WO2017159630A1 - Fluid spraying system - Google Patents

Fluid spraying system Download PDF

Info

Publication number
WO2017159630A1
WO2017159630A1 PCT/JP2017/010018 JP2017010018W WO2017159630A1 WO 2017159630 A1 WO2017159630 A1 WO 2017159630A1 JP 2017010018 W JP2017010018 W JP 2017010018W WO 2017159630 A1 WO2017159630 A1 WO 2017159630A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
fluid
compressed air
conductivity
pure water
Prior art date
Application number
PCT/JP2017/010018
Other languages
French (fr)
Japanese (ja)
Inventor
寧 森園
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2018505924A priority Critical patent/JP6696565B2/en
Publication of WO2017159630A1 publication Critical patent/WO2017159630A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles

Definitions

  • Embodiment of this invention is related with the fluid spraying system which sprays the fluid.
  • the sprayed pure water particles are charged and can be attracted to the spray nozzle body, the walls, pillars, pipes, equipment, people passing by the spray nozzle, or products by the Coulomb force. is there.
  • JP 2004-344821 A Japanese Patent No. 2921762 JP 2014-188284 A
  • An object of the present invention is to provide a fluid spraying system that prevents at least a specific portion from getting wet by spraying.
  • a fluid spray system adjusts the conductivity of water supplied from a compressed air supply source that supplies compressed air, a water supply source that supplies charged water, and the water supply source.
  • FIG. 1 is a configuration diagram showing the configuration of the fluid spray system according to the first embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the specific resistance of pure water and the amount of carbon dioxide dissolved according to the first embodiment.
  • FIG. 3 is a correspondence diagram showing the relationship between air and carbon dioxide gas according to the first embodiment.
  • FIG. 4 is a correspondence diagram for setting the controller according to the first embodiment.
  • FIG. 5 is a configuration diagram showing the configuration of the fluid spray system according to the second embodiment of the present invention.
  • FIG. 6 is a block diagram which shows the structure in the middle of spraying of the fluid spraying system which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a configuration diagram showing the configuration of the fluid spray system according to the first embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the specific resistance of pure water and the amount of carbon dioxide dissolved according to the first embodiment.
  • FIG. 3 is a correspondence diagram showing the relationship between air and carbon dioxide gas according
  • FIG. 7 is a configuration diagram showing the configuration of the circulation duct in the fluid spraying system according to the fourth embodiment of the present invention.
  • FIG. 8 is a configuration diagram illustrating the drip-proof effect of the support according to the fourth embodiment.
  • FIG. 9 is a configuration diagram illustrating a specific example of the configuration of the support according to the fourth embodiment.
  • FIG. 10 is a configuration diagram showing a configuration in the vicinity of the two-fluid nozzle according to the fourth embodiment.
  • FIG. 1 is a configuration diagram showing a configuration of a fluid spraying system 10 according to a first embodiment of the present invention.
  • symbol is attached
  • the fluid is pure water.
  • Pure water is obtained mainly by refining tap water.
  • pure water is made as follows.
  • RO water is made by removing impurities from tap water using a reverse osmosis membrane (RO (reverse osmosis) membrane).
  • RO reverse osmosis membrane
  • Deionized water is made by removing ion components and remaining fine impurities from this RO water using an ion exchange resin.
  • This deionized water becomes pure water.
  • the specific resistance of water increases as the purity increases.
  • the particles are easily charged when water is used as the particles. Specifically, when the specific resistance of water exceeds about 1 [M ⁇ ⁇ cm], charging occurs. Since the specific resistance of pure water produced as described above exceeds 1 [M ⁇ ⁇ cm], it is charged when sprayed.
  • the pure water 2 used in the fluid spraying system 10 may be purified by a method other than the above method as long as it is purified to increase the purity.
  • the pure water 2 may be RO water or deionized water that does not pass through RO water.
  • the fluid spraying system 10 includes a two-fluid nozzle 1, a pump unit 3, a material melting unit 4, a regulator 7, a material supply valve 14, a controller 15, and a material supply source 17.
  • the compressed air 6 is supplied to the two-fluid nozzle 1 via the regulator 7.
  • the air supply path 8 through which the compressed air 6 flows is provided so as to be supplied from the supply source of the compressed air 6 to the air supply port provided in the two-fluid nozzle 1 via the regulator 7.
  • the water supply path 5 through which the pure water 2 flows is provided so as to be supplied from the supply source of the pure water 2 to the water supply port provided in the two-fluid nozzle 1 through the pump unit 3 and the material dissolution unit 4 in order. It is done.
  • the two-fluid nozzle 1 is a nozzle that mixes liquid and gas and sprays the atomized fluid.
  • the liquid is pure water 2 and the gas is compressed air 6.
  • the pump unit 3 is a device for feeding the pure water 2 from the supply source of the pure water 2 to the two-fluid nozzle 1 through the material dissolution unit 4.
  • the regulator 7 is a device for sending the compressed air 6 into the two-fluid nozzle 1.
  • the material supply source 17 is a unit that stores the conductivity adjusting material.
  • the conductivity adjusting material is a material for dissolving in pure water 2 in order to increase the conductivity of pure water 2. It is desirable that the conductivity adjusting material does not affect the environment of the space sprayed from the two-fluid nozzle 1 as much as possible. However, the conductivity adjusting material may be any material as long as the sprayed space allows. For example, since carbon dioxide is a component contained in the air, even if sprayed, there is almost no influence on the environment. Hereinafter, the conductivity adjusting material will be described mainly as carbon dioxide gas.
  • the controller 15 outputs an instruction value for adjusting the opening degree of the material supply valve 14 to the material supply valve 14.
  • An instruction value is set in the controller 15 so that the conductivity of the pure water 2 becomes a target value (target conductivity).
  • the material supply valve 14 is a valve for adjusting the amount of carbon dioxide supplied from the material supply source 17 to the material dissolution unit 4.
  • the material supply valve 14 determines the opening degree according to the instruction value received from the controller 15. The larger the opening degree of the material supply valve 14, the more carbon dioxide gas is supplied to the material melting unit 4. As the amount of carbon dioxide supplied from the material supply valve 14 increases, the conductivity of the pure water 2 increases.
  • the material dissolution unit 4 is a unit that dissolves carbon dioxide gas supplied from the material supply source 17 in the pure water 2.
  • a hollow fiber membrane or ceramic is accommodated in the material melting unit 4.
  • the material melting unit 4 mixes carbon dioxide gas into the pure water 2.
  • the pure water 2 becomes the target conductivity.
  • the specific resistance of pure water 2 is set to 1.0 M ⁇ / cm or less as the target conductivity.
  • the material dissolution unit 4 dissolves carbon dioxide gas in the pure water 2 and supplies the pure water 2 that has reached the target conductivity to the two-fluid nozzle 1.
  • the two-fluid nozzle 1 mixes and sprays pure water 2 in which carbon dioxide gas supplied from the material melting unit 4 is dissolved and compressed air 6 supplied from the regulator 7. Thereby, the two-fluid nozzle 1 sprays the pure water 2 into fine particles.
  • the vertical axis represents specific resistance (conductivity), and the horizontal axis represents the amount of carbon dioxide dissolved.
  • the specific resistance of pure water 2 having a purity of 100% and not dissolving carbonic acid is about 18.2 M ⁇ / cm.
  • the target conductivity (specific resistance) of pure water 2 is 1.0 M ⁇ / cm, the target conductivity is lowered by dissolving 0.6 mg or more of carbon dioxide in 1 L of pure water.
  • this air contains 0.517 mg / L of carbon dioxide.
  • the concentration of carbon dioxide is known, the weight of air containing the necessary carbon dioxide can be obtained.
  • the amount of carbon dioxide injected or the required amount of air dissolved in the pure water 2 is obtained with respect to the target conductivity of the pure water 2.
  • the target conductivity is 1.0 M ⁇ / cm
  • the amount of carbon dioxide injected into 1 L of pure water 2 is 0.6 mg
  • the required amount of air for 1 L of pure water 2 is 1.2 L. is there.
  • the target conductivity is 0.6 M ⁇ / cm
  • the amount of carbon dioxide injected for 1 L of pure water 2 is 2 mg
  • the required amount of air for 1 L of pure water 2 is 3.9 L.
  • the instruction value for determining the opening degree of the material supply valve 14 is obtained based on the carbon dioxide injection amount or the required air amount thus obtained.
  • the indicated value obtained in this way is set in the controller 15.
  • the sprayed pure water 2 from being charged by dissolving the conductivity adjusting material in the pure water 2.
  • the spray nozzle body, walls around the spray nozzle, pillars, piping, equipment, people passing by, or products are not wetted by the spray from the fluid spray system 10. Therefore, it is not necessary to drip-proof or waterproof these objects.
  • FIG. 5 is a configuration diagram showing a configuration of a fluid spray system 10A according to the second embodiment of the present invention.
  • the fluid spraying system 10A is the fluid spraying system 10 according to the first embodiment shown in FIG. 1 except that the controller 15 is replaced with the controller 15A and a conductivity meter 16 is added.
  • the conductivity meter 16 is provided in the water supply path 5 that connects the two-fluid nozzle 1 and the material dissolution unit 4.
  • the conductivity meter 16 measures the conductivity of the pure water 2 flowing through the water supply path 5.
  • the conductivity meter 16 transmits the measured conductivity to the controller 15A.
  • the controller 15 ⁇ / b> A determines an instruction value for determining the opening degree of the material supply valve 14 based on the measurement result by the conductivity meter 16.
  • the controller 15A may correct the set instruction value or may newly calculate the instruction value.
