WO2017156848A1 - 光伏生态大棚及其支承架 - Google Patents

光伏生态大棚及其支承架 Download PDF

Info

Publication number
WO2017156848A1
WO2017156848A1 PCT/CN2016/081551 CN2016081551W WO2017156848A1 WO 2017156848 A1 WO2017156848 A1 WO 2017156848A1 CN 2016081551 W CN2016081551 W CN 2016081551W WO 2017156848 A1 WO2017156848 A1 WO 2017156848A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic module
photovoltaic
contact
disposed
longitudinal
Prior art date
Application number
PCT/CN2016/081551
Other languages
English (en)
French (fr)
Inventor
王柏兴
倪志春
许志翔
胡亚益
严煜
Original Assignee
中利腾晖光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中利腾晖光伏科技有限公司 filed Critical 中利腾晖光伏科技有限公司
Publication of WO2017156848A1 publication Critical patent/WO2017156848A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Definitions

  • the invention relates to the field of photovoltaic ecology, in particular to a photovoltaic ecological greenhouse and a support frame thereof.
  • solar photovoltaic modules are used to absorb solar energy and convert it into electrical energy.
  • plants such as crops, flowers, Chinese herbal medicines, etc., or growers will be planted under the solar photovoltaic modules.
  • the amount of irradiation required for different plant growth is different, and the amount of irradiation required for each different growth stage of the plant is also different. If it is also possible to light according to different species of animals and plants or different growth stages
  • the illuminance adjusts the light transmittance of the photovoltaic greenhouse, which is more conducive to plant growth and improve the utilization of sunlight.
  • an object of the present invention is to provide a photovoltaic ecological greenhouse and a support frame thereof, which can conveniently adjust the number of photovoltaic modules according to the irradiation of plants of different kinds or different growth stages.
  • the technical solution adopted by the present invention is:
  • a support frame for a photovoltaic eco-shed comprising a post for mounting on a ground to form a support and a frame connected to an upper end of the post for mounting a photovoltaic module unit, the frame comprising a plurality of longitudinal and the like
  • a plurality of the lateral rails and the plurality of the longitudinal rails intersecting each other to form a plurality of arrays, respectively, and lateral rails extending in the lateral direction, a plurality of longitudinal rails disposed at equal intervals in the lateral direction and respectively extending in the longitudinal direction
  • a frame unit arranged in a rectangular shape, a part of the frame unit serving as a component placement position for mounting a photovoltaic module unit, and other frame units serving as a conveying unit constituting a conveying passage of the photovoltaic module unit,
  • a transmission mechanism for mechanical connection and/or power transmission of the photovoltaic module unit is disposed at the component placement position, and the connection unit is provided with a connection mechanism for setting the delivery channel.
  • the connecting mechanism comprises laterally extending transverse guiding grooves respectively extending on the lateral rails for sliding engagement with the photovoltaic module unit, respectively, which are respectively formed on each of the longitudinal rails
  • the lateral guide groove and the longitudinal guide groove communicate with each other at the intersection of the lateral rail and the longitudinal rail.
  • the transport mechanism comprises a second contact on the lateral rail or the longitudinal rail at the component deployment position for contacting the photovoltaic module unit, and the second contact is electrically connected to the second conductor .
  • the lateral rail or the longitudinal rail at the component placement position is provided with a sliding slot for sliding engagement with the photovoltaic module unit, and the second contact is disposed at the groove bottom of the sliding slot.
  • the chute has an inclination extending from the end of the chute to the second contact to gradually move away from the photovoltaic module unit.
  • a photovoltaic eco-shed comprising a support frame and a plurality of photovoltaic module units mounted on the support frame, the photovoltaic module unit comprising a bracket and a photovoltaic component disposed on the bracket, the support frame being any
  • the photovoltaic module units are respectively disposed at the component placement position.
  • each of the lateral rails is respectively provided with lateral guiding grooves extending in a lateral direction
  • each of the longitudinal rails is respectively provided with a longitudinally extending longitudinal guiding groove, and a lower portion of the bracket of the photovoltaic module unit
  • a slider having a mating engagement with the lateral guide groove and the longitudinal guide groove, the slider being slidably inserted into the lateral guide groove or the longitudinal guide groove.
  • the transport mechanism comprises a second contact disposed on a lateral rail or a longitudinal rail at the component deployment position, the second contact being electrically connected to the second conductor, the component being disposed at the position Lateral guide
  • a sliding slot is formed on the longitudinal rail, and the second contact is disposed at a bottom of the slot of the sliding slot.
  • the transport mechanism further includes a hollow insulating housing fixedly disposed at a lower portion of the bracket, and a movable metal contact disposed in the insulating housing, the metal contact having a first contact on one end and the other
  • the end is electrically connected to the first wire
  • the one end of the insulating case is provided with a through hole for the first contact to protrude
  • the other end is provided with a through hole for the first wire to pass through
  • An elastic member driving the movement of the metal contact is disposed between the outer casing, and the metal contact is inserted into the sliding slot when the photovoltaic assembly unit is installed at a designated component placement position, the first contact And said
  • the second contact contacts the electrical connection.
  • the photovoltaic eco-shed further comprises a component stacking warehouse for storing the photovoltaic module unit and a transmission device for transporting the photovoltaic module unit, which is disposed on the side of the support frame, and the transmission comprises conveying
  • the component lifting mechanism being disposed below the frame, the conveying mechanism comprising a first conveying section between the component stacking warehouse and the lifting mechanism, located at the rising
  • the present invention adopts the above technical solution, and has the following advantages compared with the prior art: the space for the PV module unit to pass through between the component deployment positions, that is, the transport unit, can conveniently be used for any component.
  • the PV module unit in the deployment position is transferred to the PV module unit, or the PV module unit can be adjusted to any component placement position.
  • the number of PV module units can be conveniently adjusted according to the plant variety and the growth cycle.
  • FIG. 1 is a schematic perspective view showing a photovoltaic ecological greenhouse of the present invention
  • FIG. 2 is a top view of a photovoltaic ecological greenhouse of the present invention
  • Figure 3 is a partial front elevational view of the photovoltaic greenhouse of the present invention.
  • Figure 4 is a schematic view of the connection at A in Figure 3;
  • Figure 5 is a partial side view of the photovoltaic ecological greenhouse of the present invention.
