ配列の除去すること;低クオリティ領域の除去;コンタミネーションの除去などを挙げることができる。コンタミネーションの除去は、リードの一部をトリミングするのではなく、不適切なリードをリードセットより除去することによって実現される。例えばヒトゲノム解析に先立って、細菌やウイルス由来の配列を除去することができる。
 配列決定(シーケンス)用アダプタ配列の除去の手法は、当該分野で公知の任意の手法を使用することができるが、代表的には、適切な長さ、例えば12bp以上(或いは、10bp以上、11bp以上、または13bp以上、14bp以上等を挙げることができる。)にわたって、ミスマッチ率10%以下でアダプタ配列と一致する領域がみつかったら、その領域を除去すること等を挙げることができる。ミスマッチ率は、適宜変更することができ、例えば、1%以下、2%以下、3%以下、4%以下、5%以下、10%以下、15%以下、20%以下等でもよい。
 低クオリティ領域の除去としては、当該分野で公知の任意の手法を使用することができるが、代表的には、適切な長さ、例えば、10bpの平均クオリティ値が所定の値、例えば12以下であるような領域がリード両端よりみつかったら、その領域を除去することなどを挙げることができる。
 本明細書において「平均クオリティ値」とは、遺伝子解析ソフトウエアにおいてその解析の品質を示す値をいい、使用するソフトウエア(例えば、配列決定ソフトウエア等)において適宜設定されている。本明細書において使用される「クオリティ値」とは、各種シーケンサより出力されるリード上の各塩基の信頼度を定量化した値(塩基のエラー率がXの場合、-log10(X)×10で定義される)である。シーケンサごとに各塩基のエラー率は異なり、機種ごとに独自のロジックでエラー率をクオリティ値として評価している。評価を行うのはシーケンサを制御するフロントエンド計算機およびその上で稼働するソフトウエアであるため、通常使用されるソフトウエア(例えば、配列決定ソフトウエア)では適宜設定されている。ここで、「平均クオリティ値」は、そのクオリティ値を定められた長さの領域で算術平均した値である。
 平均クオリティ値を調査する場合の平均長さについては、上記以外でもよく、例えば、5bp、6bp、7bp、8bp、9bp、10bp、11bp、12bp、13bp、14bp、15bp等、あるいはそれより長い長さを挙げることができる。平均クオリティ値としては、10以下、11以下、12以下、13以下、14以下、15以下等を挙げることができる。
 ゲノムマッピングで使用され得るソフトウエアとしては、bwa、bowtie、novoalign等を挙げることができ、代表的にはbwaを用いることができる。bwaおよびbowtieは公開され自由にダウンロードされ得るソフトウエアであり、novoalignもまた市販されるソフトウエアであり当業者に利用可能である。
 本発明における体細胞変異探索は、疾患組織(例えば、腫瘍組織)と正常組織を比較し、前者のみにみつかる変異を探索することをいう。このような探索もまた、ソフトウエアにて実現することができ、例えば、使用され得るソフトウエアとしては、muTect、VarScan、 lofreq等の変異探索プログラムを挙げることができ、典型的にはmuTectを用いることができる。これらのソフトウエアは併用することができる。2種類以上(2種類、3種類等)のソフトウエアを併用することにより信頼性を向上させることができる。
 B-1)において行われるアノテーションにおいて、探索された変異について、参照情報データベースを用いて情報を追加することができる。ここでは、位置(エキソン、イントロン、制御領域、遺伝子間領域など)、アミノ酸変異を伴うかどうか、変異に関連する既知の情報(疾患関連性、人種別頻度など)などの情報を追加することができる。使用されるデータベースの例としては、例えば、遺伝子構造のものとして、refGene、ensEmblなどを挙げることができるがこれらに限定されない。また、変異の既知情報については、dbSNP、cosmic、1000 genomes、whole exome featuresなどを挙げることができるがこれらに限定されない。使用され得るソフトウエアとしては、ANNOVAR、snpEffなどを挙げることができるがこれらに限定されず、好ましくは、ANNOVARが用いられる。なお、さらに使用されるデータベースとしてhg19がある。hg19はヒトゲノム配列データベースであり、マッピングの参照配列としてバックグラウンドとして通常使用され得る。
 B)ステップはまた、必要に応じて、前記RNAリードの情報について該疾患に特異的な配列を同定し、これをマッピングし変異を探索し、および/または発現量を導出するステップを包含し得る。RNAリードの情報を含めることにより、より精確性を上昇させることができる。
 mRNAのマッピングは、RNAリードを、エキソン-イントロン構造を考慮しながらゲノム配列にマッピングすることによって実現することができる。ゲノムリードと同様事前にリードをクリーンアップする場合もあり、そのようなクリーンアップ技術はゲノムリードと同様の物を用いることができる。mRNAマッピングはソフトウエアにより実現することができ、使用され得るソフトウエアとしては、例えば、TopHat、STARなどを挙げることができ、典型的にはTopHatが用いられる。
 RNAリードについてもゲノムリードと同様、正常組織および疾患組織(腫瘍等)のリードを解析することが出来る。これらについてはmRNAマッピングを行い、変異探索を行うことができる。変異探索はゲノムリードと同様に体細胞変異の探索を行うことができるほか、疾患組織(例えば、腫瘍)については、変異探索を行うことができる。このような疾患組織の変異探索は、単一検体にみられる変異の探索を行うものであり、使用され得る代表的なソフトウエアとしては、muTect、VarScan、GATK、samtoolsなどを挙げることができ、典型的にはGATKが用いられ得る。
 RNAリードについては、さらに特徴的なこととして、発現量を導出でき、これを解析に反映することができる点がある。発現量の導出および発現量の比較は、mRNAマッピング結果を、各遺伝子の発現量に変換することによって実現することができる。ここで、各遺伝子座にマップされたリードの多寡を発現量とみなすことで分析をすることができる。通常はFPKMまたはRPKM (Fragments/Reads Per Kilobase of exon per Million mapped reads) を単位とするがこれに限定されない。検体間で発現量を比較そして、検体間で発現量を比較することができる。使用され得る代表的なソフトウエアとしては、CuffLinks、Erangeなどの変異探索プログラムを挙げることができ、例えば、典型的にはCuffLinksが使用されるがこれに限定されない。
 疾患組織のRNAリードを併用する場合は、疾患組織(例えば、腫瘍組織)のRNAリードのmRNAマッピングを行い、変異探索および発現量導出を行い、これらの変異および発現量の情報をエピトープ一覧の優先順位付けに用いることができる。
 正常組織のRNAリードを併用する場合は、正常組織のRNAリードのmRNAマッピングを行い、体細胞変異探索および発現量導出を行い、これらの情報をエピトープ一覧の優先順位付けに用いることができ、さらに疾患組織のRNAリードをも併用する場合、体細胞変異の情報と、疾患組織由来のRNAリードから導出された発現量と、正常組織のRNAリードから導出された発現量とを比較して疾患組織と正常組織との発現量の相違情報をもエピトープ一覧の優先順位付けに用いることができる。
 B)ステップはまた、必要に応じて、解析装置に該正常および該疾患に特異的な異常に関する情報からMHCタイピングを行わせてMHC型を同定するステップを包含し得る。ここで。MHCタイピング(ヒトの場合はHLAタイピングとなる)は、ゲノムリードよりHLA型を判定することができるが、別アッセイ系でタイピングした結果を使用することもできる。ソフトウエアを使用する場合は、例えば、HLAminer、Athlates、Sting HLA、HLA caller、OptiType、omixonなどのソフトウエアを用いることができ、典型的には、典型的にはomixon (ヒト)、HLA caller (マウス)が用いられる。
 B)ステップはまた、B-2)解析装置に該MHC型、該野生型ペプチドおよび該疾患特異的変異ペプチドを用いて、公知のデータベースを用いて該疾患に特異的なエピトープ探索を行わせるステップを包含し得る。ここで、特異的なエピトープ探索は、指定HLA型に親和性のある部分ペプチドを、指定ペプチドより探索することができる。使用され得るソフトウエアとしては、例えば、NetMHCpan、NetHMC、NetMHCcons、PickPocketなどを挙げることができるがそれらに限定されない。好ましくは、NetMHCpanが用いられる。併用して信頼性を向上させることも可能であり、参照データベースを切り替えることでヒトのほか、マウス、ラット、アカゲザル、チンパンジーなどでも実施することができる。
 B)ステップはまた、B-3)解析装置に得られたエピトープのペプチド配列、MHC情報(遺伝子型および親和性)ならびに変異情報(染色体、位置、変異パターン(野生型/変異型)、信頼性、優先度、および該当遺伝子(遺伝子名、発現量))からスコアを算出させ、優先すべきエピトープの順位付けを行うステップを包含し得る。
 B-3)において好ましい実施形態ではさらなる特徴として、解析装置において、MHC情報(HLA情報)に親和性のある部分ペプチドを探索後、それらがアミノ酸変異位置を含むか否か確認し、前者のみを保存することで、無駄な結果を排除して効率化を図ることを挙げることができる。これにより、効率化が達成され、および/または解析結果の精度の向上が達成されている。
 エピトープの選択基準としては、変異の優先順位付け、遺伝子発現の有無、ペプチドの優先順位付けなどを挙げることができる。
