WO2017156952A1 - 一种多晶硅还原炉气流控制器 - Google Patents

一种多晶硅还原炉气流控制器 Download PDF

Info

Publication number
WO2017156952A1
WO2017156952A1 PCT/CN2016/091833 CN2016091833W WO2017156952A1 WO 2017156952 A1 WO2017156952 A1 WO 2017156952A1 CN 2016091833 W CN2016091833 W CN 2016091833W WO 2017156952 A1 WO2017156952 A1 WO 2017156952A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow controller
reduction furnace
cylindrical body
controller according
gas
Prior art date
Application number
PCT/CN2016/091833
Other languages
English (en)
French (fr)
Inventor
许正清
杨紫琪
王勇
Original Assignee
严利容
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 严利容 filed Critical 严利容
Publication of WO2017156952A1 publication Critical patent/WO2017156952A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent

Definitions

  • the invention relates to the technical field of polysilicon reduction furnaces, in particular to a polysilicon reduction furnace air flow controller.
  • the purified trichlorosilane and the purified hydrogen are used as raw materials, and are introduced into the reaction vessel. Under high temperature and high pressure environment, the two react chemically in the reaction vessel to form polycrystalline silicon and deposit in the reaction vessel. Inside the heating element.
  • the bottom of the reduction furnace is provided with a chassis.
  • the inlet nozzle 101 and the vent hole 102 are disposed in the chassis 1 , wherein the vent hole 102 is located at the center of the chassis 1 .
  • the intake nozzles 101 are arranged around the exhaust holes 102, and the opening directions of the intake nozzles 101 and the exhaust holes 102 are both toward the height direction of the reduction furnace.
  • the gas raw material participating in the reaction is injected into the reduction furnace through the intake nozzle 101, and the exhaust gas generated after the reaction is discharged through the exhaust hole 102.
  • the rate of gas near the side wall of the nozzle is the lowest, and the height of the injection into the reduction furnace is low, since the opening direction of the vent hole 102 is toward the height of the reduction furnace.
  • the gas with a lower injection rate directly enters the vent hole 102, and the time spent in the reduction furnace is short, and the unreacted sufficient discharge is discharged from the vent hole 102, resulting in high material consumption and energy consumption in the production of polysilicon.
  • silicon slag may be dropped into the vent hole 102 during the production of polycrystalline silicon, causing clogging and poor exhaust gas, thereby reducing production efficiency.
  • the present invention provides a polysilicon reduction furnace gas flow controller, by changing the flow trajectory of the reaction gas, prolonging the residence time of the gas having a lower injection rate in the reduction furnace, so that the partial gas can fully react and improve The polysilicon conversion rate; further, the gas flow controller can also prevent the silicon slag which may be generated during the production of polycrystalline silicon from falling into the vent hole.
  • a polysilicon reduction furnace airflow controller for controlling exhaust gas emission of a reduction furnace, the reduction furnace comprising a chassis, wherein the chassis is provided with a vent hole, wherein the airflow controller comprises a cylindrical body, a bottom end of the cylindrical body is disposed as an opening portion, a top end is provided with a sealing end cover, a sidewall of the cylindrical body is provided with a plurality of through holes, and a bottom end of the cylindrical body is opposite to the row
  • the vent is socketed, and the opening is in fluid communication with the vent.
  • the bottom end of the cylindrical body extends with a plug portion, the outer diameter of the plug portion is smaller than the outer diameter of the cylindrical body, and the outer diameter of the plug portion is smaller than the exhaust The inner diameter of the bore, the outer diameter of the cylindrical body being larger than the inner diameter of the vent.
