WO2017159395A1 - 信号受信チップ、信号受信方法、電子機器 - Google Patents

信号受信チップ、信号受信方法、電子機器 Download PDF

Info

Publication number
WO2017159395A1
WO2017159395A1 PCT/JP2017/008431 JP2017008431W WO2017159395A1 WO 2017159395 A1 WO2017159395 A1 WO 2017159395A1 JP 2017008431 W JP2017008431 W JP 2017008431W WO 2017159395 A1 WO2017159395 A1 WO 2017159395A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
baseband
carrier
receiving chip
signal receiving
Prior art date
Application number
PCT/JP2017/008431
Other languages
English (en)
French (fr)
Inventor
悠爾 清田
貴志 増田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017159395A1 publication Critical patent/WO2017159395A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present disclosure relates to a signal reception chip, a signal reception method, and an electronic device, and more particularly, to a signal reception chip, a signal reception method, and an electronic device that can achieve higher performance.
  • Patent Document 1 discloses an electronic device that can detect that a connection is made via a millimeter-wave cable by receiving a carrier signal and perform high-speed communication using a millimeter-wave band signal. Has been.
  • the present disclosure has been made in view of such a situation, and is intended to enable higher performance.
  • a signal receiving chip is configured to demodulate a modulation signal obtained by modulating the carrier with a baseband signal having a frequency lower than that of a carrier in a high frequency band, and to output the baseband signal;
  • a baseband processing unit that performs predetermined processing on the baseband signal output from the demodulation unit, and a modulated wave in which the carrier is modulated by the baseband signal based on the baseband signal output from the demodulation unit
  • a modulated wave detection unit that controls the baseband processing unit when reception is detected.
  • the signal reception method demodulates a modulation signal obtained by modulating the carrier with a baseband signal having a frequency lower than that of a carrier in a high frequency band, outputs the baseband signal, and is output. Based on the baseband signal, when the carrier detects reception of a modulated wave modulated by the baseband signal, it controls a baseband processing unit that performs predetermined processing on the baseband signal.
  • An electronic apparatus includes a demodulation unit that demodulates a modulation signal obtained by modulating the carrier with a baseband signal having a frequency lower than that of a carrier in a high frequency band, and outputs the baseband signal; A baseband processing unit that performs predetermined processing on the baseband signal output from the unit, and a carrier wave modulated by the baseband signal based on the baseband signal output from the demodulation unit.
  • a modulated signal obtained by modulating a carrier with a baseband signal having a frequency lower than that of a carrier in a high frequency band is demodulated, and the baseband signal is output.
  • the baseband processing unit that performs a predetermined process on the baseband signal is controlled.
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a communication system to which the present technology is applied.
  • the communication system 11 is configured by connecting two electronic devices 12-1 and 12-2 via a waveguide cable 13, and has a frequency in the range of 30 to 300 GHz. Communication can be performed using electromagnetic waves (hereinafter referred to as millimeter waves).
  • the electronic devices 12-1 and 12-2 can perform high-speed signal transmission in the order of Gbps (for example, 5 Gbps or more) by performing communication using millimeter wave electromagnetic waves.
  • the electronic devices 12-1 and 12-2 are information terminals such as so-called smartphones, and can transfer a large amount of data such as a movie in a short time by communication using a millimeter wave band.
  • the waveguide cable 13 is configured to be integrated with two rectangular waveguides 31-1 and 31-2 arranged in parallel, and connects the electronic devices 12-1 and 12-2.
  • the rectangular waveguide 31-1 is used for millimeter wave transmission from the electronic device 12-1 to the electronic device 12-2
  • the rectangular waveguide 31-2 is used from the electronic device 12-2 to the electronic device 12. Used for millimeter wave transmission to -1.
  • the waveguide cable 13 is configured to be separable so that, for example, each of the electronic devices 12-1 and 12-2 can be used alone, and the electronic devices 12-1 and 12-2 can communicate with each other. When performing, it becomes the structure which becomes one by connecting at the division part.
  • the electronic device 12-1 and the electronic device 12-2 are configured in the same manner.
  • the electronic device 12-1 is simply referred to as the electronic device 12 and each part constituting the electronic device 12 is also referred to. The same applies.
  • the electronic device 12 includes a communication board 21 and a signal processing chip 22, and the communication board 21 includes a signal transmission chip 23 and a signal reception chip 24.
  • the signal transmission chip 23 performs a process of converting the signal supplied from the signal processing chip 22 into, for example, a millimeter-wave band RF (Radio Frequency) signal, and then transmits the signal through the rectangular waveguide 31. .
  • RF Radio Frequency
  • the signal receiving chip 24 receives a millimeter wave transmitted via the rectangular waveguide 31, performs frequency conversion on the millimeter wave, and converts it to a baseband signal having a frequency that is processed by the signal processing chip 22. Then, the signal is supplied to the signal processing chip 22.
  • the signal processing chip 22 performs various signal processing based on information (data) transmitted by the baseband signal supplied from the signal receiving chip 24.
  • FIG. 2 is a circuit diagram showing a first configuration example of the signal receiving chip 24.
  • the signal receiving chip 24 includes an RF amplifier 41, a square detector 42, a carrier detector 43, a modulated wave detector 44, and a baseband processor 45.
  • the RF amplifier 41 is an amplifier (multistage amplifier in the example of FIG. 2) that amplifies the millimeter wave band RF signal (modulated signal) received by the signal receiving chip 24, and supplies the amplified RF signal to the square detector 42. To do.
  • the square detector 42 is a demodulator that demodulates the RF signal amplified by the RF amplifier 41 by the square detection method.
  • the square detector 42 converts the RF signal into a baseband signal having a frequency lower than that of the carrier in the millimeter wave band, and supplies the baseband signal to the carrier detector 43, the modulated wave detector 44, and the baseband processor 45.
  • demodulation ASK demodulation
  • the carrier detection unit 43 monitors the change in the level of the baseband signal supplied from the square detector 42, so that the signal receiving chip 24 has received the carrier regardless of the unmodulated wave and the modulated wave. And a carrier detection signal indicating the detection result is output. For example, since the output DC (Direct Current) offset of the square detector 42 changes according to the intensity of the RF signal received by the signal receiving chip 24 (see the middle stage in FIG. 3), signal reception is performed by determining the level. It can be detected whether the chip 24 has received a carrier.
  • DC Direct Current
  • the carrier detection unit 43 supplies a carrier detection signal indicating that the reception of the carrier has been detected to the modulation wave detection unit 44 to detect the modulation wave.
  • the unit 44 is activated.
  • the carrier detection unit 43 includes a low-pass filter (LPF) 51, a reference voltage source 52, and a comparator (Comp: Comparator) 53.
  • the comparator 53 compares the voltage of the baseband signal from which the high frequency component has been cut by the low-pass filter 51 with the reference voltage supplied from the reference voltage source 52. For example, when the voltage of the baseband signal becomes less than the reference voltage, the comparator 53 switches the carrier detection signal from the low level to the high level. On the other hand, the comparator 53 switches the carrier detection signal from the high level to the low level when the voltage of the baseband signal becomes equal to or higher than the reference voltage.
  • the modulation wave detection unit 44 is activated according to the carrier detection signal supplied from the carrier detection unit 43 and detects that the signal reception chip 24 has received the modulation wave based on the baseband signal supplied from the square detector 42. Then, a modulated wave detection signal indicating the detection result is output. For example, when detecting that the signal receiving chip 24 has received a modulated wave, the modulated wave detecting unit 44 supplies a modulated wave detection signal indicating that the modulated wave has been received to the baseband processing unit 45, and The band processing unit 45 is activated.
