WO2017159686A1 - 免疫療法のためのモニタリングまたは診断ならびに治療剤の設計 - Google Patents
免疫療法のためのモニタリングまたは診断ならびに治療剤の設計 Download PDFInfo
- Publication number
- WO2017159686A1 WO2017159686A1 PCT/JP2017/010218 JP2017010218W WO2017159686A1 WO 2017159686 A1 WO2017159686 A1 WO 2017159686A1 JP 2017010218 W JP2017010218 W JP 2017010218W WO 2017159686 A1 WO2017159686 A1 WO 2017159686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- mutation
- subject
- disease
- peptide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6881—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6878—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids in eptitope analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B15/00—ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B15/00—ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
- G16B15/30—Drug targeting using structural data; Docking or binding prediction
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/30—Detection of binding sites or motifs
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B25/00—ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
- G16B25/10—Gene or protein expression profiling; Expression-ratio estimation or normalisation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
- G16B30/10—Sequence alignment; Homology search
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B45/00—ICT specially adapted for bioinformatics-related data visualisation, e.g. displaying of maps or networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
- G16B5/20—Probabilistic models
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B50/00—ICT programming tools or database systems specially adapted for bioinformatics
- G16B50/20—Heterogeneous data integration
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B50/00—ICT programming tools or database systems specially adapted for bioinformatics
- G16B50/10—Ontologies; Annotations
Definitions
- the present invention relates to the design and manufacture of diagnostic, monitoring and therapeutic agents for immunotherapy. More specifically, the present invention relates to a method of analyzing epitopes based on genome (for example, exome), mRNA information, MHC information and other biological information, and designing peptides useful for immunotherapy based on the results.
- Non-Patent Document 1 Non-Patent Document 1
- mutanome analysis For mutant genes, analysis based on an exhaustive database of mutants called mutanome analysis has also been performed. In the mutanome analysis, various amino acid substitution mutations are comprehensively introduced into proteins, the structure and function of each mutant are measured, a database of sequence / structure / function is constructed, this database is analyzed, and sequence information The purpose is to develop a method for predicting the structure / function of a protein only from the above (Non-patent Document 2).
- the present inventors have developed a method for producing a peptide for treatment, monitoring or diagnosis of a disease in a subject.
- information on the subject's genome read eg, exome read
- information on the subject's RNA sequence and information on the subject's MHC type, if necessary, are obtained, , Exome read) and information on the mutation, arbitrary RNA sequence information, information on the MHC type, and information on the disease, an epitope on the mutation is analyzed, and if necessary, on the information on the epitope This is achieved by producing peptides.
- the present invention provides: (1) A method for producing a peptide for treatment, monitoring or diagnosis of a disease in a subject, the method comprising: A) A step of inputting information relating to a mutation specific to the diseased tissue of the subject and information on the MHC type of the subject to the analysis device; B) causing the analyzer to analyze an epitope relating to the mutation based on information relating to the mutation specific to the diseased tissue, information on the MHC type, and information on the disease; and C) information on the epitope Producing a peptide based thereon.
- the step (B) includes a step of identifying a candidate mutation by causing the analyzer to perform an annotation based on a reference information database for a mutation specific to the diseased tissue, and then converting the nucleic acid information of the candidate mutation into an amino acid After converting into information, wild type (WT) peptide and mutant type (MT) peptide are produced, and then the MHC type, the WT peptide, and the MT peptide are used to search the epitope for the analyzer.
- WT wild type
- MT mutant type
- the mutation specific to the diseased tissue is derived based on information on the genome read of the subject and the mutation.
- the genome read includes an exome read.
- Information on the genome read and its mutation is obtained from a normal sample of the subject and a sample of the subject suffering from the disease, and after mapping the information on the genome read and its mutation, respectively, The method according to any one of the above items, wherein a mutation specific to a diseased tissue is searched and a mutation specific to the diseased tissue is identified.
- the step A) further includes inputting information on the RNA lead of the subject to the analysis device, and the step B) is based on the information on the RNA lead.
- RNA lead includes an RNA lead of a diseased tissue, and further comprises a step of mapping the RNA lead of the diseased tissue to search for a mutation and / or deriving an expression level.
- the method according to item. (8) The information of the RNA lead includes an RNA lead of a normal tissue, maps the RNA lead of the normal tissue to search for somatic mutation, and / or derives an expression level, The method according to any one of the preceding items, further comprising the step of comparing the expression level derived based on the expression level.
- the B) step is as follows: B-1) Deriving information on a wild-type peptide and a disease-specific mutant peptide by causing the analysis device to perform annotation and nucleic acid amino acid conversion based on an existing database for a mutation specific to the diseased tissue ; B-2) causing the analyzer to search for an epitope specific to the disease using a known database using the MHC type, the wild type peptide and the disease-specific mutant peptide; and B-3 ) In the analysis device, the peptide sequence of the obtained epitope, MHC information (genotype and affinity) and mutation information (chromosome, position, mutation pattern (wild type / mutant type), reliability, priority, and relevant gene A score is calculated from (gene name, expression level)), and includes at least one step selected from the steps of ranking the epitopes to be prioritized, Step C) C-1) comprising producing peptide
- the rankings are sorted by applying the IC50 value between HLA-peptides, the number of epitope search programs in which hits are found, and the number of mutation search softwares in which hits are found, in the above order.
- the method according to any one of the above. (28) The method according to any one of the above items, wherein the disease is a tumor or an autoimmune disease.
- the step A) A-1) Sequencing of the subject's genome is performed on the analysis device to obtain information on the subject's genome read and its mutation, and after mapping the genome read and its mutation information, it is specific to the diseased tissue Searching for a specific mutation and obtaining a mutation specific to the diseased tissue, A-2)
- the analysis device performs RNA sequencing of the subject to obtain information on the RNA lead of the subject, maps the RNA lead of the diseased tissue to search for a mutation, and / or expression level If necessary, map the RNA lead of normal tissue to search for somatic mutations and / or derive the expression level and compare with the expression level derived based on the RNA lead of the diseased tissue
- A-3) selecting from the group comprising the step of obtaining MHC type information of the subject by performing MHC typing of the subject using the genome read of the subject as required by the analysis device
- a method according to any one of the preceding items, comprising performing at least one of the following.
- a method for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject comprising: A) a step of inputting information relating to a mutation specific to the diseased tissue of the subject and MHC type information of the subject to an analysis device; and B) information relating to a mutation specific to the diseased tissue to the analysis device. And analyzing the epitope related to the mutation based on the information of the MHC type and the information of the disease. (31) The method according to any one of the above items, further comprising the feature according to any one or more of the above items.
- a device for producing a peptide for treatment, monitoring or diagnosis of a disease in a subject the device: A) An information input unit for inputting information on a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as necessary; B) Epitope analysis unit for analyzing an epitope related to the mutation based on information on the mutation specific to the diseased tissue of the subject, and if necessary, the mRNA sequence information, the MHC type information, and the disease information And C) a device comprising a peptide production unit that produces a peptide based on the epitope information.
- the apparatus according to any of the above items, wherein the unit B performs a procedure defined in any one or more of the above items.
- the unit A comprises means for sequencing the subject's genome, means for determining a mutation specific to the diseased tissue of the subject, means for sequencing the subject's RNA, and MHC of the subject.
- a device for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject A) an information input unit for inputting information relating to a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as necessary; and B) the subject Based on information specific to the disease tissue of the disease, information on the mRNA sequence, information on the MHC type, and information on the disease as necessary, an epitope relating to the mutation is analyzed, and the result is treated for treatment of the disease
- a device comprising an epitope analysis unit that outputs as a peptide for monitoring or diagnosis.
- the apparatus according to any one of the above items, wherein a procedure defined in any one or more of the above items is performed in the unit B.
- the unit A comprises means for sequencing the subject's genome, means for determining a mutation specific to the diseased tissue of the subject, means for sequencing the RNA of the subject, and MHC of the subject.
- a program for causing a computer to execute a method for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject comprising: A) a step of inputting information relating to a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as required; and B) a disease of the subject Analyzes the epitope related to the mutation based on information on the mutation specific to the tissue, and if necessary, information on the mRNA sequence, information on the MHC type, and information on the disease.
- a computer-readable recording medium storing a program for causing a computer to execute a method for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject, the method comprising: A) a step of inputting information relating to a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as required; and B) a disease of the subject Analyzes the epitope related to the mutation based on information on the mutation specific to the tissue, and if necessary, information on the mRNA sequence, information on the MHC type, and information on the disease. Or a recording medium comprising a step of outputting as a peptide for diagnosis. (41) The recording medium according to the above item, further having the characteristics described in any one or more of the above items.
- FIG. 1 illustrates the concept of the present invention.
- FIG. 2 shows an analysis flow schematic diagram.
- the central dotted line shows the central flow in the present invention. Areas outside the dotted line indicate optional additional analysis steps.
- FIG. 3 shows a start screen in the analysis flow.
- tumor-derived exome, normal tissue-derived exome, tumor-derived RNA sequence, selection of normal tissue-derived RNA sequence, selection of thread number, lead trimming condition, low quality (LQ) region trimming, analysis condition, etc. are selected It can be done.
- the type of algorithm such as a mapping algorithm and the selection and setting of the condition can be performed.
- FIG. 4 shows an analysis condition setting screen.
- FIG. 5 shows an example of the output result.
- FIG. 6 shows the experimental results of Example 1. The results of ELISPOT assay of interferon ⁇ (sample No. 14, 33, 41) and intracellular interferon ⁇ staining are shown in order from the left.
- FIG. 7 shows a block diagram of the system of the present invention.
- gene is used in the normal meaning used in the field, and refers to a collection of all chromosomes possessed by a certain organism.
- exome is used in the ordinary meaning used in the art, and indicates an exhaustive analysis and analysis of genome exons. Therefore, the exome relates to comprehensive analysis of a part of the genome.
- gene read and “exome read” refer to a read of a nucleic acid sequence of a genome and an exome, respectively. Usually, it is specified by sequence information based on residues of the base sequence (adenine, cytosine, guanine, thymine (in the case of DNA), uracil (in the case of RNA)).
- mRNA is an abbreviation for messenger RNA, and is used in the usual meaning used in the art, and refers to RNA having base sequence information and structure that can be translated into protein.
- RNA read refers to a read of a nucleic acid sequence of mRNA. Usually specified by sequence information.
- mapping means that an individual element of a set is mechanically associated with or assigned to an element of another set according to a rule.
- Gene mapping refers to identifying the location of a nucleic acid sequence or gene on the genome or chromosome.
- MRNA mapping refers to mapping of mRNA reads to the genome, where a large number of reads are mapped alternately and where nothing is mapped, and this is analyzed to correspond to exons and introns, respectively. Can do. In mRNA mapping, mutations can be searched, and the expression level can be derived by calculating the frequency.
- MHC typing or “HLA typing” refers to identifying the type of human leukocyte antigen.
- MHC refers to major histocompatibility complex: major histocompatibility complex, also referred to as major histocompatibility complex, and in the case of human, human leukocyte antigen (HLA).
- MHC typing or HLA typing can be obtained from existing databases or existing personal information, or can be typed in a variety of ways including, for example, serological tests, sequencing Specific oligonucleotide [SSO], sequence-specific primer [SSP], CE sequence-based typing [SBT] and the like can be mentioned.
- SSO sequencing Specific oligonucleotide
- SSP sequence-specific primer
- CE sequence-based typing CE sequence-based typing
- the analysis can be performed by a typing method provided there.
- the “database” refers to any database related to genes, and in the present invention, in particular, information including information on disease mutations can be used.
- databases include the Japan DNA Data Bank (DDBJ, DNA Data Bank of Japan, www.ddbj.nig.ac.jp) database, GenBank (National Center for Biotechnology Information, www.ncbi.nlm.nih.gov/). genbank /) database, ENA (EMBL (European Institute of Molecular Biology), www.ebi.ac.uk/ena) database, IMGT (the international ImmunGeneTics information system, www.imgt.org) database, etc. Yes, but not limited to this.
- annotation means that information (metadata) related to certain data is given as an annotation.
- information gene function or the like
- information on the searched mutation can be added using a reference information database (DB). Additional information includes location (exons, introns, regulatory regions, intergenic regions, etc.), whether amino acid mutations are involved, known information related to the mutations (disease relevance, racial frequency, etc.), etc.
- DB reference information database
- databases examples include a database of gene structures (refGene, ensEmbl, etc.), a database of known mutation information (dbSNP, cosmic, 1000 genomes, whole exo features, etc.), and the like.
- Software for performing annotations such as ANNOVAR and snpEff can be used.
- ANNOVAR is used, but not limited thereto.
- assignment refers to assigning information such as a specific gene name, function, characteristic region (eg, domain or binding region) to a certain sequence (eg, nucleic acid sequence, protein sequence, etc.). Specifically, this can be achieved by inputting or linking specific information to a certain array.
- nucleic acid amino acid conversion refers to conversion of nucleic acid sequence information into an amino acid sequence based on codon conversion.