  • peripheral edges of the sealed end cover respectively extend outward from the side wall of the cylindrical body.
  • peripheral edges of the sealed end cover respectively extend from the outside of the side wall of the cylindrical body by a length of 5 to 10 mm.
  • the sealed end cover has a circular or square shape.
  • the sealed end cover has a circular flat shape, and the diameter of the sealed end cover is 10-20 mm larger than the outer diameter of the cylindrical body.
  • the plurality of through holes are distributed in an array on the sidewall of the cylindrical body.
  • the through hole is a circular hole, and the diameter thereof is 8 to 12 mm.
  • the total area of the plurality of through holes is not less than the area of the exhaust holes.
  • the through hole located closest to the bottom end of the cylindrical body is spaced from the chassis by a distance of not less than 20 mm.
  • the polysilicon reduction furnace airflow controller provided by the invention is disposed on the exhaust hole of the reduction furnace chassis, and the top end of the airflow controller is provided with a sealed end cover, and the gas descending along the height direction of the reduction furnace cannot directly enter the exhaust hole, but
  • the flow trajectory is changed by the sealed end cover, and then enters into the cylindrical body from the through hole opened in the lateral direction (perpendicular to the height direction of the reduction furnace), and then discharged into the vent hole of the reduction furnace, and the gas is changed by
  • the flow trajectory prolongs the time during which the gas with a lower injection rate stays in the reduction furnace, so that the gas can be fully reacted and the polysilicon conversion rate is improved.
  • the top end of the air flow controller is provided with a sealed end cover, which can also prevent the silicon slag which may be generated during the process of producing polysilicon from falling into the vent hole, reduce the probability that the vent hole is blocked, reduce equipment failure, and improve production. effectiveness.
  • FIG. 1 is a schematic structural view of a chassis of a conventional reduction furnace
  • FIG. 2 is a perspective view of an air flow controller according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of an air flow controller according to an embodiment of the present invention.
  • FIG. 4 is a schematic perspective structural view of an air flow controller assembled on a vent hole according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional structural diagram of an air flow controller assembled on an exhaust hole according to an embodiment of the present invention.
  • Embodiments of the present invention provide a polysilicon reduction furnace gas flow controller, which is mainly used for controlling exhaust gas emission of a reduction furnace.
  • the chassis 1 is provided with at least an intake nozzle 101 and an exhaust hole 102, wherein the exhaust hole 102 is located at the center of the chassis 1, and a plurality of The gas nozzles 101 are arranged around the exhaust holes 102, and the gas raw materials participating in the reaction are injected into the reduction furnace through the intake nozzles 101, and the exhaust gas generated after the reaction is discharged through the exhaust holes 102.
  • the air flow controller provided by the embodiment of the invention mainly controls the flow of the gas in the reduction furnace into the exhaust hole 102.
  • the airflow controller 2 includes a cylindrical body 21, the bottom end of the cylindrical body 21 is provided as an opening portion 22, and the top end is provided with a sealing end cover 23, the cylinder A plurality of through holes 24 are defined in a sidewall of the body 21, a bottom end of the cylindrical body 21 is socketed to the exhaust hole 102, and the opening 22 is in fluid communication with the exhaust hole 102. .