  • Figure 6 is a schematic view of the connection at A in Figure 5;
  • Figure 7 is a schematic view of the photovoltaic module unit of the present invention after folding
  • Figure 8 is a schematic view of the photovoltaic module unit of the present invention after deployment
  • Figure 9 is a schematic structural view of a transmission mechanism of the present invention.
  • FIG. 10 is a schematic view of a chute of the present invention.
  • Figure 11 is a schematic view showing the operation of the metal contact of the present invention in a chute
  • Figure 12 is a schematic block diagram of a control device of the present invention.
  • Figure 13 is a flow chart of the control method of the present invention.
  • Support frame 11, column; 111, column telescopic sleeve; 112, column telescopic rod; 113, hydraulic drive mechanism of the column; 12, transverse rail; 120, transverse guide; 13, longitudinal guide; 130, longitudinal guide
  • 210 an insulating casing; 211, a metal contact; 2110, a first contact; 212, a first wire; 213, a first connector; 214, a compression spring;
  • bottom bracket 220, slider; 23, telescopic bracket; 231, bracket telescopic sleeve; 232, bracket telescopic rod; 233, hydraulic drive mechanism of the telescopic bracket;
  • 60 controller; 61, environmental detector; 62, third-party data platform; 63, soil moisture detector.
  • a photovoltaic ecological greenhouse comprises a support frame 1, a photovoltaic module unit 2 disposed at an upper end of the support frame 1, a component stacking warehouse 3 disposed on a side of the support frame 1, and a stack of components. Put the side of the warehouse 3
  • the support frame 1 includes a plurality of array-arranged columns 11 and a frame fixedly coupled to the upper ends of all of the columns 11.
  • the column 11 is a telescopic rod type, that is, each column 11 includes a column telescopic sleeve 111, which can slide up and down
  • the column telescopic rod 112 connected to the column telescopic sleeve 111 and the hydraulic driving mechanism provided between the column telescopic sleeve 111 and the column telescopic rod 112 for driving the column telescopic rod 112 to slide up and down with respect to the column telescopic sleeve 111
  • the frame includes a plurality of equally spaced longitudinally and
  • transverse rail 12 extending in a lateral direction and a plurality of longitudinal rails 13 equally spaced in the lateral direction and extending in the longitudinal direction, respectively, the plurality of transverse rails 12 and the plurality of longitudinal rails 13 intersecting each other to form a plurality of arrays
  • a frame unit having a rectangular shape having a rectangular shape, a part of the frame unit as a component placement position 14 for mounting a photovoltaic module, and the other frame unit as a conveying unit 15 constituting a conveying passage of the photovoltaic module unit, any phase
  • a transport unit 15 is spaced between the adjacent two component placement locations 14.
  • a component connection mechanism 14 is provided with a connection mechanism for mechanical connection and/or power transmission with the photovoltaic module unit, as described below.
  • the conveying unit 15 is provided with a coupling mechanism that is slidably engaged with the first conveying section described below, a lateral guide groove and a longitudinal guide groove as described below.
  • the photovoltaic module unit 2 includes a bracket 21 and a photovoltaic module 20 disposed at an upper end of the bracket 21.
  • the photovoltaic module 20 uses a dual glass photovoltaic module, and the main function of the photovoltaic module 20 is that the solar cells of the photovoltaic module 20 receive sunlight.
  • the bracket 21 includes a bottom bracket 22 and a telescopic bracket 23 disposed on the bottom bracket 22, and the telescopic bracket 23 is disposed on the bottom bracket 22
  • one side of the photovoltaic module 20 is connected to one side of the telescopic bracket 23, and the other side of the photovoltaic module 20 is connected to the other side of the bottom bracket 22.
  • the bottom bracket 22 is coupled to the frame in a sliding fit.
  • the lateral rail 12 defines a lateral guiding groove 120 extending in the lateral direction
  • the longitudinal guiding rail 13 is provided with a longitudinal guiding groove 130 extending in the longitudinal direction, in the lateral guiding rail 12 and
  • the lateral guide grooves 120 and the longitudinal guide grooves 130 communicate with each other.
  • the bottom of the bottom bracket 22 has a slider 220 that cooperates with the lateral guide groove 120 and the longitudinal guide groove 130.
  • the slider 220 is slidably inserted into the lateral guide groove 120 or the longitudinal guide groove 130, and can enter the longitudinal guide groove from the lateral guide groove 120/longitudinal guide groove 130 at the intersection of the lateral guide rail 12 and the longitudinal guide rail 13. 130/horizontal
  • the telescopic bracket 23 includes a bracket telescopic sleeve 231, a bracket telescopic rod 232 slidably coupled to the bracket telescopic sleeve 231, and a hydraulic drive mechanism 233 disposed between the bracket telescopic sleeve 231 and the bracket telescopic rod 232 (eg
  • the hydraulic drive mechanism 233 drives the bracket telescopic rod 232 to slide up and down with respect to the bracket telescopic sleeve 231.
  • the lower end of the bracket telescopic sleeve 231 is fixedly connected with the bottom bracket 22, and the upper end of the bracket telescopic rod 232 and the light
  • the frame of the volt assembly 20 is movably connected, in particular, the upper end of the bracket telescoping rod 232 and the frame of the photovoltaic module 20 are slidably and rotatably coupled.
  • the bracket telescopic rod 232 is extended, the above side portion of the photovoltaic module 20
  • the photovoltaic module 20 When the lifting, the photovoltaic module 20 is tilted, as shown in FIG. 8; when the bracket telescopic rod 232 is retracted, the one side of the photovoltaic module 20 is lowered, the photovoltaic module 20 is leaning toward the bottom bracket 22, and the photovoltaic module unit 2 is folded.
  • the state, as shown in FIG. 7, is convenient for stacking in the component stacking warehouse 3, saving space.
  • a two-stage telescopic bracket is preferably used, that is, the bracket telescopic rod 232 is also slidably connected to the second bracket.
  • a two-stage hydraulic driving mechanism for driving the secondary bracket telescopic rod to slide up and down relative to the bracket telescopic rod 232 is provided between the shrink rod, the second-stage bracket telescopic rod and the bracket telescopic rod 232, so as to increase the stroke of the up-and-down sliding adjustment
  • the photovoltaic module unit 2 further includes a transport mechanism disposed at a lower portion of the bracket 21 for transporting electrical energy generated by the photovoltaic module 20.
  • the transmission mechanism includes a hollow fixedly disposed at the lower portion of the bracket 21.
  • the insulating housing 210 is a metal contact 211 movably disposed in the insulating housing 210.