- peptides before the change (WT) and after the change (MT) can be derived for mutations involving amino acid changes. It is a simple character string conversion, which can be organized by ordinary programming, and is often an accompanying function in standard software.
- disease-specific peptide refers to a peptide that increases in frequency (preferably appears specifically) as compared to a normal subject when a subject suffers from a certain disease.
- the disease-specific peptide is called a cancer-specific peptide and can be used as an anticancer agent.
- the “subject (person)” refers to a subject of diagnosis or detection or treatment of the present invention.
- test sample or simply “sample” is intended to include a target subject (living body), a cell, or a substance derived therefrom, which enables gene expression. If it is.
- antigen refers to any substrate that can be specifically bound by an antibody molecule.
- immunogen refers to an antigen capable of initiating lymphocyte activation that produces an antigen-specific immune response.
- epitope or “antigenic determinant” refers to a site in an antigen molecule to which an antibody or lymphocyte receptor binds.
- diagnosis refers to identifying various parameters related to a disease, disorder, or condition in a subject and determining the current state or future of such a disease, disorder, or condition.
- conditions within the body can be examined, and such information can be used to formulate a disease, disorder, condition, treatment to be administered or prevention in a subject.
- various parameters such as methods can be selected.
- diagnosis in a narrow sense means diagnosis of the current state, but in a broad sense includes “early diagnosis”, “predictive diagnosis”, “preliminary diagnosis”, and the like.
- the diagnostic method of the present invention is industrially useful because, in principle, the diagnostic method of the present invention can be used from the body and can be performed away from the hands of medical personnel such as doctors.
- “predictive diagnosis, prior diagnosis or diagnosis” may be referred to as “support”.
- “monitoring” refers to evaluation of a response to a subject such as a drug such as immunotherapy when used for immunotherapy for a disease such as cancer immunity.
- ELISPOT enzyme immunospot
- ELISPOT assays can be used to assess a subject's response and effectiveness to vaccines, pharmaceuticals, and biologicals.
- the ELISPOT assay is one of the most accurate cell assays for detecting and enumerating individual cells that secrete specific proteins in vitro. Based on enzyme immunoassay (ELISA), originally developed for analysis of specific antibody-secreting cells, but to measure the frequency of cells that produce and secrete other effector molecules such as cytokines Is also used. When compared to conventional ELISA assays, the ELISPOT assay is 200-400 times more accurate depending on the cytokine / factor analyzed and can detect cytokine-secreting cells at a frequency as low as a few hundred thousand. Moreover, since the cytokine released in response to the antigen can be mapped to a single cell, the frequency of T cell responders can be calculated. ELISPOT can also indicate the type of cytokine response that is the type of immune response elicited.
- ELISA enzyme immunoassay
- the ELISPOT assay is different from ELISA in that cells are measured instead of solutions, but there are many similarities except for that.
- the test cells are cultured on the well surface coated with a specific capture antibody. After removing the cells, the secreted molecules are detected as in an ELISA. By using a precipitation substrate, spots are formed where the secretory cells were located. Therefore, in the ELISPOT assay, the frequency of secreted cells is measured instead of the concentration of the substance in solution. Furthermore, the size and color development intensity of each spot represent the amount of cytokine secreted from the cell at that position.
- ELISPOT technology is used to analyze specific immune responses, it takes advantage of the phenomenon that T cells begin to produce cytokines as part of the activation process after antigen challenge. All cells capable of responding to an antigen secrete the corresponding cytokine and can be identified in this way. Therefore, it can be used in any cell, but it is mainly produced in CD8 + T cells that are immunologically involved with cytotoxic T cells (CTLs) in infectious diseases, cancer, and vaccine development research. A method of detecting IFN- ⁇ is frequently used.
- “therapy” refers to prevention of worsening of a disease or disorder when such a condition or disorder (eg, cancer) occurs, preferably, This refers to maintenance, more preferably reduction, and even more preferably elimination, and includes the ability to exert a symptom-improving effect or a preventive effect on one or more symptoms associated with a patient's disease or disease. Diagnosing in advance and performing appropriate treatment is referred to as “companion treatment”, and the diagnostic agent therefor is sometimes referred to as “companion diagnostic agent”. As used herein, “treatment, treatment” refers to performing some treatment or treatment on a subject at or at risk for a disease or disorder. In a broad sense, “treatment” and “prevention” are included.
- the term “therapeutic agent (agent)” broadly refers to any drug capable of treating a target condition (for example, a disease such as cancer), and an inhibitor (for example, provided by the present invention) Antibody).
- the “therapeutic agent” may be a pharmaceutical composition comprising an active ingredient and one or more pharmacologically acceptable carriers.
- the pharmaceutical composition can be produced by any method known in the technical field of pharmaceutics, for example, by mixing the active ingredient and the carrier.
- the form of use of the therapeutic agent is not limited as long as it is a substance used for treatment, and it may be an active ingredient alone or a mixture of an active ingredient and an arbitrary ingredient.
- the shape of the carrier is not particularly limited, and may be, for example, a solid or a liquid (for example, a buffer solution).
- prevention refers to preventing a certain disease or disorder (for example, cancer) from entering such a state before it enters such a state. Diagnosis can be performed using the drug of the present invention, and, for example, cancer or the like can be prevented using the drug of the present invention as needed, or countermeasures for prevention can be taken.
- a certain disease or disorder for example, cancer
- prophylactic agent refers to any agent that can prevent a target condition (for example, a disease such as cancer) in a broad sense.
- drug drug
- drug may also be a substance or other element (eg energy such as light, radioactivity, heat, electricity).
- Such substances include, for example, proteins, polypeptides, oligopeptides, peptides, polynucleotides, oligonucleotides, nucleotides, nucleic acids (eg, DNA such as cDNA, genomic DNA, RNA such as mRNA), poly Saccharides, oligosaccharides, lipids, small organic molecules (for example, hormones, ligands, signaling substances, small organic molecules, molecules synthesized by combinatorial chemistry, small molecules that can be used as pharmaceuticals (for example, small molecule ligands, etc.)) , These complex molecules are included, but not limited thereto.
- a polynucleotide or promoter having complementarity with a certain sequence homology (for example, 70% or more sequence identity) to the sequence of the polynucleotide examples include, but are not limited to, polypeptides such as transcription factors that bind to regions.
- Factors specific for a polypeptide typically include an antibody specifically directed against the polypeptide or a derivative or analog thereof (eg, a single chain antibody), and the polypeptide is a receptor.
- specific ligands or receptors in the case of ligands, and substrates thereof when the polypeptide is an enzyme include, but are not limited to.
- the present invention provides a method of identifying peptides for treatment (including therapy and prevention), monitoring or diagnosis of a disease in a subject.
- the “analyzer” used in the present invention may have a function of receiving and analyzing information to be analyzed, communicating with other units by communication, etc., and outputting the result (immunotherapy analysis).
- (Apparatus / System and Analysis Program) are also described in detail, and any embodiment thereof can be adopted, and various units can constitute this analysis apparatus.
- a schematic diagram of the analyzer is shown in FIG. 7 and is described in detail in (System Configuration).
- the method of the invention comprises: A) information about the subject's genomic read (eg, exome read) and its mutations, optionally information about the subject's RNA sequence and the subject's A step of inputting MHC type information to an analysis device; and B) the mutation based on information on the genome read and the mutation, if necessary, the RNA sequence information, the MHC type information, and the disease information.
- the method may include a step of causing the analyzer to analyze the epitope and outputting the result to the analyzer as a peptide for treatment, monitoring or diagnosis of the disease.
- the present invention provides a method for producing a peptide for treatment, monitoring or diagnosis of a disease in a subject.
- the method comprises the steps of A) inputting information relating to a mutation specific to the diseased tissue of the subject and MHC type information of the subject to the analysis device; and B) specific to the diseased tissue in the analysis device A step of analyzing an epitope relating to the mutation based on information on the mutation, information on the MHC type, and information on the disease.
- the method of the invention comprises A) information about the subject's genomic read (eg, exome read) and its mutations, optionally information about the subject's RNA read and the subject's A step of inputting MHC type information to the analysis device; B) based on the information on the genome read and the mutation, if necessary, information on the RNA sequence, information on the MHC type, and information on the disease Analyzing the epitope relating to the mutation; and C) producing a peptide based on the information of the epitope.
- the subject's genomic read eg, exome read
- a disease for example, cancer
- Treatment and diagnosis such as immune monitoring can be performed.
- this include, for example, the neoantigen technique based on the existence of an immune response targeting individual gene mutations (inherent antigens) and the antitumor effect, and comprehensive analysis of this.
- Other diseases that can be targeted by the present invention include, for example, autoimmune diseases caused by autoreactive T cells. In this case, in many autoimmune diseases, evidence that T cell abnormalities are associated with etiology Since this is shown, you can make use of this information.
- the present invention can be applied to the identification and separation of specific T cells that cause a specific disease and the recognition molecule (pathogenic antigen) and determination thereof can be easily performed.
- a specific disease and the recognition molecule pathogenic antigen
- rheumatoid arthritis, type 1 diabetes mellitus, and multiple sclerosis are diseases caused by specific T cells against an unknown joint antigen, and thus can be cited as target diseases.
- autoimmune diseases the self-antigen recognized by T cells by autoimmunity is identified, and the onset is suppressed by inhibiting the activation of self-reactive T cells or inhibiting the activation itself. It is in.
- the failure of immune tolerance that is originally established against self is thought to be related to induction of autoimmunity, but by comprehensively examining and searching for the presence of somatic mutations on the antigen side that induce autoimmunity,
- the present invention can identify not only known but also unknown etiological antigens (epitopes), thereby enabling treatment and prevention of diseases.
- the present invention can also be applied to the diagnosis / prevention of the presence or absence of an etiological antigen of an autoimmune disease, and can also be applied to the development of a therapeutic drug targeting the pathogenic antigen.
- the step B) implemented in the present invention includes the step of annotating the analysis device with a mutation specific to the diseased tissue based on a reference information database to identify the candidate mutation, and then the candidate Mutation nucleic acid information is converted to amino acid information to produce wild type (WT) peptide and mutant type (MT) peptide, and then analyzed using MHC type (HLA type for humans), WT peptide and MT peptide
- the method includes performing epitope search on the apparatus, ranking the epitopes, and causing the analysis apparatus to output an epitope list.
- a mutation specific to a diseased tissue is derived based on information about the subject's genome read and the mutation.
- the genome read may include a genome read derived from a normal tissue and a genome read derived from a diseased tissue (for example, a tumor or the like).
- genomic reads that can be used in the present invention include reads that read the genomic DNA sequence of diseased tissue (eg, tumor) or normal tissue.
- methods for obtaining genome reads include, but are not limited to, whole genome sequencing and exome sequencing. Therefore, information on the genome read and its mutation is obtained from the normal sample of the subject and the sample of the subject affected by the disease, respectively, and after mapping the information on the genome read and its mutation, the disease tissue To identify mutations specific to the diseased tissue.
- next-generation sequencer for example, Illumina, Roche 454, etc.
- capillary sequencer for example, a capillary sequencer.
- the present invention is not limited to these, as long as the nucleic acid sequence (gene sequence) can be read. It is understood that any technique can be used. In particular, exome sequences are typically used.
- the genomic reads utilized by the present invention include exome reads.
- Exome is related to the comprehensive analysis or analysis of exons that make up the main part of the genome, and it is not desired to be bound by theory, but it can actually function by investigating exome reads. It is considered that information having a closer relationship with the protein to be investigated can be investigated, and analysis accuracy can be improved.
- the method of the present invention utilizes the RNA lead information of the subject. Therefore, in a specific embodiment, the step A) further includes inputting information on the RNA lead of the subject to the analyzer, and the step B) is based on the information on the RNA lead in the analyzer. And analyzing the epitope relating to the mutation.
- the RNA lead comprises an RNA lead of diseased tissue, further comprising mapping the RNA lead of the diseased tissue to search for mutations and / or deriving expression levels.
- the RNA lead information used in the present invention includes a normal tissue RNA lead, maps the normal tissue RNA lead to search for somatic mutation, and / or derives the expression level
- the method further includes a step of comparing the expression level derived based on the RNA read of the diseased tissue.
- RNA reads examples include reads that read RNA sequences of diseased tissues (eg, tumors) and / or normal tissues. Such RNA sequence can be determined by RNA-Seq using a next-generation sequencer as well as EST analysis using a capillary sequencer, but is not limited thereto, and any RNA sequence can be read as long as it can be read. It is understood that techniques can be used. A typical example is RNA-Seq by a next-generation sequencer.
- Arbitrary typing methods can be used as MHC (HLA) typing that can be implemented in the present invention.
- typing can be performed using software from genome reads.
- an assay system such as Luminex method for directly typing from a specimen can be used.
- the analyzing step B) comprises causing the analysis device to derive information on wild-type peptides and disease-specific mutant peptides; causing the analysis device to search for epitopes specific to the disease And at least one step selected from the steps of causing the analyzer to calculate the score of the obtained epitope and ranking the epitope to be prioritized.
