WO2017156926A1 - 一种提高手持设备待机效率的装置及方法 - Google Patents
一种提高手持设备待机效率的装置及方法 Download PDFInfo
- Publication number
- WO2017156926A1 WO2017156926A1 PCT/CN2016/088467 CN2016088467W WO2017156926A1 WO 2017156926 A1 WO2017156926 A1 WO 2017156926A1 CN 2016088467 W CN2016088467 W CN 2016088467W WO 2017156926 A1 WO2017156926 A1 WO 2017156926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- handheld device
- converter
- capacitor
- output
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the embodiments of the present invention relate to the technical field of mobile terminal devices, and in particular, to an apparatus and method for improving standby efficiency of a handheld device.
- mobile phone hardware systems are mainly composed of baseband modules and RF modules.
- Baseband modules mainly implement analog and digital baseband signal processing, protocol stacks, operating systems, running application software, power management, charging, backlighting, audio and peripherals.
- RF module mainly realizes the functions of analog baseband signal up/down conversion, filtering, low noise amplification, power amplification, transmission and reception switching, etc.
- GSM Global System for Mobile Communications
- mobile phones usually have three working modes: 1. Communication service mode. The mobile phone is in the state of communication of call or data service.
- the baseband and radio frequency module of the mobile phone are in a comprehensive working mode, and the whole machine works under the corresponding maximum power consumption state according to the network and channel quality conditions, and the average power consumption is about 300 mA.
- Instantaneous power consumption can reach 1A or higher; 2.
- Standby mode that is, the mobile phone does not perform any user command and operation, and is in the waiting state.
- FIG. 1 In the prior art, it is often through DC to DC in a handheld device.
- the DC/DC converter supplies power to the handheld device.
- the operating efficiency of the DC/DC converter can generally reach more than 90% due to the large output current of the DC/DC converter.
- the inventors have found that at least the following problems exist in the prior art: when the handheld device is in the standby state, the output current of the DC/DC converter tends to be small, and the corresponding working efficiency is fast. attenuation. In this way, the power supply mode of the handheld device in the prior art may cause the standby efficiency of the handheld device to be relatively low, thereby affecting the standby time of the handheld device.
- Embodiments of the present application provide an apparatus and method for improving standby efficiency of a handheld device to improve efficiency of the handheld device in a standby state.
- An embodiment of the present application provides an apparatus for improving standby efficiency of a handheld device, including a power supply, an inverter, a FET, and a DC-to-DC DC/DC converter and a low-dropout regulator connected in parallel with each other, wherein the DC a /DC converter and the low dropout regulator are provided with an input voltage by the power supply, an input port of the inverter being coupled to an enable port of the low dropout regulator, an input of the inverter a port is connected to an enable port of the DC/DC converter, a gate of the FET is connected to an output port of the inverter, and a drain is connected to an output port of the DC/DC converter, a source The pole is connected to the output port of the low dropout regulator.
- An embodiment of the present application provides a method for improving standby efficiency of a handheld device, including: determining a state of a current time of the handheld device; and when the handheld device is in an active state, using an output voltage of the DC to DC DC/DC converter as the The handheld device is powered; when the handheld device is in a standby state, the handheld device is powered by the output voltage of the low dropout regulator.
- the device and method for improving the standby efficiency of the handheld device provided by the embodiment of the present application, by connecting the low dropout voltage regulator and the DC/DC converter in parallel, and selectively using the DC/DC converter according to the current state of the handheld device Or a low dropout regulator powers the handheld device.
- the handheld device When the handheld device is in the active state (communication service mode), it can be powered by the DC/DC converter. At this time, due to the large output current of the DC/DC converter, high working efficiency can be ensured; when the handheld device is in In the standby state (standby mode), it can be powered by a low-dropout regulator. At this time, the voltage difference between the output voltage of the low-dropout regulator and the input voltage is small, which also ensures high operating efficiency. It can be seen that the provided by the embodiment of the present application provides The device and method for high standby efficiency of the handheld device can improve the efficiency of the handheld device in the standby state.
- FIG. 1 is a schematic diagram showing the working efficiency of a handheld device in the prior art
- FIG. 2 is a structural diagram of an apparatus for improving standby efficiency of a handheld device according to an embodiment of the present application
- FIG. 3 is a schematic diagram of working efficiency of a handheld device according to an embodiment of the present application.
- FIG. 4 is a schematic structural diagram of a low-dropout voltage regulator according to an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of a low dropout voltage regulator according to another embodiment of the present application.
- FIG. 6 is a flowchart of a method for improving standby efficiency of a handheld device according to an embodiment of the present application.
- FIG. 2 is a structural diagram of an apparatus for improving standby efficiency of a handheld device according to an embodiment of the present application.
- the apparatus includes a power supply 1, an inverter 2, a FET 3, and a DC-to-DC DC/DC converter 4 and a low-dropout regulator 5 connected in parallel with each other, wherein the DC/ The DC converter 4 and the low-dropout regulator 5 are supplied with an input voltage from the power supply 1, and an input port of the inverter 2 is connected to an enable port of the low-dropout regulator 5, the opposite An input port of the phase 2 is connected to an enable port of the DC/DC converter 4, a gate of the FET 3 is connected to an output port of the inverter 2, and a drain and the DC/DC The output port of the converter 4 is connected, and the source is connected to the output port of the low dropout regulator 5.