  • the controller 15A outputs the determined instruction value to the material supply valve 14.
  • the conductivity of the pure water 2 can be controlled by providing the conductivity meter 16 and measuring the conductivity of the pure water 2. Thereby, it can prevent that the electrical conductivity of the pure water 2 is too low. Moreover, when the electrical conductivity of the pure water 2 is high, excessive supply of carbon dioxide can be prevented by reducing the opening of the material supply valve 14 to suppress the supply of carbon dioxide.
  • FIG. 6 is a configuration diagram showing a configuration during spraying of the fluid spraying system 10B according to the third embodiment of the present invention. Here, parts different from those of the first embodiment will be mainly described.
  • the fluid spraying system 10B includes a two-fluid nozzle 1, a pressure tank 31, a supply tank 32, a water supply valve 33, six check valves 34, 35, 36, 37, 38, 39, a water electropneumatic regulator 40, and air.
  • An electropneumatic regulator 41 and a three-way valve 42 are provided. These devices are connected by piping such as the water supply path 5 or the air supply path 8.
  • the electropneumatic regulator 41 for air is provided in the air supply path 8 between the supply source of the compressed air 6 and the two-fluid nozzle 1.
  • the electropneumatic regulator 41 for air makes the pressure of the compressed air 6 supplied to the two-fluid nozzle 1 a desired value.
  • the water electropneumatic regulator 40 is provided in the air supply path 8 between the supply source of the compressed air 6 and the pressure tank 31.
  • the water electropneumatic regulator 40 controls the pressure of the compressed air 6 supplied to the pressure tank 31.
  • the water electropneumatic regulator 40 sends the compressed air 6 into the pressure tank 31 at a pressure of 400 kPa.
  • the water electro-pneumatic regulator 40 gives an open command or a close command to an exhaust valve provided in the water exhaust system 9.
  • the three-way valve 42 is provided in the air supply path 8 between the supply source of the compressed air 6 and the supply tank 32.
  • the compressed air 6 is fed into the supply tank 32 by the three-way valve 42.
  • the check valve 37 is provided between the water electropneumatic regulator 40 and the pressure tank 31.
  • the check valve 38 is provided so as to connect both ends of the check valve 37 and the pressure tank 31.
  • the check valve 35 is provided between the three-way valve 42 and the supply tank 32.
  • the check valve 36 is provided so as to connect both ends of the check valve 35 and the supply tank 32.
  • a check valve 39 is provided in the water supply path 5 between the pressure tank 31 and the supply tank 32.
  • a high liquid level sensor H and a low liquid level sensor L are provided in each of the pressure tank 31 and the supply tank 32. By controlling based on these sensors L and H, the following operation is performed.
  • the pure water in the supply tank 32 decreases, the pure water 2 is automatically replenished to the supply tank 32.
  • the supply of the pure water 2 is automatically stopped.
  • the pure water 2 in the pressure tank 31 is supplied to the two-fluid nozzle 1 during spraying.
  • the pure water 2 in the pressure tank 31 decreases, the pure water 2 in the supply tank 32 is automatically transferred to the pressure tank 31.
  • Compressed air 6 is supplied from the lower side of the pressure tank 31 through a water electropneumatic regulator 40 and a check valve 38 from the supply source of the compressed air 6.
  • the pure water 2 is sprayed from the two-fluid nozzle 1 to the inside of the pressure tank 31 as much as the volume of the compressed air 6 increases.
  • the air passes through the pure water 2 inside the pressure tank 31 from the lower side to the upper side.
  • the air carbon dioxide gas
  • Pure water 2 is supplied to the pressure tank 31 from the supply tank 32 via the check valve 39.
  • Compressed air 6 is supplied from the lower side of the supply tank 32 through the three-way valve 42 and the check valve 36 from the supply source of the compressed air 6.
  • the pure water 2 is transferred to the pressure tank 31 by an amount corresponding to the increase in volume of the compressed air 6 in the supply tank 32.
  • the air passes through the pure water 2 inside the supply tank 32 from the lower side to the upper side.
  • the pure water 2 in the supply tank 32 is dissolved in the pure water 2.
  • Pure water 2 is supplied to the supply tank 32 from a supply source of pure water 2 through a water supply valve 33 and a check valve 34 in order.
  • the pure water 2 supplied from the water supply valve 33 has a conductivity (specific resistance) that is easily charged to 1.0 M ⁇ / cm or more.
  • the electrical conductivity of the pure water 2 is increased by making the pure water 2 come into contact with the air in the pressure tank 31 and the supply tank 32. Thereby, the pure water 2 supplied from the pressure tank 31 to the two-fluid nozzle 1 has a conductivity that is less than 1.0 M ⁇ / cm and is difficult to be charged. If the conductivity of the pure water 2 is sufficiently increased, the air may be dissolved in the pure water 2 by either the pressure tank 31 or the supply tank 32.
  • the conductivity of the sprayed pure water 2 can be increased without using a conductivity adjusting material such as carbon dioxide. Thereby, the effect similar to 1st Embodiment can be acquired.
  • FIG. 7 is a configuration diagram showing the configuration of the circulation duct 20 in the fluid spray system according to the fourth embodiment of the present invention.
  • the basic configuration of the fluid spray system according to the present embodiment is obtained by removing the configuration in which the conductivity adjusting material is mixed with the pure water 2 in the fluid spray system 10 to 10B according to any one of the first to third embodiments. It is the same. Therefore, in this embodiment, since the conductivity adjusting material is sprayed without being mixed with the pure water 2, the sprayed pure water particles (spray particles) have a property of being charged.
  • the circulation duct 20 is a duct that is sprayed from the two-fluid nozzle 1 to humidify the inflowing air and send out the humidified air.
  • the air flow Sa passing through the circulation duct 20 enters the horizontal direction from the side where the two-fluid nozzle 1 is provided, and exits in the vertical upward direction.
  • the circulation duct 20 is made of metal.
  • the circulation duct 20 is supported by a metal column 21 provided inside. For example, the height of the column 21 is about 3 meters.
  • FIG. 8 is a configuration diagram showing the drip-proof effect of the support column 21.
  • the outer periphery of the column 21 is covered with the insulating member 60 so as to make a complete round.
  • the insulating member 60 is a member that performs electrical insulation.
  • the insulating member 60 is made of polypropylene, fluorine resin, vinyl chloride, polyethylene, or the like.
  • the metal column 21 draws the charged spray particles.
  • the insulating member 60 covering the support column 21 is charged to the same polarity (positive electrode) as the charged spray particles. Therefore, even if the spray particles come on the support column 21 while riding on the air flow Sa, the spray particle flow Sg is repelled and separated by the Coulomb force. Thereby, wetting of the support column 21 by spray particles is suppressed.
  • the insulating member 60 has such a length that the outer periphery of the support column 21 is more than one turn and an overlapping portion appears.
  • FIG. 9 is a configuration diagram showing a specific example of the configuration of the column 21.
  • the insulating member 60 is a polypropylene film.
  • the thickness of the insulating member 60 is preferably 0.2 mm or more, but at least 0.1 mm or more is necessary.
  • the insulating member 60 is wound about 1.5 times around the outer periphery of the column 21. In this manner, the insulating member 60 is fixed by the insulation lock 61 in a state where the insulating member 60 is wound around the column 21.
  • the inner wall surface and floor surface of the circulation duct 20 are pasted without gaps so as to be covered with an insulating member 60 such as a polypropylene film in the same manner as the support column 21.
  • FIG. 10 is a configuration diagram showing a configuration in the vicinity of the two-fluid nozzle 1 according to the present embodiment.
  • a water supply path 5 and an air supply path 8 are connected to the two-fluid nozzle 1.
  • the material of the water supply path 5 is an insulating member.
  • the material of the air supply path 8 is made of metal. Therefore, the air supply path 8 needs to be covered with an insulating member, and the water supply path 5 does not need to be covered with an insulating member.
  • the insulating member 62 is, for example, a polypropylene heat-shrinkable tube.
  • the insulating member 62 is put on the air supply path 8 without being thermally contracted. At this time, it covers so that the nipple for attaching the air supply path 8 to the two fluid nozzle 1 may also be covered.
  • the insulating member 62 need not cover the entire air supply path 8 as long as it covers only the portion of the air supply path 8 close to the two-fluid nozzle 1.
  • an insulating member a part of the configuration of the fluid spray system that is not to be wetted is covered with an insulating member.
  • an object that is not sprayed in the space to be sprayed by the fluid spraying system is covered with an insulating member.
  • an insulating member For example, in a room where humidification is performed by a fluid spraying system, equipment that is sensitive to water is covered with an insulating member.
  • the pure water particles sprayed from the two-fluid nozzle 1 release electric charges while floating in the air, and are not charged. Therefore, it is not necessary to cover the part away from the two-fluid nozzle 1 by a certain amount with the insulating member.
  • the charged spray particles sprayed from the two-fluid nozzle 1 are repelled by the Coulomb force and suppressed from adhering to the drip-proof object. be able to.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)
  • Air Humidification (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A fluid spraying system (10) is provided with: a compressed air supply source for supplying compressed air (6); a water supply source for supplying electrically charged water (2); conductivity adjusting means (14, 15) for adjusting the conductivity of the water (2) supplied from the water supply source; and a two-fluid nozzle (1) for spraying a fluid atomized by mixing the water (2) adjusted by the conductivity adjusting means (14, 15) and the compressed air (6) supplied from the compressed air supply source.