- the method includes the step of causing the analysis device to identify a disease-specific mutation and the step of causing the analysis device to annotate the disease-specific mutation based on a reference information database to identify candidate mutations, and thereafter , Converting the nucleic acid information of the candidate mutation into amino acid information to generate data on the wild type (WT) peptide and the mutant type (MT) peptide, and then the MHC type (HLA type in the case of human), the WT peptide and the MT peptide And epitope search using the data, ranking the epitopes, and outputting the epitope list.
- WT wild type
- MT mutant type
- epitope search using the data, ranking the epitopes, and outputting the epitope list.
- the method of the present invention comprises B-1) causing the analyzer to perform annotation and nucleic acid amino acid conversion based on an existing database for mutations specific to the diseased tissue, and to detect wild type peptides and disease specific Step of deriving information of genetically mutated peptides; B-2) Searching for epitopes specific to the disease using a known database using the MHC type, the wild type peptide and the disease-specific mutated peptide in the analysis device And B-3) the peptide sequence of the epitope obtained by the analyzer, MHC information (genotype and affinity) and mutation information (chromosome, position, mutation pattern (wild type / mutant)), reliability , Priorities, and the relevant genes (gene name, expression level)) to calculate the score and rank the epitopes that should be prioritized Having one or more characteristics of at least one step selected from steps.
- MHC information geneotype and affinity
- mutation information chromosome, position, mutation pattern (wild type / mutant)
- the method of the present invention includes, in addition to the above B-1) to B-3), optionally causing the analyzer to perform at least one of the following steps: Obtain information on the genome read and its mutation from the sample and the sample of the subject affected by the disease, map (align) the information on the genome read and the mutation, and then search for the mutation and identify the disease. Identifying a specific mutation, and if necessary, identifying a sequence specific to the disease for information on the RNA lead, mapping this to search for a mutation, and / or deriving an expression level, If necessary, MHC typing is performed from information on the normality and abnormalities specific to the disease to identify the MHC type.
- step B first, as shown in B-1), the analysis apparatus performs annotation and nucleic acid amino acid conversion based on an existing database for mutations specific to the diseased tissue, Deriving information on disease-specific mutant peptides.
- existing data may be used, and the following derivation steps may be performed.
- the derivation step information on the genome read and its mutation is obtained from a normal sample of the subject and a sample of the subject suffering from the disease, respectively, and the information on the genome read and its mutation is mapped (aligned).
- genome mapping that can be performed in the present invention refers to mapping a genome read to a genome sequence.
- the read cleanup method can be any method, but typically, it is a region that is more unsuitable for analysis than a genomic read (eg, exome read) and / or RNA read. For example, removing adapter sequences for sequencing (sequencing); removing low quality regions; removing contamination. The removal of contamination is realized by removing inappropriate leads from the lead set instead of trimming a part of the leads. For example, bacterial or viral sequences can be removed prior to human genome analysis.
- any method known in the art can be used as the method for removing the adapter sequence for sequencing (sequence), but typically, an appropriate length, for example, 12 bp or more (or 10 bp or more, 11 bp or more). For example, if a region matching the adapter sequence is found with a mismatch rate of 10% or less, the region can be removed.
- the mismatch rate can be changed as appropriate, and may be, for example, 1% or less, 2% or less, 3% or less, 4% or less, 5% or less, 10% or less, 15% or less, 20% or less, or the like.
- an appropriate length for example, an average quality value of 10 bp is a predetermined value, for example, 12 or less. If a certain area is found from both ends of the lead, the area can be removed.
- the “average quality value” means a value indicating the quality of the analysis in the gene analysis software, and is appropriately set in the software to be used (for example, sequencing software).
- the “quality value” used in the present specification is a value obtained by quantifying the reliability of each base on a read output from various sequencers (when the base error rate is X, ⁇ log 10 (X) ⁇ 10 Defined). The error rate of each base varies from sequencer to sequencer, and the error rate is evaluated as a quality value with unique logic for each model. Since the evaluation is performed by the front-end computer that controls the sequencer and the software that runs on the computer, it is set as appropriate in commonly used software (for example, sequencing software).
- the “average quality value” is a value obtained by arithmetically averaging the quality values in a predetermined length region.
- the average length when investigating the average quality value may be other than the above, for example, 5 bp, 6 bp, 7 bp, 8 bp, 9 bp, 10 bp, 11 bp, 12 bp, 13 bp, 14 bp, 15 bp, etc., or longer Can be mentioned.
- Examples of the average quality value include 10 or less, 11 or less, 12 or less, 13 or less, 14 or less, 15 or less.
- Examples of software that can be used in genome mapping include bwa, bowtie, novalign, and the like, and typically bwa can be used.
- bwa and bowtie are software that can be released and freely downloaded, and novaalign is also commercially available software available to those skilled in the art.
- the somatic mutation search in the present invention refers to searching for a mutation found only in the former by comparing a diseased tissue (for example, a tumor tissue) and a normal tissue.
- a diseased tissue for example, a tumor tissue
- a normal tissue for example, a normal tissue
- Such a search can also be realized by software.
- software examples include mutation search programs such as muTect, VarScan, and lofreq. Typically, muTect is used. be able to. These software can be used together. Reliability can be improved by using two or more types (two types, three types, etc.) of software together.
- information on the searched mutation can be added using the reference information database.
- information on the searched mutation can be added using the reference information database.
- information on the searched mutation can be added using the reference information database.
- information on the searched mutation can be added using the reference information database.
- the database to be used include, but are not limited to, refGene, ensEmbl, and the like as gene structures.
- known information on mutations include, but are not limited to, dbSNP, cosmic, 1000 genomes, whole exome features, and the like.
- Software that can be used includes, but is not limited to, ANNOVAR, snpEff, etc.
- ANNOVAR is used.
- hg19 is a database used further.
- hg19 is a human genome sequence database, which can usually be used as a background as a reference sequence for mapping.
- the step B) may also include a step of identifying a sequence specific to the disease for information on the RNA read, mapping it, searching for a mutation, and / or deriving an expression level, if necessary. . Inclusion of RNA lead information can increase accuracy.
- MRNA mapping can be realized by mapping an RNA read to a genomic sequence in consideration of an exon-intron structure. In some cases, reads may be cleaned up in advance as in the case of genome reads, and such cleanup techniques can use the same materials as in genome reads.
- mRNA mapping can be realized by software, and examples of software that can be used include TopHat, STAR, and the like, and typically TopHAt is used.
- RNA reads can be analyzed for normal and diseased tissues (tumors, etc.) as well as genome reads. About these, mRNA mapping can be performed and a mutation search can be performed. In addition to searching for mutations, mutation search can be performed for somatic mutations as well as genome reads, and mutation search can be performed for diseased tissues (for example, tumors).
- a disease tissue mutation search is a search for mutations found in a single specimen, and typical software that can be used include muTect, VarScan, GATK, samtools, etc. Typically GATK can be used.
- RNA reads As for RNA reads, a more characteristic feature is that the expression level can be derived and reflected in the analysis.
- the derivation of the expression level and the comparison of the expression level can be realized by converting the mRNA mapping result into the expression level of each gene.
- analysis can be performed by regarding the number of reads mapped to each locus as the expression level.
- FPKM or RPKM Frragments / Reads Per Kilobase of exon per Million mapped reads
- Expression levels can be compared between specimens, and expression levels can be compared between specimens.
- Typical software that can be used includes mutation search programs such as CuffLinks and Erange. For example, CuffLinks is typically used, but is not limited thereto.
- RNA leads from diseased tissues When using RNA leads from diseased tissues together, mRNA mapping of RNA leads from diseased tissues (eg, tumor tissues) is performed, mutation search and expression level derivation are performed, and information on these mutations and expression levels is given priority in the epitope list. Can be used for ranking.
- diseased tissues eg, tumor tissues
- mutation search and expression level derivation are performed, and information on these mutations and expression levels is given priority in the epitope list. Can be used for ranking.
- RNA reads from normal tissues When RNA reads from normal tissues are used in combination, mRNA mapping of RNA reads from normal tissues can be performed, somatic mutation search and expression level derivation can be performed, and this information can be used for prioritizing epitope lists.
- somatic mutation search and expression level derivation When also using an RNA lead of a diseased tissue, the information on somatic mutation, the expression level derived from the RNA lead derived from the diseased tissue, and the expression level derived from the RNA lead of a normal tissue are compared. Difference information on the expression level between normal and normal tissues can also be used for prioritizing epitope lists.
- the step may also include a step of identifying the MHC type by causing the analyzer to perform MHC typing from information on the normality and the abnormality specific to the disease, if necessary.
- MHC typing in the case of humans, HLA typing
- HLA typing can determine the HLA type from genome reads, but the results of typing in another assay system can also be used.
- software such as HLAminer, Athlates, Sting HLA, HLA caller, OptiType, omixon, etc. can be used, typically omixon (human), HLA caller ( Mouse) is used.
- B) step is also a step of B-2) causing the analyzer to search for an epitope specific to the disease using a known database using the MHC type, the wild type peptide and the disease-specific mutant peptide.
- the specific epitope search can search for a partial peptide having affinity for the designated HLA type from the designated peptide.
- Examples of software that can be used include, but are not limited to, NetMHCpan, NetHMC, NetMHCcons, PickPocket, and the like.
- NetMHCpan is used. It is also possible to improve the reliability by using it together, and it can be performed not only for humans but also for mice, rats, rhesus monkeys, chimpanzees, etc. by switching the reference database.
- Step is also B-3) Peptide sequence of epitope obtained in analyzer, MHC information (genotype and affinity) and mutation information (chromosome, position, mutation pattern (wild type / mutant), reliability And calculating the score from the priority and the gene of interest (gene name, expression level)) and ranking the epitopes to be prioritized.
- Epitope selection criteria can include prioritization of mutations, presence / absence of gene expression, prioritization of peptides, and the like.
- mutation prioritization can be mentioned.
- prioritizing mutations for example, it can be found in a plurality of mutation search software and / or prioritizing that there is evidence of RNA read origin. However, it is not limited to them. Alternatively, it may be considered that the presence of gene expression is given higher priority. The presence / absence of gene expression can be determined based on whether or not the fpkm or rpkm value calculated by mapping the RNA read is positive for the RNA read result. It has been found that by utilizing the result of RNA read, it contributes to improvement of accuracy as shown in Examples. Alternatively, peptide prioritization can be performed.
- the prioritization of peptides can be determined in consideration of the level of IC50 value between HLA-peptides, for example, IC50 ⁇ 500 nM, preferably IC50 ⁇ 400 nM, IC50 ⁇ 300 nM, IC50 ⁇ 200 nM, IC50 ⁇ 100 nM, IC50 ⁇ 90 nM, IC50 ⁇ 80 nM, IC50 ⁇ 70 nM, IC50 ⁇ 60 nM, IC50 ⁇
- the threshold value is not limited to these values, and the threshold value is an intermediate value between these values (for example, IC50 ⁇ 54 nM used in the embodiment). Can be adopted.
- the peptide prioritization is a group consisting of the number of epitope search programs in which hits are found, the number of mutation search software in which hits are found, and the value of IC50 ⁇ 500 nM between HLA-peptides. At least one factor that is more selected is considered. More preferably, the ranking is sorted by applying the IC50 value between HLA-peptides, the number of epitope search programs in which hits are found, and the number of mutation search software in which hits are found. Without wishing to be bound by theory, this sort method can identify surprisingly high precision antigenic peptides.
- information on the genome read and its mutation is obtained from the same subject.
- information on the genome read and its mutation is obtained from normal tissue and the diseased tissue.
- information on the genome read and its mutation is obtained from different subjects.
- a normal subject is included in a different subject, so that a comparison with a subject suspected of having a disease can be clearly performed.
- These differences can be identified as disease-specific mutations (for example, tumor-specific mutations in the case of cancer) by searching for somatic mutations after genome mapping.
- the analyzer is appropriately annotated using a reference information database (DB) to identify candidate mutations and convert them to amino acid information. can do.
- DB reference information database
- a wild-type peptide and a mutant peptide can be generated based on the amino acid sequence candidates thus converted.
- Annotation in the present invention refers to adding information about searched mutations using the reference information DB.
- Information that can be added includes, for example, position (exons, introns, control regions, intergenic regions, etc.), whether amino acid mutations are involved, known information related to mutations (disease relevance, racial frequency, etc.), etc. It can mention, but it is not limited to these.
- databases that can be used for annotation include refGene and ensEmbl for the investigation of gene structure, and dbSNP, cosmic, 1000 genomes, whole exome features, etc. are used for known information on mutations. can do. As a whole, ANNOVAR, snpEff, etc. can be used, and it is typical to use ANNOVAR, but it is not limited to this.
- nucleic acid amino acid conversion (NA-AA conversion) is performed, and this is realized by converting a normal codon code.
- special software because it is achieved by simple string conversion.
- mutations that do not vary at the amino acid level can be removed.
- epitope search can be performed in light of HLA type information.
- a partial peptide having affinity for a specified HLA type can be searched from the specified peptide.
- Software that can be used includes, but is not limited to, NetMHCpan, NetHMC, NetMHCcons, PickPocket and the like. Typically, NetMHCpan is used. Also, reliability can be improved by using two or more types together.