  • a full-wave rectifier that performs full-wave rectification on the baseband signal supplied from the square detector 42 can be used.
  • a detector or the like may be used.
  • the baseband processing unit 45 is activated according to the modulation wave detection signal supplied from the modulation wave detection unit 44. That is, the baseband processing unit 45 is controlled so as to be stopped until the modulation wave detection unit 44 detects reception of the modulation wave.
  • the baseband processing unit 45 performs a predetermined process on the baseband signal supplied from the square detector 42, and then It outputs to the signal processing chip 22 (FIG. 1).
  • the baseband processing unit 45 includes a baseband amplifier 61 formed of an amplifier (a multistage amplifier in the example of FIG. 2), and performs a process of amplifying the baseband signal to a predetermined level.
  • the signal receiving chip 24 is configured. For example, when an RF signal as shown in the upper part of FIG. 3 is input, the square wave detector 42 converts the RF signal into a baseband frequency as shown in the middle part of FIG. Is done. Then, after being amplified by the baseband processing unit 45, a baseband signal as shown in the lower part of FIG. 3 is output from the signal receiving chip 24.
  • a baseband signal demodulated from the RF signal by the square detector 42 is output, and based on the baseband signal, a carrier wave is detected when a carrier reception is detected by the carrier detection unit 43.
  • the detection unit 44 is activated, and control is performed so that the baseband processing unit 45 is activated when reception of the modulated wave is detected by the modulated wave detection unit 44.
  • the signal receiving chip 24 when the RF signal is no signal (standby) and when the RF signal is a non-modulated wave (carrier), the baseband processing unit 45 is stopped. Thereby, the signal receiving chip 24 can avoid the power consumption by the baseband processing unit 45 until the reception of the modulated wave is detected, and the power consumption of the signal receiving chip 24 can be reduced. Furthermore, since the signal receiving chip 24 can also stop the modulated wave detection unit 44 when the RF signal is no signal (standby), the power consumption can be further reduced.
  • the signal receiving chip 24 can prevent the generation of a large noise when receiving an unmodulated carrier by setting the baseband processing unit 45 to the stop state. Therefore, the signal receiving chip 24 can reduce noise by preventing such noise output.
  • the signal receiving chip 24 can suppress wasteful power consumption during a standby period other than during communication and can improve performance while preventing noise generation.
  • FIG. 4 is a circuit diagram showing a second configuration example of the signal receiving chip 24.
  • the signal receiving chip 24A shown in FIG. 4 the detailed description of the configuration common to the signal receiving chip 24 in FIG. 2 is omitted.
  • the signal receiving chip 24 ⁇ / b> A has the same configuration as the signal receiving chip 24 of FIG. 2 in that it includes an RF amplifier 41, a square detector 42, a carrier detector 43, and a modulated wave detector 44. It is said.
  • the configuration of the baseband processing unit 45A is different from that of the baseband processing unit 45 of the signal receiving chip 24 in FIG.
  • the baseband processing unit 45A includes a baseband amplifier 61, a non-input-time output signal source 62, and a selector 63, and the selector 63 performs output switching according to the modulation wave detection signal output from the modulation wave detection unit 44. Configured as follows.
  • the baseband amplifier 61 amplifies the baseband signal supplied from the square detector 42 to a predetermined level and outputs it.
  • the non-input output signal source 62 generates a signal of a certain level that is output from the signal receiving chip 24A when the signal receiving chip 24A does not receive the modulated wave.
  • the selector 63 switches the output of the baseband processing unit 45A in accordance with the modulation wave detection signal supplied from the modulation wave detection unit 44. That is, the selector 63 outputs the baseband signal amplified by the baseband amplifier 61 when the modulated wave detection signal supplied from the modulated wave detector 44 indicates that the modulated wave has been received. On the other hand, when the modulated wave detection signal supplied from the modulated wave detector 44 indicates that the selector 63 has not detected reception of the modulated wave, the selector 63 outputs a constant level output from the non-input output signal source 62. The signal is output.
  • the signal receiving chip 24A configured as described above can avoid the output of a large noise that occurs when an unmodulated carrier is received, and the noise can be reduced.
  • FIG. 5 is a circuit diagram showing a third configuration example of the signal receiving chip 24.
  • the signal receiving chip 24B shown in FIG. 5 the detailed description of the configuration common to the signal receiving chip 24 in FIG. 2 is omitted.
  • the signal receiving chip 24 ⁇ / b> B has a common configuration with the signal receiving chip 24 of FIG. 2 in that it includes an RF amplifier 41, a square detector 42, a carrier detector 43, and a modulated wave detector 44. It is said.
  • the configuration of the baseband processing unit 45B is different from the baseband processing unit 45 of the signal receiving chip 24 in FIG.
  • the baseband processing unit 45B includes a baseband amplifier 61, a no-input output signal source 62, and a selector 63, like the baseband processing unit 45A of FIG.
  • the baseband amplifier 61 is activated according to the carrier detection signal supplied from the carrier detection unit 43
  • the selector 63 is set according to the modulation wave detection signal supplied from the modulation wave detection unit 44. It is configured to switch the output of 45B.
  • the baseband amplifier 61 is activated and the baseband signal is amplified at the timing when the carrier detection unit 43 detects the reception of the carrier.
  • the baseband amplifier 61 amplifies the baseband amplifier 61 from a signal at a constant level output from the non-input output signal source 62 at the timing when the modulation wave detection unit 44 detects the reception of the modulation wave.
  • the output of the signal receiving chip 24B is switched to the signal.
  • the signal receiving chip 24B configured in this way can avoid power consumption by the baseband amplifier 61 until reception of a modulated wave is detected, and can achieve low power consumption. Furthermore, the signal receiving chip 24B can avoid the output of a large noise that occurs when an unmodulated carrier is received, and the noise can be reduced.
  • FIG. 6 is a circuit diagram showing a fourth configuration example of the signal receiving chip 24.
  • the signal receiving chip 24C shown in FIG. 6 the detailed description of the configuration common to the signal receiving chip 24 in FIG. 2 is omitted.
  • the signal receiving chip 24C includes an RF amplifying unit 41, a square detector 42, a carrier detecting unit 43, a modulated wave detecting unit 44, and a baseband processing unit 45. 24 and the same configuration.
  • the signal receiving chip 24C has a configuration different from that of the signal receiving chip 24 of FIG.
  • the AND circuit 71 receives the carrier detection signal output from the carrier detection unit 43 and the modulation wave detection signal output from the modulation wave detection unit 44.
  • the AND circuit 71 receives the carrier detection signal and the modulation wave detection signal. Is a logic circuit that outputs a logical product of
  • the AND circuit 71 receives both a high level carrier detection signal indicating that a carrier is detected and a high level modulation wave detection signal indicating that a modulation wave is detected.
  • a high level control signal for controlling the baseband processing unit 45 to the driving state is output.
  • the AND circuit 71 has at least one of a low level carrier detection signal indicating that no carrier is detected and a low level modulation wave detection signal indicating that a modulation wave is not detected.
  • a low-level control signal for controlling the baseband processing unit 45 to the stop state is output.
  • the signal receiving chip 24C configured as described above can achieve low power consumption and low noise, similarly to the signal receiving chip 24 of FIG.
  • FIG. 7 is a circuit diagram showing a fifth configuration example of the signal receiving chip 24.
  • the signal receiving chip 24D shown in FIG. 7 the detailed description of the configuration common to the signal receiving chip 24 in FIG. 2 is omitted.