Description

流体噴霧システムFluid spray system
 本発明の実施形態は、流体を噴霧する流体噴霧システムに関する。 Embodiment of this invention is related with the fluid spraying system which sprays the fluid.
 従来、噴霧ノズルにより純水を粒子にして室内空間に供給することにより、室内空間を加湿する加湿システムがある。 Conventionally, there is a humidification system that humidifies an indoor space by supplying pure water into the indoor space by using a spray nozzle.
 加湿システムでは、噴霧した純水粒子が帯電し、噴霧ノズル本体、噴霧ノズル周囲にある壁、柱、配管、機器、付近を通る人、又は、製品に、クーロン力で引き寄せられて付着することがある。 In the humidification system, the sprayed pure water particles are charged and can be attracted to the spray nozzle body, the walls, pillars, pipes, equipment, people passing by the spray nozzle, or products by the Coulomb force. is there.
 これにより、水濡れ又は静電気による機器の故障、感電、若しくは、空中放電の問題を引き起こす為、狭くて障害物が多い場所、電子機器の有る場所、人が通る場所、濡れの許されない場所、又は、防爆仕様の要求される場所で、純水を噴霧することが困難である。 This can cause equipment failure due to water or static electricity, electric shock, or air discharge problems, so it is narrow and has many obstacles, places with electronic equipment, places where people pass, places where wetting is not allowed, or It is difficult to spray pure water in a place where explosion-proof specifications are required.
特開2004-344821号公報JP 2004-344821 A 特許第2921762号公報Japanese Patent No. 2921762 特開2014-188284号公報JP 2014-188284 A
 本発明の目的は、噴霧することにより、少なくとも特定の箇所を濡らさないようにする流体噴霧システムを提供することにある。 An object of the present invention is to provide a fluid spraying system that prevents at least a specific portion from getting wet by spraying.
 本発明の観点に従った流体噴霧システムは、圧縮空気を供給する圧縮空気供給源と、帯電する水を供給する水供給源と、前記水供給源から供給される前記水の導電率を調整する導電率調整手段と、前記導電率調整手段により調整された前記水と前記圧縮空気供給源から供給された前記圧縮空気を混合させて、霧化した流体を噴霧する二流体ノズルとを備える。 A fluid spray system according to an aspect of the present invention adjusts the conductivity of water supplied from a compressed air supply source that supplies compressed air, a water supply source that supplies charged water, and the water supply source. A conductivity adjusting unit; and a two-fluid nozzle that mixes the water adjusted by the conductivity adjusting unit and the compressed air supplied from the compressed air supply source to spray the atomized fluid.
図1は、本発明の第1の実施形態に係る流体噴霧システムの構成を示す構成図である。FIG. 1 is a configuration diagram showing the configuration of the fluid spray system according to the first embodiment of the present invention. 図2は、第1の実施形態に係る純水の比抵抗と炭酸ガスの溶解量との関係を示すグラフ図である。FIG. 2 is a graph showing the relationship between the specific resistance of pure water and the amount of carbon dioxide dissolved according to the first embodiment. 図3は、第1の実施形態に係る空気と炭酸ガスとの関係を示す対応図である。FIG. 3 is a correspondence diagram showing the relationship between air and carbon dioxide gas according to the first embodiment. 図4は、第1の実施形態に係る調節計を設定するための対応図である。FIG. 4 is a correspondence diagram for setting the controller according to the first embodiment. 図5は、本発明の第2の実施形態に係る流体噴霧システムの構成を示す構成図である。FIG. 5 is a configuration diagram showing the configuration of the fluid spray system according to the second embodiment of the present invention. 図6は、本発明の第3の実施形態に係る流体噴霧システムの噴霧中の構成を示す構成図である。FIG. 6: is a block diagram which shows the structure in the middle of spraying of the fluid spraying system which concerns on the 3rd Embodiment of this invention. 図7は、本発明の第4の実施形態に係る流体噴霧システムにおける循環ダクトの構成を示す構成図である。FIG. 7 is a configuration diagram showing the configuration of the circulation duct in the fluid spraying system according to the fourth embodiment of the present invention. 図8は、第4の実施形態に係る支柱の防滴効果を示す構成図である。FIG. 8 is a configuration diagram illustrating the drip-proof effect of the support according to the fourth embodiment. 図9は、第4の実施形態に係る支柱の構成の具体例を示す構成図である。FIG. 9 is a configuration diagram illustrating a specific example of the configuration of the support according to the fourth embodiment. 図10は、第4の実施形態に係る二流体ノズル付近の構成を示す構成図である。FIG. 10 is a configuration diagram showing a configuration in the vicinity of the two-fluid nozzle according to the fourth embodiment.
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る流体噴霧システム10の構成を示す構成図である。なお、図面における同一部分には同一符号を付してその詳しい説明を省略し、異なる部分について主に述べる。
(First embodiment)
FIG. 1 is a configuration diagram showing a configuration of a fluid spraying system 10 according to a first embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part in drawing, the detailed description is abbreviate | omitted, and a different part is mainly described.
 初めに、流体噴霧システム10により噴霧する流体について説明する。 First, the fluid sprayed by the fluid spraying system 10 will be described.
 例えば、流体は、純水である。純水は、主に水道水を精製することにより得られる。例えば、純水は、次のように作る。 For example, the fluid is pure water. Pure water is obtained mainly by refining tap water. For example, pure water is made as follows.
 まず、逆浸透膜(RO(reverse osmosis)膜)を用いて、水道水から不純物を取り除くことで、RO水を作る。このRO水から、イオン交換樹脂を用いて、イオン成分及び残存する微細な不純物を取り除くことで、脱イオン水を作る。この脱イオン水が純水となる。一般に、水は、純度が高いほど比抵抗が高くなる。水の比抵抗が高くなると、水を粒子にした場合に、粒子が帯電し易くなる。具体的には、水の比抵抗が約1[MΩ・cm]を超えると、帯電するようになる。上述のように作られた純水の比抵抗は、1[MΩ・cm]を超えるため、噴霧すると帯電する。 First, RO water is made by removing impurities from tap water using a reverse osmosis membrane (RO (reverse osmosis) membrane). Deionized water is made by removing ion components and remaining fine impurities from this RO water using an ion exchange resin. This deionized water becomes pure water. In general, the specific resistance of water increases as the purity increases. When the specific resistance of water is increased, the particles are easily charged when water is used as the particles. Specifically, when the specific resistance of water exceeds about 1 [MΩ · cm], charging occurs. Since the specific resistance of pure water produced as described above exceeds 1 [MΩ · cm], it is charged when sprayed.
 なお、流体噴霧システム10で用いる純水2は、純度を高くするために精製された水であれば、上述の方法以外で精製されたものでもよい。例えば、純水2は、RO水、又は、RO水を介さない脱イオン水でもよい。 Note that the pure water 2 used in the fluid spraying system 10 may be purified by a method other than the above method as long as it is purified to increase the purity. For example, the pure water 2 may be RO water or deionized water that does not pass through RO water.
 流体噴霧システム10は、加湿をするのであれば、冷却又は加熱などの温度調節を同時に行ってもよい。流体噴霧システム10は、二流体ノズル1、ポンプユニット3、材料溶解ユニット4、レギュレータ7、材料供給弁14、調節計15、及び、材料供給源17を備える。圧縮空気6は、レギュレータ7を介して、二流体ノズル1に供給される。 If the fluid spraying system 10 is humidified, temperature adjustment such as cooling or heating may be performed simultaneously. The fluid spraying system 10 includes a two-fluid nozzle 1, a pump unit 3, a material melting unit 4, a regulator 7, a material supply valve 14, a controller 15, and a material supply source 17. The compressed air 6 is supplied to the two-fluid nozzle 1 via the regulator 7.
 圧縮空気6が流れる空気供給路8は、圧縮空気6の供給源からレギュレータ7を介して二流体ノズル1に設けられた空気供給口に供給されるように設けられる。純水2が流れる水供給路5は、純水2の供給源からポンプユニット3及び材料溶解ユニット4を順次に介して、二流体ノズル1に設けられた水供給口に供給されるように設けられる。 The air supply path 8 through which the compressed air 6 flows is provided so as to be supplied from the supply source of the compressed air 6 to the air supply port provided in the two-fluid nozzle 1 via the regulator 7. The water supply path 5 through which the pure water 2 flows is provided so as to be supplied from the supply source of the pure water 2 to the water supply port provided in the two-fluid nozzle 1 through the pump unit 3 and the material dissolution unit 4 in order. It is done.
 二流体ノズル1は、液体と気体を混合させて、霧化された流体を噴霧するノズルである。本実施形態では、液体は純水2であり、気体は圧縮空気6である。 The two-fluid nozzle 1 is a nozzle that mixes liquid and gas and sprays the atomized fluid. In this embodiment, the liquid is pure water 2 and the gas is compressed air 6.
 ポンプユニット3は、純水2の供給源から材料溶解ユニット4を介して、二流体ノズル1に純水2を送り込むための機器である。 The pump unit 3 is a device for feeding the pure water 2 from the supply source of the pure water 2 to the two-fluid nozzle 1 through the material dissolution unit 4.
 レギュレータ7は、圧縮空気6を二流体ノズル1に送り込むための機器である。 The regulator 7 is a device for sending the compressed air 6 into the two-fluid nozzle 1.