- the operating states of the DC/DC converter and the low dropout regulator can be turned on or off by inputting an enable signal at the enable ports of the DC/DC converter and the low dropout regulator. Specifically, when a high level is input to the enable port, the DC/DC converter or the low dropout voltage regulator can be turned on; when the input port is low level, the DC/DC converter or the low dropout voltage can be used. The regulator is off.
- the enable signal of the enable port of the input DC/DC converter and the low dropout regulator can be logically in the opposite relationship by the action of the inverter, that is, if the input DC/ The enable signal of the enable port of the DC converter is high, and the enable signal of the enable port of the input low dropout regulator is low. In this way, it is ensured that only one of the DC/DC converter and the low dropout regulator is turned on at the same time, and the other is turned off.
- the enable signal when the handheld device is in an active state, the enable signal can be set to a low level, so that the enable signal of the enable port of the input low dropout regulator is low.
- the low dropout regulator can be turned off.
- the enable signal of the enable port of the input DC/DC converter is at a high level, and at this time, the gate input of the FET is also at a high level, so that the DC/DC Both the converter and the FET can be in an open state.
- the DC/DC converter can convert the first voltage supplied from the power supply to a second voltage and amplify the FET to serve as an output voltage to power the handheld device.
- the output voltage of the DC/DC converter is also large, thereby ensuring high work efficiency.
- the enable signal when the handheld device is in the standby state, the enable signal can be changed from a low level to a high level.
- the low dropout voltage regulator can be turned on, and the DC/DC converter and the field effect Tubes can be turned off.
- the input voltage of the low-dropout regulator from the power supply can be, for example, 1.5V
- the output voltage of the low-dropout regulator can reach 1.3V
- FIG. 3 is a schematic diagram of the working efficiency of the handheld device in the embodiment of the present application.
- the device for improving the standby efficiency of the handheld device provided by the embodiment is used. This allows the handheld device to maintain more than 90% efficiency in standby mode.
- a filter circuit may be provided between the output port of the DC/DC converter 4 and the drain of the FET 3.
- the filter circuit may include an inductor 6 and a capacitor 7 connected in series with each other, wherein two ends of the inductor 6 are respectively connected to an output port of the DC/DC converter 4 and a drain of the FET 3, One end of the capacitor 7 is connected to the drain of the field effect transistor 3, and the other end of the capacitor is grounded.
- the output voltage of the DC/DC converter when the output voltage of the DC/DC converter is doped with an AC voltage, the impedance generated by the AC voltage passing through the inductor is large, and the AC voltage can be directly guided into the ground through the capacitor, thereby The AC component of the output voltage is filtered out to ensure that only the DC voltage is included in the output voltage, so that the handheld device can be powered normally.
- the low-dropout voltage regulator 5 may include a voltage stabilizing chip 51, a first capacitor 52, a second capacitor 53, and a third capacitor 54, wherein the first lead of the voltage stabilizing chip 51
- the pin is connected to the power supply 1 , the second pin is grounded, the third pin is a voltage output pin, and the first pin is connected to the ground through the first capacitor 52 , and the second capacitor 53 And a third capacitor 54 is connected in parallel between the third pin and ground.
- the type of the voltage stabilizing chip 51 may be, for example, a chip such as HM6206 or HT7530 or HT7133-1.
- a chip such as HM6206 or HT7530 or HT7133-1.
- it is not limited to the above several models, as long as the function of the voltage regulator chip can be realized.
- the first capacitor 52 between the first pin of the voltage stabilizing chip 51 and the ground can be used to filter the voltage provided by the power supply 1 .
- the second capacitor 53 and the The triple capacitor 54 can also be used to filter the output voltage of the voltage stabilizing chip 51.
- the determiner 8 can be provided in the device.
- the signal output port of the determiner 8 is connected to the input port of the inverter 2, and the determiner 8 can determine the state of the handheld device and generate an enable signal according to the determination result.
- the determiner 8 can detect the usage rate of the CPU and memory of the handheld device. When the detected result exceeds a preset threshold, the handheld device can be considered to be currently in an active state, and when the detected result does not reach the preset threshold, the handheld device can be considered to be currently in the standby state.
- the determiner 8 when the determiner 8 determines that the handheld device is in an active state, it can output an enable signal of a low level, in which case the DC/DC converter and the FET can be driven to enter. The state is turned on, and the low dropout regulator is turned off. Conversely, when the determiner 8 determines that the handheld device is in the standby state, it can output a high level enable signal, in which case the low dropout voltage regulator can be driven to the on state, thereby making the DC/DC The converter and FET enter the off state.
- the low dropout regulator 5 may include a reference power supply 511, a first voltage dividing resistor 512, a second voltage dividing resistor 513, an error amplifier 514, and a driving transistor 515.
- the positive phase input of the error amplifier 514 The terminal is connected to the reference power source 511, the output of the error amplifier 514 is connected to the gate of the driving tube 515, the drain of the driving tube 515 is connected to the power supply 1, and the driving 515 is Between the source and the ground, the first voltage dividing resistor 512 and the second voltage dividing resistor 513 are connected in series with each other, and an inverting input end of the error amplifier 514 is connected to the first voltage dividing resistor 512 and Between the second voltage dividing resistors 513.