  • the metal contact 211 has a first contact 2110 on one end and a first end 212 electrically connected to the other end. Insulating housing 210
  • a through hole for the first contact 2110 is opened at one end, and a through hole for the first wire 212 to pass through is opened at the other end.
  • the driving metal contact 211 is relatively insulated between the metal contact 211 and the insulating housing 210.
  • the elastic member of the outer casing 210 is slid, and specifically, a fastening ring is fixedly connected to the other end of the insulating housing 210, and a driving metal contact 211 is disposed between the other end of the metal contact 211 and the metal ring
  • the compression spring 214 is in a compressed state to provide an elastic force for the extension of the first contact 2110.
  • One end of the first wire 212 is fixedly connected with a first connecting head 213, and the first connecting head 213 is provided with a thread.
  • the other end of the metal contact 211 is provided with a matching screw hole, and the first connector 213 is connected to the metal contact 211 by a screw.
  • the other end of the first wire 212 is electrically connected to the junction box of the photovoltaic module 20.
  • the transverse rails 12 and/or the longitudinal rails 13 are spaced apart from each other with a plurality of chutes 16 that cooperate with the metal contacts 211.
  • a second contact 160 mating with the first contact 2110 is disposed on the bottom of the slot 16 of the chute 16.
  • One end of a second wire 17 is fixedly connected to the second connector 170, the second connector 170 is provided with a thread, and the second connector 170 is connected by a thread and the lateral rail 12 and/or the longitudinal rail 13, and the second even
  • the end of the joint 170 extends to the bottom of the groove of the chute 16, the second contact 160 is electrically connected to the second connector 170, and the other end of the second wire 17 is connected to the external power grid.
  • the one end of the metal contact 211 is slidably inserted in
  • the photovoltaic module unit 2 is mounted in position, that is, to the designated component placement position.
  • Guide grooves 161, 162 are provided in the chute 16, and the guide slopes 161, 162 extend obliquely from the end of the chute 16 toward the second contact 160 in such a manner as to gradually move away from the bracket 21.
  • the guiding slopes 161, 162 are two and divided
  • the metal contact 211 is inserted into the chute 16 and pressed by the guiding slope 161 on one side.
  • the spring 214 is gradually released, pushing the metal contact 211 to slide outward, and when moving to the second contact 160, the first contact 2110 and the second contact 160 are in abutting contact with each other to conduct electrical connection, the photovoltaic module unit 2 amps
  • the electrical energy generated by the photovoltaic module 20 is output through the first wire 212 and the second wire 17; when the photovoltaic module unit 2 needs to be removed, the photovoltaic module unit 2 continues to move along the lateral rail 12 or the longitudinal rail 13
  • the assembly stacking warehouse 3 is arranged on the ground side of the photovoltaic ecological greenhouse for storing the photovoltaic module unit 2, facilitating the supplement of the photovoltaic module unit 2 to the photovoltaic ecological greenhouse or recycling the redundant photovoltaic module unit 2
  • the photovoltaic module unit 2 is folded and stacked in the component stacking warehouse 3 to reduce the storage volume and save warehouse space.
  • the maintenance library 4 is disposed on the ground on the side of the component stacking warehouse 3 for retrieving the failed photovoltaic module unit 2 for maintenance.
  • the transmission 5 is composed of a component conveying mechanism and a component lifting mechanism 54.
  • the frame unit at one of the corners of the frame is used as an upper/lower point, and the conveying mechanism includes a first conveying section 51 and a second conveying section.
  • the first conveying section 51 extends from the assembly stacking warehouse 3 directly below the upper/lowering point
  • the second conveying section 52 is disposed on each conveying unit 15 of the frame to connect the conveying units 15 and /feeding point phase
  • the third transport section 53 extends from the repair library 4 directly below the upper/lower feed point.
  • the component lifting device is disposed below the upper/lowering point for feeding the photovoltaic component on the first conveying section 51 to the upper/lowering point or
  • the photovoltaic module of the /feed point is sent to the first transport section 51 or the second transport section 52.
  • the first conveying section 51, the second conveying section 52 and the third conveying section 53 of the conveying device adopt the belt conveying mechanism or the chain in the prior art.
  • the conveying mechanism and the like, the component lifting device adopts a pneumatic or electric lifting platform in the prior art, and the like, and will not be described in detail herein.
  • the control device is composed of a stacking warehouse 3, a repairing library 4, a transmission device 5, a hydraulic driving mechanism 113 of the column 11, a hydraulic driving mechanism 233 of the telescopic bracket 23, an environmental detector 61, a soil moisture tester 63, and a control device.
  • the controller 60 is a control center for the operation of the entire photovoltaic ecological greenhouse. Among them, the controller 60 is a core part of the control device.
  • the environmental detector 61 is used to detect the amount of solar radiation and air moisture in the area on the day.
  • the amount, soil moisture tester 63 is used to detect the moisture content of the soil below the photovoltaic module of the day.
  • the controller 60 employs a PLC controller 60 or the like which is common in the prior art. Controller 60 and environmental detector 61 and soil moisture
  • the tester 63 is connected by wire electrical connection or wireless transmission to obtain the solar radiation amount and air moisture content of the area on the day and the water content of the soil under the photovoltaic module on the day, and the controller 60 and the third
  • the party data platform 63 is connected to obtain a large range of meteorological data of the area on the current day to perform comparison verification on the acquired solar radiation amount of the area on the day of the acquisition, and to ensure the accuracy of the solar irradiation quantity data detection. Controller 60 also
  • the controller 60 is also used to drive the transmission 5 to operate,
  • the control signal can be sent to the transmission device 5 by means of wire electrical connection or wireless transmission, and the first conveying section 51, the second conveying section 52, and the third conveying section 53 of the transmission device 5 respectively send out a stop, a forward conveying and a reverse
  • a control signal for the rise or fall is sent to the component elevating mechanism 54 to the transmitted control signal.
  • the controller 60 also controls the expansion and contraction of the column 11, and when the height of the crop exceeds 3 m, the hydraulic drive mechanism 113 of the column 11 is sent.
  • the column telescopic rod 112 extends to adaptively adjust the height of the greenhouse frame, and the maximum height does not exceed 10 m.