  • the signal receiving chip 24 ⁇ / b> D has the same configuration as the signal receiving chip 24 of FIG. 2 in that it includes an RF amplifier 41, a square detector 42, a carrier detector 43, and a modulated wave detector 44. It is said.
  • the configuration of the baseband processing unit 45D is different from that of the baseband processing unit 45 of the signal receiving chip 24 in FIG.
  • the baseband processing unit 45D is configured by connecting a CDR (Clock Data Recovery) 64 downstream of the baseband amplifier 61.
  • the CDR 64 reproduces and outputs the data and the clock from the baseband signal.
  • the signal receiving chip 24D configured in this manner can avoid power consumption by the baseband amplifier 61 and the CDR 64 during a standby period other than during communication, and can achieve low power consumption.
  • FIG. 8 is a circuit diagram showing a sixth configuration example of the signal receiving chip 24.
  • the signal receiving chip 24E shown in FIG. 8 the detailed description of the configuration common to the signal receiving chip 24 in FIG. 2 is omitted.
  • the signal receiving chip 24E has the same configuration as the signal receiving chip 24 in FIG. 2 in that it includes an RF amplifier 41, a square detector 42, a carrier detector 43, and a modulated wave detector 44. It is said.
  • the signal receiving chip 24E is different in the configuration of the baseband processing unit 45E from the baseband processing unit 45 of the signal receiving chip 24 of FIG.
  • the baseband processing unit 45E is configured such that a CDR 64 is connected to the subsequent stage of the baseband amplifier 61, and a deserializer 65 is connected to the subsequent stage of the CDR 64.
  • the deserializer 65 converts a baseband signal that is a serial signal output from the CDR 64 into a parallel signal having a predetermined number of bits and outputs the parallel signal.
  • the signal receiving chip 24E configured as described above can avoid power consumption by the baseband amplifier 61, the CDR 64, and the deserializer 65 during a standby period other than during communication, and can achieve low power consumption.
  • FIG. 9 is a circuit diagram showing a seventh configuration example of the signal receiving chip 24.
  • the signal receiving chip 24F shown in FIG. 9 the detailed description of the configuration common to the signal receiving chip 24 in FIG. 2 is omitted.
  • the signal receiving chip 24 ⁇ / b> F has a common configuration with the signal receiving chip 24 of FIG. 2 in that it includes an RF amplifier 41, a square detector 42, a carrier detector 43, and a modulated wave detector 44. It is said.
  • the configuration of the baseband processing unit 45F is different from that of the baseband processing unit 45 of the signal receiving chip 24 in FIG.
  • the baseband processing unit 45F is configured by connecting an ADC (Analog-to-Digital Converter) 66 downstream of the baseband amplifier 61.
  • ADC Analog-to-Digital Converter
  • the ADC 66 converts a baseband signal that is an analog signal output from the baseband amplifier 61 into a digital signal and outputs the digital signal.
  • the signal receiving chip 24F configured in this way can avoid power consumption by the baseband amplifier 61 and the ADC 66 during a standby period other than during communication, and can achieve low power consumption.
  • FIG. 10 is a circuit diagram showing an eighth configuration example of the signal receiving chip 24.
  • the signal receiving chip 24G shown in FIG. 10 the detailed description of the configuration common to the signal receiving chip 24 in FIG. 2 is omitted.
  • the signal receiving chip 24G has the same configuration as the signal receiving chip 24 of FIG. 2 in that it includes an RF amplifier 41, a square detector 42, a carrier detector 43, and a modulated wave detector 44. It is said.
  • the configuration of the baseband processing unit 45G is different from that of the baseband processing unit 45 of the signal receiving chip 24 in FIG.
  • the baseband processing unit 45G is configured such that the ADC 66 is connected to the subsequent stage of the baseband amplifier 61 and the digital signal processing unit 67 is connected to the subsequent stage of the ADC 66.
  • the digital signal processing unit 67 performs predetermined digital signal processing on the baseband signal, which is a digital signal output from the ADC 66, and outputs the result.
  • the signal receiving chip 24G configured in this way can avoid power consumption by the baseband amplifier 61, the ADC 66, and the digital signal processing unit 67 during a standby period other than during communication, and achieve low power consumption. Can do.
  • the signal receiving chip 24 to which the present technology is applied can suppress power consumption in a standby period other than during communication, and can avoid output of noise from the baseband processing unit 45.
  • a configuration in which various functions are incorporated into the baseband processing unit 45 and integrated into one chip can obtain a larger power reduction effect.
  • the signal receiving chip 24 can reduce the power of the signal receiving chip 24 itself by using the carrier detecting unit 43 and the modulated wave detecting unit 44 as an internal circuit of the signal receiving chip 24.
  • the configuration for transmitting millimeter waves using the waveguide cable 13 as shown in FIG. 1 as a communication path has been described.
  • the waveguide cable 13 is used as a communication path by way of example.
  • millimeter wave transmission may be performed using another medium as a communication path.
  • the present technology is applied to a configuration that performs bidirectional communication such as the communication system 11 illustrated in FIG. 1.
  • a configuration that performs bidirectional communication such as the communication system 11 illustrated in FIG. 1.
  • millimeter waves are transmitted from the signal transmission chip 23 to the signal reception chip 24.
  • the present invention can be applied to a configuration that performs unidirectional communication only by transmission.
  • this technique can also take the following structures.
  • a demodulator that demodulates a modulated signal obtained by modulating the carrier with a baseband signal having a frequency lower than that of a carrier in a high frequency band and outputs the baseband signal;
  • a baseband processing unit that performs predetermined processing on the baseband signal output from the demodulation unit;
  • a modulation wave detector that controls the baseband processor when the carrier detects reception of a modulated wave modulated by the baseband signal based on the baseband signal output from the demodulator;
  • a signal receiving chip comprising: (2) The signal reception chip according to (1), wherein the modulation wave detection unit performs control to activate the baseband processing unit when the reception of the modulation wave is detected.
  • the modulation wave detection unit performs output switching control on the baseband processing unit so as to output the baseband signal when the reception of the modulation wave is detected.
  • the carrier detection unit performs control to activate an amplifier included in the baseband processing unit when detecting reception of the carrier,
  • the modulation wave detection unit performs output switching control on the baseband processing unit so as to output the baseband signal when detection of reception of the modulation wave is detected.
  • a demodulator that demodulates a modulated signal obtained by modulating the carrier with a baseband signal having a frequency lower than that of a carrier in a high frequency band and outputs the baseband signal;
  • a baseband processing unit that performs predetermined processing on the baseband signal output from the demodulation unit;
  • a modulation wave detector that controls the baseband processor when the carrier detects reception of a modulated wave modulated by the baseband signal based on the baseband signal output from the demodulator;
  • a signal receiving chip having: An electronic device comprising: a signal processing chip that performs signal processing based on information transmitted by the baseband signal supplied from the signal receiving chip.
  • 11 communication system 12 electronic equipment, 13 waveguide cable, 21 communication board, 22 signal processing chip, 23 signal transmission chip, 24 signal reception chip, 31 rectangular waveguide, 41 RF amplification unit, 42 square detector, 43 Carrier detection unit, 44 modulation wave detection unit, 45 baseband processing unit, 51 low pass filter, 52 reference voltage source, 53 comparator, 61 baseband amplifier, 62 no-input output signal source, 63 selector, 64 CDR, 65 deserializer , 66 ADC, 67 Digital signal processor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本開示は、より高性能化を図ることができるようにする信号受信チップ、信号受信方法、電子機器に関する。 復調部は、高周波数帯域のキャリアよりも低い周波数のベースバンド信号でキャリアが変調された変調信号を復調して、ベースバンド信号を出力し、ベースバンド処理部は、復調部から出力されるベースバンド信号を増幅する処理を行う。そして、変調波検出部は、復調部から出力されるベースバンド信号に基づいて、キャリアがベースバンド信号により変調された変調波の受信を検出したときに、ベースバンド処理部を起動させる制御を行う。本技術は、例えば、ミリ波を利用した通信を行う電子機器に適用できる。