 好ましい実施形態では、エピトープ選択の際の基準として、変異の優先順位付けを行うことが挙げられる。変異の優先順位付けを行う際には、例えば、複数の変異探索ソフトウエアで見出されること、および/またはRNAリード由来である証拠があることを優先順位の上位に付すことなどを挙げることができるが、それらに限定されない。あるいは、遺伝子発現があることを優先順位の上位に付すことも考慮してよい。遺伝子発現の有無は、RNAリードの結果について、RNAリードをマップし算出されたfpkmもしくはrpkmの値が正であるか否かで判断することができる。RNAリードの結果を活用することにより、実施例で示されるように精確性の向上に寄与することが判明している。あるいは、ペプチドの優先順位付けを行うことができる。ここで、ペプチドの優先順位付けのためには、複数のエピトープ探索ソフトウエアで見つかるかどうかを挙げることができる。また、ペプチドの優先順位付けは、HLA-ペプチド間のIC50の値のレベル等を参酌して決定することができ、例えば、IC50<500nMであること、好ましくは、IC50<400nMであること、IC50<300nMであること、IC50<200nMであること、IC50<100nMであること、IC50<90nMであること、IC50<80nMであること、IC50<70nMであること、IC50<60nMであること、IC50<50nMであることなどを挙げることができるが、これらに限定されず、閾値としてはこれらの中間の値(例えば、実施例で採用されるIC50<54nM等)も、検索結果を見て適宜変動し採用することができる。
 好ましい実施形態では、ペプチドの優先順位付けは、ヒットが見出されるエピトープ探索プログラムの数の多少、ヒットが見出される変異探索ソフトウエアの数の多少およびHLA-ペプチド間のIC50<500nMの値からなる群より選択される少なくとも1つの要素が考慮される。さらに好ましくは、順位付けは、HLA-ペプチド間のIC50の値、ヒットが見出されるエピトープ探索プログラムの数、ヒットが見出される変異探索ソフトウエアの数の順に適用することでソートされる。理論の束縛されることを望まないが、このソート法で驚くべき精度の高い抗原ペプチドを同定することができる。
 別の実施形態では、本発明において、前記ゲノムリードおよびその変異に関する情報は同じ被験体から得られる。同じ被験体から情報を得ることにより、同一人における変化を考慮し解析をすることができる。ここで好ましくは、ゲノムリードおよびその変異に関する情報は、正常組織および前記疾患の組織から得られる。
 別の実施形態では、本発明において、前記ゲノムリードおよびその変異に関する情報は異なる被験体から得られる。好ましくは、異なる被験体に正常被験体を含めることで、疾患の疑いのある被験体との対比をはっきりと行うことができる。これらの相違はゲノムマッピングを行った後、体細胞変異の探索を行い、疾患特異的な変異(例えば、がんであれば腫瘍特異変異)として同定することができる。
 このように得られた疾患特異的変異については、いったん変異が得られたならば解析装置に適宜参照情報データベース(DB)を用いてアノテーションを行わせ、候補の変異を同定し、アミノ酸情報に変換することができる。このように変換されたアミノ酸配列の候補に基づき野生型ペプチドと変異ペプチドとを生成することができる。
 本発明におけるアノテーションは、探索された変異について、参照情報DBを用いて情報を追加することをいう。追加され得る情報としては、例えば、位置(エキソン、イントロン、制御領域、遺伝子間領域など)、アミノ酸変異を伴うかどうか、変異に関連する既知の情報(疾患関連性、人種別頻度など)などを挙げることができるがこれらに限定されない。アノテーションに使用され得るデータベースの例としては、遺伝子構造の調査のためには、refGene、ensEmblなどを挙げることができ、変異の既知情報には、dbSNP、cosmic、1000 genomes、whole exome featuresなどを使用することができる。全体としては、ANNOVAR、snpEffなどを使用することができ、ANNOVARを用いることが典型的であるがこれに限定されない。
 本発明の方法では、核酸アミノ酸変換(NA-AA変換)が行われるが、これは、通常のコドンコードを変換することで実現される。単純な文字列変換によって達成されるため格別のソフトウエアを使用する必要はない。本発明では、アミノ酸への変換後、アミノ酸変化を伴う変異について、変化前(野生型=WT)、変化後(変異型=MT)のペプチドを導出することができる。これにより、アミノ酸レベルで変動がない変異を除去することができる。
 次に、野生型ペプチドおよび変異ペプチドに基づいて、HLA型の情報に照らし、エピトープ探索を行うことができる。エピトープ探索は指定HLA型に親和性のある部分ペプチドを、指定ペプチドより探索することができる。使用され得るソフトウエアとしては、NetMHCpan、NetHMC、NetMHCcons、PickPocketなどを挙げることができるがこれらに限定されない。典型的には、NetMHCpanが用いられる。また、2種類以上を併用して信頼性を向上させることができる。さらに、典型的にはヒト、霊長類、げっ歯類等の哺乳動物のデータベースを用いて実現され得るが、例示的に実施されたヒトの例に代えて、参照データベースを切り替えることで マウス、ラット、アカケザル、チンパンジー等も実現することができる。
 本発明の方法において、ペプチドの生産を行う場合は、ペプチドの配列情報が与えられることから、その配列情報に基づき実施し得る任意の生産方法、例えば、化学合成、微生物による生産、またはより大きなペプチドの切断(例えば、酵素的な切断)等によって生産することができる。ペプチド合成(化学合成)による合成が好ましい。大量生産および/または精度の点からこれらが好ましい合成方法である。
 動物でもヒトと同じような手法で本発明を実施することができる。以下にその例を記載する。
1.全ての系統(syngenic)のマウスを対象にして、自然発症、化学発症、放射線発症に由来する腫瘍(癌、肉腫、白血病)に対してネオ抗原の探索が可能である。
2.担癌マウスの癌部位からの組織採取、正常マウスにおいて腫瘍部位と同一臓器・組織の採取を行う。この際には、担癌マウス個体では、腫瘍部位と非腫瘍部位(例えば、大腸癌の際には、腫瘍部位と非腫瘍部位)。マウスは同一系統の場合は、正常組織は正常マウスから採取できる。
3.採取された組織・臓器からDNAおよびRNAを抽出し、エキソームseqおよびRNAseq解析を行う。
4.系統毎にMHC(major histocompatibility complex; 主要組織適合遺伝子複合体)は分かっているため、本発明で使用され得るmutanomeを探索し、更にはMHC(マウスではH-2)上に提示されるネオ抗原を同定する。
5.ネオ抗原の選択に関しては、実施例で例示されるヒト腫瘍で記載している方法論と同一のものを例示することができる。
6.同定されたネオ抗原に対しては、ペプチドを人工的に合成し、同系マウスの脾臓細胞に添加培養して、培養後のIFNγ産生誘導を活性の指標とすることができる。
7.また、ネオ抗原で刺激し培養した脾臓細胞を用いて、腫瘍に対する細胞障害性を測定する。
8.試験管内での検討から、探索されたネオ抗原が腫瘍に対してT細胞の機能的な誘導を起こす事が明確になった場合には以下を行う。
9.すなわち、候補となったネオ抗原を用いたin vivoでの効果を検討する。
10.in vivo効果としては、担癌マウス(ネオ抗原探索に使用した腫瘍を移植したマウス)にネオ抗原を直接投与する。また、樹状細胞療法(in vitroで同系マウス由来の樹状細胞を刺激培養し、その樹状細胞を担癌マウスに投与する)を用いて治療することができる。
 (免疫療法解析装置・システム、および解析プログラム)
 別の局面において、本発明は、被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産する装置またはシステムを提供する。この装置またはシステムは、A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析するエピトープ解析ユニット;ならびにC)該エピトープの情報に基づいてペプチドを生産するペプチド生産ユニットを備える。ここで使用される情報入力ユニット、解析ユニットおよび合成ユニットは、(免疫療法ペプチドを特定および生産する方法)において説明される任意の特徴を備えることができる。本発明において使用される「解析装置」は、情報入力ユニットとエピトープ解析ユニットとを含みうる。さらに、本発明の解析装置は、このほかの機能を有する少なくとも1つのさらなるユニットを含んでいてもよく。これらのユニットは以下に説明される。
 別の局面において、被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定する装置またはシステムを提供する。この装置またはシステムは、A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;ならびにB)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するエピトープ解析ユニットを包含する。ここで使用される情報入力ユニット、および解析ユニットは、(免疫療法ペプチドを特定および生産する方法)において説明される任意の特徴を備えることができる。
 さらに別の局面において、本発明は、被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定するための方法をコンピュータに実行させるためのプログラムを提供する。このプログラムが実行する方法は、A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力するステップ;ならびにB)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するステップを包含する。プログラムは、記録媒体に格納されていてもよく、伝送媒体によって伝送されてもよい。ここで実行される方法は、(免疫療法ペプチドを特定および生産する方法)において説明される任意の特徴を備えることができる。
 したがって、本発明は、被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定するための方法をコンピュータに実行させるためのプログラムを格納する記録媒体を提供する。ここで格納されるプログラムが実行する方法は、A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力するステップ;ならびにB)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するステップを包含する。記録媒体は、RAM、ROM、またはハードディスク(HDD)、磁気ディスク(DVD等)、USBメモリ等のフラッシュメモリなどの外部記憶装置であり得る。ここで実行される方法は、(免疫療法ペプチドを特定および生産する方法)において説明される任意の特徴を備えることができる。