  • the controller 60 also controls the expansion and contraction of the telescopic support 23 when the photovoltaic module unit 2 is directed to the frame
  • the controller 60 When transporting on the rack, the controller 60 sends an extended control signal to the hydraulic drive mechanism 233 of the telescopic bracket 23, the bracket telescopic rod 232 is extended, and the photovoltaic module unit 2 is deployed; when the photovoltaic module unit 2 is stacked on the stack of components
  • the controller 60 sends a control signal of the retraction to the hydraulic drive mechanism 233 of the telescopic bracket 23, the bracket telescopic rod 232 is retracted, and the photovoltaic module unit 2 is folded. Timed detection and analysis of each PV module
  • the controller 60 sends a reverse transmission control signal to the second conveying section 52, sends a falling control signal to the assembly lifting mechanism 54, and sends a reverse direction to the third conveying section 53.
  • the transmitted control signal transmits the failed photovoltaic module unit 2 from its component placement position to the maintenance library 4 for maintenance.
  • the above control method of the photovoltaic greenhouse includes the following steps:
  • the controller calculates the required irradiation amount of the plant on the day according to the plant variety and the growth cycle;
  • the environment detector obtains the solar radiation quantity of the area on the day, and the controller converts the obtained required irradiation quantity into a photovoltaic component according to the acquired solar radiation quantity and the meteorological data of the received third-party data platform.
  • the occlusion area of the unit the total number of required photovoltaic module units
  • the controller converts the number of rows and columns of the photovoltaic component unit according to the total number of the obtained photovoltaic component units;
  • the controller determines whether the photovoltaic module unit disposed on the previous day satisfies the number of rows and columns obtained in step S3. If not, the excess photovoltaic module unit is transferred into the component stacking warehouse, or the insufficient photovoltaic group is
  • the unit is recalled from the component stacking warehouse and transported to the designated placement position;
  • the soil moisture tester monitors the water content of the soil under the photovoltaic module in real time, and the environmental detector obtains the air moisture content of the area on the day, and the controller judges the soil according to the water content of the soil and the water content of the air.
  • step S4 if the photovoltaic module unit disposed on the previous day satisfies the number of rows and columns obtained in step S3, the transmission device 5 is stopped; if the photovoltaic module unit disposed on the previous day does not satisfy step S3 Out
  • the controller sends a control signal to drive the transmission 5 to operate. Specifically, if the photovoltaic module unit placed on the previous day exceeds the number of rows and/or the number of columns obtained in step S3, the controller 60 drives the second
  • the conveying section 52 and the first conveying section 51 are reversely conveyed, the driving component lifting mechanism 54 is lowered, and the excess photovoltaic module unit is transported from the deployment position to the component stacking warehouse 3; if the photovoltaic module is laid out the previous day