- sequence information of the peptide is given. Therefore, any production method that can be performed based on the sequence information, such as chemical synthesis, production by microorganisms, or larger peptides Production (for example, enzymatic cleavage). Synthesis by peptide synthesis (chemical synthesis) is preferred. These are preferred synthesis methods in terms of mass production and / or accuracy.
- the present invention can be carried out on animals in the same manner as humans. Examples are described below. 1. It is possible to search for neoantigens for tumors (cancer, sarcoma, leukemia) derived from spontaneous onset, chemical onset, and radiation onset in all strains of mice. 2. Collect tissues from the cancer site of tumor-bearing mice, and collect the same organs and tissues as the tumor site in normal mice. At this time, in a tumor-bearing mouse individual, a tumor site and a non-tumor site (for example, a tumor site and a non-tumor site in the case of colon cancer). When mice are of the same strain, normal tissues can be collected from normal mice. 3.
- DNA and RNA are extracted from the collected tissues and organs and analyzed for exome seq and RNAseq. 4). Since MHC (major histocompatibility complex) is known for each strain, a search is made for a mutanome that can be used in the present invention, and further, a neoantigen presented on MHC (H-2 in mice). Is identified. 5. Regarding the selection of the neoantigen, the same methodology described in the human tumor exemplified in the Examples can be exemplified. 6).
- neoantigen For the identified neoantigen, a peptide can be artificially synthesized, added to and cultured in the spleen cells of syngeneic mice, and induction of IFN ⁇ production after the culture can be used as an activity index. 7). Moreover, the cytotoxicity with respect to a tumor is measured using the spleen cell stimulated with neoantigen and cultured. 8). If it is clear from the examination in vitro that the searched neoantigen causes a functional induction of T cells against the tumor, the following is performed. 9. That is, the effect in vivo using the candidate neoantigen is examined. 10.
- a neoantigen is directly administered to a tumor-bearing mouse (a mouse transplanted with a tumor used for neoantigen search). Moreover, it can be treated using dendritic cell therapy (in vitro, dendritic cells derived from syngeneic mice are stimulated and cultured, and the dendritic cells are administered to tumor-bearing mice).
- the present invention provides an apparatus or system for producing a peptide for treatment, monitoring or diagnosis of a disease in a subject.
- This apparatus or system comprises: A) an information input unit for inputting information relating to a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as required; B) Epitope analysis unit for analyzing an epitope related to the mutation based on information on the mutation specific to the diseased tissue of the subject, and if necessary, the mRNA sequence information, the MHC type information, and the disease information And C) comprising a peptide production unit for producing a peptide based on the epitope information.
- the information input unit, analysis unit and synthesis unit used here may comprise any of the features described in (Methods for identifying and producing immunotherapeutic peptides).
- the “analysis device” used in the present invention may include an information input unit and an epitope analysis unit. Furthermore, the analysis device of the present invention may include at least one additional unit having other functions. These units are described below.
- a device or system for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject comprises: A) an information input unit for inputting information relating to a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as required; And B) analyzing the epitope related to the mutation based on the information specific to the disease tissue of the subject, and if necessary, the mRNA sequence information, the MHC type information, and the disease information, It includes an epitope analysis unit that outputs results as peptides for treatment, monitoring or diagnosis of the disease.
- the information input unit and the analysis unit may comprise any of the features described in (Methods for identifying and producing immunotherapy peptides).
- the present invention provides a program for causing a computer to execute a method for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject.
- the method executed by the program includes: A) inputting information on a mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject, and information on the MHC type of the subject, if necessary; And B) analyzing the epitope related to the mutation based on the information specific to the disease tissue of the subject, and if necessary, the mRNA sequence information, the MHC type information, and the disease information, Outputting the result as a peptide for treatment, monitoring or diagnosis of the disease.
- the program may be stored in a recording medium or transmitted by a transmission medium.
- the method performed here can comprise any of the features described in (Methods for identifying and producing immunotherapeutic peptides).
- the present invention provides a recording medium storing a program for causing a computer to execute a method for identifying a peptide for treatment, monitoring or diagnosis of a disease in a subject.
- the method executed by the program stored here is as follows: A) information on the mutation specific to the diseased tissue of the subject, information on the RNA lead of the subject and information on the MHC type of the subject as necessary. And B) information on the mutation specific to the diseased tissue of the subject, and if necessary, the epitope related to the mutation based on the mRNA sequence information, the MHC type information, and the disease information. Analyzing and outputting the results as peptides for treatment, monitoring or diagnosis of the disease.
- the recording medium can be a RAM, a ROM, or an external storage device such as a hard disk (HDD), a magnetic disk (DVD, etc.), a flash memory such as a USB memory.
- the method performed here can comprise any of the features described in (Methods for identifying and producing immunotherapeutic peptides).
- unit A comprises at least one of means for sequencing a subject's genome, means for sequencing the subject's RNA, and means for MHC typing of the subject. May be included.
- the A) step executed by the program includes A-1) sequencing the subject's genome to obtain information on the subject's genome read and its mutation, and mapping the genome read and its mutation information.
- Unit B (analysis unit) may have various functions.
- the step B) executed by the program performs various functions.
- the steps or analysis steps performed in the analysis unit can include any step that implements the matter realizing the concept shown in FIG. 1 on a computer, and further realizes any step in the analysis flow shown in FIG. This may include any step of implementing the matter to be performed on a computer.
- step B) executed by the unit B or the program, a step of inputting or identifying a mutation specific to the disease tissue, and a step of identifying a candidate mutation by annotating the mutation specific to the disease based on the reference information database
- the nucleic acid information of the candidate mutation is converted to amino acid information to generate data of wild type (WT) peptide and mutant type (MT) peptide, and then MHC type (HLA type in the case of human), WT
- WT wild type
- MT mutant type
- MHC type HLA type in the case of human
- B-1) Nucleic acid amino acid conversion by annotating mutations specific to diseased tissues based on existing databases To derive information on wild-type peptides and disease-specific mutant peptides, and such steps are performed in the program of the present invention. Details of step B-1) are described in (Methods for identifying and producing immunotherapeutic peptides).
- the mutation specific to the diseased tissue is derived based on the subject's genome read and information about the mutation.
- the information on the genome read and its mutation is obtained from the normal sample of the subject and the sample of the subject affected by the disease, and after mapping the information on the genome read and the mutation, the disease A tissue-specific mutation is searched, and a mutation specific to the diseased tissue is identified.
- the apparatus or system of the present invention may implement analysis of RNA lead information.
- the apparatus or system of the present invention identifies a sequence specific to the disease with respect to the information of the RNA read, maps it, searches for a mutation, and / or derives an expression level. Steps can be implemented, and such steps can be performed in the program of the present invention. Inclusion of RNA lead information can increase accuracy. Details of the RNA lead information acquisition step are described in (Methods for Identifying and Producing Immunotherapy Peptides).
- the apparatus or system of the present invention can implement the step of identifying the MHC type by performing MHC typing from the information about the normality and the abnormality specific to the disease, if necessary. Such steps can be performed. Details of the MHC type identification step are described in (Methods for identifying and producing immunotherapeutic peptides).
- the apparatus or system of the present invention implements B-2) a step of searching for an epitope specific to the disease using a known database using the MHC type, the wild type peptide and the disease-specific mutant peptide. Alternatively, such steps may be performed in the program of the present invention. Thereby, an epitope is searched. Details of step B-2) are described in (Methods for identifying and producing immunotherapeutic peptides).
- the apparatus or system of the present invention can implement a step of ranking epitopes, and such a step is performed in the program of the present invention. Therefore, the apparatus or system of the present invention provides B-3) peptide sequence of the obtained epitope, MHC information (genotype and affinity) and mutation information (chromosome, position, mutation pattern (wild type / mutant), trust The step of calculating the score from the sex, the priority, and the corresponding gene (gene name, expression level)) and ranking the epitope to be prioritized can be implemented, and such a step can be performed in the program of the present invention. . Details of step B-3) are described in (Methods for identifying and producing immunotherapeutic peptides).
- the apparatus or system of the present invention When the apparatus or system of the present invention produces a peptide, it may have a peptide production unit that produces a peptide based on epitope information.
- peptide production units are given peptide sequence information, so any production method that can be performed based on the sequence information, such as chemical synthesis, production by microorganisms, or cleavage of larger peptides (eg enzyme Any unit that realizes production by, for example, general cutting) may be provided.
- the program of the present invention may be combined with a program that performs peptide production, or a program that realizes a step of executing peptide production may be incorporated as part of the program of the present invention.
- the system of the present invention includes an external storage device 05 such as a RAM 03, a flash memory such as a ROM, an HDD, a magnetic disk, a USB memory, and an input / output interface (I / F) via a system bus 20 to a CPU 01 built in the computer system. 25 is connected.
- An input device 09 such as a keyboard and a mouse, an output device 07 such as a display, and a communication device 11 such as a modem are connected to the input / output I / F 25.
- the external storage device 05 includes an information database storage unit 30 and a program storage unit 40. Both are fixed storage areas secured in the external storage device 05.
- the database storage unit 30 includes data such as a reference database, an input sequence set, generated genome read data, RNA read data, MHC (HLA) type data, specific mutation data, and software for executing various steps. In some cases, the database is also confirmed, or information acquired via the communication device 11 or the like is written and updated as needed. Information belonging to the sample to be accumulated is defined in each master table by managing information such as each sequence in each input sequence set and each gene information ID of the reference database in each master table as necessary. It is possible to manage based on the assigned ID.
- the database storage unit 30 as input entry information, information (including ID and the like) about subjects of normal tissue, diseased tissue (for example, cancer tissue), sample information, sequence analysis (lead) information, and various mutations Information, mapping information, annotation information, nucleic acid / amino acid conversion information, expression level information, comparison information, wild peptide, mutant peptide, MHC (HLA) type information, etc. are stored in association with the sample ID. .
- the analysis result is information obtained by processing according to the processing of the present invention.
- the computer program stored in the program storage unit 40 configures the computer as the program of the present invention or the apparatus or system of the present invention including processes such as epitope search and epitope prioritization.
- Each of these functions is an independent computer program, its module, routine, etc., and is executed by the CPU 01 to configure the computer as each system or device.
- HLA type HLA-A * 02: 01, 24:02
- DNA was extracted from normal tissue and tumor tissue, and exome sequencing was performed with Illumina sequencer HiSeq2000 using the TruSeq PE kit.
- the equipment used was Illumina sequencer HiSeq2000, and the software used was the control software of the sequencer.
- exome lead mapping Next, exome reads from normal tissue and tumor tissue were each mapped with the following parameters using bwa. algorithm: mem read mode: paired end minimum seed length: 19 band width: 100 off diagonal dropoff: 100 match score: 1 mismatch penalty: 4 gap open penalty: 6 gap extension penalty: 1 clipping penalty: 5 unpaired read penalty: 9.
- FIG. 3 shows a start screen in the analysis flow.
- tumor-derived exome, normal tissue-derived exome, tumor-derived RNA sequence, selection of normal tissue-derived RNA sequence, selection of thread number, lead trimming condition, low quality (LQ) region trimming, analysis condition, etc. are selected It can be done.
- the type of algorithm such as a mapping algorithm and the selection and setting of the condition can be performed.
- FIG. 4 shows an analysis condition setting screen. Software and conditions used for exome mapping and mutation search conditions, RNA mapping and expression analysis, mutation detection, mutation annotation, HLA typing, and epitope prediction (determination) can be selected and set.
- FIG. 5 is an example of the output result. As a result, 1673 tumor-specific mutations were counted and found.
- RNA lead normal tissue
- RNA lead tumor tissue
- RNA sequencing was performed using the TruSeq RNA Library kit and TruSeq PE kit with Illumina sequencer HiSeq2000.
- the obtained RNA reads were mapped with the following parameters using TopHat. segment length: 16 maximum mismatch: 2 expected mate pair inner distance: 50 standard deviation of mate pair inner distance: 20.
- mutation search or somatic mutation search
- expression level derivation were performed on the data obtained as a result of mRNA mapping. Based on the map results of tumor tissue-derived RNA reads, mutations were searched using muTect and VarScan. Moreover, the gene expression level was calculated using CuffLinks.
- RNA reads obtained in (4) were analyzed together with those with mutations.
- mutation annotation was performed using refGene and ensEmbl as a database of gene structure information to identify candidate mutations.
- Nucleic acid-amino acid return was performed on the identified candidate mutations to define wild type (WT) and mutant (MT) peptides.
- HLA typing was performed from the exome read using omixon.
- epitope analysis was performed by combining HLA type information. The results are shown in the following table. The hyphen in the MT sequence in the table indicates that the amino acid between or at the end is mutated as compared with the normal amino acid.