 例えば、1つの実施形態では、ユニットA(情報入力ユニット)は、被験体のゲノムを配列決定する手段、前記被験体のRNAの配列決定手段および前記被験体のMHCタイピングの手段の少なくとも1つを含み得る。また、プログラムが実行するA)ステップは、A-1)該被験体のゲノムの配列決定を行って該被験体のゲノムリードおよびその変異に関する情報を得、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索し、前記疾患組織に特異的な変異を得るステップ、A-2)該被験体のRNAの配列決定を行って該被験体のRNAリードの情報を得、該疾患組織のRNAリードをマッピングして変異を探索し、および/または発現量を導出し、必要に応じて正常組織のRNAリードをマッピングして体細胞変異を探索し、および/または発現量を導出し、前記疾患組織のRNAリードに基づいて導出された発現量と比較するステップ、およびA-3)必要に応じて該被験体のゲノムリードを用いて該被験体のMHCタイピングを行って該被験体のMHC型の情報を得るステップからなる群より選択される少なくとも1つを行うことを包含する。
 ユニットB(解析ユニット)は、種々の機能を有し得る。また、プログラムが実行するB)ステップは、種々の機能を実行する。解析ユニットで行われるステップまたは解析ステップは、図1に示されるコンセプトを実現する事項をコンピュータに実装する任意のステップを含みうるものであり、さらに図2に示される解析フローの任意のステップを実現する事項をコンピュータに実装する任意のステップを含みうる。
 特に、ユニットBまたはプログラムが実行するB)ステップでは、疾患組織に特異的な変異を入力または同定するステップ、および疾患に特異的な変異を参照情報データベースに基づきアノテーションを行い候補変異を同定するステップが実証され、その後、候補変異の核酸情報をアミノ酸情報に変換して野生型(WT)ペプチドおよび変異型(MT)ペプチドのデータを生成し、その後MHC型(ヒトの場合HLA型)と、WTペプチドおよびMTペプチドのデータとを用いてエピトープ探索を行った上で、エピトープの順位付けを行ってエピトープリストを出力することが実装されることが好ましい。
 疾患に特異的な変異は、すでに存在するデータを利用してもよく、システムに対してB-1)疾患組織に特異的な変異に対して、既存のデータベースに基づいてアノテーションを行い核酸アミノ酸変換を行って、野生型ペプチドおよび疾患特異的変異ペプチドの情報を導出するステップを実施させてもよく、本発明のプログラムではこのようなステップが実施される。B-1)ステップの詳細については、(免疫療法ペプチドを特定および生産する方法)に説明されている。
 好ましくは、疾患組織に特異的な変異は被験体のゲノムリードおよびその変異に関する情報に基づいて導出される。ここで、ゲノムリードおよびその変異に関する情報は、それぞれ、前記被験体の正常な試料および前記被験体の前記疾患に罹患した試料から得られ、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索し、前記疾患組織に特異的な変異を同定する。
 好ましくは、本発明の装置またはシステムは、RNAリードの情報の解析を実装させてもよい。この場合、本発明の装置またはシステムに、必要に応じて、前記RNAリードの情報について該疾患に特異的な配列を同定し、これをマッピングし変異を探索し、および/または発現量を導出するステップを実装させることができ、本発明のプログラムではこのようなステップが実施され得る。RNAリードの情報を含めることにより、より精確性を上昇させることができる。RNAリードの情報取得ステップの詳細については、(免疫療法ペプチドを特定および生産する方法)に説明されている。
 本発明の装置またはシステムでは、MHC型(またはHLA型)としては既知の情報を用いてもよく、これを同定するステップを実装してもよい。したがって、本発明の装置またはシステムは、必要に応じて、該正常および該疾患に特異的な異常に関する情報からMHCタイピングを行ってMHC型を同定するステップを実装し得、本発明のプログラムではこのようなステップが実施され得る。MHC型同定ステップの詳細については、(免疫療法ペプチドを特定および生産する方法)に説明されている。
 本発明の装置またはシステムは、B-2)該MHC型、該野生型ペプチドおよび該疾患特異的変異ペプチドを用いて、公知のデータベースを用いて該疾患に特異的なエピトープ探索を行うステップを実装してもよく、本発明のプログラムではこのようなステップが実施され得る。これにより、エピトープの探索がなされる。B-2)ステップの詳細については、(免疫療法ペプチドを特定および生産する方法)に説明されている。
 本発明の装置またはシステムは、エピトープの順位付けを行うステップを実装し得、本発明のプログラムではこのようなステップが実施される。したがって、本発明の装置またはシステムは、B-3)得られたエピトープのペプチド配列、MHC情報(遺伝子型および親和性)ならびに変異情報(染色体、位置、変異パターン(野生型/変異型)、信頼性、優先度、および該当遺伝子(遺伝子名、発現量))からスコアを算出し、優先すべきエピトープの順位付けを行うステップを実装し得、本発明のプログラムではこのようなステップが実施され得る。B-3)ステップの詳細については、(免疫療法ペプチドを特定および生産する方法)に説明されている。
 本発明の装置またはシステムがペプチドの生産を行う場合は、エピトープの情報に基づいてペプチドを生産するペプチド生産ユニットを備えていてもよい。このようなペプチド生産ユニットは、ペプチドの配列情報が与えられることから、その配列情報に基づき実施し得る任意の生産方法、例えば、化学合成、微生物による生産、またはより大きなペプチドの切断(例えば、酵素的な切断)等による生産を実現する任意のユニットを備え得る。
 本発明のプログラムは、ペプチドの生産を実施するプログラムと組み合わされてもよく、あるいは、本発明のプログラムの一部としてペプチドの生産を実行するステップを実現するプログラムが組み込まれていてもよい。
 (システム構成)
 次に、図7のブロック図を参照して、本発明のシステムまたは装置の構成を説明する。なお、本図においては、単一のシステムで実現した場合を示しているが、これらは複数のユニットやコンポーネントから構成されていてもよい。
 本発明のシステムは、コンピュータシステムに内蔵されたCPU01にシステムバス20を介してRAM03、ROMやHDD、磁気ディスク、USBメモリ等のフラッシュメモリなどの外部記憶装置05及び入出力インターフェース(I/F)25が接続されて構成される。入出力I/F25には、キーボードやマウスなどの入力装置09、ディスプレイなどの出力装置07、及びモデムなどの通信デバイス11がそれぞれ接続されている。外部記憶装置05は、情報データベース格納部30とプログラム格納部40とを備えている。何れも、外部記憶装置05内に確保された一定の記憶領域である。
 このようなハードウェア構成において、入力装置09を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス11等を介してコマンドを受信することで、この記憶装置05にインストールされたソフトウエアプログラムがCPU01によってRAM03上に呼び出されて展開され実行されることで、OS(オペレーションシステム)と協働してこの発明の機能を奏するようになっている。
 データベース格納部30には、参照データベースや入力配列セットあるいは生成したゲノムリードデータ、RNAリードデータ、MHC(HLA)型のデータ、特異的変異データ等のデータや、各種ステップを実行するソフトウエア、場合によってはデータベースも確認されており、もしくは通信デバイス11等を介して取得した情報が随時書き込まれ、更新される。必要に応じて各入力配列セット中の各々の配列、参照データベースの各遺伝子情報ID等の情報を各マスタテーブルで管理することにより、蓄積対象となるサンプルに帰属する情報を、各マスタテーブルにおいて定義されたIDにより管理することが可能となる。
 データベース格納部30には、入力エントリー情報として、正常組織、疾患組織(例えばがん組織)の被験体に関する情報(ID等を含む)、試料の情報、配列分析(リード)の情報、各種変異に関する情報、マッピングの情報、アノテーションの情報、核酸・アミノ酸変換の情報、発現量の情報、その比較の情報、野生ペプチド、変異ペプチド、MHC(HLA)型の情報等が試料IDに関連付けて格納される。ここで、分析結果は、本発明の処理によって処理して得られる情報である。
 また、プログラム格納部40に格納されるコンピュータプログラムは、コンピュータを、エピトープ探索やエピトープ優先順位付け等の処理を含む、本発明のプログラムまたは本発明の装置若しくはシステムとして構成するものである。これらの各機能は、それぞれが独立したコンピュータプログラムやそのモジュール、ルーチンなどであり、上記CPU01によって実行されることでコンピュータを各システムや装置として構成させるものである。
 (一般技術)
 本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Sambrook J. et al.(1989).Molecular Cloning: A Laboratory Manual, Cold Spring Harborおよびその3rd Ed.(2001); Ausubel, F. M.(1987).Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Ausubel,F.M.(1989).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Innis, M. A. (1990). PCR Protocols: A Guide to Methods and Applications, Academic Press; Ausubel, F. M. (1992).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Ausubel, F. M.(1995).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Innis, M. A. et al.(1995). PCR Strategies, Academic Press; Ausubel, F. M. (1999). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and annual updates; Sninsky, J. J. et al.(1999).PCR Applications: Protocols for Functional Genomics, Academic Press, Gait, M. J. (1985). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Gait, M. J. (1990). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Eckstein, F.(1991). Oligonucleotides and Analogues: A Practical Approach, IRL Press; Adams, R. L. et al.(1992).The Biochemistry of the Nucleic Acids, Chapman & Hall; Shabarova, Z. et al.(1994). Advanced Organic Chemistry of Nucleic Acids, Weinheim; Blackburn, G. M. et al.(1996). Nucleic Acids in Chemistry and Biology, Oxford University Press; Hermanson, G. T. (I996). Bioconjugate Techniques, Academic Press、別冊実験医学「遺伝子導入&発現解析実験法」羊土社、1997などに記載されている。これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