 材料供給源17は、導電率調整材料を蓄えるユニットである。導電率調整材料は、純水2の導電率を高くするために、純水2に溶解させるための材料である。導電率調整材料は、二流体ノズル1から噴霧された空間の環境になるべく影響を与えないものが望ましい。但し、噴霧される空間が許容するのであれば、導電率調整材料は、どのようなものでもよい。例えば、炭酸ガスは、空気中に含まれる成分であるため、噴霧しても環境への影響はほぼ無い。以降では、導電率調整材料は、主に炭酸ガスとして説明する。 The material supply source 17 is a unit that stores the conductivity adjusting material. The conductivity adjusting material is a material for dissolving in pure water 2 in order to increase the conductivity of pure water 2. It is desirable that the conductivity adjusting material does not affect the environment of the space sprayed from the two-fluid nozzle 1 as much as possible. However, the conductivity adjusting material may be any material as long as the sprayed space allows. For example, since carbon dioxide is a component contained in the air, even if sprayed, there is almost no influence on the environment. Hereinafter, the conductivity adjusting material will be described mainly as carbon dioxide gas.
 調節計15は、材料供給弁14の開度を調節するための指示値を材料供給弁14に出力する。調節計15には、純水2の導電率が目標とする値(目標導電率)になるように、指示値が設定される。 The controller 15 outputs an instruction value for adjusting the opening degree of the material supply valve 14 to the material supply valve 14. An instruction value is set in the controller 15 so that the conductivity of the pure water 2 becomes a target value (target conductivity).
 材料供給弁14は、材料供給源17から材料溶解ユニット4に供給する炭酸ガスの量を調節するための弁である。材料供給弁14は、調節計15から受信した指示値により、開度を決定する。材料供給弁14の開度が大きいほど、材料溶解ユニット4に供給される炭酸ガスの量は多くなる。材料供給弁14から供給する炭酸ガスの量が多くなるほど、純水2の導電率は高くなる。 The material supply valve 14 is a valve for adjusting the amount of carbon dioxide supplied from the material supply source 17 to the material dissolution unit 4. The material supply valve 14 determines the opening degree according to the instruction value received from the controller 15. The larger the opening degree of the material supply valve 14, the more carbon dioxide gas is supplied to the material melting unit 4. As the amount of carbon dioxide supplied from the material supply valve 14 increases, the conductivity of the pure water 2 increases.
 材料溶解ユニット4は、材料供給源17から供給される炭酸ガスを純水2に溶解させるユニットである。材料溶解ユニット4の内部には、例えば中空糸膜又はセラミックが収納されている。材料溶解ユニット4は、純水2に炭酸ガスを混入する。炭酸ガスが純水2に溶解することで、純水2が目標導電率になる。例えば、目標導電率として、純水2の比抵抗を1.0MΩ/cm以下にする。材料溶解ユニット4は、炭酸ガスを純水2に溶解させ、目標導電率に達した純水2を二流体ノズル1に供給する。 The material dissolution unit 4 is a unit that dissolves carbon dioxide gas supplied from the material supply source 17 in the pure water 2. For example, a hollow fiber membrane or ceramic is accommodated in the material melting unit 4. The material melting unit 4 mixes carbon dioxide gas into the pure water 2. By dissolving the carbon dioxide gas in the pure water 2, the pure water 2 becomes the target conductivity. For example, the specific resistance of pure water 2 is set to 1.0 MΩ / cm or less as the target conductivity. The material dissolution unit 4 dissolves carbon dioxide gas in the pure water 2 and supplies the pure water 2 that has reached the target conductivity to the two-fluid nozzle 1.
 二流体ノズル1は、材料溶解ユニット4から供給される炭酸ガスが溶解した純水2とレギュレータ7から供給される圧縮空気6を混合して噴霧する。これにより、二流体ノズル1は、純水2を微細な粒子にして噴霧する。 The two-fluid nozzle 1 mixes and sprays pure water 2 in which carbon dioxide gas supplied from the material melting unit 4 is dissolved and compressed air 6 supplied from the regulator 7. Thereby, the two-fluid nozzle 1 sprays the pure water 2 into fine particles.
 図2を参照して、純水2の導電率と炭酸ガスの溶解量との関係について説明する。図2において、縦軸は比抵抗(導電率)を示し、横軸は炭酸ガスの溶解量を示す。 Referring to FIG. 2, the relationship between the conductivity of pure water 2 and the amount of carbon dioxide dissolved will be described. In FIG. 2, the vertical axis represents specific resistance (conductivity), and the horizontal axis represents the amount of carbon dioxide dissolved.
 純度が100%で、炭酸が溶解していない純水2の比抵抗は、約18.2MΩ/cmである。純水2の目標導電率(比抵抗)を1.0MΩ/cmとした場合、1Lの純水に0.6mg以上の炭酸ガスを溶解させることで目標導電率まで下がる。 The specific resistance of pure water 2 having a purity of 100% and not dissolving carbonic acid is about 18.2 MΩ / cm. When the target conductivity (specific resistance) of pure water 2 is 1.0 MΩ / cm, the target conductivity is lowered by dissolving 0.6 mg or more of carbon dioxide in 1 L of pure water.
 図3を参照して、空気中の炭酸ガスを純水2に溶解させる場合について説明する。この場合、材料供給源17には、空気が蓄えられる。 Referring to FIG. 3, the case where carbon dioxide in the air is dissolved in pure water 2 will be described. In this case, air is stored in the material supply source 17.
 重量が1293mg/Lで、炭酸ガス濃度が400ppmの空気の場合、この空気には、0.517mg/Lの炭酸ガスが含まれる。このように、炭酸ガスの濃度が分かれば、必要な炭酸ガスを含む空気重量が求まる。 In the case of air having a weight of 1293 mg / L and a carbon dioxide concentration of 400 ppm, this air contains 0.517 mg / L of carbon dioxide. Thus, if the concentration of carbon dioxide is known, the weight of air containing the necessary carbon dioxide can be obtained.
 図4を参照して、調節計15の設定方法について説明する。 Referring to FIG. 4, the setting method of the controller 15 will be described.
 調節計15を設定するには、純水2の目標導電率に対して、純水2に溶解させる炭酸ガス注入量又は必要な空気量を求める。例えば、図4では、目標導電率が1.0MΩ/cmの場合、1Lの純水2に対する炭酸ガス注入量は0.6mgであり、1Lの純水2に対する必要な空気量は1.2Lである。目標導電率が0.6MΩ/cmの場合、1Lの純水2に対する炭酸ガス注入量は2mgであり、1Lの純水2に対する必要な空気量は3.9Lである。 In order to set the controller 15, the amount of carbon dioxide injected or the required amount of air dissolved in the pure water 2 is obtained with respect to the target conductivity of the pure water 2. For example, in FIG. 4, when the target conductivity is 1.0 MΩ / cm, the amount of carbon dioxide injected into 1 L of pure water 2 is 0.6 mg, and the required amount of air for 1 L of pure water 2 is 1.2 L. is there. When the target conductivity is 0.6 MΩ / cm, the amount of carbon dioxide injected for 1 L of pure water 2 is 2 mg, and the required amount of air for 1 L of pure water 2 is 3.9 L.
 このように求めた炭酸ガス注入量又は必要な空気量に基づいて、材料供給弁14の開度を決定するための指示値を求める。このように求めた指示値が調節計15に設定される。 The instruction value for determining the opening degree of the material supply valve 14 is obtained based on the carbon dioxide injection amount or the required air amount thus obtained. The indicated value obtained in this way is set in the controller 15.
 本実施形態によれば、純水2に導電率調整材料を溶解させることで、噴霧された純水2を帯電させないようにすることができる。これにより、流体噴霧システム10により噴霧された純水2の粒子で、あらゆる物を濡らさないようにすることができる。例えば、噴霧ノズル本体、噴霧ノズル周囲にある壁、柱、配管、機器、付近を通る人、又は、製品などを、流体噴霧システム10による噴霧で濡らすことがない。したがって、これらの物を防滴加工又は防水加工する必要はない。 According to this embodiment, it is possible to prevent the sprayed pure water 2 from being charged by dissolving the conductivity adjusting material in the pure water 2. Thereby, it is possible to prevent all objects from being wetted by the particles of the pure water 2 sprayed by the fluid spraying system 10. For example, the spray nozzle body, walls around the spray nozzle, pillars, piping, equipment, people passing by, or products are not wetted by the spray from the fluid spray system 10. Therefore, it is not necessary to drip-proof or waterproof these objects.
(第2の実施形態)
 図5は、本発明の第2の実施形態に係る流体噴霧システム10Aの構成を示す構成図である。
(Second Embodiment)
FIG. 5 is a configuration diagram showing a configuration of a fluid spray system 10A according to the second embodiment of the present invention.
 流体噴霧システム10Aは、図1に示す第1の実施形態に係る流体噴霧システム10において、調節計15を調節計15Aに代え、導電率計16を追加したものである。 The fluid spraying system 10A is the fluid spraying system 10 according to the first embodiment shown in FIG. 1 except that the controller 15 is replaced with the controller 15A and a conductivity meter 16 is added.
 導電率計16は、二流体ノズル1と材料溶解ユニット4とを接続する水供給路5に設けられる。導電率計16は、水供給路5に流れる純水2の導電率を測定する。導電率計16は、測定した導電率を調節計15Aに送信する。 The conductivity meter 16 is provided in the water supply path 5 that connects the two-fluid nozzle 1 and the material dissolution unit 4. The conductivity meter 16 measures the conductivity of the pure water 2 flowing through the water supply path 5. The conductivity meter 16 transmits the measured conductivity to the controller 15A.