  • the air flow controller 2 By arranging the air flow controller 2 as above on the exhaust hole 102 of the reduction furnace chassis 1, since the top end of the air flow controller 2 is provided with the sealed end cover 23, the gas descending in the height direction of the reduction furnace cannot directly enter the exhaust hole 102. Instead, the flow path is changed by the sealing end cap 23, and then enters the cylindrical body 21 from the through hole 24 which is open in the lateral direction (perpendicular to the height direction of the reduction furnace), and then is introduced into the vent hole 102 of the reduction furnace.
  • the medium discharge by changing the flow trajectory of the gas, prolongs the time during which the gas with a lower injection rate stays in the reduction furnace, so that the partial gas can fully react and increase the polysilicon conversion rate.
  • the top end of the air flow controller 2 is provided with a sealing end cover 23, which can also prevent the silicon slag which may be generated during the process of producing polysilicon from falling into the vent hole 102, reducing the probability that the vent hole 102 is blocked, and reducing the equipment. Failure to improve production efficiency.
  • the bottom end of the cylindrical body 21 extends with a plug portion 25, and the outer diameter of the plug portion 25 is smaller than the cylindrical body.
  • the outer diameter of the insertion portion 25 is smaller than the inner diameter of the exhaust hole 102 so that the insertion portion 25 can be inserted into the exhaust hole 102.
  • the outer diameter of the cylindrical body 21 is larger than the inner diameter of the vent hole 102, and when the insertion portion 25 is inserted into the vent hole 102, the bottom end of the cylindrical body 21 is The chassis 1 is supported.
  • the outer diameter of the insertion portion 25 is designed to be slightly smaller than the inner diameter of the vent hole 102, so that the insertion portion 25 can be tightly inserted into the vent hole 102.
  • the sealed end cap 23 has a circular flat shape.
  • the diameter of the sealed end cap 23 is 10-20 mm larger than the outer diameter of the cylindrical body 21.
  • the sealed end cap 23 can also be designed as a square flat plate or other irregular shapes.
  • the peripheral edges of the sealing end cover 23 respectively extend outward from the outer side wall of the cylindrical body 21, wherein the peripheral edges of the sealing end cover 23 respectively extend The length of the outer side of the side wall of the cylindrical body 21 is 5 to 10 mm.
  • the sealed end cover 23 is designed to be circular, and the change of the flow trajectory of the gas in all directions can be more uniform and the effect is better.
  • the plurality of through holes 24 are distributed in an array on the sidewall of the cylindrical body 21, and the through hole 24 is a circular hole having a diameter of 8 to 12 mm. .
  • the arrangement may be arbitrarily arranged, and the through holes 24 may be designed in other shapes, such as a square shape.
  • a plurality of through holes 24 are distributed in an array to achieve a better exhaust effect.
  • the total area of the plurality of through holes 24 should be designed to be not smaller than the area of the exhaust hole 102.
  • the through hole 24 located closest to the bottom end of the cylindrical body 21 is spaced from the chassis 1 by a distance of not less than 20 mm.
  • the polysilicon reduction furnace airflow controller provided by the present invention can extend the time of the gas with a lower injection rate in the reduction furnace by changing the flow trajectory of the reaction gas, so that the gas can be fully reacted and the polysilicon can be improved. Conversion rate; further, the gas flow controller can also prevent the silicon slag that may be generated during the production of polysilicon from falling into the vent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