Description

信号受信チップ、信号受信方法、電子機器
 本開示は、信号受信チップ、信号受信方法、電子機器に関し、特に、より高性能化を図ることができるようにした信号受信チップ、信号受信方法、電子機器に関する。
 近年、ミリ波などの高周波帯域(30~300GHz)の信号を送受信することによって、通信の高速化が図られている。
 例えば、特許文献1には、ミリ波ケーブルを介して接続されたことを、キャリア信号を受信することによって検出し、ミリ波帯の信号を利用して高速通信を行うことができる電子機器が開示されている。
特開2015-186068号公報
 ところで、上述したような電子機器において、ミリ波帯の信号を受信する信号受信チップに対し、低消費電力化や低ノイズ化などを図ることによって、より高性能化することが求められている。
 本開示は、このような状況に鑑みてなされたものであり、より高性能化を図ることができるようにするものである。
 本開示の一側面の信号受信チップは、高周波数帯域のキャリアよりも低い周波数のベースバンド信号で前記キャリアが変調された変調信号を復調して、前記ベースバンド信号を出力する復調部と、前記復調部から出力される前記ベースバンド信号に対する所定の処理を行うベースバンド処理部と、前記復調部から出力される前記ベースバンド信号に基づいて、前記キャリアが前記ベースバンド信号により変調された変調波の受信を検出したときに、前記ベースバンド処理部に対する制御を行う変調波検出部とを備える。
 本開示の一側面の信号受信方法は、高周波数帯域のキャリアよりも低い周波数のベースバンド信号で前記キャリアが変調された変調信号を復調して、前記ベースバンド信号を出力し、出力される前記ベースバンド信号に基づいて、前記キャリアが前記ベースバンド信号により変調された変調波の受信を検出したときに、前記ベースバンド信号に対する所定の処理を行うベースバンド処理部に対する制御を行う。
 本開示の一側面の電子機器は、高周波数帯域のキャリアよりも低い周波数のベースバンド信号で前記キャリアが変調された変調信号を復調して、前記ベースバンド信号を出力する復調部と、前記復調部から出力される前記ベースバンド信号に対する所定の処理を行うベースバンド処理部と、前記復調部から出力される前記ベースバンド信号に基づいて、前記キャリアが前記ベースバンド信号により変調された変調波の受信を検出したときに、前記ベースバンド処理部に対する制御を行う変調波検出部とを有する信号受信チップと、前記信号受信チップから供給されるベースバンド信号により送信されてくる情報に基づいた信号処理を行う信号処理チップとを備える。
 本開示の一側面においては、高周波数帯域のキャリアよりも低い周波数のベースバンド信号でキャリアが変調された変調信号を復調して、ベースバンド信号が出力され、そのベースバンド信号に基づいて、キャリアがベースバンド信号により変調された変調波の受信を検出したときに、ベースバンド信号に対する所定の処理を行うベースバンド処理部に対する制御が行われる。
 本開示の一側面によれば、より高性能化を図ることができる。
本技術を適用した通信システムの一実施の形態の構成例を示すブロック図である。 信号受信チップの第1の構成例を示す回路図である。 RF信号およびベースバンド信号の例を示す図である。 信号受信チップの第2の構成例を示す回路図である。 信号受信チップの第3の構成例を示す回路図である。 信号受信チップの第4の構成例を示す回路図である。 信号受信チップの第5の構成例を示す回路図である。 信号受信チップの第6の構成例を示す回路図である。 信号受信チップの第7の構成例を示す回路図である。 信号受信チップの第8の構成例を示す回路図である。 単方向通信を行う構成例を示すブロック図である。
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
 図1は、本技術を適用した通信システムの一実施の形態の構成例を示すブロック図である。
 図1に示すように、通信システム11は、2台の電子機器12-1および12-2が導波管ケーブル13を介して接続されて構成されており、周波数が30~300GHzの範囲である電磁波(以下、ミリ波と称する)を利用して通信を行うことができる。
 電子機器12-1および12-2は、ミリ波帯域の電磁波を利用した通信を行うことで、Gbpsオーダ(例えば、5Gbps以上)の高速な信号伝送を行うことができる。例えば、電子機器12-1および12-2は、いわゆるスマートフォンなどの情報端末であり、ミリ波帯を利用した通信により映画などの大容量のデータを短時間で転送することができる。
 導波管ケーブル13は、2本の矩形導波管31-1および31-2が平行に配置された状態で一体となるように構成され、電子機器12-1および12-2を接続する。例えば、矩形導波管31-1は、電子機器12-1から電子機器12-2へのミリ波の伝送に使用され、矩形導波管31-2は、電子機器12-2から電子機器12-1へのミリ波の伝送に使用される。なお、導波管ケーブル13は、例えば、電子機器12-1および12-2それぞれ単体で使用することができるように分割可能に構成されており、電子機器12-1および12-2が通信を行う際に、その分割箇所で接続されることで1本となるような構造となっている。
 なお、電子機器12-1および電子機器12-2は、同様に構成されており、以下、それぞれを区別する必要がない場合、単に、電子機器12と称し、電子機器12を構成する各部についても同様に称する。
 電子機器12は、通信基板21および信号処理チップ22を備えて構成されており、通信基板21は、信号送信チップ23および信号受信チップ24を有して構成される。
 信号送信チップ23は、信号処理チップ22から供給される信号に対し、例えば、ミリ波帯域のRF(Radio Frequency)信号に変換する処理などを施した後、矩形導波管31を介して送信する。
 信号受信チップ24は、矩形導波管31を介して送信されてくるミリ波を受信し、そのミリ波に対する周波数変換を行って、信号処理チップ22において処理が行われる周波数のベースバンド信号に変換して、信号処理チップ22に供給する。
 信号処理チップ22は、信号受信チップ24から供給されるベースバンド信号により送信されてくる情報(データ)に基づいて、各種の信号処理を行う。
 次に、図2は、信号受信チップ24の第1の構成例を示す回路図である。
 図2に示すように、信号受信チップ24は、RF増幅部41、二乗検波器42、キャリア検出部43、変調波検出部44、およびベースバンド処理部45を備えて構成される。
 RF増幅部41は、信号受信チップ24が受信したミリ波帯域のRF信号(変調信号)を増幅する増幅器(図2の例では多段増幅器)であり、増幅したRF信号を二乗検波器42に供給する。
 二乗検波器42は、RF増幅部41により増幅されたRF信号を、二乗検波方式によって復調する復調部である。二乗検波器42は、RF信号を、ミリ波帯域のキャリアよりも低い周波数のベースバンド信号に変換し、キャリア検出部43、変調波検出部44、およびベースバンド処理部45に供給する。二乗検波方式による復調では、局部発振器を用いることなく、受信したRF信号のみを用いて復調(ASK復調)を行うことができる。