  • the controller exceeds the number of rows and/or the number of columns obtained in step S3, and the controller 60 controls the first conveying section 51 and the second conveying section 52 to forwardly convey the insufficient photovoltaic module unit from the component stacking warehouse 3 to the positive direction thereof.
  • controller 60 also controls the expansion and contraction of the telescopic support 23, and when the photovoltaic module unit 2 is transported toward the frame, the controller 60 sends an extended control signal to the hydraulic drive mechanism 113 of the telescopic support 23, and the support extends.
  • the shrink rod 232 is extended, and the photovoltaic module unit 2 is unfolded; when the photovoltaic module unit 2 is transported to the component stacking warehouse or the repair warehouse 4, the controller 60 sends a return control signal to the hydraulic drive mechanism 113 of the telescopic bracket 23,
  • the bracket telescopic rod 232 is retracted and the photovoltaic module unit 2 is folded.

Abstract

一种光伏生态大棚的支承架(1)包括立柱(11)和连接于立柱(11)的上端的框架,框架包括多个沿纵向等间隔设置且分别沿横向延伸的横向导轨(12)、多个沿横向等间隔设置且分别沿纵向延伸的纵向导轨(13),多个所述横线导轨(12)和多个所述纵向导轨(13)相互交叉形成多个阵列式排布的呈矩形的框架单元,部分的所述框架单元用作安装光伏组件单元(2)的组件布放位置(14),其他的框架单元用作构成光伏组件单元(2)的输送通道的输送单元(15),所述组件布放位置(14)上设置有用于光伏组件单元(2)机械连接和/或电力传输的传输机构,所述输送单元(15)上设置有用于设置输送通道的连接机构。还公开了一种光伏生态大棚。

Description

光伏生态大棚及其支承架
技术领域
本发明涉及一种光伏生态领域,特别涉及一种光伏生态大棚及其支承架。
背景技术
目前,太阳能光伏组件被应用于吸收太阳能并转化为电能。而为了提高土地利用率,在太阳能光伏组件下方会种植农作物、花卉、中草药等植物,或养殖家
禽家畜水产等。而不同植物生长所需的辐照量不同,植物各个不同生长阶段所需的辐照量也不同,若还能够根据动植物的不同种类或不同生长阶段所需的光
照量调节光伏生态大棚的透光率,则会更利于植物生长,提高阳光的利用率。
发明内容
针对上述问题,本发明的目的是提供一种光伏生态大棚及其支承架,其可以根据不同种类或不同生长阶段的植物的辐照所需方便地调节光伏组件的数量。
为解决上述技术问题,本发明采用的技术方案为:
一种光伏生态大棚的支承架,包括用于安装在地面上形成支承的立柱和连接于所述立柱的上端用于安装光伏组件单元的框架,所述框架包括多个沿纵向等间
隔设置且分别沿横向延伸的横向导轨、多个沿横向等间隔设置且分别沿纵向延伸的纵向导轨,多个所述横向导轨和多个所述纵向导轨相互交叉形成多个阵列
式排布的呈矩形的框架单元,部分的所述框架单元用作安装光伏组件单元的组件布放位置,其他的框架单元用作构成光伏组件单元的输送通道的输送单元,
所述组件布放位置上设置有用于光伏组件单元机械连接和/或电力传输的传输机构,所述输送单元上设置有用于设置输送通道的连接机构。
优选地,所述连接机构包括分别开设于各所述横向导轨上的沿横向延伸的用于与光伏组件单元相滑动配合的横向导槽、分别开设于各所述纵向导轨上的沿纵
向延伸的用于与光伏组件单元相滑动配合的纵向导槽。
更优选地,在所述横向导轨和纵向导轨的交叉处,所述横向导槽和所述纵向导槽相互连通。
优选地,所述传输机构包括设置所述组件布放位置处的横向导轨或纵向导轨上的用于与光伏组件单元相接触连通的第二触点,第二触点与第二导线相电连。
更优选地,所述组件布放位置处的横向导轨或纵向导轨上开设有用于与光伏组件单元滑动配合的滑槽,所述第二触点设于所述滑槽的槽底。
进一步地,所述滑槽内具有自所述滑槽的端部相所述第二触点处以逐渐远离光伏组件单元的方式倾斜延伸。
本发明采用的又一技术方案为:
一种光伏生态大棚,包括支承架、安装于所述支承架上的多个光伏组件单元,所述光伏组件单元包括支架及设置在所述支架上光伏组件,所述支承架为任一
上述的支承架,所述光伏组件单元分别设置于所述组件布放位置。
优选地,各所述横向导轨上分别开设有沿横向延伸的横向导槽,各所述纵向导轨上分别开设有沿纵向延伸的纵向导槽,所述光伏组件单元的所述支架的下部
具有与所述横向导槽和所述纵向导槽相配合的滑块,所述滑块可滑动地插设于所述横向导槽或所述纵向导槽中。
优选地,所述传输机构包括设置在所述组件布放位置处的横向导轨或纵向导轨上的第二触点,第二触点与第二导线相电连,所述组件布放位置处的横向导轨
或纵向导轨上开设有滑槽,所述第二触点设于所述滑槽的槽底,
所述传输机构还包括固定设置在所述支架下部的中空的绝缘外壳、可移动的设置在所述绝缘外壳内的金属触头,所述金属触头的一端上具有第一触点且另一
端和第一导线电连接,所述绝缘外壳的一端上开设有可供所述第一触点伸出的通孔且另一端上开设有供所述第一导线穿出的通孔,所述金属触头和所述绝缘
外壳之间设置有驱动所述金属触头移动的弹性件,当所述光伏组件单元安装在指定的组件布放位置时,所述金属触头插入所述滑槽内,所述第一触点和所述
第二触点相接触电连。
优选地,该光伏生态大棚还包括设于所述支承架旁侧的用于储存光伏组件单元的组件叠放仓库及用于输送光伏组件单元的传动装置,所述传动装置包括输送
机构和组件升降机构,所述组件升降机构设置在所述框架的下方,所述输送机构包括位于所述组件叠放仓库和所述升降机构之间的第一输送段、位于所述升
降机构和各组件布放位置之间的第二输送段,所述第二输送段设置在各输送单元上。
本发明采用上述技术方案,相比现有技术具有如下优点:在组件布放位置之间空出可供光伏组件单元输送通过的间隔,即输送单元,可以方便地将任意组件
布放位置的光伏组件单元调出,或向任意组件布放位置调入光伏组件单元,可以方便地调节光伏组件单元的数量,根据植物品种及所处的生长周期,通过调
入不足的光伏组件单元或调出超出的光伏组件单元来调节光伏组件的遮盖面积,满足每天的生长所需,精确控制植物所需最佳辐照量,利于植物生长。
附图说明
图1为本发明的光伏生态大棚的立体结构示意图;
图2为本发明的光伏生态大棚的俯视图;
图3为本发明的光伏生态大棚的部分主视图;