提供一种多晶硅还原炉气流控制器(2)。包括圆筒状本体(21),该圆筒状本体(21)的底端设置为开口部(22),顶端设置有密封端盖(23),该筒状本体(21)的侧壁上设置有多个通孔(24),该圆筒状本体(21)的底端与还原炉底盘(1)的排气孔(102)承插连接,开口部(22)与排气孔(102)流体连通。该气流控制器(2)通过改变反应气体的流动轨迹,延长喷射速率较低的气体在还原炉内停留的时间,以使该部分气体能够充分反应,提高多晶硅转化率;还可以避免生产多晶硅过程中可能产生的硅渣掉落到排气孔中。

Description

一种多晶硅还原炉气流控制器 技术领域
本发明涉及多晶硅还原炉技术领域,尤其是一种多晶硅还原炉气流控制器。
背景技术
目前,业界生产多晶硅的方法有多种,其中较为常见的是氢还原法。其是把提纯好的三氯氢硅和净化好的氢气作为原料,通入到反应容器内,在高温、高压环境下,两者在反应容器内发生化学反应,形成多晶硅,并沉积在反应容器内的发热体上。
现有的还原炉中,还原炉的底部设置有底盘,如图1所示,底盘1中至少设置有进气喷嘴101和排气孔102,其中,排气孔102位于底盘1的中央,多个进气喷嘴101排布排气孔102的四周,进气喷嘴101和排气孔102的开口方向都是朝向还原炉的高度方向。参与反应的气体原料通过进气喷嘴101注入到还原炉内,反应后产生的尾气通过排气孔102排出。当气体原料通过进气喷嘴101注入到还原炉中时,靠近喷嘴侧壁的气体的速率最低,喷射到还原炉中的高度较低,由于排气孔102的开口方向是朝向还原炉的高度方向,喷射速率较低的气体下行后直接进入排气孔102,在还原炉内停留的时间较短,未反应充分便从排气孔102排出,造成多晶硅生产中物耗和能耗高。进一步地,由于排气孔102的开口方向是朝向还原炉的高度方向,生产多晶硅过程中可能产生硅渣掉落到排气孔102中,造成堵塞而排气不畅,降低生产效率。
发明内容
有鉴于此,本发明提供了一种多晶硅还原炉气流控制器,通过改变反应气体的流动轨迹,延长喷射速率较低的气体在还原炉内停留的时间,以使该部分气体能够充分反应,提高多晶硅转化率;进一步地,该气流控制器还可以避免生产多晶硅过程中可能产生的硅渣掉落到排气孔中。
为了达到上述的目的,本发明采用了如下的技术方案:
一种多晶硅还原炉气流控制器,用于控制还原炉的尾气排放,所述还原炉包括底盘,所述底盘中设置有排气孔,其中,所述气流控制器包括圆筒状本体, 所述圆筒状本体的底端设置为开口部,顶端设置有密封端盖,所述筒状本体的侧壁上设置有多个通孔,所述圆筒状本体的底端与所述排气孔承插连接,所述开口部与所述排气孔流体连通。
其中,所述圆筒状本体的底端延伸出有一插接部,所述插接部的外径小于所述圆筒状本体的外径,所述插接部的外径小于所述排气孔的内径,所述圆筒状本体的外径大于所述排气孔的内径。
其中,所述密封端盖的四周边缘分别延伸凸出于所述筒状本体的侧壁外侧。
其中,所述密封端盖的四周边缘分别延伸凸出于所述筒状本体的侧壁外侧的长度为5~10mm。
其中,所述密封端盖为圆形或方形的平板状。
其中,所述密封端盖为圆形的平板状,所述密封端盖的直径比所述筒状本体的外径大10~20mm。
其中,所述多个通孔呈阵列分布在所述筒状本体的侧壁上。
其中,所述通孔为圆孔,其直径为8~12mm。
其中,所述多个通孔的总面积不小于所述排气孔的面积。
其中,位于最靠近所述筒状本体的底端的通孔与所述底盘的距离不小于20mm。
本发明提供的多晶硅还原炉气流控制器,设置在还原炉底盘的排气孔上,气流控制器的顶端设置有密封端盖,沿还原炉高度方向下行的气体无法直接进入排气孔,而是由密封端盖改变其流动轨迹,然后从沿横向(与还原炉高度方向垂直)开口的通孔进入到圆筒状本体中,再通入到还原炉的排气孔中排出,通过改变气体的流动轨迹,延长了喷射速率较低的气体在还原炉内停留的时间,以使该部分气体能够充分反应,提高多晶硅转化率。进一步地,该气流控制器的顶端设置有密封端盖,还可以避免生产多晶硅过程中可能产生的硅渣掉落到排气孔中,降低排气孔被堵塞的几率,减少设备故障,提高生产效率。
附图说明