 調節計15Aは、導電率計16による測定結果に基づいて、材料供給弁14の開度を決定する指示値を決定する。調節計15Aは、設定された指示値を修正してもよいし、新たに指示値を計算してもよい。調節計15Aは、決定した指示値を材料供給弁14に出力する。 The controller 15 </ b> A determines an instruction value for determining the opening degree of the material supply valve 14 based on the measurement result by the conductivity meter 16. The controller 15A may correct the set instruction value or may newly calculate the instruction value. The controller 15A outputs the determined instruction value to the material supply valve 14.
 本実施形態によれば、第1の実施形態による作用効果に加え、以下の作用効果を得ることができる。導電率計16を設けて、純水2の導電率を測定することで、純水2の導電率を制御することができる。これにより、純水2の導電率が低く過ぎることを防止することができる。また、純水2の導電率が高い場合、材料供給弁14の開度を低くして、炭酸ガスの供給を抑えることで、炭酸ガスの余剰な供給を防止することができる。 According to the present embodiment, in addition to the functions and effects of the first embodiment, the following functions and effects can be obtained. The conductivity of the pure water 2 can be controlled by providing the conductivity meter 16 and measuring the conductivity of the pure water 2. Thereby, it can prevent that the electrical conductivity of the pure water 2 is too low. Moreover, when the electrical conductivity of the pure water 2 is high, excessive supply of carbon dioxide can be prevented by reducing the opening of the material supply valve 14 to suppress the supply of carbon dioxide.
(第3の実施形態)
 図6は、本発明の第3の実施形態に係る流体噴霧システム10Bの噴霧中の構成を示す構成図である。ここでは、第1の実施形態と異なる部分について主に説明する。
(Third embodiment)
FIG. 6 is a configuration diagram showing a configuration during spraying of the fluid spraying system 10B according to the third embodiment of the present invention. Here, parts different from those of the first embodiment will be mainly described.
 流体噴霧システム10Bは、二流体ノズル1、圧力タンク31、供給タンク32、水供給弁33、6つの逆止弁34,35,36,37,38,39、水用電空レギュレータ40、空気用電空レギュレータ41、及び、三方弁42を備える。これらの機器は、水供給路5又は空気供給路8などの配管で接続されている。 The fluid spraying system 10B includes a two-fluid nozzle 1, a pressure tank 31, a supply tank 32, a water supply valve 33, six check valves 34, 35, 36, 37, 38, 39, a water electropneumatic regulator 40, and air. An electropneumatic regulator 41 and a three-way valve 42 are provided. These devices are connected by piping such as the water supply path 5 or the air supply path 8.
 空気用電空レギュレータ41は、圧縮空気6の供給源と二流体ノズル1との間の空気供給路8に設けられている。空気用電空レギュレータ41は、二流体ノズル1に供給される圧縮空気6の圧力を所望の値にする。 The electropneumatic regulator 41 for air is provided in the air supply path 8 between the supply source of the compressed air 6 and the two-fluid nozzle 1. The electropneumatic regulator 41 for air makes the pressure of the compressed air 6 supplied to the two-fluid nozzle 1 a desired value.
 水用電空レギュレータ40は、圧縮空気6の供給源と圧力タンク31との間の空気供給路8に設けられている。水用電空レギュレータ40は、圧力タンク31に供給する圧縮空気6の圧力を制御する。例えば、水用電空レギュレータ40は、400kPaの圧力で、圧縮空気6を圧力タンク31に送り込む。また、水用電空レギュレータ40は、水排気系9に設けられた排気弁に開放指令又は閉路指令を与える。 The water electropneumatic regulator 40 is provided in the air supply path 8 between the supply source of the compressed air 6 and the pressure tank 31. The water electropneumatic regulator 40 controls the pressure of the compressed air 6 supplied to the pressure tank 31. For example, the water electropneumatic regulator 40 sends the compressed air 6 into the pressure tank 31 at a pressure of 400 kPa. Further, the water electro-pneumatic regulator 40 gives an open command or a close command to an exhaust valve provided in the water exhaust system 9.
 三方弁42は、圧縮空気6の供給源と供給タンク32との間の空気供給路8に設けられている。三方弁42により、供給タンク32に圧縮空気6が送り込まれる。 The three-way valve 42 is provided in the air supply path 8 between the supply source of the compressed air 6 and the supply tank 32. The compressed air 6 is fed into the supply tank 32 by the three-way valve 42.
 逆止弁37は、水用電空レギュレータ40と圧力タンク31との間に設けられている。逆止弁38は、逆止弁37及び圧力タンク31の両端を接続するように設けられている。逆止弁35は、三方弁42と供給タンク32との間に設けられている。逆止弁36は、逆止弁35及び供給タンク32との両端を接続するように設けられている。圧力タンク31と供給タンク32との間の水供給路5には逆止弁39が設けられている。 The check valve 37 is provided between the water electropneumatic regulator 40 and the pressure tank 31. The check valve 38 is provided so as to connect both ends of the check valve 37 and the pressure tank 31. The check valve 35 is provided between the three-way valve 42 and the supply tank 32. The check valve 36 is provided so as to connect both ends of the check valve 35 and the supply tank 32. A check valve 39 is provided in the water supply path 5 between the pressure tank 31 and the supply tank 32.
 圧力タンク31及び供給タンク32のそれぞれの内部には、高位液面センサHと低位液面センサLが設けられている。これらのセンサL,Hに基づいて制御することで、次のような動作が行われる。供給タンク32の純水が少なくなると、供給タンク32に純水2が自動的に補給される。供給タンク32の純水2が満タンになると、純水2の供給が自動的に停止される。圧力タンク31の純水2は、噴霧時に、二流体ノズル1に供給される。圧力タンク31の純水2が少なくなると、供給タンク32の純水2が圧力タンク31に自動的に移送される。 In each of the pressure tank 31 and the supply tank 32, a high liquid level sensor H and a low liquid level sensor L are provided. By controlling based on these sensors L and H, the following operation is performed. When the pure water in the supply tank 32 decreases, the pure water 2 is automatically replenished to the supply tank 32. When the pure water 2 in the supply tank 32 is full, the supply of the pure water 2 is automatically stopped. The pure water 2 in the pressure tank 31 is supplied to the two-fluid nozzle 1 during spraying. When the pure water 2 in the pressure tank 31 decreases, the pure water 2 in the supply tank 32 is automatically transferred to the pressure tank 31.
 圧縮空気6の供給源から、水用電空レギュレータ40及び逆止弁38を介して圧力タンク31の下側から内部に、圧縮空気6が供給される。圧力タンク31の内部に圧縮空気6の体積が増えた分だけ二流体ノズル1から純水2が噴霧される。圧力タンク31の下側から圧縮空気6を入れることで、空気が圧力タンク31の内部の純水2を下から上に通り抜ける。圧力タンク31の純水2を空気に触れさせることで、空気(炭酸ガス)を純水2に溶解させる。 Compressed air 6 is supplied from the lower side of the pressure tank 31 through a water electropneumatic regulator 40 and a check valve 38 from the supply source of the compressed air 6. The pure water 2 is sprayed from the two-fluid nozzle 1 to the inside of the pressure tank 31 as much as the volume of the compressed air 6 increases. By inserting the compressed air 6 from the lower side of the pressure tank 31, the air passes through the pure water 2 inside the pressure tank 31 from the lower side to the upper side. By contacting the pure water 2 in the pressure tank 31 with the air, the air (carbon dioxide gas) is dissolved in the pure water 2.
 圧力タンク31には、供給タンク32から逆止弁39を介して、純水2が供給される。 Pure water 2 is supplied to the pressure tank 31 from the supply tank 32 via the check valve 39.
 圧縮空気6の供給源から、三方弁42及び逆止弁36を介して供給タンク32の下側から内部に、圧縮空気6が供給される。供給タンク32に圧縮空気6の体積が増えた分だけ圧力タンク31に純水2が移る。供給タンク32の下側から圧縮空気6を入れることで、空気が供給タンク32の内部の純水2を下から上に通り抜ける。供給タンク32の純水2を空気に触れさせることで、空気を純水2に溶解させる。 Compressed air 6 is supplied from the lower side of the supply tank 32 through the three-way valve 42 and the check valve 36 from the supply source of the compressed air 6. The pure water 2 is transferred to the pressure tank 31 by an amount corresponding to the increase in volume of the compressed air 6 in the supply tank 32. By introducing the compressed air 6 from the lower side of the supply tank 32, the air passes through the pure water 2 inside the supply tank 32 from the lower side to the upper side. By bringing the pure water 2 in the supply tank 32 into contact with air, the air is dissolved in the pure water 2.
 供給タンク32には、純水2の供給源から、水供給弁33及び逆止弁34を順次に介して、純水2が供給される。 Pure water 2 is supplied to the supply tank 32 from a supply source of pure water 2 through a water supply valve 33 and a check valve 34 in order.
 水供給弁33から供給される純水2は、1.0MΩ/cm以上の帯電し易い導電率(比抵抗)である。圧力タンク31及び供給タンク32で、純水2を空気に多く触れさせるようにすることで、純水2の導電率が上がる。これにより、圧力タンク31から二流体ノズル1に供給される純水2は、1.0MΩ/cm未満の帯電し難い導電率になる。なお、純水2の導電率が十分に上がるのであれば、圧力タンク31又は供給タンク32のいずれか1つで、空気を純水2に溶解させるように構成してもよい。 The pure water 2 supplied from the water supply valve 33 has a conductivity (specific resistance) that is easily charged to 1.0 MΩ / cm or more. The electrical conductivity of the pure water 2 is increased by making the pure water 2 come into contact with the air in the pressure tank 31 and the supply tank 32. Thereby, the pure water 2 supplied from the pressure tank 31 to the two-fluid nozzle 1 has a conductivity that is less than 1.0 MΩ / cm and is difficult to be charged. If the conductivity of the pure water 2 is sufficiently increased, the air may be dissolved in the pure water 2 by either the pressure tank 31 or the supply tank 32.