- HLA allele HLA allele
- WT peptide sequence Wild type peptide sequence
- MT peptide sequence Mutant peptide sequence
- Consensus percentile rank Consensus percentile rank
- ANN IC50 IC50 calculated by artificial neural network method (optimal value in NetMHCpan)
- ANN rank Value converted to rank value
- SMM IC50 IC50 calculated by the stabilized matrix method (or na if it cannot be calculated)
- SMM rank Value converted to rank value comblib sydney2008 score: IC50 calculated by the sydney2008 method (or na if it cannot be calculated)
- comblib sydney2008 rank Value converted to rank value mutation information: mutation information chromosome : chromosome start position: start position end position: End position gene name: gene name accession: Accession number exon ID: Exon number position on transcript WT NA: Nucleic acid in wild type MT NA: Nucleic acid in variant start pos.
- HLA-A * 02: 01 1673 tumor-specific mutations found by analysis using HLA-A * 02: 01, 24:02 individuals were found. Of these, 41 were identified when mutations were found on the RNA lead. Furthermore, when it was narrowed down to those with mutations accompanied by amino acid changes, it was narrowed to 25. When this was counted by the number of peptides, 44 peptides were identified (HLA-A * 02: 01). That is, 44 peptides having an affinity of HLA-A * 02: 01 and IC50 ⁇ 54 nM were found. It should be noted that in the next step, healthy human peripheral blood possessing HLA-A * 02: 01 was used, so the affinity with HLA-A * 02: 01 (instead of HLA-A * 24: 02) Only peptides with) were selected.
- HLA-A * 02: 01 sample Peripheral blood of a healthy person having the same HLA-A * 02: 01 as the subject data (tumor patient) was used. On the other hand, the reactivity experiment was conducted using the produced peptide.
- the blood (peripheral blood) of a healthy person having the same HLA type for example, HLA-A * 02: 01
- the blood of a cancer patient itself can be used.
- HLA-A * 02: 01 One who has the same HLA-A * 02: 01 can also be used.
- ELISPOT assay The assays performed were interferon gamma ELISPOT and intracellular interferon gamma staining.
- ELISPOT sandwich immunosorbent assay
- MABTECH anti-human IFN- ⁇ mAb 1-D1K, purified (3420-3-250) was used as a capture antibody, and a MILLIPORE MultiScreen HTS 96-well Filtration Plate was used.
- a cytokine (here, interferon- ⁇ ) specific monoclonal antibody MABTECH anti-human IFN- ⁇ mAb 1-D1K, purified (3420-3-250)
- MABTECH anti-human IFN- ⁇ mAb 1-D1K purified (3420-3-250)
- MABTECH anti-human IFN- ⁇ mAb 1-D1K purified (3420-3-250)
- MILLIPORE MultiScreen HTS 96-well Filtration Plate was used.
- Detection antibody MABTECH anti-human IFN- ⁇ mAb 7-B6-1, biotinylated (3420-6-250)
- anti-interferon ⁇ antibody for detection was added.
- Intracellular interferon gamma staining Moreover, intracellular interferon-gamma staining was performed about the obtained sample. 5 ⁇ 10 5 lymphocytes were cultured for 4 hours in 200 ⁇ l of medium. For stimulation, a neoantigen peptide and a control peptide were added to a final concentration of 1 ⁇ g / ml. Unstimulated controls were also prepared. During stimulation, BioLegend Brefeldin A Solution (1,000 ⁇ ) was added to a final concentration of 5.0 ⁇ g / ml.
- Fixable Viability Dye eFluor780 eBioscience 65-0865-18
- FITC-labeled anti-CD4 antibody BD Pharmingen TM 557307
- ECD-labeled anti-CD8 antibody BECKMAN COULTER 41116015
- PerCP / CY5.5-labeled Staining was performed at 4 ° C. for 30 minutes with an anti-CD3 antibody (Biolegend 300430).
- Cells were treated with Intraprep permeabilization reagent (Immunotech, Marseille, France) for 15 minutes. Staining was performed with PE-labeled anti-IL-2 antibody (BD Pharmingen TM 559334), Alexa700-labeled anti-TNF ⁇ antibody (BD Pharmingen TM 557996), and Pacific Blue-labeled anti-IFN- ⁇ antibody (Biolegend 502522) for 15 minutes.
- Intraprep permeabilization reagent Immunotech, Marseille, France
- Staining was performed with PE-labeled anti-IL-2 antibody (BD Pharmingen TM 559334), Alexa700-labeled anti-TNF ⁇ antibody (BD Pharmingen TM 557996), and Pacific Blue-labeled anti-IFN- ⁇ antibody (Biolegend 502522) for 15 minutes.
- MT indicates a mutant type and WT indicates a wild type.
- pepID is a sample number in the embodiment.
- IC50 indicates the inhibitory concentration of HLA-peptide binding.
- ++ indicates that 3/3 produced interferon ⁇ production, and + indicates that 1/3 to 2/3 produced interferon ⁇ production.
- Example 2 Mutant peptide selection and confirmation of immunogenicity-in the case of mice
- it can be carried out even when a mouse is used.
- tumor-bearing mice Collect tissues from the cancer site of tumor-bearing mice, and collect the same organs and tissues as the tumor site in normal mice.
- the tumor-bearing mouse individual has a tumor site and a non-tumor site (for example, in the case of colon cancer, it means a tumor site and a non-tumor site).
- mice When mice are of the same strain, normal tissues are collected from normal mice. 3. DNA and RNA are extracted from the collected tissues and organs and analyzed for exome seq and RNAseq. 4). Since the MHC (major histocompatibility complex; major histocompatibility complex) is known for each strain, the mutanome is searched, and the neoantigen displayed on the MHC (H-2 in mice) is further identified. 5. For the selection of the neoantigen, the same methodology as described in Example 1 for human tumors is used.
- neoantigen search software of Example 1. Identify. 6).
- a peptide is artificially synthesized, added to and cultured on the spleen cells of syngeneic mice, and induction of IFN ⁇ production after the culture is used as an activity index. 7).
- the cytotoxicity with respect to a tumor is measured using the spleen cell stimulated with neoantigen and cultured. 8).
- a neoantigen is directly administered to a tumor-bearing mouse (a mouse transplanted with a tumor used for neoantigen search). Moreover, it can be treated using dendritic cell therapy (in vitro, dendritic cells derived from syngeneic mice are stimulated and cultured, and the dendritic cells are administered to tumor-bearing mice).
- the effect is determined as follows. 1. After confirming the Elispot assay using C57B1 / 6 mouse-derived spleen cells and cytotoxicity, the effect is determined in vivo. 2. C57BL / 6 mice are transplanted with B16 melanoma cells subcutaneously (1 ⁇ 10 6 ), and the same number of B16 melanoma cells are administered intravenously. 3. After the subcutaneous administration of B16, regarding the therapeutic effect of neoantigen, tumor size and survival rate are used as indices.
- antigen peptides can be identified and treated in mice in the same manner.
- SEQ ID NOs: 1 to 12 are amino acid sequences displayed in the epitope analysis result by combining HLA type information in addition to the WT peptide and MT peptide performed in Example 1.
- SEQ ID NOs: 1, 4, 7, and 10 are the sequences displayed in the first sample (HLA-C * 03: 03), and SEQ ID NOs: 2, 5, 8, and 11 are the second sample (HLA- C * 03: 03).
- Sequence numbers 3, 6, 9, and 12 are sequences displayed in the third sample (HLA-C * 14: 02).
- SEQ ID NOs: 1 to 3 are wild-type amino acid sequences
- SEQ ID NOs: 4 to 6 are mutant amino acid sequences
- SEQ ID NOs: 7 to 9 are upstream amino acid sequences
- SEQ ID NOs: 10 to 12 are downstream amino acid sequences.
- SEQ ID NOs: 13-36 show the amino acid sequences of the actual hit peptides shown in Table 2.
- SEQ ID NOs: 13 to 24 are mutant amino acid sequences, and show PepID 14, 21, 41, 36, 7, 43, 30, 33, 42, 27, 12, 18 in this order.
- SEQ ID NOs: 25 to 36 are wild-type amino acid sequences, and show PepID 14, 21, 41, 36, 7, 43, 30, 33, 42, 27, 12, 18 in order.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Theoretical Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Databases & Information Systems (AREA)
- Bioethics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physiology (AREA)
- Data Mining & Analysis (AREA)
- Hospice & Palliative Care (AREA)
- General Engineering & Computer Science (AREA)
- Oncology (AREA)
Abstract
Description
(1)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産するための方法であって、該方法は:
A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;
B)該解析装置に、該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップ;ならびに
C)該エピトープの情報に基づいてペプチドを生産するステップ
を包含する、方法。
(2)前記B)ステップは、前記疾患組織に特異的な変異を参照情報データベースに基づきアノテーションを前記解析装置に行わせ候補変異を同定するステップを含み、その後、該候補変異の核酸情報をアミノ酸情報に変換して野生型(WT)ペプチドおよび変異型(MT)ペプチドを生産し、その後前記MHC型と、該WTペプチドおよび該MTペプチドとを用いて該解析装置にエピトープ探索を行わせた上で、エピトープの順位付けを行って該解析装置にエピトープリストを出力させることを包含する、上記項目に記載の方法。
(3)前記疾患組織に特異的な変異は、前記被験体のゲノムリードおよびその変異に関する情報に基づいて導出されることを包含する、上記項目のいずれか1項に記載の方法。
(4)前記ゲノムリードは、エキソームリードを包含する、上記項目のいずれか1項に記載の方法。
(5)前記ゲノムリードおよびその変異に関する情報は、それぞれ、前記被験体の正常な試料および前記被験体の前記疾患に罹患した試料から得られ、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索し、前記疾患組織に特異的な変異を同定する、上記項目のいずれか1項に記載の方法。