 バイオインフォマティクスで汎用される技術常識の文献としては、例えば、Gibas C. et al. (2001). Developing Bioinformatics Computer Skills, O’Reilly; Mount D. W., (2004). Bioinformatics: Sequence and Genome Analysis, CSHL Press; Pevzner P. et al. (2011). Bioinformatics for Biologist, Cambridge University Press; 菅野純夫、他 (2012) 細胞工学別冊「次世代シークエンサー目的別アドバンストメソッド」秀潤社をあげることができる。これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
 以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。
 (実施例1:変異ペプチド選別と免疫原性の確認~ヒト被験体の腫瘍の場合)
 (解析)
 図2に例示されるフローに基づき変異ペプチド選別を行った。
 具体的には以下のとおりである。
(1)被験体群は以下を用いた。
対象患者:65歳日本人男性の肺ガン患者
本実施例を実施する前に、Luminex法でタイピングして以下のHLA型が同定されている。
HLAタイプ:HLA-A*02:01, 24:02
(2)正常組織および腫瘍組織よりDNA抽出し、イルミナ社シーケンサHiSeq2000により、TruSeq PEキットを用いてエキソームシーケンスした。使用機器はイルミナ社シーケンサHiSeq2000で、使用ソフトウエアは同シーケンサの制御ソフトウエアを使用した。
 (エキソームリードマッピング)
 次に、正常組織および腫瘍組織由来のエキソームリードを、各々、bwaを用いて以下のパラメータでマップした。
algorithm: mem
read mode: paired end
minimum seed length: 19
band width: 100
off diagonal dropoff: 100
match score : 1
mismatch penalty: 4
gap open penalty: 6
gap extension penalty: 1
clipping penalty: 5
unpaired read penalty: 9。
 (体細胞変異探索)
 次に、正常組織および腫瘍組織由来のエキソームリードのマップ結果を基に、muTect、VarScan、lofreqを用いて、腫瘍組織特異的な体細胞変異を探索した。
 以上の解析の実現フローを図3~5に示す。図3は、分析フローにおける開始画面を示す。ここでは、腫瘍由来エキソーム、正常組織由来エキソーム、腫瘍由来RNA配列、正常組織由来RNA配列の選択、スレッド数の選択、リードのトリミング条件、低品質(LQ)領域のトリミング、分析の条件等を選択できるようになっている。例えば、分析条件では、マッピングアルゴリズム等のアルゴリズムの種類およびその条件の選択および設定ができるようになっている。図4は、分析の条件設定の画面を表すものである。エキソームマッピングおよび変異検索の条件、RNAマッピングおよびその発現分析、変異検出、変異のアノテーション、HLAタイピング、エピトープ予測(決定)に用いるソフトウエアおよび条件の選択および設定ができるようになっている。図5は、出力結果の例である。その結果、腫瘍特異的変異を計数し、1673個見出された。
 (3)次に、RNAリード(正常組織)およびRNAリード(腫瘍組織)を取得した。腫瘍組織よりRNA抽出し、イルミナ社シーケンサHiSeq2000により、TruSeq RNA LibraryキットおよびTruSeq PEキットを用いてRNAの配列決定を行った。得られたRNAリードを、TopHatを用いて以下のパラメータでマップした。
segment length: 16
maximum mismatch: 2
expected mate pair inner distance: 50
standard deviation of mate pair inner distance: 20。
(4)次に、mRNAマッピングの結果得られたデータを変異探索(または体細胞変異探索)および発現量導出を行った。腫瘍組織由来RNAリードのマップ結果を基に、muTect、VarScanを用いて変異を探索した。また、CuffLinksを用いて遺伝子発現量を算出した。
(5)(4)で得られたRNAリードに基づく結果について変異があるものを合わせて解析した。
(6)(2)で得られた腫瘍特異的変異について、遺伝子構造情報のデータベースとしてrefGeneおよびensEmblを用いて変異のアノテーションを実行し候補変異を特定した。特定された候補変異について核酸-アミノ酸返還を行って野生型(WT)ペプチドおよび変異(MT)ペプチドを画定した。
(7)また、次にエキソームリードからomixonを用いてHLAタイピングを実施した。
(8)(6)で得られたWTペプチドとMTペプチドとに加えHLA型の情報を合わせてエピトープ解析を行った。その結果を、以下の表に示す。表中MT配列中にあるハイフンはその間のまたは端部のアミノ酸が正常アミノ酸と比較して変異していることを示す。
 表中の項目は以下を示す。
HLA allele:HLA対立遺伝子
WT peptide sequence:野生型ペプチド配列
MT peptide sequence:変異型ペプチド配列
Consensus percentile rank:コンセンサスの百分位数ランク
ANN IC50 : artificial neural network法により算出されたIC50 (NetMHCpanにおける最適値)
ANN rank : それをランク値に変換した値
SMM IC50 : stabilized matrix法により算出されたIC50 (算出できない場合はna)
SMM rank : それをランク値に変換した値
comblib sydney2008 score : sydney2008法により算出されたIC50 (算出できない場合はna)
comblib sydney2008 rank : それをランク値に変換した値
mutation information:変異情報
chromosome:染色体
start position:開始位置
end position:終了位置
gene name:遺伝子名
accession:アクセッション番号
exon ID:エキソン番号
position on transcript:転写物における位置
WT NA:野生型における核酸
MT NA:変異型における核酸
start pos. on peptide:ペプチド上の開始位置
mutation pos. on peptide:ペプチド上の変異位置
end pos. on peptide:ペプチド上の終了位置
WT AA:野生型アミノ酸
MT AA:変異型アミノ酸
upstream AA:上流アミノ酸
downstream AA:下流アミノ酸
log likelihood:対数尤度
read depth:読み深さ
num of WT on tumor : 腫瘍組織において、その位置をカバーするWT(変異の無い)リードの数
num of MT on tumor : 同上、MT(変異)リードの数
QV sum of WT on tumor : 腫瘍組織において、その位置をカバーするWTリードのクオリティ値(QV)の総和
QV sum of MT on tumor : 同上、MTリードのQVの総和
num of WT on normal : 正常組織において、その位置をカバーするWTリードの数
num of MT on normal : 同上、MTリードの数
QV sum of WT on normal : 正常組織において、その位置をカバーするWTリードのQVの総和
QV sum of MT on normal : 同上、MTリードのQVの総和
found in RNA : その変異がRNAでもみつかったか否かのフラグ
found by : その変異をコールしたソフトを列挙
all AA changes : アミノ酸置換パターンを、遺伝子名、遺伝子座のアクセッション、核酸変異パターン、アミノ酸変異パターンで記述
cytoband : その位置を染色体バンドの記述形式で示したもの
dbSNP 138 : その変異がdbSNP release.138に登録されている場合は、そのID
cosmic 70 : その変異がcosmid release.70に登録されている場合は、そのID
TSS : その変異が乗る遺伝子のTSS(Transcription Start Site)のID
gene location on genome : その変異の位置、chromosome、start position、end positionを連結しただけ
gene expression (FPKM) : 遺伝子発現量(fragments per kirobase of exon per million mapped reads)
95% conf low : FPKMの95%信頼区間の下限
95% conf high : 同上、上限