图1是现有的还原炉的底盘的结构示意图;
图2是本发明实施例提供的气流控制器的立体图;
图3是本发明实施例提供的气流控制器的剖面图;
图4是本发明实施例提供的气流控制器装配在排气孔上的立体结构示意图;
图5是本发明实施例提供的气流控制器装配在排气孔上的剖面结构示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
本发明实施例提供了一种多晶硅还原炉气流控制器,其主要用于控制还原炉的尾气排放。参阅图1的现有技术中的还原炉底盘,如图1所示,底盘1中至少设置有进气喷嘴101和排气孔102,其中,排气孔102位于底盘1的中央,多个进气喷嘴101排布排气孔102的四周,参与反应的气体原料通过进气喷嘴101注入到还原炉内,反应后产生的尾气通过排气孔102排出。本发明实施例提供的气流控制器主要是控制还原炉中的气体流入到排气孔102流动轨迹。
具体地,参阅图2-图5,所述气流控制器2包括圆筒状本体21,所述圆筒状本体21的底端设置为开口部22,顶端设置有密封端盖23,所述筒状本体21的侧壁上设置有多个通孔24,所述圆筒状本体21的底端与所述排气孔102承插连接,所述开口部22与所述排气孔102流体连通。
通过将如上的气流控制器2设置在还原炉底盘1的排气孔102上,由于气流控制器2的顶端设置有密封端盖23,沿还原炉高度方向下行的气体无法直接进入排气孔102,而是由密封端盖23改变其流动轨迹,然后从沿横向(与还原炉高度方向垂直)开口的通孔24进入到圆筒状本体21中,再通入到还原炉的排气孔102中排出,通过改变气体的流动轨迹,延长了喷射速率较低的气体在还原炉内停留的时间,以使该部分气体能够充分反应,提高多晶硅转化率。进一步地,该气流控制器2的顶端设置有密封端盖23,还可以避免生产多晶硅过程中可能产生的硅渣掉落到排气孔102中,降低排气孔102被堵塞的几率,减少设备故障,提高生产效率。
在本实施例中,参阅图2、图3和图5,所述圆筒状本体21的底端延伸出有一插接部25,所述插接部25的外径小于所述圆筒状本体21的外径。所述插接部25的外径小于所述排气孔102的内径,以使所述插接部25可以插入到所述排气孔102中。所述圆筒状本体21的外径大于所述排气孔102的内径,当所述插接部25插入到所述排气孔102中时,所述圆筒状本体21的底端被所述底盘1支撑。本方案中,所述插接部25的外径设计为略微小于所述排气孔102的内径,以使所述插接部25可以紧密地插入到所述排气孔102中。
在本实施例中,参阅图2和图3,所述密封端盖23为圆形的平板状。其中,所述密封端盖23的直径比所述筒状本体21的外径大10~20mm。在另外的一些实施例中,所述密封端盖23也可以设计为方形的平板状或者是其他的一些不规则的形状。其中,为了更好地改变气体的流动轨迹,所述密封端盖23的四周边缘分别延伸凸出于所述筒状本体21的侧壁外侧,其中,所述密封端盖23的四周边缘分别延伸凸出于所述筒状本体21的侧壁外侧的长度为5~10mm。其中,将所述密封端盖23设计为圆形,可以在各个方向上对气体的流动轨迹的改变更加均匀,效果更好。
在本实施例中,参阅图2和图3,所述多个通孔24呈阵列分布在所述筒状本体21的侧壁上,所述通孔24为圆孔,其直径为8~12mm。当然在另外的一些实施例中,也可以是随意地排布,并且通孔24也可以设计为其他的形状,例如方形。将多个通孔24阵列分布,可以达到更佳的排气效果。进一步地,为了使排气更加顺畅,所述多个通孔24的总面积应当设计为不小于所述排气孔102的面积。更进一步地,位于最靠近所述筒状本体21的底端的通孔24与所述底盘1的距离不小于20mm。
综上所述,本发明提供的多晶硅还原炉气流控制器,通过改变反应气体的流动轨迹,延长喷射速率较低的气体在还原炉内停留的时间,以使该部分气体能够充分反应,提高多晶硅转化率;进一步地,该气流控制器还可以避免生产多晶硅过程中可能产生的硅渣掉落到排气孔中。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (13)