 本実施形態によれば、炭酸ガスなどの導電率調整材料を用いなくても、噴霧される純水2の導電率を上げることができる。これにより、第1の実施形態と同様の作用効果を得ることができる。 According to the present embodiment, the conductivity of the sprayed pure water 2 can be increased without using a conductivity adjusting material such as carbon dioxide. Thereby, the effect similar to 1st Embodiment can be acquired.
(第4の実施形態)
 図7は、本発明の第4の実施形態に係る流体噴霧システムにおける循環ダクト20の構成を示す構成図である。
(Fourth embodiment)
FIG. 7 is a configuration diagram showing the configuration of the circulation duct 20 in the fluid spray system according to the fourth embodiment of the present invention.
 本実施形態に係る流体噴霧システムの基本的な構成は、第1から第3の実施形態のいずれかの流体噴霧システム10~10Bにおいて、純水2に導電率調整材料を混ぜる構成を取り除いたものと同様である。したがって、本実施形態では、純水2に導電率調整材料を混ぜずに噴霧するため、噴霧された純水粒子(噴霧粒子)は帯電する性質を持つ。 The basic configuration of the fluid spray system according to the present embodiment is obtained by removing the configuration in which the conductivity adjusting material is mixed with the pure water 2 in the fluid spray system 10 to 10B according to any one of the first to third embodiments. It is the same. Therefore, in this embodiment, since the conductivity adjusting material is sprayed without being mixed with the pure water 2, the sprayed pure water particles (spray particles) have a property of being charged.
 循環ダクト20は、二流体ノズル1から噴霧して、流入する空気を加湿し、加湿された空気を送り出すダクトである。循環ダクト20を通り抜ける空気の流れSaは、二流体ノズル1が設けられている側から水平方向に入り、垂直上方向に出る。循環ダクト20は、金属で形成されている。循環ダクト20は、内部に設けられた金属製の支柱21で支えられている。例えば、支柱21の高さは、約3メートルである。 The circulation duct 20 is a duct that is sprayed from the two-fluid nozzle 1 to humidify the inflowing air and send out the humidified air. The air flow Sa passing through the circulation duct 20 enters the horizontal direction from the side where the two-fluid nozzle 1 is provided, and exits in the vertical upward direction. The circulation duct 20 is made of metal. The circulation duct 20 is supported by a metal column 21 provided inside. For example, the height of the column 21 is about 3 meters.
 図8は、支柱21の防滴効果を示す構成図である。 FIG. 8 is a configuration diagram showing the drip-proof effect of the support column 21.
 支柱21の外周は、完全に一周するように、絶縁部材60で覆われる。絶縁部材60は、電気絶縁をする部材である。例えば、絶縁部材60は、ポリプロピレン、弗素樹脂、塩化ビニール、又は、ポリエチレンなどである。 The outer periphery of the column 21 is covered with the insulating member 60 so as to make a complete round. The insulating member 60 is a member that performs electrical insulation. For example, the insulating member 60 is made of polypropylene, fluorine resin, vinyl chloride, polyethylene, or the like.
 絶縁部材60で覆われていなければ、金属製である支柱21は、帯電した噴霧粒子を引き寄せる。一方、支柱21を覆う絶縁部材60は、帯電した噴霧粒子と同極性(正極)に帯電する。したがって、空気の流れSaに乗って噴霧粒子が支柱21に向かってきても、噴霧粒子の流れSgは、クーロン力により反発して離れていく。これにより、噴霧粒子による支柱21の濡れを抑制する。 If it is not covered with the insulating member 60, the metal column 21 draws the charged spray particles. On the other hand, the insulating member 60 covering the support column 21 is charged to the same polarity (positive electrode) as the charged spray particles. Therefore, even if the spray particles come on the support column 21 while riding on the air flow Sa, the spray particle flow Sg is repelled and separated by the Coulomb force. Thereby, wetting of the support column 21 by spray particles is suppressed.
 支柱21の外周が絶縁部材60で完全に一周覆われていない場合、絶縁部材60が覆われていない箇所に集中して噴霧粒子が引き寄せられる。したがって、絶縁部材60は、支柱21の外周を一周以上して、重なる部分が出るぐらいの長さが望ましい。 When the outer periphery of the support column 21 is not completely covered with the insulating member 60, the spray particles are concentrated on the portion where the insulating member 60 is not covered. Accordingly, it is desirable that the insulating member 60 has such a length that the outer periphery of the support column 21 is more than one turn and an overlapping portion appears.
 図9は、支柱21の構成の具体例を示す構成図である。 FIG. 9 is a configuration diagram showing a specific example of the configuration of the column 21.
 絶縁部材60は、ポリプロピレン製のフィルムである。絶縁部材60の厚さは、0.2mm以上が望ましいが、少なくとも0.1mm以上は必要である。絶縁部材60を支柱21の外周を1.5周程度巻く。このように、絶縁部材60が支柱21に巻かれた状態で、インシュロック61で固定する。 The insulating member 60 is a polypropylene film. The thickness of the insulating member 60 is preferably 0.2 mm or more, but at least 0.1 mm or more is necessary. The insulating member 60 is wound about 1.5 times around the outer periphery of the column 21. In this manner, the insulating member 60 is fixed by the insulation lock 61 in a state where the insulating member 60 is wound around the column 21.
 また、循環ダクト20の内部の壁面及び床面などの表面も、支柱21と同様に、ポリプロピレン製のフィルムなどの絶縁部材60で覆うように隙間なく貼る。 Also, the inner wall surface and floor surface of the circulation duct 20 are pasted without gaps so as to be covered with an insulating member 60 such as a polypropylene film in the same manner as the support column 21.
 図10は、本実施形態に係る二流体ノズル1付近の構成を示す構成図である。 FIG. 10 is a configuration diagram showing a configuration in the vicinity of the two-fluid nozzle 1 according to the present embodiment.
 二流体ノズル1には、水供給路5及び空気供給路8が接続されている。水供給路5の材質は絶縁部材である。空気供給路8の材質は金属製である。したがって、空気供給路8は絶縁部材で覆う必要があり、水供給路5は絶縁部材で覆う必要はない。 A water supply path 5 and an air supply path 8 are connected to the two-fluid nozzle 1. The material of the water supply path 5 is an insulating member. The material of the air supply path 8 is made of metal. Therefore, the air supply path 8 needs to be covered with an insulating member, and the water supply path 5 does not need to be covered with an insulating member.
 次に、水供給路5を絶縁部材62で覆う方法について説明する。 Next, a method for covering the water supply path 5 with the insulating member 62 will be described.
 絶縁部材62は、例えば、ポリプロピレン製の熱収縮するチューブである。 The insulating member 62 is, for example, a polypropylene heat-shrinkable tube.
 絶縁部材62を熱収縮させずに空気供給路8に被せる。このとき、二流体ノズル1に空気供給路8を取り付けるためのニップルも覆うように被せる。なお、絶縁部材62は、空気供給路8の二流体ノズル1に近い部分にのみ被せれば、空気供給路8の全てを覆う必要はない。 The insulating member 62 is put on the air supply path 8 without being thermally contracted. At this time, it covers so that the nipple for attaching the air supply path 8 to the two fluid nozzle 1 may also be covered. The insulating member 62 need not cover the entire air supply path 8 as long as it covers only the portion of the air supply path 8 close to the two-fluid nozzle 1.
 このように、流体噴霧システムの構成の一部で、濡らしたくない部位については、絶縁部材で覆う。その他に、流体噴霧システムの噴霧対象となる空間にあり、濡らしたくない物については絶縁部材で覆う。例えば、流体噴霧システムにより加湿を行う部屋で、水に弱い機器類は、絶縁部材で覆う。また、この部屋の内部の壁、柱、又は、床などを絶縁部材で覆ってもよい。なお、二流体ノズル1から噴霧された純水粒子は、空気中を漂う間に電荷を放出し、帯電していない状態になる。したがって、二流体ノズル1から一定以上離れた箇所は、絶縁部材で覆う必要はない。 In this way, a part of the configuration of the fluid spray system that is not to be wetted is covered with an insulating member. In addition, an object that is not sprayed in the space to be sprayed by the fluid spraying system is covered with an insulating member. For example, in a room where humidification is performed by a fluid spraying system, equipment that is sensitive to water is covered with an insulating member. Moreover, you may cover the wall, pillar, floor, etc. inside this room with an insulating member. Note that the pure water particles sprayed from the two-fluid nozzle 1 release electric charges while floating in the air, and are not charged. Therefore, it is not necessary to cover the part away from the two-fluid nozzle 1 by a certain amount with the insulating member.
 本実施形態によれば、防滴対象物を絶縁部材で覆うことで、二流体ノズル1から噴霧された帯電した噴霧粒子をクーロン力で反発させて、防滴対象物に付着するのを抑制することができる。 According to the present embodiment, by covering the drip-proof object with the insulating member, the charged spray particles sprayed from the two-fluid nozzle 1 are repelled by the Coulomb force and suppressed from adhering to the drip-proof object. be able to.
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