 キャリア検出部43は、二乗検波器42から供給されるベースバンド信号のレベルの変化を監視することで、無変調波および変調波のいずれにも関わらず、信号受信チップ24がキャリアを受信したことを検出し、その検出結果を示すキャリア検出信号を出力する。例えば、信号受信チップ24が受信するRF信号の強度に応じて、二乗検波器42の出力DC(Direct Current)オフセットが変化するため(図3の中段参照)、そのレベルを判定する事により信号受信チップ24がキャリアを受信したか否かを検出することができる。
 そして、キャリア検出部43は、信号受信チップ24がキャリアを受信していることを検出すると、キャリアの受信を検出したことを示すキャリア検出信号を変調波検出部44に供給して、変調波検出部44を起動させる。
 具体的には、キャリア検出部43は、ローパスフィルタ(LPF:Low Pass Filter)51、参照電圧源52、比較器(Comp:Comparator)53を有して構成される。比較器53は、ローパスフィルタ51により高周波成分がカットされたベースバンド信号の電圧を、参照電圧源52から供給される参照電圧と比較する。そして、比較器53は、例えば、ベースバンド信号の電圧が参照電圧未満になったとき、キャリア検出信号をLowレベルからHighレベルに切り替える。一方、比較器53は、ベースバンド信号の電圧が参照電圧以上になったとき、キャリア検出信号をHighレベルからLowレベルからに切り替える。
 変調波検出部44は、キャリア検出部43から供給されるキャリア検出信号に従って起動し、二乗検波器42から供給されるベースバンド信号に基づいて、信号受信チップ24が変調波を受信したことを検出し、その検出結果を示す変調波検出信号を出力する。変調波検出部44は、例えば、信号受信チップ24が変調波を受信したことを検出すると、変調波の受信を検出したことを示す変調波検出信号をベースバンド処理部45に供給して、ベースバンド処理部45を起動させる。
 例えば、変調波検出部44としては、二乗検波器42から供給されるベースバンド信号を全波整流する全波整流器を用いることができる。または、変調波検出部44としては、二乗検波器42から供給されるベースバンド信号を半波整流する半波整流器や、二乗検波器42から供給されるベースバンド信号がトグルしたことを検出するトグル検出器などを用いてもよい。
 ベースバンド処理部45は、変調波検出部44から供給される変調波検出信号に従って起動する。即ち、ベースバンド処理部45は、変調波検出部44により変調波の受信が検出されるまでは停止状態となるように制御される。そして、ベースバンド処理部45は、変調波検出部44から供給される変調波検出信号に従って起動すると、二乗検波器42から供給されるベースバンド信号に対して所定の処理を施した後、後段の信号処理チップ22(図1)に出力する。例えば、ベースバンド処理部45は、増幅器(図2の例では多段増幅器)からなるベースバンド増幅器61を有して構成されており、ベースバンド信号を所定のレベルに増幅する処理を行う。
 このように信号受信チップ24は構成されており、例えば、図3の上段に示すようなRF信号が入力されると、二乗検波器42によって図3の中段に示すようなベースバンドの周波数に変換される。そして、ベースバンド処理部45によって増幅された後、図3の下段に示すようなベースバンド信号が信号受信チップ24から出力される。
 そして、信号受信チップ24では、二乗検波器42によりRF信号から復調されたベースバンド信号が出力され、そのベースバンド信号に基づいて、キャリア検出部43によりキャリアの受信が検出されたときに変調波検出部44が起動され、変調波検出部44により変調波の受信が検出されたときにベースバンド処理部45が起動されるような制御が行われる。
 従って、信号受信チップ24では、RF信号が無信号であるとき(待受時)、および、RF信号が無変調波(キャリア)であるとき、ベースバンド処理部45が停止状態となっている。これにより、信号受信チップ24は、変調波の受信が検出されるまでのベースバンド処理部45による電力の消費を回避することができ、信号受信チップ24の低消費電力化を図ることができる。さらに、信号受信チップ24は、RF信号が無信号であるとき(待受時)、変調波検出部44も停止状態とすることができるので、さらなる低消費電力化を図ることができる。
 また、信号受信チップ24は、ベースバンド処理部45を停止状態とすることで、変調されていないキャリアを受信したときに大きなノイズが発生することを回避することができる。従って、信号受信チップ24は、そのようなノイズの出力を防止することで、低ノイズ化を図ることができる。
 このように、信号受信チップ24は、通信中以外の待機期間における無駄な電力の消費を抑制し、ノイズの発生を防止した高性能化を図ることができる。
 次に、図4は、信号受信チップ24の第2の構成例を示す回路図である。なお、図4に示す信号受信チップ24Aにおいて、図2の信号受信チップ24と共通する構成については、その詳細な説明を省略する。
 図4に示すように、信号受信チップ24Aは、RF増幅部41、二乗検波器42、キャリア検出部43、および変調波検出部44を備える点で、図2の信号受信チップ24と共通の構成とされる。そして、信号受信チップ24Aは、ベースバンド処理部45Aの構成が、図2の信号受信チップ24のベースバンド処理部45と異なるものとなっている。
 ベースバンド処理部45Aは、ベースバンド増幅器61、無入力時出力信号源62、およびセレクタ63を有しており、変調波検出部44から出力される変調波検出信号に従ってセレクタ63が出力切り替えを行うように構成される。
 ベースバンド増幅器61は、二乗検波器42から供給されるベースバンド信号を、所定のレベルに増幅して出力する。
 無入力時出力信号源62は、信号受信チップ24Aが変調波を受信していないときに、信号受信チップ24Aから出力する一定レベルの信号を発生する。
 セレクタ63は、変調波検出部44から供給される変調波検出信号に従って、ベースバンド処理部45Aの出力を切り替える。即ち、セレクタ63は、変調波検出部44から供給される変調波検出信号が、変調波の受信を検出したことを示している場合、ベースバンド増幅器61により増幅されたベースバンド信号を出力する。一方、セレクタ63は、変調波検出部44から供給される変調波検出信号が、変調波の受信を検出していないことを示している場合、無入力時出力信号源62から出力される一定レベルの信号を出力する。
 このように構成される信号受信チップ24Aは、変調されていないキャリアを受信したときに発生する大きなノイズの出力を回避することができ、低ノイズ化を図ることができる。
 次に、図5は、信号受信チップ24の第3の構成例を示す回路図である。なお、図5に示す信号受信チップ24Bにおいて、図2の信号受信チップ24と共通する構成については、その詳細な説明を省略する。