图4为图3中A处的连接示意图;
图5为本发明的光伏生态大棚的部分侧视图;
图6为图5中A处的连接示意图;
图7为本发明的光伏组件单元在折叠后的示意图;
图8为本发明的光伏组件单元在展开后的示意图;
图9为本发明的传输机构的结构示意图;
图10为本发明的滑槽示意图;
图11为本发明的金属触头在滑槽内的工作示意图;
图12为本发明的控制装置的模块示意图;
图13为本发明的控制方法的流程图。
上述附图中:
1、支承架;11、立柱;111、立柱伸缩套;112、立柱伸缩杆;113、立柱的液压驱动机构;12、横向导轨;120、横向导槽;13、纵向导轨;130、纵向导槽
;14、组件布放位置;15、输送单元;
16、滑槽;160、第二触点;161、导向斜面;162、导向斜面;17、第二导线;170、第二连接头;
2、光伏组件单元;20、光伏组件;21、支架;
210、绝缘外壳;211、金属触头;2110、第一触点;212、第一导线;213、第一连接头;214、压簧;
22、底支架;220、滑块;23、伸缩支架;231、支架伸缩套;232、支架伸缩杆;233、伸缩支架的液压驱动机构;
3、组件叠放仓库;
4、维修库;
5、传动装置;51、第一输送段;52、第二输送段;53、第三输送段;54、组件升降机构;
60、控制器;61、环境检测仪;62、第三方数据平台;63、土壤湿度检测仪。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。
参见图1至图12所示,一种光伏生态大棚,包括支承架1、设在支承架1上端的光伏组件单元2、设在支承架1旁侧的组件叠放仓库3、设在组件叠放仓库3旁侧
的维修库4、用于运输光伏组件单元2的传动装置5。
支承架1,包括多个阵列式排布的立柱11、一个固定连接在所有立柱11上端的框架。立柱11为伸缩杆式,即,各立柱11分别包括立柱伸缩套111、可上下滑动
地连接于立柱伸缩套111的立柱伸缩杆112及设于立柱伸缩套111和立柱伸缩杆112之间的用于驱动立柱伸缩杆112相对立柱伸缩套111上下滑动的液压驱动机构
113(如液压油缸等)。立柱伸缩套111的下端固定安装在地面上形成稳定支撑,立柱伸缩杆112的上端和框架固定连接。框架包括多个沿纵向等间隔设置且
分别沿横向延伸的横向导轨12和多个沿横向等间隔设置且分别沿纵向延伸的纵向导轨13,多个横向导轨12和多个纵向导轨13相互交叉形成多个阵列式排布的
呈矩形的框架单元,部分的框架单元作为用于安装光伏组件的组件布放位置14,其它的框架单元则作为构成光伏组件单元的输送通道的输送单元15,任意相
邻两个组件布放位置14间都间隔有一个输送单元15。组件布放位置14上设置有与光伏组件单元进行机械连接和/或电力传输的连接机构,如下文所述的传输
机构。输送单元15上设置有与下文所述的第一输送段相滑动配合的连接机构,如下文所述的横向导槽和纵向导槽等。
光伏组件单元2包括支架21及设在支架21上端的光伏组件20。光伏组件20采用双玻光伏组件,光伏组件20的主要作用是光伏组件20的太阳能电池片接受阳光
照射后将太阳能转化为电能,电能通过光伏组件的接线盒进行输送。支架21包括底支架22及设置在底支架22上的伸缩支架23,伸缩支架23设置于底支架22的
一侧部,光伏组件20的一侧部和伸缩支架23的一侧部相连,光伏组件20的另一侧部和底支架22的另一侧部相连。
底支架22和框架滑动配合地连接。具体地,横向导轨12上开设沿横向延伸的横向导槽120,纵向导轨13上开设有沿纵向延伸的纵向导槽130,在横向导轨12和
纵向导轨13的交叉处,即各框架单元的顶角处,横向导槽120和纵向导槽130相互连通。底支架22的底部具有与横向导槽120和纵向导槽130相配合的滑块220
,所述滑块220可滑动地插设在横向导槽120或纵向导槽130中,并可在横向导轨12和纵向导轨13的交叉处自横向导槽120/纵向导槽130进入纵向导槽130/横向
导槽120中。
伸缩支架23包括支架伸缩套231、可上下滑动地连接于支架伸缩套231的支架伸缩杆232及设置于支架伸缩套231和支架伸缩杆232之间的液压驱动机构233(如
液压油缸等),液压驱动机构233驱动支架伸缩杆232相对支架伸缩套231上下滑动。支架伸缩套231的下端和底支架22固定连接,支架伸缩杆232的上端和光
伏组件20的边框活动连接,具体地,支架伸缩杆232的上端和光伏组件20的边框可滑动且可转动地连接。当支架伸缩杆232伸出时,光伏组件20的上述一侧部
抬升,光伏组件20倾斜设置,如图8所示;当支架伸缩杆232退回时,光伏组件20的上述一侧部下降,光伏组件20靠向底支架22,光伏组件单元2处于折叠状
态,如图7所示,从而便于在组件叠放仓库3中叠放,节省空间。本实施例中优选采用二级伸缩支架,即支架伸缩杆232上还可上下滑动地连接有二级支架伸
缩杆,二级支架伸缩杆和支架伸缩杆232之间设有驱动二级支架伸缩杆相对支架伸缩杆232上下滑动的二级液压驱动机构,这样可以增大上下滑动调节的行程
光伏组件单元2还包括设在支架21下部的用于将光伏组件20产生的电能输送出去的传输机构。参见图9-11所示,传输机构包括固定设置在支架21下部的中空
的绝缘外壳210、可移动地设置在绝缘外壳210内的金属触头211。金属触头211的一端上具有第一触点2110,另一端和第一导线212相电连接。绝缘外壳210的
一端上开设有可供第一触点2110伸出的通孔,另一端上开设有供第一导线212穿出的通孔。金属触头211和绝缘外壳210之间设置有驱动金属触头211相对绝缘
外壳210滑动的弹性件,具体地,绝缘外壳210的上述另一端上固定连接一紧固环片,金属触头211的上述另一端和金属环片之间设置有一驱动金属触头211动
作的压簧214,压簧214为压缩状态,为第一触点2110的伸出提供弹性力。第一导线212的一端部固定连接有第一连接头213,第一连接头213上开设有螺纹,
金属触头211的上述另一端上开设有相配合的螺纹孔,第一连接头213通过螺纹和金属触头211相连接。第一导线212的另一端部和光伏组件20的接线盒相电连
接。横向导轨12和/或纵向导轨13上间隔地设有多个与金属触头211相配合的滑槽16。滑槽16的槽底上设有与第一触点2110相配合的第二触点160。具体地,
一第二导线17的一端部与第二连接头170相固定连接,第二连接头170上开设有螺纹,第二连接头170通过螺纹和横向导轨12和/或纵向导轨13连接,且第二连
接头170的端部伸至滑槽16的槽底处,第二触点160与第二连接头170电连,第二导线17的另一端和外部电网相接。金属触头211的上述一端部可滑动地插设于
滑槽16内,当第一触点2110和第二触点160相接触导通时,光伏组件单元2安装到位,即到达指定的组件布放位置。
滑槽16内设置有导向斜面161、162,导向斜面161、162自滑槽16的端部向第二触点160处以逐渐远离支架21的方式倾斜延伸。导向斜面161、162为两个且分
别位于第二触点160的相对两侧。随着光伏组件单元2在横向导轨12或纵向导轨13上滑动,金属触头211插入滑槽16内,并在一侧的导向斜面161的作用下,压
簧214逐渐释放,推动金属触头211向外滑动,至移动到第二触点160处时,第一触点2110和第二触点160相互抵紧接触以导通实现电连接,光伏组件单元2安
装到位,通过第一导线212、第二导线17将光伏组件20产生的电能输出;当需要移除光伏组件单元2时,光伏组件单元2沿着横向导轨12或纵向导轨13继续移
动,在另一侧的导向斜面162的作用下,金属触头211逐渐回缩至绝缘外壳210内,压簧214被压缩。
组件叠放仓库3,设置在位于光伏生态大棚旁侧的地面上,用于存放光伏组件单元2,便于向光伏生态大棚补充光伏组件单元2或将多余的光伏组件单元2回收
。光伏组件单元2折叠后层叠堆放在组件叠放仓库3内,减小储藏体积,节省仓库空间。
维修库4,设置在位于组件叠放仓库3旁侧的地面上,用于收回故障的光伏组件单元2进行维修。