(6)前記A)ステップは、さらに前記被験体のRNAリードの情報を前記解析装置に入力することを包含し、前記B)ステップは該解析装置に該RNAリードの情報にも基づいて前記変異に関するエピトープを解析させることを包含する、上記項目のいずれか1項に記載の方法。
(7)前記RNAリードは疾患組織のRNAリードを含み、該疾患組織のRNAリードをマッピングして変異を探索し、および/または発現量を導出するステップをさらに包含する、上記項目のいずれか1項に記載の方法。
(8)前記RNAリードの情報は正常組織のRNAリードを含み、該正常組織のRNAリードをマッピングして体細胞変異を探索し、および/または発現量を導出し、前記疾患組織のRNAリードに基づいて導出された発現量と比較するステップをさらに包含する、上記項目のいずれか1項に記載の方法。
(9)前記MHC型は、前記被験体のゲノムリードから導出される、上記項目のいずれか1項に記載の方法。
(10)前記B)ステップは、以下:
B-1)前記解析装置に前記疾患組織に特異的な変異に対して、既存のデータベースに基づくアノテーションおよび核酸アミノ酸変換を行わせて、野生型ペプチドおよび疾患特異的変異ペプチドの情報を導出するステップ;
B-2)前記MHC型、該野生型ペプチドおよび該疾患特異的変異ペプチドを用いて、公知のデータベースを用いて該解析装置に該疾患に特異的なエピトープ探索を行わせるステップ;ならびに
B-3)該解析装置に、得られたエピトープのペプチド配列、MHC情報(遺伝子型および親和性)ならびに変異情報(染色体、位置、変異パターン(野生型/変異型)、信頼性、優先度、および該当遺伝子(遺伝子名、発現量))からスコアを算出させ、優先すべきエピトープの順位付けを行うステップ
から選択される少なくとも1つのステップを包含し、
前記C)ステップは、
C-1)該順位付けに基づきペプチドを生産するステップを包含する、
上記項目のいずれか1項に記載の方法。
(11)前記ゲノムリードおよびその変異に関する情報は同じ被験体から得られる、上記項目のいずれか1項に記載の方法。
(12)前記ゲノムリードおよびその変異に関する情報は異なる被験体から得られる、上記項目のいずれか1項に記載の方法。
(13)前記ゲノムリードおよびその変異に関する情報は、正常組織および前記疾患の組織から得られる、上記項目のいずれか1項に記載の方法。
(14)前記ゲノムリードのマッピングはbwa、bowtie、またはnovoalign、あるいはそれらの組合せを用いて行われる、上記項目のいずれか1項に記載の方法。
(15)前記ゲノムリードの変異の探索は、MuTect、VarScanまたはlofreqあるいはそれらの組合せを含む変異探索プログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(16)前記アノテーションは、refGene、ensEmblから選択される遺伝子構造データベース、および/またはdbSNP、cosmic、1000 genomes、およびwhole exome featuresからなる群より選択される変異既知情報のデータベースを用い、ANNOVARおよびsnpEffからなる群より選択されるプログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(17)前記RNAリードのマッピングは、TopHatおよびSTARからなる群より選択されるプログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(18)前記RNAの変異の探索は、MuTect、VarScan、GATKおよびsamtoolsからなる群より選択される変異探索プログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(19)前記RNAの発現量の導出は、CuffLinksおよびErangeからなる群より選択される変異探索プログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(20)前記MHCタイピングはHLAminer、Athlates、Sting HLA、HLA caller、OptiType、およびomixonからなる群より選択されるソフトウエアを用いて行われる、上記項目のいずれか1項に記載の方法。
(21)前記被験体はヒトであり、前記MHCはHLAである、上記項目のいずれか1項のいずれか1項に記載の方法。
(22)前記エピトープ探索は、NetMHCpan、NetHMC、NetMHCcons,およびPickPocketからなる群より選択されるエピトープ探索プログラムを用いて行われる、上記項目のいずれか1項に記載の方法。
(23)前記順位付けは、前記変異の優先順位付け、遺伝子発現の有無およびペプチドの優先順位付けからなる群より選択される少なくとも1つの要素を考慮して行われる、上記項目のいずれか1項に記載の方法。
(24)前記変異の優先順位付けは、ヒットが見出される変異探索プログラムの数の多少およびRNAレベルでの変異の証拠の有無からなる群より選択される少なくとも1つの要素が考慮される、上記項目のいずれか1項に記載の方法。
(25)前記遺伝子発現の有無は、前記RNAリードをマッピングし算出されたfpkmもしくはrpkmの値が正であるか否かで判断される、上記項目のいずれか1項に記載の方法。
(26)前記ペプチドの優先順位付けは、ヒットが見出されるエピトープ探索プログラムの数の多少、ヒットが見出される変異探索ソフトウエアの数の多少およびHLA-ペプチド間のIC50<500nMの値からなる群より選択される少なくとも1つの要素が考慮される、上記項目のいずれか1項に記載の方法。
(27)前記順位付けは、HLA-ペプチド間のIC50の値、ヒットが見出されるエピトープ探索プログラムの数、ヒットが見出される変異探索ソフトウエアの数の順に適用することでソートされる、上記項目のいずれか1項に記載の方法。
(28)前記疾患は腫瘍または自己免疫疾患である、上記項目のいずれか1項のいずれか1項に記載の方法。
(29)前記ステップA)は、
A-1)前記解析装置に前記被験体のゲノムの配列決定を行って該被験体のゲノムリードおよびその変異に関する情報を得、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索させ、前記疾患組織に特異的な変異を得るステップ、
A-2)該解析装置に該被験体のRNAの配列決定を行って該被験体のRNAリードの情報を得、該疾患組織のRNAリードをマッピングして変異を探索させ、および/または発現量を導出させ、必要に応じて正常組織のRNAリードをマッピングして体細胞変異を探索させ、および/または発現量を導出させ、該疾患組織のRNAリードに基づいて導出された発現量と比較するステップ、および
A-3)該解析装置に必要に応じて該被験体のゲノムリードを用いて該被験体のMHCタイピングを行わせて該被験体のMHC型の情報を得るステップ
からなる群より選択される少なくとも1つを行うことを包含する、上記項目のいずれか1項に記載の方法。
(30)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定する方法であって、
A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;および
B)該解析装置に該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップを包含する、方法。
(31)上記項目のいずれか1項または複数に記載の特徴をさらに有する、上記項目のいずれか1項に記載の方法。
(32)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産する装置であって、該装置は:
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析するエピトープ解析ユニット;ならびに
C)該エピトープの情報に基づいてペプチドを生産するペプチド生産ユニットを包含する、装置。
(33)前記ユニットBにおいて、上記項目のいずれか1項または複数に規定される手順がなされる、上記項目に記載の装置。
(34)前記ユニットAは、前記被験体のゲノムを配列決定する手段、前記被験体の疾患組織に特異的な変異を決定する手段、前記被験体のRNAの配列決定手段および前記被験体のMHCタイピングの手段の少なくとも1つを含む、上記項目のいずれか1項に記載の装置。
(35)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定する装置であって、
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;ならびに
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するエピトープ解析ユニットを包含する、装置。
(36)前記ユニットBにおいて、上記項目のいずれか1項または複数に規定される手順がなされる、上記項目のいずれか1項に記載の装置。
(37)前記ユニットAは、前記被験体のゲノムを配列決定する手段、前記被験体の疾患組織に特異的な変異を決定する手段、前記被験体のRNAの配列決定手段および前記被験体のMHCタイピングの手段の少なくとも1つを含む、上記項目のいずれか1項に記載の装置。
(38)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定するための方法をコンピュータに実行させるためのプログラムであって、該方法は、
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力するステップ;ならびに
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するステップを包含する、プログラム。
(39)上記項目のいずれか1項または複数に記載の特徴をさらに有する、上記項目に記載のプログラム。
(40)被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定するための方法をコンピュータに実行させるためのプログラムを格納したコンピュータ読み取り可能な記録媒体であって、該方法は、
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力するステップ;ならびに
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するステップを包含する、記録媒体。
(41)上記項目のいずれか1項または複数に記載の特徴をさらに有する、上記項目に記載の記録媒体。
以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。これらの実施形態について、当業者は適宜、任意の実施形態を組み合わせ得る。
1つの局面において、本発明は、被験体における疾患の処置(治療および予防を含む)、モニタリングまたは診断のためのペプチドを特定する方法を提供する。この方法は、A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;B)該解析装置に、該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップ;ならびにC)該エピトープの情報に基づいてペプチドを生産するステップを包含する。本発明で使用される「解析装置」は、解析すべき情報の入力を受け、解析し、通信などによって他のユニットと連絡を取り、結果を出力する機能などを有し得、(免疫療法解析装置・システム、および解析プログラム)においても詳述されており、その任意の実施形態を採用することができ、各種ユニットはこの解析装置を構成し得る。解析装置の模式的図は図7に示されており、(システム構成)において詳述されている。
1.全ての系統(syngenic)のマウスを対象にして、自然発症、化学発症、放射線発症に由来する腫瘍(癌、肉腫、白血病)に対してネオ抗原の探索が可能である。
2.担癌マウスの癌部位からの組織採取、正常マウスにおいて腫瘍部位と同一臓器・組織の採取を行う。この際には、担癌マウス個体では、腫瘍部位と非腫瘍部位(例えば、大腸癌の際には、腫瘍部位と非腫瘍部位)。マウスは同一系統の場合は、正常組織は正常マウスから採取できる。
3.採取された組織・臓器からDNAおよびRNAを抽出し、エキソームseqおよびRNAseq解析を行う。
4.系統毎にMHC(major histocompatibility complex; 主要組織適合遺伝子複合体)は分かっているため、本発明で使用され得るmutanomeを探索し、更にはMHC(マウスではH-2)上に提示されるネオ抗原を同定する。
5.ネオ抗原の選択に関しては、実施例で例示されるヒト腫瘍で記載している方法論と同一のものを例示することができる。
6.同定されたネオ抗原に対しては、ペプチドを人工的に合成し、同系マウスの脾臓細胞に添加培養して、培養後のIFNγ産生誘導を活性の指標とすることができる。
7.また、ネオ抗原で刺激し培養した脾臓細胞を用いて、腫瘍に対する細胞障害性を測定する。
8.試験管内での検討から、探索されたネオ抗原が腫瘍に対してT細胞の機能的な誘導を起こす事が明確になった場合には以下を行う。
9.すなわち、候補となったネオ抗原を用いたin vivoでの効果を検討する。
10.in vivo効果としては、担癌マウス(ネオ抗原探索に使用した腫瘍を移植したマウス)にネオ抗原を直接投与する。また、樹状細胞療法(in vitroで同系マウス由来の樹状細胞を刺激培養し、その樹状細胞を担癌マウスに投与する)を用いて治療することができる。
別の局面において、本発明は、被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産する装置またはシステムを提供する。この装置またはシステムは、A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析するエピトープ解析ユニット;ならびにC)該エピトープの情報に基づいてペプチドを生産するペプチド生産ユニットを備える。ここで使用される情報入力ユニット、解析ユニットおよび合成ユニットは、(免疫療法ペプチドを特定および生産する方法)において説明される任意の特徴を備えることができる。本発明において使用される「解析装置」は、情報入力ユニットとエピトープ解析ユニットとを含みうる。さらに、本発明の解析装置は、このほかの機能を有する少なくとも1つのさらなるユニットを含んでいてもよく。これらのユニットは以下に説明される。
次に、図7のブロック図を参照して、本発明のシステムまたは装置の構成を説明する。なお、本図においては、単一のシステムで実現した場合を示しているが、これらは複数のユニットやコンポーネントから構成されていてもよい。
本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Sambrook J. et al.(1989).Molecular Cloning: A Laboratory Manual, Cold Spring Harborおよびその3rd Ed.(2001); Ausubel, F. M.(1987).Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Ausubel,F.M.(1989).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Innis, M. A. (1990). PCR Protocols: A Guide to Methods and Applications, Academic Press; Ausubel, F. M. (1992).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Ausubel, F. M.(1995).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Innis, M. A. et al.(1995). PCR Strategies, Academic Press; Ausubel, F. M. (1999). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and annual updates; Sninsky, J. J. et al.(1999).PCR Applications: Protocols for Functional Genomics, Academic Press, Gait, M. J. (1985). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Gait, M. J. (1990). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Eckstein, F.(1991). Oligonucleotides and Analogues: A Practical Approach, IRL Press; Adams, R. L. et al.(1992).The Biochemistry of the Nucleic Acids, Chapman & Hall; Shabarova, Z. et al.(1994). Advanced Organic Chemistry of Nucleic Acids, Weinheim; Blackburn, G. M. et al.(1996). Nucleic Acids in Chemistry and Biology, Oxford University Press; Hermanson, G. T. (I996). Bioconjugate Techniques, Academic Press、別冊実験医学「遺伝子導入&発現解析実験法」羊土社、1997などに記載されている。これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
(解析)
図2に例示されるフローに基づき変異ペプチド選別を行った。
(1)被験体群は以下を用いた。
対象患者:65歳日本人男性の肺ガン患者
本実施例を実施する前に、Luminex法でタイピングして以下のHLA型が同定されている。
HLAタイプ:HLA-A*02:01, 24:02
(2)正常組織および腫瘍組織よりDNA抽出し、イルミナ社シーケンサHiSeq2000により、TruSeq PEキットを用いてエキソームシーケンスした。使用機器はイルミナ社シーケンサHiSeq2000で、使用ソフトウエアは同シーケンサの制御ソフトウエアを使用した。
次に、正常組織および腫瘍組織由来のエキソームリードを、各々、bwaを用いて以下のパラメータでマップした。
algorithm: mem
read mode: paired end
minimum seed length: 19
band width: 100
off diagonal dropoff: 100
match score : 1
mismatch penalty: 4
gap open penalty: 6
gap extension penalty: 1
clipping penalty: 5
unpaired read penalty: 9。
次に、正常組織および腫瘍組織由来のエキソームリードのマップ結果を基に、muTect、VarScan、lofreqを用いて、腫瘍組織特異的な体細胞変異を探索した。
segment length: 16
maximum mismatch: 2
expected mate pair inner distance: 50
standard deviation of mate pair inner distance: 20。
(4)次に、mRNAマッピングの結果得られたデータを変異探索(または体細胞変異探索)および発現量導出を行った。腫瘍組織由来RNAリードのマップ結果を基に、muTect、VarScanを用いて変異を探索した。また、CuffLinksを用いて遺伝子発現量を算出した。