status : 発現量算出結果が有効(OK)か、低精度(LOWQUAL)か
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 (解析結果)
 解析した結果を以下に示す。
 HLA-A*02:01,24:02の個体を使用して解析し見出された腫瘍特異的変異は1673箇所見出された。このうち、RNAリード上にも変異があった件を同定したところ、41個に絞られた。さらにアミノ酸変化を伴う変異があったものに絞ったところ25個に絞られた。これをペプチドの数で計数したところ44ペプチドが同定された(HLA-A*02:01)。すなわち、HLA-A*02:01とIC50≦54nMのアフィニティ(affinity)を持つペプチドが44見出されたことになる。なお、なお、次のステップでは、HLA-A*02:01を保有する健常人末梢血を使用したため、(HLA-A*24:02では無く)HLA-A*02:01とのアフィニティ(affinity)を持つペプチドのみを選択した。
 (ペプチド合成)
 これらの44ペプチドをペプチド合成機にて合成した。本実施例では、以下にその手順を示す。GenScript社(東京、日本)に外注したものを使用した。
 (HLA-A*02:01試料)
 被験体資料(腫瘍患者)と同一のHLA-A*02:01を保有する健常人の末梢血を用いた。これに対して製造されたペプチドを用いて反応性の実験を行った。
 なお、試料としては、同一のHLA型(例えば、HLA-A*02:01)を保有する健常人の血液(末梢血)もしくはがん患者の血液そのものを使用することもでき、目的からは、同一のHLA-A*02:01を保有する方の血液を使うこともできる。
 (ELISPOTアッセイ)
 実施したアッセイは、インターフェロンγELISPOTおよび細胞内インターフェロンγ染色を行った。インターフェロンγELISPOTには、MABTECH anti-human IFN-γ mAb 1-D1K、purified(3420-3-250)を捕捉抗体(Capture antibody)として使用し、MILLIPORE MultiScreen HTS 96-well Filtration Plateを使用した。
 手短に示すと以下のとおりである。
(1)サイトカイン(ここでは、インターフェロン-γ)特異的モノクローナル抗体(MABTECH anti-human IFN-γ mAb 1-D1K, purified (3420-3-250))を固層表面に固定化した。ここでは、MILLIPORE MultiScreen HTS 96-well Filtration Plateを使用した。
(2) 洗浄後に1x10*5個の細胞を16時間刺激培養した。分泌されたサイトカインであるインターフェロン-γは、産生細胞の周辺にある捕捉用抗体(Detection antibody ;MABTECH anti-human IFN-γ mAb 7-B6-1, biotinylated(3420-6-250))と結合させた。洗浄により細胞を除去した後、検出用の抗インターフェロンγ抗体を添加した。
 ビオチン標識検出抗体の場合は、酵素標識ストレプトアビジン(MABTECH Streptavidin-HRP(3310-9))を添加した。
(3)次に、BD ELISPOT AEC Substrate Set(551951)で発色させた。この方法により、インターフェロンγ(サイトカイン)産生細胞が位置した場所に相当するスポットを見ることができる。得られたスポットは、カールツァイス KS ELISPOT(ミネルバテック社)でスポット数をカウントし、陽性細胞の頻度を記録した。
 (細胞内インターフェロンγ染色)
 また、得られたサンプルについて、細胞内インターフェロンγ染色を行った。5x10個のリンパ球を200μlの培地中で4時間刺激培養した。刺激にはネオ抗原(neoantigen)ペプチド、コントロールペプチドを終濃度1μg/mlになるように添加した。未刺激のコントロールも調製した。刺激中BioLegend Brefeldin A Solution(1,000X)を終濃度5.0μg/mlになるように加えた。培養終了後細胞を回収し、Fixable Viability Dye eFluor780(eBioscience 65-0865-18),FITC 標識抗CD4抗体(BD PharmingenTM557307)、ECD標識抗CD8抗体(BECKMAN COULTER 41116015)、PerCP・CY5.5標識抗CD3抗体(Biolegend 300430)で4℃30分染色した。
 Intraprep permeabilization reagent(Immunotech, Marseille, France)で15分細胞を処理した。PE標識抗IL-2抗体(BD PharmingenTM559334)、Alexa700標識抗TNFα抗体(BD PharmingenTM557996)、Pacific Blue標識抗IFN-γ抗体(Biolegend 502522)で15分間染色した。
 0.5%PFA入のPBSに懸濁した後、Galliosフローサイトメーター(BECKMAN COULTER)で測定した。細胞内フローサイトメトリーのソーティングには、CD8陽性細胞を用いて、インターフェロンγの産生の解析を行った。
 (インターフェロンγ産生に関する結果)
 インターフェロンγ産生の解析結果を図6に示す。また、各種ペプチドについてインターフェロンγ産生が認められた変異ペプチドを以下にまとめる。表中変更のあるアミノ酸には下線を付した。
Figure JPOXMLDOC01-appb-T000006
 表中のMTは変異型を示しWTは野生型を示す。pepIDは実施例におけるサンプル番号である。IC50は、HLA-ペプチド結合の阻害濃度を示す。上記表中++は3/3でインターフェロンγ産生が認められたものであり、+は1/3~2/3でインターフェロンγ産生が認められたものを指す。
 以上から、今般見出された44例のうち30%近くの12例において、ELISPOTまたは細胞内インターフェロン産生について陽性の反応が出たことが明らかになった。
 30%近くもの例で有用であり得るがん免疫ペプチドの候補が見出されたことは従来技術ではなく、顕著な効果であるといえる。
 (実施例2:変異ペプチド選別と免疫原性の確認~マウスの場合)
 本実施例では、マウスを用いた場合でも実施することができる。
 その手順を以下に示す。
1.全ての系統(syngenic)のマウスを対象にして、自然発症、化学発症、放射線発症に由来する腫瘍(癌、肉腫、白血病)に対してネオ抗原の探索が可能である。ここでは、マウス系統:C57BL/6(MHC Haplotype. H2 )を用いて行う。腫瘍としては、腫瘍:B16メラノーマ細胞を用いる。
2.担癌マウスの癌部位からの組織採取、正常マウスにおいて腫瘍部位と同一臓器・組織の採取を行う。この際には、担癌マウス個体では、腫瘍部位と非腫瘍部位(例えば、大腸癌の際には、腫瘍部位と非腫瘍部位と言う意味)。マウスは同一系統の場合は、正常組織は正常マウスから採取する。
3.採取された組織・臓器からDNAおよびRNAを抽出し、エキソームseqおよびRNAseq解析を行う。
4.系統毎にMHC(major histocompatibility complex; 主要組織適合遺伝子複合体)は分かっているため、mutanomeを探索し、更にはMHC(マウスではH-2)上に提示されるネオ抗原を同定する。
5.ネオ抗原の選択に関しては、実施例1でヒト腫瘍で記載している方法論と同一のものを使用する。具体的には、B16メラノーマ細胞と同系のC57BL/6マウスから正常皮膚を採取し、それぞれDNAとRNAを抽出し、エキソームseq・RNAseqを行い、実施例1のネオ抗原探索ソフトにて候補ペプチドを同定する。
6.同定されたネオ抗原に対しては、ペプチドを人工的に合成し、同系マウスの脾臓細胞に添加培養して、培養後のIFNγ産生誘導を活性の指標とする。
7.また、ネオ抗原で刺激し培養した脾臓細胞を用いて、腫瘍に対する細胞障害性を測定する。
8.試験管内での検討から、探索されたネオ抗原が腫瘍に対してT細胞の機能的な誘導を起こす事が明確にする。
9.候補となったネオ抗原を用いたin vivoでの効果を検討する。
10.in vivo効果としては、担癌マウス(ネオ抗原探索に使用した腫瘍を移植したマウス)にネオ抗原を直接投与する。また、樹状細胞療法(in vitroで同系マウス由来の樹状細胞を刺激培養し、その樹状細胞を担癌マウスに投与する)を用いて治療することができる。
 効果判定は以下のようにして行う。
1.C57Bl/6マウス由来脾臓細胞を用いたElispotアッセイと細胞障害性を確認後にin vivoでの効果判定を行う。
2.C57BL/6マウスにB16メラノーマ細胞を皮下に移植し(1×10)、また、同数のB16メラノーマ細胞を静脈内投与する。
3.B16皮下投与後に、ネオ抗原(neoantigen)の治療効果に関しては、腫瘍の大きさと生存率を指標とする。
 以上のようにして、マウスでも同様に抗原ペプチドを同定し治療させることができる。
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本願は日本国特許出願特願2016-50861(2016年3月15日出願)に対して優先権主張を行うものであり、その内容は本明細書においてその全体が参照として援用される。
 精確度の高い免疫療法用のペプチドの特定技術が提供され、より精度の高い治療、モニタリング、予防が可能となり、医薬品産業、臨床応用場面において特に有用である。
配列番号1~12は実施例1で行ったWTペプチドとMTペプチドとに加えHLA型の情報を合わせてエピトープ解析結果において表示されるアミノ酸配列である。配列番号1、4、7、10は1つ目のサンプル(HLA-C*03:03)で表示される配列であり、配列番号2、5、8および11は2つ目のサンプル(HLA-C*03:03)で表示される配列であり、配列番号3、6、9、および12は3つ目のサンプル(HLA-C*14:02)で表示される配列である。配列番号1~3は、野生型アミノ酸配列、配列番号4~6は変異型アミノ酸配列、配列番号7~9は上流のアミノ酸配列および配列番号10~12は下流のアミノ酸配列を示す。配列番号13~36は、表2で示される実際のヒットのペプチドのアミノ酸配列を示す。配列番号13~24は変異型アミノ酸配列であり、順にPepID14、21、41、36、7、43、30、33、42、27、12、18を示す。配列番号25~36は野生型アミノ酸配列であり、順にPepID14、21、41、36、7、43、30、33、42、27、12、18を示す。