Claims (8)

  1.  圧縮空気を供給する圧縮空気供給源と、
     帯電する水を供給する水供給源と、
     前記水供給源から供給される前記水の導電率を調整する導電率調整手段と、
     前記導電率調整手段により調整された前記水と前記圧縮空気供給源から供給された前記圧縮空気を混合させて、霧化した流体を噴霧する二流体ノズルと
    を備えることを特徴とする流体噴霧システム。
    A compressed air supply source for supplying compressed air;
    A water supply source for supplying charged water;
    Conductivity adjusting means for adjusting the conductivity of the water supplied from the water supply source;
    A fluid spraying system comprising: a two-fluid nozzle that sprays atomized fluid by mixing the water adjusted by the conductivity adjusting unit and the compressed air supplied from the compressed air supply source. .
  2.  前記水の導電率を調整するための材料を供給する材料供給源を備え、
     前記導電率調整手段は、前記材料供給源から供給される前記材料を前記水に溶解させて導電率を上げること
    を特徴とする請求項1に記載の流体噴霧システム。
    A material supply source for supplying a material for adjusting the conductivity of the water;
    The fluid spray system according to claim 1, wherein the conductivity adjusting means increases the conductivity by dissolving the material supplied from the material supply source in the water.
  3.  前記材料は、炭酸ガス又は空気であること
    を特徴とする請求項2に記載の流体噴霧システム。
    The fluid spray system according to claim 2, wherein the material is carbon dioxide gas or air.
  4.  前記導電率調整手段は、前記圧縮空気供給源から供給される前記圧縮空気を前記水に溶解させること
    を特徴とする請求項1に記載の流体噴霧システム。
    The fluid spray system according to claim 1, wherein the conductivity adjusting means dissolves the compressed air supplied from the compressed air supply source in the water.
  5.  前記水供給源から供給される前記水を蓄えるタンクを備え、
     前記導電率調整手段は、前記タンクの下側から前記圧縮空気を入れることで、前記圧縮空気を前記水に溶解させること
    を特徴とする請求項4に記載の流体噴霧システム。
    A tank for storing the water supplied from the water supply source;
    The fluid spray system according to claim 4, wherein the conductivity adjusting unit dissolves the compressed air in the water by putting the compressed air from a lower side of the tank.
  6.  帯電する水と圧縮空気を混合させて、霧化した流体を噴霧する二流体ノズルを備える流体噴霧システムの防滴方法であって、
     前記二流体ノズルから噴霧された帯電した噴霧粒子が引き寄せられないように、電気絶縁をする絶縁部材で防滴対象物を覆うこと
    を含むことを特徴とする流体噴霧システムの防滴方法。
    A drip-proof method for a fluid spraying system comprising a two-fluid nozzle for spraying atomized fluid by mixing charged water and compressed air,
    A drip-proof method for a fluid spray system, comprising: covering a drip-proof object with an insulating member that electrically insulates so that charged spray particles sprayed from the two-fluid nozzle are not attracted.
  7.  前記防滴対象物は、前記流体噴霧システムの構成の一部であること
    を特徴とする請求項6に記載の流体噴霧システムの防滴方法。
    The drip-proof method of the fluid spray system according to claim 6, wherein the drip-proof object is a part of a configuration of the fluid spray system.
  8.  前記防滴対象物は、前記流体噴霧システムの噴霧対象となる空間にあること
    を特徴とする請求項6に記載の流体噴霧システムの防滴方法。
    The drip-proof method of the fluid spray system according to claim 6, wherein the drip-proof object is in a space to be sprayed by the fluid spray system.
PCT/JP2017/010018 2016-03-14 2017-03-13 Fluid spraying system WO2017159630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018505924A JP6696565B2 (en) 2016-03-14 2017-03-13 Fluid spray system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016050199 2016-03-14
JP2016-050199 2016-03-14