 図5に示すように、信号受信チップ24Bは、RF増幅部41、二乗検波器42、キャリア検出部43、および変調波検出部44を備える点で、図2の信号受信チップ24と共通の構成とされる。そして、信号受信チップ24Bは、ベースバンド処理部45Bの構成が、図2の信号受信チップ24のベースバンド処理部45と異なるものとなっている。
 ベースバンド処理部45Bは、図4のベースバンド処理部45Aと同様に、ベースバンド増幅器61、無入力時出力信号源62、およびセレクタ63を有している。そして、ベースバンド処理部45Bは、キャリア検出部43から供給されるキャリア検出信号に従ってベースバンド増幅器61が起動し、変調波検出部44から供給される変調波検出信号に従ってセレクタ63がベースバンド処理部45Bの出力を切り替えるように構成される。
 即ち、信号受信チップ24Bでは、キャリア検出部43によりキャリアの受信が検出されたタイミングで、ベースバンド増幅器61が起動してベースバンド信号の増幅が行われる。そして、変調波検出部44により変調波の受信が検出されたタイミングで、セレクタ63が、無入力時出力信号源62から出力される一定レベルの信号から、ベースバンド増幅器61により増幅されたベースバンド信号に、信号受信チップ24Bの出力が切り替えられる。
 このように構成される信号受信チップ24Bは、変調波の受信が検出されるまでのベースバンド増幅器61による電力の消費を回避することができ、低消費電力化を図ることができる。さらに、信号受信チップ24Bは、変調されていないキャリアを受信したときに発生する大きなノイズの出力を回避することができ、低ノイズ化を図ることができる。
 次に、図6は、信号受信チップ24の第4の構成例を示す回路図である。なお、図6に示す信号受信チップ24Cにおいて、図2の信号受信チップ24と共通する構成については、その詳細な説明を省略する。
 図6に示すように、信号受信チップ24Cは、RF増幅部41、二乗検波器42、キャリア検出部43、変調波検出部44、ベースバンド処理部45を備える点で、図2の信号受信チップ24と共通の構成とされる。そして、信号受信チップ24Cは、アンド回路71を備える点で、図2の信号受信チップ24と異なる構成となっている。
 アンド回路71には、キャリア検出部43から出力されるキャリア検出信号、および、変調波検出部44から出力される変調波検出信号が入力され、アンド回路71は、キャリア検出信号および変調波検出信号の論理積を出力する論理回路である。
 即ち、アンド回路71は、キャリアが検出されていることを示すHighレベルのキャリア検出信号、および、変調波が検出されていることを示すHighレベルの変調波検出信号の両方が入力される場合、ベースバンド処理部45を駆動状態に制御するHighレベルの制御信号を出力する。一方、アンド回路71は、キャリアが検出されていないことを示すLowレベルのキャリア検出信号、および、変調波が検出されていないことを示すLowレベルの変調波検出信号のうち、少なくともいずれか一方が入力される場合、ベースバンド処理部45を停止状態に制御するLowレベルの制御信号を出力する。
 このように構成される信号受信チップ24Cは、図2の信号受信チップ24と同様に、低消費電力化および低ノイズ化を図ることができる。
 次に、図7は、信号受信チップ24の第5の構成例を示す回路図である。なお、図7に示す信号受信チップ24Dにおいて、図2の信号受信チップ24と共通する構成については、その詳細な説明を省略する。
 図7に示すように、信号受信チップ24Dは、RF増幅部41、二乗検波器42、キャリア検出部43、および変調波検出部44を備える点で、図2の信号受信チップ24と共通の構成とされる。そして、信号受信チップ24Dは、ベースバンド処理部45Dの構成が、図2の信号受信チップ24のベースバンド処理部45と異なるものとなっている。
 ベースバンド処理部45Dは、ベースバンド増幅器61の後段にCDR(Clock Data Recovery)64が接続されて構成される。
 CDR64は、例えば、信号受信チップ24Dが受信したベースバンド信号においてデータにクロックが重畳されているとき、そのベースバンド信号からデータとクロックを再生して出力する。
 このように構成される信号受信チップ24Dは、通信中以外の待機期間におけるベースバンド増幅器61およびCDR64による電力の消費を回避することができ、低消費電力化を図ることができる。
 次に、図8は、信号受信チップ24の第6の構成例を示す回路図である。なお、図8に示す信号受信チップ24Eにおいて、図2の信号受信チップ24と共通する構成については、その詳細な説明を省略する。
 図8に示すように、信号受信チップ24Eは、RF増幅部41、二乗検波器42、キャリア検出部43、および変調波検出部44を備える点で、図2の信号受信チップ24と共通の構成とされる。そして、信号受信チップ24Eは、ベースバンド処理部45Eの構成が、図2の信号受信チップ24のベースバンド処理部45と異なるものとなっている。
 ベースバンド処理部45Eは、図7のベースバンド処理部45Dと同様にベースバンド増幅器61の後段にCDR64が接続されており、さらにCDR64の後段にデシリアライザ65が接続されて構成される。
 デシリアライザ65は、CDR64から出力されるシリアル信号であるベースバンド信号を、所定のビット数のパラレル信号に変換して出力する。
 このように構成される信号受信チップ24Eは、通信中以外の待機期間におけるベースバンド増幅器61、CDR64、およびデシリアライザ65による電力の消費を回避することができ、低消費電力化を図ることができる。
 次に、図9は、信号受信チップ24の第7の構成例を示す回路図である。なお、図9に示す信号受信チップ24Fにおいて、図2の信号受信チップ24と共通する構成については、その詳細な説明を省略する。
 図9に示すように、信号受信チップ24Fは、RF増幅部41、二乗検波器42、キャリア検出部43、および変調波検出部44を備える点で、図2の信号受信チップ24と共通の構成とされる。そして、信号受信チップ24Fは、ベースバンド処理部45Fの構成が、図2の信号受信チップ24のベースバンド処理部45と異なるものとなっている。
 ベースバンド処理部45Fは、ベースバンド増幅器61の後段にADC(Analog-to-Digital Converter)66が接続されて構成される。
 ADC66は、ベースバンド増幅器61から出力されるアナログ信号であるベースバンド信号をデジタル信号に変換して出力する。
 このように構成される信号受信チップ24Fは、通信中以外の待機期間におけるベースバンド増幅器61およびADC66による電力の消費を回避することができ、低消費電力化を図ることができる。
 次に、図10は、信号受信チップ24の第8の構成例を示す回路図である。なお、図10に示す信号受信チップ24Gにおいて、図2の信号受信チップ24と共通する構成については、その詳細な説明を省略する。