Claims (41)

  1. 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産するための方法であって、該方法は:
    A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;
    B)該解析装置に、該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップ;ならびに
    C)該エピトープの情報に基づいてペプチドを生産するステップ
    を包含する、方法。
  2. 前記B)ステップは、前記疾患組織に特異的な変異を参照情報データベースに基づきアノテーションを前記解析装置に行わせ候補変異を同定するステップを含み、その後、該候補変異の核酸情報をアミノ酸情報に変換して野生型(WT)ペプチドおよび変異型(MT)ペプチドを生産し、その後前記MHC型と、該WTペプチドおよび該MTペプチドとを用いて該解析装置にエピトープ探索を行わせた上で、エピトープの順位付けを行って該解析装置にエピトープリストを出力させることを包含する、請求項1に記載の方法。
  3. 前記疾患組織に特異的な変異は、前記被験体のゲノムリードおよびその変異に関する情報に基づいて導出されることを包含する、請求項1に記載の方法。
  4. 前記ゲノムリードは、エキソームリードを包含する、請求項3に記載の方法。
  5. 前記ゲノムリードおよびその変異に関する情報は、それぞれ、前記被験体の正常な試料および前記被験体の前記疾患に罹患した試料から得られ、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索し、前記疾患組織に特異的な変異を同定する、請求項3に記載の方法。
  6. 前記A)ステップは、さらに前記被験体のRNAリードの情報を前記解析装置に入力することを包含し、前記B)ステップは該解析装置に該RNAリードの情報にも基づいて前記変異に関するエピトープを解析させることを包含する、請求項1に記載の方法。
  7. 前記RNAリードは疾患組織のRNAリードを含み、該疾患組織のRNAリードをマッピングして変異を探索し、および/または発現量を導出するステップをさらに包含する、請求項6に記載の方法。
  8. 前記RNAリードの情報は正常組織のRNAリードを含み、該正常組織のRNAリードをマッピングして体細胞変異を探索し、および/または発現量を導出し、前記疾患組織のRNAリードに基づいて導出された発現量と比較するステップをさらに包含する、請求項7に記載の方法。
  9. 前記MHC型は、前記被験体のゲノムリードから導出される、請求項1に記載の方法。
  10. 前記B)ステップは、以下:
    B-1)前記解析装置に前記疾患組織に特異的な変異に対して、既存のデータベースに基づくアノテーションおよび核酸アミノ酸変換を行わせて、野生型ペプチドおよび疾患特異的変異ペプチドの情報を導出するステップ;
    B-2)前記MHC型、該野生型ペプチドおよび該疾患特異的変異ペプチドを用いて、公知のデータベースを用いて該解析装置に該疾患に特異的なエピトープ探索を行わせるステップ;ならびに
    B-3)該解析装置に、得られたエピトープのペプチド配列、MHC情報(遺伝子型および親和性)ならびに変異情報(染色体、位置、変異パターン(野生型/変異型)、信頼性、優先度、および該当遺伝子(遺伝子名、発現量))からスコアを算出させ、優先すべきエピトープの順位付けを行うステップ
    から選択される少なくとも1つのステップを包含し、
    前記C)ステップは、
    C-1)該順位付けに基づきペプチドを生産するステップを包含する、
    請求項2に記載の方法。
  11. 前記ゲノムリードおよびその変異に関する情報は同じ被験体から得られる、請求項3に記載の方法。
  12. 前記ゲノムリードおよびその変異に関する情報は異なる被験体から得られる、請求項3に記載の方法。
  13. 前記ゲノムリードおよびその変異に関する情報は、正常組織および前記疾患の組織から得られる、請求項11または12に記載の方法。
  14. 前記ゲノムリードのマッピングはbwa、bowtie、またはnovoalign、あるいはそれらの組合せを用いて行われる、請求項5に記載の方法。
  15. 前記ゲノムリードの変異の探索は、MuTect、VarScanまたはlofreqあるいはそれらの組合せを含む変異探索プログラムを用いて行われる、請求項5に記載の方法。
  16. 前記アノテーションは、refGene、ensEmblから選択される遺伝子構造データベース、および/またはdbSNP、cosmic、1000 genomes、およびwhole exome featuresからなる群より選択される変異既知情報のデータベースを用い、ANNOVARおよび snpEffからなる群より選択されるプログラムを用いて行われる、請求項2に記載の方法。
  17. 前記RNAリードのマッピングは、TopHatおよびSTARからなる群より選択されるプログラムを用いて行われる、請求項7または8に記載の方法。
  18. 前記RNAの変異の探索は、MuTect、VarScan、GATKおよびsamtoolsからなる群より選択される変異探索プログラムを用いて行われる、請求項7または8に記載の方法。
  19. 前記RNAの発現量の導出は、CuffLinksおよびErangeからなる群より選択される変異探索プログラムを用いて行われる、請求項7または8に記載の方法。
  20. 前記MHCタイピングはHLAminer、Athlates、Sting HLA、HLA caller、OptiType、およびomixonからなる群より選択されるソフトウエアを用いて行われる、請求項9に記載の方法。
  21. 前記被験体はヒトであり、前記MHCはHLAである、請求項1~10のいずれか1項に記載の方法。
  22. 前記エピトープ探索は、NetMHCpan、NetHMC、NetMHCcons、およびPickPocketからなる群より選択されるエピトープ探索プログラムを用いて行われる、請求項2に記載の方法。
  23. 前記順位付けは、前記変異の優先順位付け、遺伝子発現の有無およびペプチドの優先順位付けからなる群より選択される少なくとも1つの要素を考慮して行われる、請求項2に記載の方法。
  24. 前記変異の優先順位付けは、ヒットが見出される変異探索プログラムの数の多少およびRNAレベルでの変異の証拠の有無からなる群より選択される少なくとも1つの要素が考慮される、請求項23に記載の方法。
  25. 前記遺伝子発現の有無は、前記RNAリードをマッピングし算出されたfpkmもしくはrpkmの値が正であるか否かで判断される、請求項23に記載の方法。
  26. 前記ペプチドの優先順位付けは、ヒットが見出されるエピトープ探索プログラムの数の多少、ヒットが見出される変異探索ソフトウエアの数の多少およびHLA-ペプチド間のIC50<500nMの値からなる群より選択される少なくとも1つの要素が考慮される、請求項23に記載の方法。
  27. 前記順位付けは、HLA-ペプチド間のIC50の値、ヒットが見出されるエピトープ探索プログラムの数、ヒットが見出される変異探索ソフトウエアの数の順に適用することでソートされる、請求項23に記載の方法。
  28. 前記疾患は腫瘍または自己免疫疾患である、請求項1~27のいずれか1項に記載の方法。
  29. 前記ステップA)は、
    A-1)前記解析装置に前記被験体のゲノムの配列決定を行って該被験体のゲノムリードおよびその変異に関する情報を得、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索させ、前記疾患組織に特異的な変異を得るステップ、
    A-2)該解析装置に該被験体のRNAの配列決定を行って該被験体のRNAリードの情報を得、該疾患組織のRNAリードをマッピングして変異を探索させ、および/または発現量を導出させ、必要に応じて正常組織のRNAリードをマッピングして体細胞変異を探索させ、および/または発現量を導出させ、該疾患組織のRNAリードに基づいて導出された発現量と比較するステップ、および
    A-3)該解析装置に必要に応じて該被験体のゲノムリードを用いて該被験体のMHCタイピングを行わせて該被験体のMHC型の情報を得るステップ
    からなる群より選択される少なくとも1つを行うことを包含する、請求項1に記載の方法。
  30. 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定する方法であって、
    A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;および
    B)該解析装置に該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップを包含する、方法。
  31. 請求項2~29のいずれか1項または複数に記載の特徴をさらに有する、請求項30に記載の方法。
  32. 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産する装置であって、該装置は:
    A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;
    B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析するエピトープ解析ユニット;ならびに
    C)該エピトープの情報に基づいてペプチドを生産するペプチド生産ユニット
    を包含する、装置。
  33. 前記ユニットBにおいて、請求項2~29のいずれか1項または複数に規定される手順がなされる、請求項32に記載の装置。
  34. 前記ユニットAは、前記被験体のゲノムを配列決定する手段、前記被験体の疾患組織に特異的な変異を決定する手段、前記被験体のRNAの配列決定手段および前記被験体のMHCタイピングの手段の少なくとも1つを含む、請求項32に記載の装置。
  35. 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定する装置であって、
    A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;ならびに
    B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するエピトープ解析ユニット
    を包含する、装置。
  36. 前記ユニットBにおいて、請求項2~29のいずれか1項または複数に規定される手順がなされる、請求項35に記載の装置。
  37. 前記ユニットAは、前記被験体のゲノムを配列決定する手段、前記被験体の疾患組織に特異的な変異を決定する手段、前記被験体のRNAの配列決定手段および前記被験体のMHCタイピングの手段の少なくとも1つを含む、請求項35に記載の装置。
  38. 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定するための方法をコンピュータに実行させるためのプログラムであって、該方法は、
    A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力するステップ;ならびに
    B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するステップ
    を包含する、
    プログラム。
  39. 請求項2~29のいずれか1項または複数に記載の特徴をさらに有する、請求項38に記載のプログラム。
  40. 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定するための方法をコンピュータに実行させるためのプログラムを格納したコンピュータ読み取り可能な記録媒体であって、該方法は、
    A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力するステップ;ならびに
    B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するステップ
    を包含する、
    記録媒体。
  41. 請求項2~29のいずれか1項または複数に記載の特徴をさらに有する、請求項40に記載の記録媒体。
PCT/JP2017/010218 2016-03-15 2017-03-14 免疫療法のためのモニタリングまたは診断ならびに治療剤の設計 WO2017159686A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018505954A JP6710004B2 (ja) 2016-03-15 2017-03-14 免疫療法のためのモニタリングまたは診断ならびに治療剤の設計
CN201780024830.XA CN109072227A (zh) 2016-03-15 2017-03-14 用于免疫治疗的监测和诊断及治疗剂的设计
EP17766684.9A EP3431595A4 (en) 2016-03-15 2017-03-14 MONITORING AND DIAGNOSIS FOR IMMUNOTHERAPY AND DESIGN FOR THERAPEUTICS
US16/085,455 US12065699B2 (en) 2016-03-15 2017-03-14 Monitoring and diagnosis for immunotherapy, and design for therapeutic agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-050861 2016-03-15
JP2016050861 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017159686A1 true WO2017159686A1 (ja) 2017-09-21