- the reference power supply 511 can be used to generate a reference voltage and input the reference voltage to the non-inverting input of the error amplifier 514.
- the inverting input of the error amplifier 514 can input a voltage division of the output voltage by the first voltage dividing resistor 512 and the second voltage dividing resistor 513, so that a feedback circuit can be established between the input and the output of the error amplifier 514.
- the output of the error amplifier 514 is connected to the gate of the driving transistor 515, and the first voltage dividing resistor 512 and the second voltage dividing resistor 513 divide the output voltage of the error amplifier 514, and the partial voltage Feedback is provided to the inverting input of error amplifier 514.
- the drive tube 515 stabilizes the voltage value of the final output voltage according to the comparison result of the error amplifier 514 with respect to the reference voltage and the divided voltage.
- the driving tube 515 can adjust the final output voltage of the low-dropout regulator in real time through the differential pressure to ensure the output of the low-dropout regulator.
- the voltage can be changed synchronously with the change of the input voltage, so that the voltage difference between the output voltage and the input voltage can be kept within a preset range.
- a decoupling capacitor 516 may be disposed between the source and the ground of the driving tube 515, and the decoupling capacitor 516 and the first voltage dividing resistor 512 and the second voltage dividing unit are connected in series with each other.
- the resistors 513 are connected in parallel, and the decoupling capacitors 516 can be used to eliminate the effects of load variations of the handheld device on the output voltage of the low dropout regulator.
- a sudden drop in the load current may result in a low dropout regulator.
- the output voltage signal produces a large overshoot, although the voltage overshoot can be reduced by providing a decoupling capacitor at the output of the low dropout regulator, but the decoupling capacitor is typically small for cost reasons. Therefore, the effect of preventing overshoot is often poor.
- the apparatus may further include a bias circuit 9 and a source follower 10, wherein the bias circuit 9 is connected to the gate of the source follower 10, the source The source of the polar follower 10 is connected to the output port of the low dropout regulator 5, and the drain of the source follower 10 is connected to ground.
- the source of the source follower 10 is connected to the output port of the low-dropout regulator 5, and when the load current of the low-dropout regulator 5 suddenly decreases, the low-voltage difference is stable.
- the voltage signal of the output port of the voltage converter 5 is overshooted.
- the source voltage of the source follower 10 rises, and the operating current of the source follower 10 rises rapidly in a short time, generating a pull-down current, thereby enabling the The voltage overshoot of the voltage signal is reduced.
- the device for improving the standby efficiency of the handheld device provided by the embodiment of the present application is connected in parallel with the DC/DC converter by the low-dropout voltage regulator, and can selectively utilize the DC/DC according to the current state of the handheld device.
- a converter or low dropout regulator powers the handheld device.
- the handheld device When the handheld device is in the active state (communication service mode), it can be powered by the DC/DC converter. At this time, due to the large output current of the DC/DC converter, high working efficiency can be ensured; when the handheld device is in In the standby state (standby mode), it can be powered by a low-dropout regulator. At this time, the voltage difference between the output voltage of the low-dropout regulator and the input voltage is small, which also ensures high operating efficiency. Therefore, the device for improving the standby efficiency of the handheld device provided by the embodiment of the present application can improve the effectiveness of the handheld device in the standby state. rate.
- Embodiments of the present application also provide a method for improving standby efficiency of a handheld device.
- the method may include the following steps.
- Step S1 determining the state of the current time of the handheld device
- Step S2 when the handheld device is in an active state, powering the handheld device by using an output voltage of a DC to DC DC/DC converter;
- Step S3 When the handheld device is in the standby state, the handheld device is powered by the output voltage of the low dropout regulator.
- the method may further include:
- the output voltage of the DC to DC converter is filtered.
- the method may further include:
- the bias voltage and source follower are used to overshoot the output voltage of the low dropout regulator.
- the method for improving the standby efficiency of the handheld device is that the low-dropout voltage regulator is connected in parallel with the DC/DC converter, and the DC/DC can be selectively utilized according to the current state of the handheld device.
- a converter or low dropout regulator powers the handheld device.
- the handheld device When the handheld device is in the active state (communication service mode), it can be powered by the DC/DC converter. At this time, due to the large output current of the DC/DC converter, high working efficiency can be ensured; when the handheld device is in In the standby state (standby mode), it can be powered by a low-dropout regulator. At this time, the voltage difference between the output voltage of the low-dropout regulator and the input voltage is small, which also ensures high operating efficiency.
- the method for improving the standby efficiency of the handheld device provided by the embodiment of the present application can improve the efficiency of the handheld device in the standby state.