 図10に示すように、信号受信チップ24Gは、RF増幅部41、二乗検波器42、キャリア検出部43、および変調波検出部44を備える点で、図2の信号受信チップ24と共通の構成とされる。そして、信号受信チップ24Gは、ベースバンド処理部45Gの構成が、図2の信号受信チップ24のベースバンド処理部45と異なるものとなっている。
 ベースバンド処理部45Gは、図9のベースバンド処理部45Fと同様にベースバンド増幅器61の後段にADC66が接続されており、さらにADC66の後段にデジタル信号処理部67が接続されて構成される。
 デジタル信号処理部67は、ADC66から出力されるデジタル信号であるベースバンド信号に対して、所定のデジタル信号処理を施して出力する。
 このように構成される信号受信チップ24Gは、通信中以外の待機期間におけるベースバンド増幅器61、ADC66、およびデジタル信号処理部67による電力の消費を回避することができ、低消費電力化を図ることができる。
 以上のように、本技術を適用した信号受信チップ24は、通信中以外の待機期間における電力の消費を抑制するとともに、ベースバンド処理部45からのノイズの出力を回避することができる。特に、図7乃至図10に示すように、様々な機能をベースバンド処理部45に組み込んで1チップ化した構成では、より大きな電力削減効果を得ることができる。
 また、信号受信チップ24は、キャリア検出部43および変調波検出部44を信号受信チップ24の内部回路とすることで、信号受信チップ24自体の電力削減を図ることができる。
 なお、本実施の形態においては、図1に示したような導波管ケーブル13を通信経路としてミリ波を伝送する構成について説明したが、導波管ケーブル13を通信経路として用いるのは一例であって、他の媒体を通信経路としてミリ波の伝送を行ってもよい。
 また、本技術は、図1に示す通信システム11のような双方向通信を行う構成に適用される他、例えば、図11に示すように、信号送信チップ23から信号受信チップ24にミリ波を伝送するだけの単方向通信を行う構成に適用することができる。
 なお、本技術は以下のような構成も取ることができる。
(1)
 高周波数帯域のキャリアよりも低い周波数のベースバンド信号で前記キャリアが変調された変調信号を復調して、前記ベースバンド信号を出力する復調部と、
 前記復調部から出力される前記ベースバンド信号に対する所定の処理を行うベースバンド処理部と、
 前記復調部から出力される前記ベースバンド信号に基づいて、前記キャリアが前記ベースバンド信号により変調された変調波の受信を検出したときに、前記ベースバンド処理部に対する制御を行う変調波検出部と
 を備える信号受信チップ。
(2)
 前記変調波検出部は、前記変調波の受信を検出したときに、前記ベースバンド処理部を起動させる制御を行う
 上記(1)に記載の信号受信チップ。
(3)
 前記変調波検出部は、前記変調波の受信を検出したときに、前記ベースバンド信号を出力するように前記ベースバンド処理部に対する出力切り替えの制御を行う
 上記(1)または(2)に記載の信号受信チップ。
(4)
 前記復調部から出力される前記ベースバンド信号に基づいて、前記キャリアの受信を検出するキャリア検出部
 をさらに備える上記(1)から(3)までのいずれかに記載の信号受信チップ。
(5)
 前記キャリア検出部は、前記キャリアの受信を検出したときに、前記変調波検出部を起動させる
 上記(4)に記載の信号受信チップ。
(6)
 前記キャリア検出部は、前記キャリアの受信を検出したときに、前記ベースバンド処理部が有する増幅器を起動させる制御を行い、
 前記変調波検出部は、前記変調波の受信を検出したときに、前記ベースバンド信号を出力するように前記ベースバンド処理部に対する出力切り替えの制御を行う
 上記(4)または(5)に記載の信号受信チップ。
(7)
 前記キャリア検出部が前記キャリアの受信を検出し、かつ、前記変調波検出部が前記変調波の受信を検出したときに、前記ベースバンド処理部を起動させる論理回路
 をさらに備える上記(4)から(6)までのいずれかに記載の信号受信チップ。
(8)
 前記ベースバンド処理部は、前記ベースバンド信号を所定のレベルに増幅する処理を行う
 上記(1)から(7)までのいずれかに記載の信号受信チップ。
(9)
 前記ベースバンド処理部は、前記ベースバンド信号においてデータにクロックが重畳されているとき、そのベースバンド信号からデータとクロックを再生する処理を行う
 上記(1)から(8)までのいずれかに記載の信号受信チップ。
(10)
 前記ベースバンド処理部は、シリアル信号である前記ベースバンド信号をパラレル信号に変換する処理を行う
 上記(1)から(9)までのいずれかに記載の信号受信チップ。
(11)
 前記ベースバンド処理部は、アナログ信号である前記ベースバンド信号をデジタル信号に変換する処理を行う
 上記(1)から(10)までのいずれかに記載の信号受信チップ。
(12)
 前記ベースバンド処理部は、前記ベースバンド信号に対する所定のデジタル信号処理を施す
 上記(1)から(11)までのいずれかに記載の信号受信チップ。
(13)
 高周波数帯域のキャリアよりも低い周波数のベースバンド信号で前記キャリアが変調された変調信号を復調して、前記ベースバンド信号を出力し、
 出力される前記ベースバンド信号に基づいて、前記キャリアが前記ベースバンド信号により変調された変調波の受信を検出したときに、前記ベースバンド信号に対する所定の処理を行うベースバンド処理部に対する制御を行う
 信号受信方法。
(14)
 高周波数帯域のキャリアよりも低い周波数のベースバンド信号で前記キャリアが変調された変調信号を復調して、前記ベースバンド信号を出力する復調部と、
 前記復調部から出力される前記ベースバンド信号に対する所定の処理を行うベースバンド処理部と、
 前記復調部から出力される前記ベースバンド信号に基づいて、前記キャリアが前記ベースバンド信号により変調された変調波の受信を検出したときに、前記ベースバンド処理部に対する制御を行う変調波検出部と
 を有する信号受信チップと、
 前記信号受信チップから供給される前記ベースバンド信号により送信されてくる情報に基づいた信号処理を行う信号処理チップと
 を備える電子機器。
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
 11 通信システム, 12 電子機器, 13 導波管ケーブル, 21 通信基板, 22 信号処理チップ, 23 信号送信チップ, 24 信号受信チップ, 31 矩形導波管, 41 RF増幅部, 42 二乗検波器, 43 キャリア検出部, 44 変調波検出部, 45 ベースバンド処理部, 51 ローパスフィルタ, 52 参照電圧源, 53 比較器, 61 ベースバンド増幅器, 62 無入力時出力信号源, 63 セレクタ, 64 CDR, 65 デシリアライザ, 66 ADC, 67 デジタル信号処理部