Family

ID=59851584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010218 WO2017159686A1 (ja) 2016-03-15 2017-03-14 免疫療法のためのモニタリングまたは診断ならびに治療剤の設計

Country Status (5)

Country Link
US (1) US12065699B2 (ja)
EP (1) EP3431595A4 (ja)
JP (1) JP6710004B2 (ja)
CN (1) CN109072227A (ja)
WO (1) WO2017159686A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020101037A1 (ja) * 2018-11-16 2020-05-22 株式会社Tnpパートナーズ オーダーメイド医療基幹システム
CN112447263A (zh) * 2020-11-22 2021-03-05 西安邮电大学 多任务高阶snp上位检测方法、系统、存储介质、设备
WO2022270631A1 (ja) * 2021-06-25 2022-12-29 Repertoire Genesis株式会社 T細胞エピトープ配列を同定する方法およびその応用
WO2024034622A1 (ja) * 2022-08-08 2024-02-15 北海道公立大学法人 札幌医科大学 対象由来のネオアンチゲンを選択するための方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11640859B2 (en) * 2018-10-17 2023-05-02 Tempus Labs, Inc. Data based cancer research and treatment systems and methods
US11705226B2 (en) * 2019-09-19 2023-07-18 Tempus Labs, Inc. Data based cancer research and treatment systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506125A (ja) * 1996-02-24 2000-05-23 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 免疫調節のための医薬組成物
WO2014180490A1 (en) * 2013-05-10 2014-11-13 Biontech Ag Predicting immunogenicity of t cell epitopes
WO2015103037A2 (en) * 2014-01-02 2015-07-09 Memorial Sloan Kettering Cancer Center Determinants of cancer response to immunotherapy
JP2015533473A (ja) * 2012-07-12 2015-11-26 ペルシミューン,インコーポレイテッド 個別のがんワクチン及び適応免疫細胞療法
JP2016501870A (ja) * 2012-11-28 2016-01-21 バイオエヌテック エールエヌアー ファーマシューティカルズ ゲーエムベーハーBiontech Rna Pharmaceuticals Gmbh 癌のための個別化ワクチン