  1. 一种多晶硅还原炉气流控制器,用于控制还原炉的尾气排放,所述还原炉包括底盘,所述底盘中设置有排气孔,其中,所述气流控制器包括圆筒状本体,所述圆筒状本体的底端设置为开口部,顶端设置有密封端盖,所述筒状本体的侧壁上设置有多个通孔,所述圆筒状本体的底端与所述排气孔承插连接,所述开口部与所述排气孔流体连通。
  2. 根据权利要求1所述的多晶硅还原炉气流控制器,其中,所述圆筒状本体的底端延伸出有一插接部,所述插接部的外径小于所述圆筒状本体的外径,所述插接部的外径小于所述排气孔的内径,所述圆筒状本体的外径大于所述排气孔的内径。
  3. 根据权利要求1所述的多晶硅还原炉气流控制器,其中,所述密封端盖的四周边缘分别延伸凸出于所述筒状本体的侧壁外侧。
  4. 根据权利要求3所述的多晶硅还原炉气流控制器,其中,所述密封端盖的四周边缘分别延伸凸出于所述筒状本体的侧壁外侧的长度为5~10mm。
  5. 根据权利要求1所述的多晶硅还原炉气流控制器,其中,所述密封端盖为圆形或方形的平板状。
  6. 根据权利要求5所述的多晶硅还原炉气流控制器,其中,所述密封端盖为圆形的平板状,所述密封端盖的直径比所述筒状本体的外径大10~20mm。
  7. 根据权利要求1所述的多晶硅还原炉气流控制器,其中,所述多个通孔呈阵列分布在所述筒状本体的侧壁上。
  8. 根据权利要求1所述的多晶硅还原炉气流控制器,其中,所述通孔为圆孔,其直径为8~12mm。
  9. 根据权利要求1所述的多晶硅还原炉气流控制器,其中,所述多个通孔的总面积不小于所述排气孔的面积。
  10. 根据权利要求1所述的多晶硅还原炉气流控制器,其中,位于最靠近所述筒状本体的底端的通孔与所述底盘的距离不小于20mm。
  11. 根据权利要求7所述的多晶硅还原炉气流控制器,其中,所述通孔为圆孔,其直径为8~12mm。
  12. 根据权利要求7所述的多晶硅还原炉气流控制器,其中,所述多个通孔的总面积不小于所述排气孔的面积。
  13. 根据权利要求7所述的多晶硅还原炉气流控制器,其中,位于最靠近所述筒状本体的底端的通孔与所述底盘的距离不小于20mm。
PCT/CN2016/091833 2016-03-16 2016-07-27 一种多晶硅还原炉气流控制器 WO2017156952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610150026.3A CN105645415B (zh) 2016-03-16 2016-03-16 一种多晶硅还原炉气流控制器
CN201610150026.3 2016-03-16