(5)(4)で得られたRNAリードに基づく結果について変異があるものを合わせて解析した。
(6)(2)で得られた腫瘍特異的変異について、遺伝子構造情報のデータベースとしてrefGeneおよびensEmblを用いて変異のアノテーションを実行し候補変異を特定した。特定された候補変異について核酸-アミノ酸返還を行って野生型(WT)ペプチドおよび変異(MT)ペプチドを画定した。
(7)また、次にエキソームリードからomixonを用いてHLAタイピングを実施した。
(8)(6)で得られたWTペプチドとMTペプチドとに加えHLA型の情報を合わせてエピトープ解析を行った。その結果を、以下の表に示す。表中MT配列中にあるハイフンはその間のまたは端部のアミノ酸が正常アミノ酸と比較して変異していることを示す。
HLA allele:HLA対立遺伝子
WT peptide sequence:野生型ペプチド配列
MT peptide sequence:変異型ペプチド配列
Consensus percentile rank:コンセンサスの百分位数ランク
ANN IC50 : artificial neural network法により算出されたIC50 (NetMHCpanにおける最適値)
ANN rank : それをランク値に変換した値
SMM IC50 : stabilized matrix法により算出されたIC50 (算出できない場合はna)
SMM rank : それをランク値に変換した値
comblib sydney2008 score : sydney2008法により算出されたIC50 (算出できない場合はna)
comblib sydney2008 rank : それをランク値に変換した値
mutation information:変異情報
chromosome:染色体
start position:開始位置
end position:終了位置
gene name:遺伝子名
accession:アクセッション番号
exon ID:エキソン番号
position on transcript:転写物における位置
WT NA:野生型における核酸
MT NA:変異型における核酸
start pos. on peptide:ペプチド上の開始位置
mutation pos. on peptide:ペプチド上の変異位置
end pos. on peptide:ペプチド上の終了位置
WT AA:野生型アミノ酸
MT AA:変異型アミノ酸
upstream AA:上流アミノ酸
downstream AA:下流アミノ酸
log likelihood:対数尤度
read depth:読み深さ
num of WT on tumor : 腫瘍組織において、その位置をカバーするWT(変異の無い)リードの数
num of MT on tumor : 同上、MT(変異)リードの数
QV sum of WT on tumor : 腫瘍組織において、その位置をカバーするWTリードのクオリティ値(QV)の総和
QV sum of MT on tumor : 同上、MTリードのQVの総和
num of WT on normal : 正常組織において、その位置をカバーするWTリードの数
num of MT on normal : 同上、MTリードの数
QV sum of WT on normal : 正常組織において、その位置をカバーするWTリードのQVの総和
QV sum of MT on normal : 同上、MTリードのQVの総和
found in RNA : その変異がRNAでもみつかったか否かのフラグ
found by : その変異をコールしたソフトを列挙
all AA changes : アミノ酸置換パターンを、遺伝子名、遺伝子座のアクセッション、核酸変異パターン、アミノ酸変異パターンで記述
cytoband : その位置を染色体バンドの記述形式で示したもの
dbSNP 138 : その変異がdbSNP release.138に登録されている場合は、そのID
cosmic 70 : その変異がcosmid release.70に登録されている場合は、そのID
TSS : その変異が乗る遺伝子のTSS(Transcription Start Site)のID
gene location on genome : その変異の位置、chromosome、start position、end positionを連結しただけ
gene expression (FPKM) : 遺伝子発現量(fragments per kirobase of exon per million mapped reads)
95% conf low : FPKMの95%信頼区間の下限
95% conf high : 同上、上限
status : 発現量算出結果が有効(OK)か、低精度(LOWQUAL)か
解析した結果を以下に示す。
これらの44ペプチドをペプチド合成機にて合成した。本実施例では、以下にその手順を示す。GenScript社(東京、日本)に外注したものを使用した。
被験体資料(腫瘍患者)と同一のHLA-A*02:01を保有する健常人の末梢血を用いた。これに対して製造されたペプチドを用いて反応性の実験を行った。
実施したアッセイは、インターフェロンγELISPOTおよび細胞内インターフェロンγ染色を行った。インターフェロンγELISPOTには、MABTECH anti-human IFN-γ mAb 1-D1K、purified(3420-3-250)を捕捉抗体(Capture antibody)として使用し、MILLIPORE MultiScreen HTS 96-well Filtration Plateを使用した。
(1)サイトカイン(ここでは、インターフェロン-γ)特異的モノクローナル抗体(MABTECH anti-human IFN-γ mAb 1-D1K, purified (3420-3-250))を固層表面に固定化した。ここでは、MILLIPORE MultiScreen HTS 96-well Filtration Plateを使用した。
(2) 洗浄後に1x10*5個の細胞を16時間刺激培養した。分泌されたサイトカインであるインターフェロン-γは、産生細胞の周辺にある捕捉用抗体(Detection antibody ;MABTECH anti-human IFN-γ mAb 7-B6-1, biotinylated(3420-6-250))と結合させた。洗浄により細胞を除去した後、検出用の抗インターフェロンγ抗体を添加した。
(3)次に、BD ELISPOT AEC Substrate Set(551951)で発色させた。この方法により、インターフェロンγ(サイトカイン)産生細胞が位置した場所に相当するスポットを見ることができる。得られたスポットは、カールツァイス KS ELISPOT(ミネルバテック社)でスポット数をカウントし、陽性細胞の頻度を記録した。
また、得られたサンプルについて、細胞内インターフェロンγ染色を行った。5x105個のリンパ球を200μlの培地中で4時間刺激培養した。刺激にはネオ抗原(neoantigen)ペプチド、コントロールペプチドを終濃度1μg/mlになるように添加した。未刺激のコントロールも調製した。刺激中BioLegend Brefeldin A Solution(1,000X)を終濃度5.0μg/mlになるように加えた。培養終了後細胞を回収し、Fixable Viability Dye eFluor780(eBioscience 65-0865-18),FITC 標識抗CD4抗体(BD PharmingenTM557307)、ECD標識抗CD8抗体(BECKMAN COULTER 41116015)、PerCP・CY5.5標識抗CD3抗体(Biolegend 300430)で4℃30分染色した。
インターフェロンγ産生の解析結果を図6に示す。また、各種ペプチドについてインターフェロンγ産生が認められた変異ペプチドを以下にまとめる。表中変更のあるアミノ酸には下線を付した。
本実施例では、マウスを用いた場合でも実施することができる。
1.全ての系統(syngenic)のマウスを対象にして、自然発症、化学発症、放射線発症に由来する腫瘍(癌、肉腫、白血病)に対してネオ抗原の探索が可能である。ここでは、マウス系統:C57BL/6(MHC Haplotype. H2b )を用いて行う。腫瘍としては、腫瘍:B16メラノーマ細胞を用いる。
2.担癌マウスの癌部位からの組織採取、正常マウスにおいて腫瘍部位と同一臓器・組織の採取を行う。この際には、担癌マウス個体では、腫瘍部位と非腫瘍部位(例えば、大腸癌の際には、腫瘍部位と非腫瘍部位と言う意味)。マウスは同一系統の場合は、正常組織は正常マウスから採取する。
3.採取された組織・臓器からDNAおよびRNAを抽出し、エキソームseqおよびRNAseq解析を行う。
4.系統毎にMHC(major histocompatibility complex; 主要組織適合遺伝子複合体)は分かっているため、mutanomeを探索し、更にはMHC(マウスではH-2)上に提示されるネオ抗原を同定する。
5.ネオ抗原の選択に関しては、実施例1でヒト腫瘍で記載している方法論と同一のものを使用する。具体的には、B16メラノーマ細胞と同系のC57BL/6マウスから正常皮膚を採取し、それぞれDNAとRNAを抽出し、エキソームseq・RNAseqを行い、実施例1のネオ抗原探索ソフトにて候補ペプチドを同定する。
6.同定されたネオ抗原に対しては、ペプチドを人工的に合成し、同系マウスの脾臓細胞に添加培養して、培養後のIFNγ産生誘導を活性の指標とする。
7.また、ネオ抗原で刺激し培養した脾臓細胞を用いて、腫瘍に対する細胞障害性を測定する。
8.試験管内での検討から、探索されたネオ抗原が腫瘍に対してT細胞の機能的な誘導を起こす事が明確にする。
9.候補となったネオ抗原を用いたin vivoでの効果を検討する。
10.in vivo効果としては、担癌マウス(ネオ抗原探索に使用した腫瘍を移植したマウス)にネオ抗原を直接投与する。また、樹状細胞療法(in vitroで同系マウス由来の樹状細胞を刺激培養し、その樹状細胞を担癌マウスに投与する)を用いて治療することができる。
1.C57Bl/6マウス由来脾臓細胞を用いたElispotアッセイと細胞障害性を確認後にin vivoでの効果判定を行う。
2.C57BL/6マウスにB16メラノーマ細胞を皮下に移植し(1×106)、また、同数のB16メラノーマ細胞を静脈内投与する。
3.B16皮下投与後に、ネオ抗原(neoantigen)の治療効果に関しては、腫瘍の大きさと生存率を指標とする。
Claims (41)
- 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産するための方法であって、該方法は:
A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;
B)該解析装置に、該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップ;ならびに
C)該エピトープの情報に基づいてペプチドを生産するステップ
を包含する、方法。 - 前記B)ステップは、前記疾患組織に特異的な変異を参照情報データベースに基づきアノテーションを前記解析装置に行わせ候補変異を同定するステップを含み、その後、該候補変異の核酸情報をアミノ酸情報に変換して野生型(WT)ペプチドおよび変異型(MT)ペプチドを生産し、その後前記MHC型と、該WTペプチドおよび該MTペプチドとを用いて該解析装置にエピトープ探索を行わせた上で、エピトープの順位付けを行って該解析装置にエピトープリストを出力させることを包含する、請求項1に記載の方法。
- 前記疾患組織に特異的な変異は、前記被験体のゲノムリードおよびその変異に関する情報に基づいて導出されることを包含する、請求項1に記載の方法。
- 前記ゲノムリードは、エキソームリードを包含する、請求項3に記載の方法。
- 前記ゲノムリードおよびその変異に関する情報は、それぞれ、前記被験体の正常な試料および前記被験体の前記疾患に罹患した試料から得られ、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索し、前記疾患組織に特異的な変異を同定する、請求項3に記載の方法。
- 前記A)ステップは、さらに前記被験体のRNAリードの情報を前記解析装置に入力することを包含し、前記B)ステップは該解析装置に該RNAリードの情報にも基づいて前記変異に関するエピトープを解析させることを包含する、請求項1に記載の方法。
- 前記RNAリードは疾患組織のRNAリードを含み、該疾患組織のRNAリードをマッピングして変異を探索し、および/または発現量を導出するステップをさらに包含する、請求項6に記載の方法。
- 前記RNAリードの情報は正常組織のRNAリードを含み、該正常組織のRNAリードをマッピングして体細胞変異を探索し、および/または発現量を導出し、前記疾患組織のRNAリードに基づいて導出された発現量と比較するステップをさらに包含する、請求項7に記載の方法。
- 前記MHC型は、前記被験体のゲノムリードから導出される、請求項1に記載の方法。
- 前記B)ステップは、以下:
B-1)前記解析装置に前記疾患組織に特異的な変異に対して、既存のデータベースに基づくアノテーションおよび核酸アミノ酸変換を行わせて、野生型ペプチドおよび疾患特異的変異ペプチドの情報を導出するステップ;
B-2)前記MHC型、該野生型ペプチドおよび該疾患特異的変異ペプチドを用いて、公知のデータベースを用いて該解析装置に該疾患に特異的なエピトープ探索を行わせるステップ;ならびに
B-3)該解析装置に、得られたエピトープのペプチド配列、MHC情報(遺伝子型および親和性)ならびに変異情報(染色体、位置、変異パターン(野生型/変異型)、信頼性、優先度、および該当遺伝子(遺伝子名、発現量))からスコアを算出させ、優先すべきエピトープの順位付けを行うステップ
から選択される少なくとも1つのステップを包含し、
前記C)ステップは、
C-1)該順位付けに基づきペプチドを生産するステップを包含する、
請求項2に記載の方法。 - 前記ゲノムリードおよびその変異に関する情報は同じ被験体から得られる、請求項3に記載の方法。
- 前記ゲノムリードおよびその変異に関する情報は異なる被験体から得られる、請求項3に記載の方法。
- 前記ゲノムリードおよびその変異に関する情報は、正常組織および前記疾患の組織から得られる、請求項11または12に記載の方法。
- 前記ゲノムリードのマッピングはbwa、bowtie、またはnovoalign、あるいはそれらの組合せを用いて行われる、請求項5に記載の方法。
- 前記ゲノムリードの変異の探索は、MuTect、VarScanまたはlofreqあるいはそれらの組合せを含む変異探索プログラムを用いて行われる、請求項5に記載の方法。
- 前記アノテーションは、refGene、ensEmblから選択される遺伝子構造データベース、および/またはdbSNP、cosmic、1000 genomes、およびwhole exome featuresからなる群より選択される変異既知情報のデータベースを用い、ANNOVARおよび snpEffからなる群より選択されるプログラムを用いて行われる、請求項2に記載の方法。
- 前記RNAリードのマッピングは、TopHatおよびSTARからなる群より選択されるプログラムを用いて行われる、請求項7または8に記載の方法。
- 前記RNAの変異の探索は、MuTect、VarScan、GATKおよびsamtoolsからなる群より選択される変異探索プログラムを用いて行われる、請求項7または8に記載の方法。
- 前記RNAの発現量の導出は、CuffLinksおよびErangeからなる群より選択される変異探索プログラムを用いて行われる、請求項7または8に記載の方法。
- 前記MHCタイピングはHLAminer、Athlates、Sting HLA、HLA caller、OptiType、およびomixonからなる群より選択されるソフトウエアを用いて行われる、請求項9に記載の方法。
- 前記被験体はヒトであり、前記MHCはHLAである、請求項1~10のいずれか1項に記載の方法。
- 前記エピトープ探索は、NetMHCpan、NetHMC、NetMHCcons、およびPickPocketからなる群より選択されるエピトープ探索プログラムを用いて行われる、請求項2に記載の方法。
- 前記順位付けは、前記変異の優先順位付け、遺伝子発現の有無およびペプチドの優先順位付けからなる群より選択される少なくとも1つの要素を考慮して行われる、請求項2に記載の方法。
- 前記変異の優先順位付けは、ヒットが見出される変異探索プログラムの数の多少およびRNAレベルでの変異の証拠の有無からなる群より選択される少なくとも1つの要素が考慮される、請求項23に記載の方法。
- 前記遺伝子発現の有無は、前記RNAリードをマッピングし算出されたfpkmもしくはrpkmの値が正であるか否かで判断される、請求項23に記載の方法。
- 前記ペプチドの優先順位付けは、ヒットが見出されるエピトープ探索プログラムの数の多少、ヒットが見出される変異探索ソフトウエアの数の多少およびHLA-ペプチド間のIC50<500nMの値からなる群より選択される少なくとも1つの要素が考慮される、請求項23に記載の方法。
- 前記順位付けは、HLA-ペプチド間のIC50の値、ヒットが見出されるエピトープ探索プログラムの数、ヒットが見出される変異探索ソフトウエアの数の順に適用することでソートされる、請求項23に記載の方法。
- 前記疾患は腫瘍または自己免疫疾患である、請求項1~27のいずれか1項に記載の方法。
- 前記ステップA)は、
A-1)前記解析装置に前記被験体のゲノムの配列決定を行って該被験体のゲノムリードおよびその変異に関する情報を得、該ゲノムリードおよびその変異に関する情報をマッピングした後前記疾患組織に特異的な変異を探索させ、前記疾患組織に特異的な変異を得るステップ、
A-2)該解析装置に該被験体のRNAの配列決定を行って該被験体のRNAリードの情報を得、該疾患組織のRNAリードをマッピングして変異を探索させ、および/または発現量を導出させ、必要に応じて正常組織のRNAリードをマッピングして体細胞変異を探索させ、および/または発現量を導出させ、該疾患組織のRNAリードに基づいて導出された発現量と比較するステップ、および
A-3)該解析装置に必要に応じて該被験体のゲノムリードを用いて該被験体のMHCタイピングを行わせて該被験体のMHC型の情報を得るステップ
からなる群より選択される少なくとも1つを行うことを包含する、請求項1に記載の方法。 - 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定する方法であって、
A)該被験体の疾患組織に特異的な変異に関する情報、および該被験体のMHC型の情報を解析装置に入力するステップ;および
B)該解析装置に該疾患組織に特異的な変異に関する情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析させるステップを包含する、方法。 - 請求項2~29のいずれか1項または複数に記載の特徴をさらに有する、請求項30に記載の方法。
- 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを生産する装置であって、該装置は:
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析するエピトープ解析ユニット;ならびに
C)該エピトープの情報に基づいてペプチドを生産するペプチド生産ユニット
を包含する、装置。 - 前記ユニットBにおいて、請求項2~29のいずれか1項または複数に規定される手順がなされる、請求項32に記載の装置。
- 前記ユニットAは、前記被験体のゲノムを配列決定する手段、前記被験体の疾患組織に特異的な変異を決定する手段、前記被験体のRNAの配列決定手段および前記被験体のMHCタイピングの手段の少なくとも1つを含む、請求項32に記載の装置。
- 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定する装置であって、
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力する情報入力ユニット;ならびに