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UY24367A1 (es) 1995-11-23 2000-10-31 Boehringer Ingelheim Int Vacunas contra tumores y procedimiento para su produccion
LT2901341T (lt) * 2012-09-28 2019-09-25 The University Of Connecticut Protekcinių vėžio epitopų identifikavimas, skirtas vėžio gydymui
WO2015075939A1 (ja) * 2013-11-21 2015-05-28 Repertoire Genesis株式会社 T細胞受容体およびb細胞受容体レパトアの解析システムならびにその治療および診断への利用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506125A (ja) * 1996-02-24 2000-05-23 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 免疫調節のための医薬組成物
JP2015533473A (ja) * 2012-07-12 2015-11-26 ペルシミューン,インコーポレイテッド 個別のがんワクチン及び適応免疫細胞療法
JP2016501870A (ja) * 2012-11-28 2016-01-21 バイオエヌテック エールエヌアー ファーマシューティカルズ ゲーエムベーハーBiontech Rna Pharmaceuticals Gmbh 癌のための個別化ワクチン
WO2014180490A1 (en) * 2013-05-10 2014-11-13 Biontech Ag Predicting immunogenicity of t cell epitopes
WO2015103037A2 (en) * 2014-01-02 2015-07-09 Memorial Sloan Kettering Cancer Center Determinants of cancer response to immunotherapy

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
"Idenshi Donyu Oyobi Hatsugen Kaiseki Jikken Ho [Experimental Methods for Transgenesis & Expression Analysis]", 1997, YODOSHA, article "Bessatsu Jikken Igaku [Experimental Medicine, Supplemental Volume]"
ADAMS, R. L. ET AL.: "The Biochemistry of the Nucleic Acids", 1992, CHAPMAN & HALL
AUSUBEL, F. M.: "Current Protocols in Molecular Biology", 1987, GREENE PUB. ASSOCIATES AND WILEY-INTERSCIENCE
AUSUBEL, F. M.: "Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology", 1989, GREENE PUB. ASSOCIATES AND WILEY-INTERSCIENCE
AUSUBEL, F. M.: "Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology", 1995, GREENE PUB. ASSOCIATES
AUSUBEL, F. M.: "Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology", 1999, WILEY
AUSUBEL, F.M.: "Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology", 1992, GREENE PUB. ASSOCIATES
BLACKBURN, G. M. ET AL.: "Nucleic Acids in Chemistry and Biology", 1996, OXFORD UNIVERSITY PRESS
CASTLE JC ET AL., CANCER RES., vol. 72, no. 5, 2012, pages 1081 - 1089
ECKSTEIN, F.: "Oligonucleotides and Analogues: A Practical Approach", 1991, IRL PRESS
GAIT, M. J.: "Oligonucleotide Synthesis: A Practical Approach", 1985, IRL PRESS
GAIT, M. J.: "Oligonucleotide Synthesis: A Practical Approach", 1990, IRL PRESS
GIBAS C. ET AL.: "Developing Bioinformatics Computer Skills", 2001, O'REILLY
HERMANSON, G. T.: "Bioconjugate Techniques", 1996, ACADEMIC PRESS
INNIS, M. A. ET AL.: "PCR Strategies", 1995, ACADEMIC PRESS
INNIS, M. A.: "PCR Protocols: A Guide to Methods and Applications", 1990, ACADEMIC PRESS
MOUNT D. W.: "Bioinformatics: Sequence and Genome Analysis", 2004, CSHL PRESS
PEVZNER P. ET AL.: "Bioinformatics for Biologist", 2011, CAMBRIDGE UNIVERSITY PRESS
SAMBROOK J. ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR
SCHUMACHER TN ET AL., SCIENCE, vol. 348, no. 6230, 2015, pages 69 - 74
See also references of EP3431595A4
SHABAROVA, Z. ET AL.: "Advanced Organic Chemistry of Nucleic Acids", 1994
SNINSKY, J. J. ET AL.: "PCR Applications: Protocols for Functional Genomics", 1999, ACADEMIC PRESS
SUGENO, SUMIO ET AL.: "Jisedai Shikuensa Mokutekibetsu Adobansuto Mesoddo'' [Next Generation Sequencer, Advanced Method by Objective", 2012, SHUJUNSHA, article "Saibokogaku Bessatsu [Cell Engineering, Supplemental Volume]"
TAKASHI SHIINA: "Next generation sequencing based HLA genomic and polymorphsm analyses", MHC, vol. 22, no. 2, 2015, pages 84 - 94, XP055406277, DOI: doi:10.12667/mhc.22.84 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020101037A1 (ja) * 2018-11-16 2020-05-22 株式会社Tnpパートナーズ オーダーメイド医療基幹システム
CN112447263A (zh) * 2020-11-22 2021-03-05 西安邮电大学 多任务高阶snp上位检测方法、系统、存储介质、设备
CN112447263B (zh) * 2020-11-22 2023-12-26 西安邮电大学 多任务高阶snp上位检测方法、系统、存储介质、设备
WO2022270631A1 (ja) * 2021-06-25 2022-12-29 Repertoire Genesis株式会社 T細胞エピトープ配列を同定する方法およびその応用
WO2024034622A1 (ja) * 2022-08-08 2024-02-15 北海道公立大学法人 札幌医科大学 対象由来のネオアンチゲンを選択するための方法

Also Published As

Publication number Publication date
US12065699B2 (en) 2024-08-20
EP3431595A1 (en) 2019-01-23
CN109072227A (zh) 2018-12-21
US20190080044A1 (en) 2019-03-14
JP6710004B2 (ja) 2020-06-17
EP3431595A4 (en) 2019-11-20
JPWO2017159686A1 (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2017159686A1 (ja) 免疫療法のためのモニタリングまたは診断ならびに治療剤の設計
Liu et al. T cell receptor β repertoires as novel diagnostic markers for systemic lupus erythematosus and rheumatoid arthritis
Fasolino et al. Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes
Spranger et al. Density of immunogenic antigens does not explain the presence or absence of the T-cell–inflamed tumor microenvironment in melanoma
Gutierrez-Arcelus et al. Autoimmune diseases—connecting risk alleles with molecular traits of the immune system
EP3572510B1 (en) T cell receptor and b cell receptor repertoire analysis system, and use of same in treatment and diagnosis
Spanier et al. Increased effector memory insulin-specific CD4+ T cells correlate with insulin autoantibodies in patients with recent-onset type 1 diabetes
Wong et al. Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma
CN105451759A (zh) 预测t细胞表位的免疫原性
Lin et al. Circulating CD8+ T-cell repertoires reveal the biological characteristics of tumors and clinical responses to chemotherapy in breast cancer patients
WO2017222056A1 (ja) ワンステップ逆転写テンプレートスイッチpcrを利用したt細胞受容体およびb細胞受容体レパトア解析システム
US20230047716A1 (en) Method and system for screening neoantigens, and uses thereof
Jameson-Lee et al. In silico derivation of HLA-specific alloreactivity potential from whole exome sequencing of stem-cell transplant donors and recipients: understanding the quantitative immunobiology of allogeneic transplantation
Wang et al. Chromosome Y–encoded antigens associate with acute graft-versus-host disease in sex-mismatched stem cell transplant
de Sousa et al. Targeting neoepitopes to treat solid malignancies: immunosurgery
Ritari et al. Computational analysis of HLA-presentation of Non-synonymous recipient mismatches indicates effect on the risk of chronic graft-vs.-host disease after allogeneic HSCT
Lehmann et al. Discordance between the predicted versus the actually recognized CD8+ T cell epitopes of HCMV pp65 antigen and aleatory epitope dominance
Huuhtanen et al. Single-cell analysis of immune recognition in chronic myeloid leukemia patients following tyrosine kinase inhibitor discontinuation
Tippalagama et al. Antigen-specificity measurements are the key to understanding T cell responses
Li et al. Neo-intline: int egrated pipe line enables neo antigen design through the in-silico presentation of T-cell epitope
WO2021077094A1 (en) Discovering, validating, and personalizing transposable element cancer vaccines
Pienkowski et al. ARDitox: platform for the prediction of TCRs potential off-target binding
CN113272419A (zh) 制备治疗性t淋巴细胞的方法
Foster et al. Tumour-intrinsic features shape T-cell differentiation through myeloma disease evolution
US20240021274A1 (en) Using neural networks to predict peptide immunogenicity

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505954

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766684

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766684

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766684

Country of ref document: EP

Kind code of ref document: A1