- references to elements or components or steps should not be construed as limited to only one of the elements, components, or steps, but may be one or more of the elements, components, or steps.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种提高手持设备待机效率的装置及方法,该装置包括供电电源(1)、反相器(2)、场效应管(3)以及相互并联的直流到直流DC/DC转换器(4)和低压差稳压器(5)。DC/DC转换器和低压差稳压器由供电电源提供输入电压,反相器的输入端口与低压差稳压器的使能端口相连,反相器的输入端口与DC/DC转换器的使能端口相连,场效应管的栅极与反相器的输出端口相连,漏极与DC/DC转换器的输出端口相连,源极与低压差稳压器的输出端口相连。该装置及方法能够提高手持设备在待机状态下的效率。
Description
本申请要求于2016年3月17日提交中国专利局、申请号为201610152285.X,发明名称为“一种提高手持设备待机效率的装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及移动终端设备技术领域,尤其涉及一种提高手持设备待机效率的装置及方法。
近年来,随着移动终端的不断发展,移动终端在人们的日常生活中已经相当的普及,而且很多体积愈来愈小、功能非常齐全的手持设备也受到越来越多人的喜爱,手持设备的广泛应用缩短了人与人之间在时间和空间上的距离,这样人们对未来手持设备的要求也越来越高,未来通讯产品是否提供更方便、更有效率的功能及服务,以成为通讯产品制造商需要关注和研究的问题。
以手机为例,众所周知,手机硬件系统主要由基带模块和射频模块构成,基带模块主要实现模拟及数字基带信号处理、协议栈、操作系统、运行应用软件、电源管理、充电、背光、音频及外围设备管理等功能;射频模块主要实现模拟基带信号的上/下行变频、滤波、低噪声放大、功率放大、收发切换等功能,以GSM为例,手机通常有三种工作模式:1、通信业务模式,手机处在通话或数据业务通信状态中,该模式下,手机基带、射频模块处于全面工作模式,整机根据网络、信道质量状况处于相应的最大功耗状态下工作,平均功耗有300mA左右,瞬时功耗可达1A或更高;2、待机模式,即手机不执行任何用户指令及操作,处于守候状态,此时射频模块发射机关闭,接收机、系统主时钟、基带模块(此时基带间歇工作也是出于最小系统节电工作模式)处于间歇工作模式间歇接收并处理小区寻呼消息,只有系统实时时钟为保持系统计时仍处于连续工作状态,此时整机消耗电流通常小于1mA。
请参阅图1,在现有技术中,往往通过手持设备内的直流到直流
DC/DC转换器为手持设备供电。当手持设备处于通信业务模式下时,由于DC/DC转换器的输出电流较大,因此DC/DC转换器的工作效率一般能够达到90%以上。然而在实现本申请过程中,发明人发现现有技术中至少存在如下问题:当手持设备处于待机状态时,DC/DC转换器的输出电流往往较小,此时其对应的工作效率则会迅速衰减。这样,现有技术中对于手持设备的供电方式,会导致手持设备的待机效率相当低,从而会影响手持设备的待机时间。
发明内容
本申请实施例提供一种提高手持设备待机效率的装置及方法,以提高手持设备在待机状态下的效率。
本申请实施例提供一种提高手持设备待机效率的装置,包括供电电源、反相器、场效应管以及相互并联的直流到直流DC/DC转换器和低压差稳压器,其中,所述DC/DC转换器和所述低压差稳压器由所述供电电源提供输入电压,所述反相器的输入端口与所述低压差稳压器的使能端口相连,所述反相器的输入端口与所述DC/DC转换器的使能端口相连,所述场效应管的栅极与所述反相器的输出端口相连,漏极与所述DC/DC转换器的输出端口相连,源极与所述低压差稳压器的输出端口相连。
本申请实施例提供一种提高手持设备待机效率的方法,包括:判断手持设备当前时刻的状态;当所述手持设备处于激活状态时,利用直流到直流DC/DC转换器的输出电压为所述手持设备供电;当所述手持设备处于待机状态时,利用低压差稳压器的输出电压为所述手持设备供电。
本申请实施例提供的提高手持设备待机效率的装置及方法,通过将低压差稳压器与DC/DC转换器进行并联,并且可以根据手持设备当前的状态,有选择地利用DC/DC转换器或者低压差稳压器为手持设备供电。当手持设备处于激活状态(通信业务模式)时,可以通过DC/DC转换器为其供电,此时由于DC/DC转换器的输出电流较大,可以保证较高的工作效率;当手持设备处于待机状态(待机模式)时,可以通过低压差稳压器为其供电,此时低压差稳压器的输出电压与输入电压之间的压差较小,同样能够保证较高的工作效率。由此可见,本申请实施例提供的提
高手持设备待机效率的装置及方法,能够提高手持设备在待机状态下的效率。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图逐一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中手持设备的工作效率示意图;
图2为本申请实施方式提供的一种提高手持设备待机效率的装置结构图;
图3为本申请实施方式中手持设备的工作效率示意图;
图4为本申请实施方式中低压差稳压器的结构示意图;
图5为本申请另一实施方式中低压差稳压器的结构示意图;
图6为申请实施例提供的一种提高手持设备待机效率的方法流程图。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图2为本申请实施方式提供的一种提高手持设备待机效率的装置结构图。如图2所示,所述装置包括供电电源1、反相器2、场效应管3以及相互并联的直流到直流DC/DC转换器4和低压差稳压器5,其中,所述DC/DC转换器4和所述低压差稳压器5由所述供电电源1提供输入电压,所述反相器2的输入端口与所述低压差稳压器5的使能端口相连,所述反相器2的输入端口与所述DC/DC转换器4的使能端口相连,所述场效应管3的栅极与所述反相器2的输出端口相连,漏极与所述DC/DC转换器4的输出端口相连,源极与所述低压差稳压器5的输出端口相连。