传动装置5由组件输送机构和组件升降机构54构成。具体地,以位于框架其中一顶角处的框架单元作为上/下料点,输送机构包括第一输送段51、第二输送段
52及第三输送段53,第一输送段51自组件叠放仓库3延伸至上/下料点的正下方,第二输送段52设置在框架的各输送单元15上将各输送单元15和上/下料点相
互连通,第三输送段53自维修库4延伸至上/下料点的正下方。组件升降装置设置在上/下料点的下方用于将第一输送段51上的光伏组件送至上/下料点或将上
/下料点的光伏组件送至第一输送段51或第二输送段52上。输送装置的第一输送段51、第二输送段52及第三输送段53采用现有技术中的皮带输送机构或链条
输送机构等,组件升降装置采用现有技术中的气动或电动升降平台等,在此不做详细描述。
控制装置由组件叠放仓库3、维修库4、传动装置5、立柱11的液压驱动机构113、伸缩支架23的液压驱动机构233、环境检测仪61、土壤湿度测试仪63以及控
制器60构成,是整个光伏生态大棚的运行的控制中枢。其中,控制器60是控制装置的核心部分。环境检测仪61用来检测当日该地区的太阳辐照量和空气含水
量,土壤湿度测试仪63用来检测当日光伏组件下方的土壤的含水量。控制器60采用现有技术中常见的PLC控制器60等。控制器60和环境检测仪61及土壤湿度
测试仪63通过导线电连接或无线传输的方式连接,从而获取当日该地区的太阳辐照量和空气含水量及当日光伏组件下方的土壤的含水量,控制器60还和第三
方数据平台63连接以获取当日该地区大范围的气象数据以对获取的当日该地区的太阳辐照量进行比对验证,保证太阳辐照量数据检测的准确度。控制器60还
根据获取的土壤的含水量和空气含水量判断当前土壤的含水量是否满足当前植物所需,不满足时,及时向土壤补水。控制器60还用来驱动传动装置5动作,
可通过导线电连接或无线传输的方式向传动装置5发送控制信号,分别向传动装置5的第一输送段51、第二输送段52、第三输送段53发出停机、正向输送和反
向输送的控制信号,向组件升降机构54发送上升或下降的控制信号。控制器60还控制立柱11的伸缩,当作物高度超过3m时,向立柱11的液压驱动机构113发
出伸出的控制信号,立柱伸缩杆112伸出对大棚框架高度作出自适应调整,最大高度不超过10m。控制器60还控制伸缩支架23的伸缩,当光伏组件单元2向框
架上输送时,控制器60向伸缩支架23的液压驱动机构233发出伸出的控制信号,支架伸缩杆232伸出,光伏组件单元2展开;当光伏组件单元2向组件叠放仓库
3或维修库4输送时,控制器60向伸缩支架23的液压驱动机构233发出退回的控制信号,支架伸缩杆232退回,光伏组件单元2折叠。定时检测分析各光伏组件
单元2的运行状态,当运行故障时,控制器60向第二输送段52发出反向输送的控制信号、向组件升降机构54发出下降的控制信号、向第三输送段53发出反向
输送的控制信号,将发生故障的光伏组件单元2自其组件布放位置输送至维修库4进行维修。
参照附图13所示,上述光伏生态大棚的控制方法,包括如下步骤:
S1、控制器根据植物品种及生长周期计算出植物当天的所需辐照量;
S2、环境检测仪获取当日该地区的太阳辐照量,控制器根据获取的太阳辐照量和接收到的第三方数据平台的气象数据,将所得的所需辐照量换算成光伏组件
单元的遮挡面积,得出所需光伏组件单元的总数;
S3、控制器根据所得的光伏组件单元的总数换算出光伏组件单元的行数及列数;
S4、控制器判断前一天所布放的光伏组件单元是否满足步骤S3得出的行数及列数,若不满足,将超出的光伏组件单元调入组件叠放仓库,或将不足的光伏组
件单元自组件叠放仓库调出并调运至指定布放位置;
S5、土壤湿度测试仪实时监控光伏组件下方土壤的含水量,环境检测仪获取当日该地区的空气含水量,控制器根据土壤的含水量和空气含水量判断土壤中的
水分是否满足当前植物所需,若含水量不足,则向土壤补充水分;
S6、检测农作物高度,当农作物高度与光伏组件单元的高度差小于设定值时,控制器向立柱11的液压驱动机构113发出伸出的控制信号,立柱伸缩杆112伸出
将光伏组件单元2向上抬升。
具体地,步骤S4中,若前一天所布放的光伏组件单元满足步骤S3得出的行数及列数,则传动装置5停机;若前一天所布放的光伏组件单元不满足步骤S3得出
的行数及列数,则控制器发出控制信号驱动传动装置5动作。具体地,若前一天所布放的光伏组件单元超出步骤S3得出的行数和/或列数,控制器60驱动第二
输送段52和第一输送段51反向输送、驱动组件升降机构54下降,将超出的光伏组件单元自其布放位置输送至组件叠放仓库3;若前一天所布放的光伏组件单
元超出步骤S3得出的行数和/或列数,控制器60控制第一输送段51、第二输送段52正向输送将不足的光伏组件单元自组件叠放仓库3正向输送至其指定布放位
置。此外,控制器60还控制伸缩支架23的伸缩,当光伏组件单元2向框架上输送时,控制器60向伸缩支架23的液压驱动机构113发出伸出的控制信号,支架伸
缩杆232伸出,光伏组件单元2展开;当光伏组件单元2向组件层叠仓库或维修库4输送时,控制器60向伸缩支架23的液压驱动机构113发出退回的控制信号,
支架伸缩杆232退回,光伏组件单元2折叠。
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限
制本发明的保护范围。凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种光伏生态大棚的支承架,包括用于安装在地面上形成支承的立柱和连接于所述立柱的上端用于安装光伏组件单元的框架,其特征在于:所述框
    架包括多个沿纵向排列设置且分别沿横向延伸的横向导轨、多个沿横向排列设置且分别沿纵向延伸的纵向导轨,多个所述横向导轨和多个所述纵向导轨相互
    交叉形成多个框架单元,部分的所述框架单元用作安装光伏组件单元的组件布放位置,其他部分框架单元用作构成光伏组件单元的输送通道的输送单元,所
    述组件布放位置上设置有用于光伏组件单元机械连接和/或电力传输的传输机构,所述输送单元上设置有用于设置输送通道的连接机构。
  2. 根据权利要求1所述的支承架,其特征在于:所述连接机构包括分别开设于各所述横向导轨上的沿横向延伸的用于与光伏组件单元相滑动配合的横
    向导槽、分别开设于各所述纵向导轨上的沿纵向延伸的用于与光伏组件单元相滑动配合的纵向导槽。
  3. 根据权利要求2所述的支承架,其特征在于:在所述横向导轨和纵向导轨的交叉处,所述横向导槽和所述纵向导槽相互连通。
  4. 根据权利要求1所述的支承架,其特征在于:所述传输机构包括设置所述组件布放位置处的横向导轨或纵向导轨上的用于与光伏组件单元相接触连
    通的第二触点,第二触点与第二导线相电连。
  5. 根据权利要求4所述的支承架,其特征在于:所述组件布放位置处的横向导轨或纵向导轨上开设有用于与光伏组件单元滑动配合的滑槽,所述第二
    触点设于所述滑槽的槽底。
  6. 根据权利要求5所述的支承架,其特征在于:所述滑槽内具有自所述滑槽的端部相所述第二触点处以逐渐远离光伏组件单元的方式倾斜延伸。
  7. 一种光伏生态大棚,包括支承架、安装于所述支承架上的多个光伏组件单元,所述光伏组件单元包括支架及设置在所述支架上光伏组件,其特征在
    于:所述支承架为如权利要求1-6任一所述的支承架,所述光伏组件单元分别设置于所述组件布放位置。
  8. 根据权利要求7所述的光伏生态大棚,其特征在于:各所述横向导轨上分别开设有沿横向延伸的横向导槽,各所述纵向导轨上分别开设有沿纵向延
    伸的纵向导槽,所述光伏组件单元的所述支架的下部具有与所述横向导槽和所述纵向导槽相配合的滑块,所述滑块可滑动地插设于所述横向导槽或所述纵向
    导槽中。
  9. 根据权利要求7所述的光伏生态大棚,其特征在于:所述传输机构包括设置在所述组件布放位置处的横向导轨或纵向导轨上的第二触点,第二触点
    与第二导线相电连,所述组件布放位置处的横向导轨或纵向导轨上开设有滑槽,所述第二触点设于所述滑槽的槽底,