Publications (1)

Publication Number Publication Date
WO2017159630A1 true WO2017159630A1 (en) 2017-09-21

Family

ID=59851013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010018 WO2017159630A1 (en) 2016-03-14 2017-03-13 Fluid spraying system

Country Status (2)

Country Link
JP (1) JP6696565B2 (en)
WO (1) WO2017159630A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100799A1 (en) * 2016-11-30 2018-06-07 東芝三菱電機産業システム株式会社 Spray nozzle
JP2021021547A (en) * 2019-07-29 2021-02-18 株式会社いけうち Water spraying method and water spraying system
JP2022120335A (en) * 2021-02-05 2022-08-18 新日本空調株式会社 Humidification device, humidifier and humidification method
WO2023136044A1 (en) * 2022-01-14 2023-07-20 株式会社キャスティングイン Atomization device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130921A (en) * 1988-11-11 1990-05-18 Taiyo Sanso Co Ltd Cleaning equipment for solid surface
JP2002039576A (en) * 2000-07-27 2002-02-06 Hitachi Plant Eng & Constr Co Ltd Humidifying method and humidifier
JP2003154242A (en) * 2001-11-26 2003-05-27 Texas Instr Japan Ltd Fluid mixing apparatus
JP2006223995A (en) * 2005-02-17 2006-08-31 Sony Corp Washing method and washing device
JP2012134559A (en) * 2005-06-21 2012-07-12 Nikon Corp Exposure device, exposure method, maintenance method, and device manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236867A (en) * 2010-05-13 2011-11-24 Hino Motors Ltd Fuel spray nozzle
JP6007294B2 (en) * 2015-08-03 2016-10-12 東芝三菱電機産業システム株式会社 Two-fluid spraying device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130921A (en) * 1988-11-11 1990-05-18 Taiyo Sanso Co Ltd Cleaning equipment for solid surface
JP2002039576A (en) * 2000-07-27 2002-02-06 Hitachi Plant Eng & Constr Co Ltd Humidifying method and humidifier
JP2003154242A (en) * 2001-11-26 2003-05-27 Texas Instr Japan Ltd Fluid mixing apparatus
JP2006223995A (en) * 2005-02-17 2006-08-31 Sony Corp Washing method and washing device
JP2012134559A (en) * 2005-06-21 2012-07-12 Nikon Corp Exposure device, exposure method, maintenance method, and device manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100799A1 (en) * 2016-11-30 2018-06-07 東芝三菱電機産業システム株式会社 Spray nozzle
JP2018089550A (en) * 2016-11-30 2018-06-14 東芝三菱電機産業システム株式会社 Spray nozzle
JP2021021547A (en) * 2019-07-29 2021-02-18 株式会社いけうち Water spraying method and water spraying system
JP7315953B2 (en) 2019-07-29 2023-07-27 株式会社いけうち Water spray method and water spray system
JP2022120335A (en) * 2021-02-05 2022-08-18 新日本空調株式会社 Humidification device, humidifier and humidification method
JP7214762B2 (en) 2021-02-05 2023-01-30 新日本空調株式会社 Humidifying device, humidifier and humidifying method
WO2023136044A1 (en) * 2022-01-14 2023-07-20 株式会社キャスティングイン Atomization device

Also Published As

Publication number Publication date
JPWO2017159630A1 (en) 2018-12-13
JP6696565B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
WO2017159630A1 (en) Fluid spraying system
US9610550B2 (en) Method of delivering a process gas from a multi-component solution
US8727323B2 (en) Devices, systems, and methods for carbonation of deionized water
KR20150028294A (en) Hydrogen generating device
US20170239592A1 (en) Devices, systems, and methods for controlled delivery of process gases
CN113471481B (en) Air inlet control device of fuel cell test equipment
TW201611401A (en) Electrolytic solution circulation type battery
CN203102030U (en) Foam mixing control system based on CAN (controller area network) bus for fire-fighting truck
US10508820B2 (en) Device for producing water droplets for air humidification and a humidification system with such devices
JP4243154B2 (en) Slurry supply method
US20200016549A1 (en) Resistivity value regulating device and resistivity value regulating method
JP5953138B2 (en) Wet gas generation method and humidity controller for small flow rate
JP6738726B2 (en) Diluting liquid manufacturing apparatus and diluting liquid manufacturing method
WO2018123193A1 (en) Device for manufacturing diluted liquid, and method for manufacturing diluted liquid
JP2015085316A (en) Equipment for producing hydrogen-containing solution
JP2018103146A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method
JP2005108529A (en) Fuel cell system
JP2018103147A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method
JP5189193B2 (en) Operation method of ultrapure water production system
JP2008097860A (en) Fuel cell evaluation device
JP2013094711A (en) Ozone liquid generation apparatus
JP2015135230A (en) Humidification unit and humidity control device using the same
CN107185377A (en) With spray and waste gas absorption integrated system in a kind of propellant
JP2006334540A (en) Method for operating ultrapure water production system
CN208394052U (en) A kind of wet tank

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505924

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766630

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766630

Country of ref document: EP

Kind code of ref document: A1