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するエピトープ解析ユニット
を包含する、装置。 - 前記ユニットBにおいて、請求項2~29のいずれか1項または複数に規定される手順がなされる、請求項35に記載の装置。
- 前記ユニットAは、前記被験体のゲノムを配列決定する手段、前記被験体の疾患組織に特異的な変異を決定する手段、前記被験体のRNAの配列決定手段および前記被験体のMHCタイピングの手段の少なくとも1つを含む、請求項35に記載の装置。
- 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定するための方法をコンピュータに実行させるためのプログラムであって、該方法は、
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力するステップ;ならびに
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するステップ
を包含する、
プログラム。 - 請求項2~29のいずれか1項または複数に記載の特徴をさらに有する、請求項38に記載のプログラム。
- 被験体における疾患の処置、モニタリングまたは診断のためのペプチドを特定するための方法をコンピュータに実行させるためのプログラムを格納したコンピュータ読み取り可能な記録媒体であって、該方法は、
A)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該被験体のRNAリードの情報および該被験体のMHC型の情報を入力するステップ;ならびに
B)該被験体の疾患組織に特異的な変異に関する情報、必要に応じて該mRNA配列情報、該MHC型の情報、および該疾患の情報に基づいて、該変異に関するエピトープを解析し、その結果を該疾患の処置、モニタリングまたは診断のためのペプチドとして出力するステップ
を包含する、
記録媒体。 - 請求項2~29のいずれか1項または複数に記載の特徴をさらに有する、請求項40に記載の記録媒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018505954A JP6710004B2 (ja) | 2016-03-15 | 2017-03-14 | 免疫療法のためのモニタリングまたは診断ならびに治療剤の設計 |
CN201780024830.XA CN109072227A (zh) | 2016-03-15 | 2017-03-14 | 用于免疫治疗的监测和诊断及治疗剂的设计 |
EP17766684.9A EP3431595A4 (en) | 2016-03-15 | 2017-03-14 | MONITORING AND DIAGNOSIS FOR IMMUNOTHERAPY AND DESIGN FOR THERAPEUTICS |
US16/085,455 US12065699B2 (en) | 2016-03-15 | 2017-03-14 | Monitoring and diagnosis for immunotherapy, and design for therapeutic agent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-050861 | 2016-03-15 | ||
JP2016050861 | 2016-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017159686A1 true WO2017159686A1 (ja) | 2017-09-21 |
Family
ID=59851584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/010218 WO2017159686A1 (ja) | 2016-03-15 | 2017-03-14 | 免疫療法のためのモニタリングまたは診断ならびに治療剤の設計 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12065699B2 (ja) |
EP (1) | EP3431595A4 (ja) |
JP (1) | JP6710004B2 (ja) |
CN (1) | CN109072227A (ja) |
WO (1) | WO2017159686A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020101037A1 (ja) * | 2018-11-16 | 2020-05-22 | 株式会社Tnpパートナーズ | オーダーメイド医療基幹システム |
CN112447263A (zh) * | 2020-11-22 | 2021-03-05 | 西安邮电大学 | 多任务高阶snp上位检测方法、系统、存储介质、设备 |
WO2022270631A1 (ja) * | 2021-06-25 | 2022-12-29 | Repertoire Genesis株式会社 | T細胞エピトープ配列を同定する方法およびその応用 |
WO2024034622A1 (ja) * | 2022-08-08 | 2024-02-15 | 北海道公立大学法人 札幌医科大学 | 対象由来のネオアンチゲンを選択するための方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11640859B2 (en) * | 2018-10-17 | 2023-05-02 | Tempus Labs, Inc. | Data based cancer research and treatment systems and methods |
US11705226B2 (en) * | 2019-09-19 | 2023-07-18 | Tempus Labs, Inc. | Data based cancer research and treatment systems and methods |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000506125A (ja) * | 1996-02-24 | 2000-05-23 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | 免疫調節のための医薬組成物 |
WO2014180490A1 (en) * | 2013-05-10 | 2014-11-13 | Biontech Ag | Predicting immunogenicity of t cell epitopes |
WO2015103037A2 (en) * | 2014-01-02 | 2015-07-09 | Memorial Sloan Kettering Cancer Center | Determinants of cancer response to immunotherapy |
JP2015533473A (ja) * | 2012-07-12 | 2015-11-26 | ペルシミューン,インコーポレイテッド | 個別のがんワクチン及び適応免疫細胞療法 |
JP2016501870A (ja) * | 2012-11-28 | 2016-01-21 | バイオエヌテック エールエヌアー ファーマシューティカルズ ゲーエムベーハーBiontech Rna Pharmaceuticals Gmbh | 癌のための個別化ワクチン |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UY24367A1 (es) | 1995-11-23 | 2000-10-31 | Boehringer Ingelheim Int | Vacunas contra tumores y procedimiento para su produccion |
LT2901341T (lt) * | 2012-09-28 | 2019-09-25 | The University Of Connecticut | Protekcinių vėžio epitopų identifikavimas, skirtas vėžio gydymui |
WO2015075939A1 (ja) * | 2013-11-21 | 2015-05-28 | Repertoire Genesis株式会社 | T細胞受容体およびb細胞受容体レパトアの解析システムならびにその治療および診断への利用 |
-
2017
- 2017-03-14 CN CN201780024830.XA patent/CN109072227A/zh active Pending
- 2017-03-14 JP JP2018505954A patent/JP6710004B2/ja active Active
- 2017-03-14 US US16/085,455 patent/US12065699B2/en active Active
- 2017-03-14 WO PCT/JP2017/010218 patent/WO2017159686A1/ja active Application Filing
- 2017-03-14 EP EP17766684.9A patent/EP3431595A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000506125A (ja) * | 1996-02-24 | 2000-05-23 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | 免疫調節のための医薬組成物 |
JP2015533473A (ja) * | 2012-07-12 | 2015-11-26 | ペルシミューン,インコーポレイテッド | 個別のがんワクチン及び適応免疫細胞療法 |
JP2016501870A (ja) * | 2012-11-28 | 2016-01-21 | バイオエヌテック エールエヌアー ファーマシューティカルズ ゲーエムベーハーBiontech Rna Pharmaceuticals Gmbh | 癌のための個別化ワクチン |
WO2014180490A1 (en) * | 2013-05-10 | 2014-11-13 | Biontech Ag | Predicting immunogenicity of t cell epitopes |
WO2015103037A2 (en) * | 2014-01-02 | 2015-07-09 | Memorial Sloan Kettering Cancer Center | Determinants of cancer response to immunotherapy |
Non-Patent Citations (25)
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020101037A1 (ja) * | 2018-11-16 | 2020-05-22 | 株式会社Tnpパートナーズ | オーダーメイド医療基幹システム |
CN112447263A (zh) * | 2020-11-22 | 2021-03-05 | 西安邮电大学 | 多任务高阶snp上位检测方法、系统、存储介质、设备 |
CN112447263B (zh) * | 2020-11-22 | 2023-12-26 | 西安邮电大学 | 多任务高阶snp上位检测方法、系统、存储介质、设备 |
WO2022270631A1 (ja) * | 2021-06-25 | 2022-12-29 | Repertoire Genesis株式会社 | T細胞エピトープ配列を同定する方法およびその応用 |
WO2024034622A1 (ja) * | 2022-08-08 | 2024-02-15 | 北海道公立大学法人 札幌医科大学 | 対象由来のネオアンチゲンを選択するための方法 |
Also Published As
Publication number | Publication date |
---|---|
US12065699B2 (en) | 2024-08-20 |
EP3431595A1 (en) | 2019-01-23 |
CN109072227A (zh) | 2018-12-21 |
US20190080044A1 (en) | 2019-03-14 |
JP6710004B2 (ja) | 2020-06-17 |
EP3431595A4 (en) | 2019-11-20 |
JPWO2017159686A1 (ja) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017159686A1 (ja) | 免疫療法のためのモニタリングまたは診断ならびに治療剤の設計 | |
Liu et al. | T cell receptor β repertoires as novel diagnostic markers for systemic lupus erythematosus and rheumatoid arthritis | |
Fasolino et al. | Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes | |
Spranger et al. | Density of immunogenic antigens does not explain the presence or absence of the T-cell–inflamed tumor microenvironment in melanoma | |
Gutierrez-Arcelus et al. | Autoimmune diseases—connecting risk alleles with molecular traits of the immune system | |
EP3572510B1 (en) | T cell receptor and b cell receptor repertoire analysis system, and use of same in treatment and diagnosis | |
Spanier et al. | Increased effector memory insulin-specific CD4+ T cells correlate with insulin autoantibodies in patients with recent-onset type 1 diabetes | |
Wong et al. | Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma | |
CN105451759A (zh) | 预测t细胞表位的免疫原性 | |
Lin et al. | Circulating CD8+ T-cell repertoires reveal the biological characteristics of tumors and clinical responses to chemotherapy in breast cancer patients | |
WO2017222056A1 (ja) | ワンステップ逆転写テンプレートスイッチpcrを利用したt細胞受容体およびb細胞受容体レパトア解析システム | |
US20230047716A1 (en) | Method and system for screening neoantigens, and uses thereof | |
Jameson-Lee et al. | In silico derivation of HLA-specific alloreactivity potential from whole exome sequencing of stem-cell transplant donors and recipients: understanding the quantitative immunobiology of allogeneic transplantation | |
Wang et al. | Chromosome Y–encoded antigens associate with acute graft-versus-host disease in sex-mismatched stem cell transplant | |
de Sousa et al. | Targeting neoepitopes to treat solid malignancies: immunosurgery | |
Ritari et al. | Computational analysis of HLA-presentation of Non-synonymous recipient mismatches indicates effect on the risk of chronic graft-vs.-host disease after allogeneic HSCT | |
Lehmann et al. | Discordance between the predicted versus the actually recognized CD8+ T cell epitopes of HCMV pp65 antigen and aleatory epitope dominance | |
Huuhtanen et al. | Single-cell analysis of immune recognition in chronic myeloid leukemia patients following tyrosine kinase inhibitor discontinuation | |
Tippalagama et al. | Antigen-specificity measurements are the key to understanding T cell responses | |
Li et al. | Neo-intline: int egrated pipe line enables neo antigen design through the in-silico presentation of T-cell epitope | |
WO2021077094A1 (en) | Discovering, validating, and personalizing transposable element cancer vaccines | |
Pienkowski et al. | ARDitox: platform for the prediction of TCRs potential off-target binding | |
CN113272419A (zh) | 制备治疗性t淋巴细胞的方法 | |
Foster et al. | Tumour-intrinsic features shape T-cell differentiation through myeloma disease evolution | |
US20240021274A1 (en) | Using neural networks to predict peptide immunogenicity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018505954 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017766684 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017766684 Country of ref document: EP Effective date: 20181015 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17766684 Country of ref document: EP Kind code of ref document: A1 |