Publications (1)

Publication Number Publication Date
WO2017156952A1 true WO2017156952A1 (zh) 2017-09-21

Family

ID=56493854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091833 WO2017156952A1 (zh) 2016-03-16 2016-07-27 一种多晶硅还原炉气流控制器

Country Status (2)

Country Link
CN (1) CN105645415B (zh)
WO (1) WO2017156952A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645415B (zh) * 2016-03-16 2018-02-23 黄河水电光伏产业技术有限公司 一种多晶硅还原炉气流控制器
CN110510615A (zh) * 2019-09-25 2019-11-29 洛阳中硅高科技有限公司 用于多晶硅还原炉的导流装置及具有其的还原炉

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202297153U (zh) * 2011-10-14 2012-07-04 唐山三孚硅业股份有限公司 一种改进的三氯氢硅合成炉
CN202415170U (zh) * 2011-09-09 2012-09-05 上海森松环境技术工程有限公司 多晶硅还原炉尾气出口装置
CN103896270A (zh) * 2012-12-31 2014-07-02 江苏双良新能源装备有限公司 多晶硅高温尾气热交换器之高温尾气防冲件可调结构
WO2014146876A1 (de) * 2013-03-18 2014-09-25 Wacker Chemie Ag Verfahren zur abscheidung von polykristallinem silicium
CN203890069U (zh) * 2014-04-29 2014-10-22 中国矿业大学 一种迷宫式多晶硅还原炉用高纯石墨尾气罩
JP2015113251A (ja) * 2013-12-11 2015-06-22 Jnc株式会社 多結晶シリコン製造装置および製造方法
CN204550073U (zh) * 2015-04-09 2015-08-12 景德镇晶达新材料有限公司 一种多晶硅还原炉尾气孔防掉硅装置
CN105645415A (zh) * 2016-03-16 2016-06-08 黄河水电光伏产业技术有限公司 一种多晶硅还原炉气流控制器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202415170U (zh) * 2011-09-09 2012-09-05 上海森松环境技术工程有限公司 多晶硅还原炉尾气出口装置
CN202297153U (zh) * 2011-10-14 2012-07-04 唐山三孚硅业股份有限公司 一种改进的三氯氢硅合成炉
CN103896270A (zh) * 2012-12-31 2014-07-02 江苏双良新能源装备有限公司 多晶硅高温尾气热交换器之高温尾气防冲件可调结构
WO2014146876A1 (de) * 2013-03-18 2014-09-25 Wacker Chemie Ag Verfahren zur abscheidung von polykristallinem silicium
JP2015113251A (ja) * 2013-12-11 2015-06-22 Jnc株式会社 多結晶シリコン製造装置および製造方法
CN203890069U (zh) * 2014-04-29 2014-10-22 中国矿业大学 一种迷宫式多晶硅还原炉用高纯石墨尾气罩
CN204550073U (zh) * 2015-04-09 2015-08-12 景德镇晶达新材料有限公司 一种多晶硅还原炉尾气孔防掉硅装置
CN105645415A (zh) * 2016-03-16 2016-06-08 黄河水电光伏产业技术有限公司 一种多晶硅还原炉气流控制器

Also Published As

Publication number Publication date
CN105645415B (zh) 2018-02-23
CN105645415A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2017156952A1 (zh) 一种多晶硅还原炉气流控制器
EP2338954B1 (en) Coke dry quenching facility
TWI495829B (zh) Exhaust gas treatment device
CN110760935B (zh) 单晶炉
CN104724705B (zh) 用于多晶硅还原炉的底盘组件
CN102992330B (zh) 一种流化床脱酸净化装置及工艺
JP2007084355A (ja) 粉体製造装置
CN103278008B (zh) 带气幕保护的反应塔及其进气方法
CN201050940Y (zh) 高温还原炉的进、出气管装置
CN110433509A (zh) 一种惰性粒子流化床用液体分布器
KR102012898B1 (ko) 다방향 공급을 이용한 폴리실리콘 제조용 반응 장치 및 그에 의한 폴리실리콘 제조 방법
CN210825445U (zh) 用于多晶硅还原炉的导流装置及具有其的还原炉
JP5206479B2 (ja) 多結晶シリコン製造装置
CN210252184U (zh) 一种定向排气结构
CN102212881A (zh) 一种多晶硅铸锭炉热场及多晶硅铸锭炉
CN202164127U (zh) 一种多晶硅还原炉
CN102923710A (zh) 多晶硅还原炉
CN203270007U (zh) 一种用于生产海绵钛的15吨倒u型联合装置
CN102305409A (zh) 一种制酸用焚烧炉
CN202277982U (zh) 一种反应快、出液迅速、活性炭流失少的活性炭酸洗池
CN103880009A (zh) 一种尾气出口连接内伸管的多晶硅还原炉及连接方法
CN213506007U (zh) 多晶硅还原炉封头及多晶硅还原炉
CN202164129U (zh) 多晶硅还原炉
CN220119862U (zh) 气体注入装置和反应炉
CN210464083U (zh) 一种利用窑炉余热的喷雾干燥塔

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894113

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTHING LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.02.19)

122 Ep: pct application non-entry in european phase

Ref document number: 16894113

Country of ref document: EP

Kind code of ref document: A1