在本实施方式中,可以通过在DC/DC转换器和低压差稳压器的使能端口输入使能信号,从而对DC/DC转换器和低压差稳压器的工作状态进行开启或者关闭。具体地,在使能端口中输入高电平时,则可以将DC/DC转换器或者低压差稳压器开启;在使能端口中输入低电平时,则可以将DC/DC转换器或者低压差稳压器关闭。
在本实施方式中,经过反相器的作用,输入DC/DC转换器和低压差稳压器的使能端口的使能信号在逻辑上可以为相反的关系,也就是说,如果输入DC/DC转换器的使能端口的使能信号为高电平,那么输入低压差稳压器的使能端口的使能信号便为低电平。这样,可以保证在同一时刻只有DC/DC转换器和低压差稳压器中的一个处于开启状态,而另一个则处于关闭状态。
举例来说明,在本实施方式中,当手持设备处于工作状态时,可以将使能信号设置为低电平,这样,输入低压差稳压器的使能端口的使能信号便为低电平,从而可以使得低压差稳压器处于关闭状态。而经过反相器的作用,输入DC/DC转换器的使能端口的使能信号为高电平,并且此时场效应管的栅极输入也为高电平,这样,所述DC/DC转换器和所述场效应管均可以处于开启状态。在这种情况下,所述DC/DC转换器可以将供电电源提供的第一电压转换为第二电压,并通过所述场效应管进行放大之后作为输出电压,为手持设备供电。此时,由于手持设备处于工作状态,因此DC/DC转换器的输出电压也较大,从而可以保证较高的工作效率。
在本实施方式中,当手持设备处于待机状态时,使能信号则可以由低电平变为高电平,此时,低压差稳压器可以被开启,而DC/DC转换器以及场效应管均可以被关闭。在这种情况下,所述低压差稳压器从供电电源处获取的输入电压例如可以为1.5V,而低压差稳压器的输出电压可以达到1.3V,那么此时手持设备的工作效率为1.4/1.5=93.33%,由此可见,在待机状态下手持设备也可以保持一个较高的工作效率。
请参阅图3。图3为本申请实施方式中手持设备的工作效率示意图.从图中可以看出,采用本实施方式中提供的提高手持设备待机效率的装
置,可以使得手持设备在待机状态下仍然可以保持90%以上的效率。
在本申请一优选实施方式中,为了能够为手持设备提供较稳定的直流电压,可以在所述DC/DC转换器4的输出端口与所述场效应管3的漏极之间设置滤波电路。请参阅图2。所述滤波电路可以包括相互串联的电感6和电容7,其中,所述电感6的两端分别与所述DC/DC转换器4的输出端口和所述场效应管3的漏极相连,所述电容7的一端与所述场效应管3的漏极相连,所述电容的另一端接地。在这种情况下,当所述DC/DC转换器的输出电压中掺杂有交流电压时,由于交流电压通过电感时产生的阻抗较大,并且交流电压可以通过电容直接引导入地面,从而可以将输出电压中的交流分量滤除,以保证输出电压中仅包含直流电压,从而可以为手持设备进行正常的供电。
请参阅图4。在本申请一实施例中,所述低压差稳压器5可以包括稳压芯片51、第一电容52、第二电容53和第三电容54,其中,所述稳压芯片51的第一引脚与所述供电电源1相连,第二引脚接地,第三引脚为电压输出引脚,所述第一引脚与地之间通过所述第一电容52连接,所述第二电容53和第三电容54并联于所述第三引脚与地之间。
在本实施方式中,所述稳压芯片51的型号例如可以为HM6206或HT7530或HT7133-1等芯片。当然在具体实施过程中并不仅限于上述几种型号,只要能实现稳压芯片的功能即可。
在本实施方式中,所述稳压芯片51的第一引脚与地之间的第一电容52可以用于对供电电源1提供的电压进行滤波,同样的,所述第二电容53和第三电容54也可以用于对稳压芯片51的输出电压进行滤波。
在本申请一实施方式中,由于需要对手持设备当前的状态进行判断,因此可以在所述装置中设置判定器8。所述判定器8的信号输出端口与所述反相器2的输入端口相连,所述判定器8可以对所述手持设备的状态进行判定,并根据判定结果生成使能信号。具体地,所述判定器8可以对手持设备的CPU和内存的使用率进行检测。当检测的结果超过预先设置的阈值时,则可以认为手持设备当前处于激活状态,而检测的结果未达到预先设置的阈值时,便可以认为手持设备当前处于待机状态。
在本实施方式中,当所述判定器8判定手持设备处于激活状态时,便可以输出低电平的使能信号,在这种情况下,从而可以驱动DC/DC转换器和场效应管进入开启状态,而使得低压差稳压器进入关闭状态。相反地,当所述判定器8判定手持设备处于待机状态时,便可以输出高电平的使能信号,在这种情况下,可以驱动低压差稳压器进入开启状态,而使得DC/DC转换器和场效应管进入关闭状态。
在本申请一实施方式中,考虑到低压差稳压器的输入电压可能会发生波动,因此为了确保低压差稳压器可以跟随输入电压的波动动态地调整输出电压的电压值,以将输出电压和输入电压之间的压差保持在预设的范围内,可以采用如图5所示的低压差稳压器的结构示意图。请参阅图5,所述低压差稳压器5可以包括基准电源511、第一分压电阻512、第二分压电阻513、误差放大器514和驱动管515,所述误差放大器514的正相输入端与所述基准电源511相连,所述误差放大器514的输出端与所述驱动管515的栅极相连,所述驱动管515的漏极与所述供电电源1相连,所述驱动515管的源极与地之间设置有相互串联的所述第一分压电阻512和所述第二分压电阻513,所述误差放大器514的反相输入端连接于所述第一分压电阻512和所述第二分压电阻513之间。