Claims (14)

  1.  高周波数帯域のキャリアよりも低い周波数のベースバンド信号で前記キャリアが変調された変調信号を復調して、前記ベースバンド信号を出力する復調部と、
     前記復調部から出力される前記ベースバンド信号に対する所定の処理を行うベースバンド処理部と、
     前記復調部から出力される前記ベースバンド信号に基づいて、前記キャリアが前記ベースバンド信号により変調された変調波の受信を検出したときに、前記ベースバンド処理部に対する制御を行う変調波検出部と
     を備える信号受信チップ。
  2.  前記変調波検出部は、前記変調波の受信を検出したときに、前記ベースバンド処理部を起動させる制御を行う
     請求項1に記載の信号受信チップ。
  3.  前記変調波検出部は、前記変調波の受信を検出したときに、前記ベースバンド信号を出力するように前記ベースバンド処理部に対する出力切り替えの制御を行う
     請求項1に記載の信号受信チップ。
  4.  前記復調部から出力される前記ベースバンド信号に基づいて、前記キャリアの受信を検出するキャリア検出部
     をさらに備える請求項1に記載の信号受信チップ。
  5.  前記キャリア検出部は、前記キャリアの受信を検出したときに、前記変調波検出部を起動させる
     請求項4に記載の信号受信チップ。
  6.  前記キャリア検出部は、前記キャリアの受信を検出したときに、前記ベースバンド処理部が有する増幅器を起動させる制御を行い、
     前記変調波検出部は、前記変調波の受信を検出したときに、前記ベースバンド信号を出力するように前記ベースバンド処理部に対する出力切り替えの制御を行う
     請求項4に記載の信号受信チップ。
  7.  前記キャリア検出部が前記キャリアの受信を検出し、かつ、前記変調波検出部が前記変調波の受信を検出したときに、前記ベースバンド処理部を起動させる論理回路
     をさらに備える請求項4に記載の信号受信チップ。
  8.  前記ベースバンド処理部は、前記ベースバンド信号を所定のレベルに増幅する処理を行う
     請求項1に記載の信号受信チップ。
  9.  前記ベースバンド処理部は、前記ベースバンド信号においてデータにクロックが重畳されているとき、そのベースバンド信号からデータとクロックを再生する処理を行う
     請求項1に記載の信号受信チップ。
  10.  前記ベースバンド処理部は、シリアル信号である前記ベースバンド信号をパラレル信号に変換する処理を行う
     請求項1に記載の信号受信チップ。
  11.  前記ベースバンド処理部は、アナログ信号である前記ベースバンド信号をデジタル信号に変換する処理を行う
     請求項1に記載の信号受信チップ。
  12.  前記ベースバンド処理部は、前記ベースバンド信号に対する所定のデジタル信号処理を施す
     請求項11に記載の信号受信チップ。
  13.  高周波数帯域のキャリアよりも低い周波数のベースバンド信号で前記キャリアが変調された変調信号を復調して、前記ベースバンド信号を出力し、
     出力される前記ベースバンド信号に基づいて、前記キャリアが前記ベースバンド信号により変調された変調波の受信を検出したときに、前記ベースバンド信号に対する所定の処理を行うベースバンド処理部に対する制御を行う
     信号受信方法。
  14.  高周波数帯域のキャリアよりも低い周波数のベースバンド信号で前記キャリアが変調された変調信号を復調して、前記ベースバンド信号を出力する復調部と、
     前記復調部から出力される前記ベースバンド信号に対する所定の処理を行うベースバンド処理部と、
     前記復調部から出力される前記ベースバンド信号に基づいて、前記キャリアが前記ベースバンド信号により変調された変調波の受信を検出したときに、前記ベースバンド処理部に対する制御を行う変調波検出部と
     を有する信号受信チップと、
     前記信号受信チップから供給される前記ベースバンド信号により送信されてくる情報に基づいた信号処理を行う信号処理チップと
     を備える電子機器。
PCT/JP2017/008431 2016-03-17 2017-03-03 信号受信チップ、信号受信方法、電子機器 WO2017159395A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-053644 2016-03-17
JP2016053644A JP2017169096A (ja) 2016-03-17 2016-03-17 信号受信チップ、信号受信方法、電子機器

Publications (1)

Publication Number Publication Date
WO2017159395A1 true WO2017159395A1 (ja) 2017-09-21

Family

ID=59850214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008431 WO2017159395A1 (ja) 2016-03-17 2017-03-03 信号受信チップ、信号受信方法、電子機器

Country Status (2)

Country Link
JP (1) JP2017169096A (ja)
WO (1) WO2017159395A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166250A (ja) * 1984-12-14 1986-07-26 Fujitsu Ltd キヤリア信号検出方式
JP2007027879A (ja) * 2005-07-12 2007-02-01 Matsushita Electric Ind Co Ltd 受信装置および受信方法
JP2010233199A (ja) * 2009-03-06 2010-10-14 Nippon Hoso Kyokai <Nhk> 地上デジタルテレビジョン放送における緊急情報の送信装置及び受信装置、並びに伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166250A (ja) * 1984-12-14 1986-07-26 Fujitsu Ltd キヤリア信号検出方式
JP2007027879A (ja) * 2005-07-12 2007-02-01 Matsushita Electric Ind Co Ltd 受信装置および受信方法
JP2010233199A (ja) * 2009-03-06 2010-10-14 Nippon Hoso Kyokai <Nhk> 地上デジタルテレビジョン放送における緊急情報の送信装置及び受信装置、並びに伝送システム

Also Published As

Publication number Publication date
JP2017169096A (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
CN107896203B (zh) Bpsk解调设备和方法
US8713338B2 (en) Methods and apparatus for low power out-of-band communications
US8437439B2 (en) Signal processing apparatus, signal transmitting system, and signal processing method
US11177988B2 (en) Receiver circuits with blocker attenuating mixer
US20050111569A1 (en) Data code transmission device
CN108462512B (zh) 近场通信设备
US8000671B2 (en) Dual threshold demodulation in an amplitude modulation radio receiver
TWI495280B (zh) 無線通訊裝置及其之無線通訊方法
US20160285620A1 (en) Low-power asynchronous data links
WO2017159395A1 (ja) 信号受信チップ、信号受信方法、電子機器
US20070087723A1 (en) System and method for energy efficient signal detection in a wireless network device
US8879988B2 (en) Receiver for a telecommunications system
KR100695398B1 (ko) 시분할 듀플렉싱 방식 무선 전송장치의 무선단 유닛
US8311158B2 (en) Receiver circuit, reception method, and communication system
US10205620B2 (en) Transmission circuit, transmission method, and transmission system
CN106160762B (zh) 宽带接收机自动增益控制系统、方法及宽带接收机
JP2010535457A (ja) ケーブル、衛星および放送用チューナ
JP2006311354A (ja) 通信装置と通信方法および電力線搬送通信システム
US10454503B1 (en) System and method for wireless communication with improved protocol support
JP4628992B2 (ja) 無線送受信機
US20070202911A1 (en) System And Method For Energy Efficient Signal Detection In A Wireless Network Device
CN210986075U (zh) 电平转换电路及电子设备
CN209860905U (zh) 一种收发器信号保护装置及收发器
CN221240352U (en) USB isolation circuit, chip, device and USB equipment
JP2022164302A (ja) 増幅装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766398

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766398

Country of ref document: EP

Kind code of ref document: A1