在本实施方式中,所述基准电源511可以用于产生基准电压,并将所述基准电压输入所述误差放大器514的正相输入端。所述误差放大器514的反相输入端可以输入所述第一分压电阻512和第二分压电阻513对输出电压的分压,这样可以在误差放大器514的输入和输出之间建立反馈电路。所述误差放大器514的输出端连接所述驱动管515的栅极,所述第一分压电阻512和第二分压电阻513将所述误差放大器514的输出电压进行分压,并将部分电压反馈至误差放大器514的反相输入端。所述驱动管515根据所述误差放大器514对于基准电压和分压电压之间的比较结果,来稳定最终输出电压的电压值。这样,当低压差稳压器的输入电压变化时,分压电阻反馈至反相输入端的电压也会随之变化,从而引起基准电压与分压电压之间压差的变化。驱动管515可以通过该压差实时调整低压差稳压器最终的输出电压,以保证低压差稳压器的输出电
压可以随着输入电压的变化而同步变化,从而可以保证输出电压和输入电压之间的压差保持在预设的范围内。
在本实施方式中,所述驱动管515的源极与地之间还可以设置有去耦电容516,所述去耦电容516与所述相互串联的第一分压电阻512和第二分压电阻513相并联,所述去耦电容516可以用于消除手持设备的负载变化对低压差稳压器的输出电压的影响。
在本申请另一优选实施方式中,考虑到在工作电路的状态发生变化,尤其是在数字电路的工作电路由开态转变为关态的过程中,负载电流突然降低会导致低压差稳压器的输出电压信号产生较大的过冲,尽管可以通过在低压差稳压器的输出端设置去耦电容来减小电压过冲量,但出于成本考虑,所述的去耦电容通常较小,因此防止过冲的效果往往不佳。基于此,在本实施方式中,所述装置还可以包括偏置电路9和源极跟随器10,其中,所述偏置电路9与所述源极跟随器10的栅极相连,所述源极跟随器10的源极与所述低压差稳压器5的输出端口相连,所述源极跟随器10的漏极与地相连。
在本实施方式中,所述源极跟随器10的源极连接所述低压差稳压器5的输出端口,当所述低压差稳压器5的负载电流突然降低时,所述低压差稳压器5输出端口的电压信号出现过冲,此时源极跟随器10的源极电压升高,源极跟随器10的工作电流在短时间内迅速升高,产生下拉电流,从而可以使所述电压信号的电压过冲量减小。
由上可见,本申请实施例提供的提高手持设备待机效率的装置,通过将低压差稳压器与DC/DC转换器进行并联,并且可以根据手持设备当前的状态,有选择地利用DC/DC转换器或者低压差稳压器为手持设备供电。当手持设备处于激活状态(通信业务模式)时,可以通过DC/DC转换器为其供电,此时由于DC/DC转换器的输出电流较大,可以保证较高的工作效率;当手持设备处于待机状态(待机模式)时,可以通过低压差稳压器为其供电,此时低压差稳压器的输出电压与输入电压之间的压差较小,同样能够保证较高的工作效率。由此可见,本申请实施例提供的提高手持设备待机效率的装置,能够提高手持设备在待机状态下的效
率。
本申请实施例还提供一种提高手持设备待机效率的方法。请参阅图6,所述方法可以包括以下步骤。
步骤S1:判断手持设备当前时刻的状态;
步骤S2:当所述手持设备处于激活状态时,利用直流到直流DC/DC转换器的输出电压为所述手持设备供电;
步骤S3:当所述手持设备处于待机状态时,利用低压差稳压器的输出电压为所述手持设备供电。
在本申请一优选实施方式中,在利用直流到直流DC/DC转换器的输出电压为所述手持设备供电之前,所述方法还可以包括:
对直流到直流DC/DC转换器的输出电压进行滤波。
在本申请一优选实施方式中,在利用低压差稳压器的输出电压为所述手持设备供电之前,所述方法还可以包括:
利用偏置电路和源极跟随器对低压差稳压器的输出电压进行过冲防护处理。
需要说明的是,上述步骤S1至S3的具体实现过程均与本申请实施方式提供的提高手持设备待机效率的装置的实现过程一致,这里便不再赘述。
由上可见,本申请实施例提供的提高手持设备待机效率的方法,通过将低压差稳压器与DC/DC转换器进行并联,并且可以根据手持设备当前的状态,有选择地利用DC/DC转换器或者低压差稳压器为手持设备供电。当手持设备处于激活状态(通信业务模式)时,可以通过DC/DC转换器为其供电,此时由于DC/DC转换器的输出电流较大,可以保证较高的工作效率;当手持设备处于待机状态(待机模式)时,可以通过低压差稳压器为其供电,此时低压差稳压器的输出电压与输入电压之间的压差较小,同样能够保证较高的工作效率。由此可见,本申请实施例提供的提高手持设备待机效率的方法,能够提高手持设备在待机状态下的效率。
在本说明书中,诸如第一和第二这样的形容词仅可以用于将一个元
素或动作与另一元素或动作进行区分,而不必要求或暗示任何实际的这种关系或顺序。在环境允许的情况下,参照元素或部件或步骤(等)不应解释为局限于仅元素、部件、或步骤中的一个,而可以是元素、部件、或步骤中的一个或多个等。
上面对本申请的各种实施方式的描述以描述的目的提供给本领域技术人员。其不旨在是穷举的、或者不旨在将本申请限制于单个公开的实施方式。如上所述,本申请的各种替代和变化对于上述技术所属领域技术人员而言将是显而易见的。因此,虽然已经具体讨论了一些另选的实施方式,但是其它实施方式将是显而易见的,或者本领域技术人员相对容易得出。本申请旨在包括在此已经讨论过的本申请的所有替代、修改、和变化,以及落在上述申请的精神和范围内的其它实施方式。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于方法实施例而言,由于其基本相似于装置实施例,所以描述的比较简单,相关之处参见装置实施例的部分说明即可。
虽然通过实施例描绘了本申请,本领域普通技术人员知道,本申请有许多变形和变化而不脱离本申请的精神,希望所附的权利要求包括这些变形和变化而不脱离本申请的精神。
Claims (10)
- 一种提高手持设备待机效率的装置,其特征在于,所述装置包括供电电源、反相器、场效应管以及相互并联的直流到直流DC/DC转换器和低压差稳压器,其中,所述DC/DC转换器和所述低压差稳压器由所述供电电源提供输入电压,所述反相器的输入端口与所述低压差稳压器的使能端口相连,所述反相器的输入端口与所述DC/DC转换器的使能端口相连,所述场效应管的栅极与所述反相器的输出端口相连,漏极与所述DC/DC转换器的输出端口相连,源极与所述低压差稳压器的输出端口相连。
- 根据权利要求1所述的提高手持设备待机效率的装置,其特征在于,所述DC/DC转换器的输出端口与所述场效应管的漏极之间还设置有滤波电路,所述滤波电路包括相互串联的电感和电容,其中,所述电感的两端分别与所述DC/DC转换器的输出端口和所述场效应管的漏极相连,所述电容的一端与所述场效应管的漏极相连,所述电容的另一端接地。
- 根据权利要求1所述的提高手持设备待机效率的装置,其特征在于,所述低压差稳压器包括稳压芯片、第一电容、第二电容和第三电容,其中,所述稳压芯片的第一引脚与所述供电电源相连,第二引脚接地,第三引脚为电压输出引脚,所述第一引脚与地之间通过所述第一电容连接,所述第二电容和第三电容并联于所述第三引脚与地之间。
- 根据权利要求1所述的提高手持设备待机效率的装置,其特征在于,所述装置还包括判定器,所述判定器的信号输出端口与所述反相器的输入端口相连,所述判定器对所述手持设备的状态进行判定,并根据判定结果生成使能信号。
- 根据权利要求1所述的提高手持设备待机效率的装置,其特征在于,所述低压差稳压器包括基准电源、第一分压电阻、第二分压电阻、误差放大器和驱动管,所述误差放大器的正相输入端与所述基准电源相连,所述误差放大器的输出端与所述驱动管的栅极相连,所述驱动管的漏极与所述供电电源相连,所述驱动管的源极与地之间设置有相互串联 的所述第一分压电阻和所述第二分压电阻,所述误差放大器的反相输入端连接于所述第一分压电阻和所述第二分压电阻之间。
- 根据权利要求5所述的提高手持设备待机效率的装置,其特征在于,所述驱动管的源极与地之间还设置有去耦电容,所述去耦电容与所述相互串联的第一分压电阻和第二分压电阻相并联。
- 根据权利要求1所述的提高手持设备待机效率的装置,其特征在于,所述装置还包括偏置电路和源极跟随器,其中,所述偏置电路与所述源极跟随器的栅极相连,所述源极跟随器的源极与所述低压差稳压器的输出端口相连,所述源极跟随器的漏极与地相连。
- 一种提高手持设备待机效率的方法,其特征在于,包括:判断手持设备当前时刻的状态;当所述手持设备处于激活状态时,利用直流到直流DC/DC转换器的输出电压为所述手持设备供电;当所述手持设备处于待机状态时,利用低压差稳压器的输出电压为所述手持设备供电。
- 根据权利要求8所述的提高手持设备待机效率的方法,其特征在于,在利用直流到直流DC/DC转换器的输出电压为所述手持设备供电之前,所述方法还包括:对直流到直流DC/DC转换器的输出电压进行滤波。
- 根据权利要求8所述的提高手持设备待机效率的方法,其特征在于,在利用低压差稳压器的输出电压为所述手持设备供电之前,所述方法还包括:利用偏置电路和源极跟随器对低压差稳压器的输出电压进行过冲防护处理。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/250,570 US20170271988A1 (en) | 2016-03-17 | 2016-08-29 | Apparatus and method for improving standby efficiency of handheld device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610152285.X | 2016-03-17 | ||
CN201610152285.XA CN105846669A (zh) | 2016-03-17 | 2016-03-17 | 一种提高手持设备待机效率的装置及方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/250,570 Continuation US20170271988A1 (en) | 2016-03-17 | 2016-08-29 | Apparatus and method for improving standby efficiency of handheld device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017156926A1 true WO2017156926A1 (zh) | 2017-09-21 |
Family
ID=56588101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/088467 WO2017156926A1 (zh) | 2016-03-17 | 2016-07-04 | 一种提高手持设备待机效率的装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105846669A (zh) |
WO (1) | WO2017156926A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1617432A (zh) * | 2003-10-23 | 2005-05-18 | 罗姆股份有限公司 | 可供给稳定的变换电压的电源装置 |
JP2007174764A (ja) * | 2005-12-20 | 2007-07-05 | Seiko Epson Corp | 電源装置 |
CN101814833A (zh) * | 2009-02-20 | 2010-08-25 | 精工电子有限公司 | 电压调节器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990070489A (ko) * | 1998-02-16 | 1999-09-15 | 이병수 | 매직퍼즐의 센터블록 방향 전환방법 |
CN103974176B (zh) * | 2013-01-29 | 2018-11-23 | 北京哲朗科技有限公司 | 微机械麦克风源极跟随器实现增益的方法 |
CN103368557B (zh) * | 2013-07-12 | 2016-09-21 | 青岛歌尔声学科技有限公司 | 低静态电流电平转换电路及设有该电路的电子设备 |
CN104348359B (zh) * | 2014-10-31 | 2017-01-11 | 无锡中感微电子股份有限公司 | Dc-dc调节器 |
CN104460802B (zh) * | 2014-11-27 | 2016-04-20 | 电子科技大学 | 一自适应电流倍增电路及集成该电路的低压差线性稳压器 |
-
2016
- 2016-03-17 CN CN201610152285.XA patent/CN105846669A/zh active Pending
- 2016-07-04 WO PCT/CN2016/088467 patent/WO2017156926A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1617432A (zh) * | 2003-10-23 | 2005-05-18 | 罗姆股份有限公司 | 可供给稳定的变换电压的电源装置 |
JP2007174764A (ja) * | 2005-12-20 | 2007-07-05 | Seiko Epson Corp | 電源装置 |
CN101814833A (zh) * | 2009-02-20 | 2010-08-25 | 精工电子有限公司 | 电压调节器 |
Also Published As
Publication number | Publication date |
---|---|
CN105846669A (zh) | 2016-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10554922B2 (en) | Method for reducing power consumption of power supply, power supply automatically reducing power consumption, and television | |
US9625925B2 (en) | Linear regulator having a closed loop frequency response based on a decoupling capacitance | |
US8954767B2 (en) | Standby current reduction through a switching arrangement with multiple regulators | |
US7759915B2 (en) | System with linear and switching regulator circuits | |
US8587380B2 (en) | Saturation protection of a regulated voltage | |
CN104063003A (zh) | 一种集成摆率增强电路的低功耗无片外电容ldo | |
CN106878872B (zh) | 一种消除噪声信号的外围电路 | |
JP4662964B2 (ja) | パルス周波数変調回路、同回路を用いた電源供給装置及び電源安定化方法 | |
EP2557681B1 (en) | Voltage driving apparatus for power amplifier, power amplifying system, power supply device for radio frequency power amplifier and communication device | |
US9369036B2 (en) | Power bootstrapping for lowering quiescent current | |
TWM626774U (zh) | 離線式開關電源電路及其回饋控制晶片 | |
CN112714382B (zh) | 功率自适应电路、控制方法及电子设备 | |
TWM625404U (zh) | 回饋控制晶片和開關電源系統 | |
CN211701852U (zh) | 一种降压模块和移动终端 | |
WO2017156926A1 (zh) | 一种提高手持设备待机效率的装置及方法 | |
JP4229934B2 (ja) | 移動通信端末機の電源スイッチング装置 | |
US20140167842A1 (en) | Power circuit and method thereof | |
CN103872746A (zh) | 电源电路及电源管理方法 | |
US6611166B2 (en) | Charge pump load determination circuit | |
US20170271988A1 (en) | Apparatus and method for improving standby efficiency of handheld device | |
KR100644820B1 (ko) | 구동전압 제어 모듈 | |
CN208316569U (zh) | 调整开关频率与负载电流关系的控制电路及开关电源 | |
CN110719073A (zh) | 应用于射频功率放大器的混合包络调制方法及其电路 | |
CN218102957U (zh) | 一种电源模式切换控制电路及电子装置 | |
CN218352218U (zh) | 动态功率限制电路和充电设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16894088 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16894088 Country of ref document: EP Kind code of ref document: A1 |