    所述传输机构还包括固定设置在所述支架下部的中空的绝缘外壳、可移动的设置在所述绝缘外壳内的金属触头,所述金属触头的一端上具有第一触点且另一
    端和第一导线电连接,所述绝缘外壳的一端上开设有可供所述第一触点伸出的通孔且另一端上开设有供所述第一导线穿出的通孔,所述金属触头和所述绝缘
    外壳之间设置有驱动所述金属触头移动的弹性件,当所述光伏组件单元安装在指定的组件布放位置时,所述金属触头插入所述滑槽内,所述第一触点和所述
    第二触点相接触电连。
  10. 根据权利要求7所述的光伏生态大棚,其特征在于:该光伏生态大棚还包括设于所述支承架旁侧的用于储存光伏组件单元的组件叠放仓库及用于输送光
    伏组件单元的传动装置,所述传动装置包括输送机构和组件升降机构,所述组件升降机构设置在所述框架的下方,所述输送机构包括位于所述组件叠放仓库
    和所述升降机构之间的第一输送段、位于所述升降机构和各组件布放位置之间的第二输送段,所述第二输送段设置在各输送单元上。
PCT/CN2016/081551 2016-03-15 2016-05-10 光伏生态大棚及其支承架 WO2017156848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610146129.2A CN105594512B (zh) 2016-03-15 2016-03-15 光伏生态大棚及其支承架
CN201610146129.2 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017156848A1 true WO2017156848A1 (zh) 2017-09-21

Family

ID=55975334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081551 WO2017156848A1 (zh) 2016-03-15 2016-05-10 光伏生态大棚及其支承架

Country Status (2)

Country Link
CN (1) CN105594512B (zh)
WO (1) WO2017156848A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114793707A (zh) * 2022-06-14 2022-07-29 含山县绿新蔬菜种植有限公司 一种应用于蔬菜种植的多功能大棚设备
US11641176B2 (en) 2018-02-01 2023-05-02 Monkilowatt Method for building a protective structure and kit therefor
CN116897738A (zh) * 2023-09-07 2023-10-20 淄博景能科技有限公司 一种温室大棚用光伏式顶棚遮罩系统及其工作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105766472B (zh) * 2016-03-15 2018-09-25 苏州腾晖光伏技术有限公司 光伏生态大棚及其光伏组件单元
KR101943924B1 (ko) * 2018-03-20 2019-01-30 김종해 솔라셀 패널의 종방향 설치 방법과 시스템장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202663872U (zh) * 2012-08-10 2013-01-16 利丰农业发展股份有限公司 一种移动式太阳能温室
CN204157365U (zh) * 2014-08-18 2015-02-18 苏州爱康低碳技术研究院有限公司 光伏农业大棚调光装置
US20150047254A1 (en) * 2013-08-14 2015-02-19 National Taiwan University Energy-saving type plant cultivation system
WO2015106359A1 (en) * 2014-01-17 2015-07-23 Lufa Farms, Inc. Snow melting system and method for greenhouse
CN204669996U (zh) * 2015-02-15 2015-09-30 中联西北工程设计研究院有限公司 一种混合多功能光伏生态大棚
CN105028030A (zh) * 2015-06-26 2015-11-11 西北农林科技大学 一种可调透光率的光伏发电温室
CN204762502U (zh) * 2015-07-17 2015-11-18 中节能(临沂)光伏农业科技有限公司 银杏种子催芽用光伏大棚
CN205389724U (zh) * 2016-03-15 2016-07-27 中利腾晖光伏科技有限公司 光伏生态大棚及其支承架

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201946610U (zh) * 2011-05-26 2011-08-24 佛山市广成铝业有限公司 可调式太阳能电池板安装架
WO2013085792A2 (en) * 2011-12-08 2013-06-13 Sunedison, Llc Adjustable tilt angle device for photovoltaic arrays
CN102884962B (zh) * 2012-11-06 2014-04-09 河南豫新太阳能应用工程有限公司 可调光量式光伏农业大棚
CN103840747B (zh) * 2012-11-23 2017-11-17 北京创昱科技有限公司 一种光伏组件安装系统
US20140284292A1 (en) * 2013-03-19 2014-09-25 Richard Pantel Photovoltaic panel support with wheels
CN203553187U (zh) * 2013-11-15 2014-04-16 浙江丰圣电器有限公司 一种窗式太阳能电池板
CN203911837U (zh) * 2014-04-30 2014-10-29 民勤县隆丰工贸有限公司 一种可移动平铺式光伏发电系统
CN203968803U (zh) * 2014-06-06 2014-12-03 特变电工新疆新能源股份有限公司 一种光伏农业大棚
CN204386449U (zh) * 2014-12-25 2015-06-10 河南豫新太阳能应用工程有限公司 一种光伏大棚发电组件提升梯
CN105109943B (zh) * 2015-08-19 2018-11-27 许继集团有限公司 一种屋顶光伏组件安装用导轨装置及运输装置
CN205004989U (zh) * 2015-10-22 2016-01-27 新奥光伏能源有限公司 一种光伏发电装置及光伏发电系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202663872U (zh) * 2012-08-10 2013-01-16 利丰农业发展股份有限公司 一种移动式太阳能温室
US20150047254A1 (en) * 2013-08-14 2015-02-19 National Taiwan University Energy-saving type plant cultivation system
WO2015106359A1 (en) * 2014-01-17 2015-07-23 Lufa Farms, Inc. Snow melting system and method for greenhouse
CN204157365U (zh) * 2014-08-18 2015-02-18 苏州爱康低碳技术研究院有限公司 光伏农业大棚调光装置
CN204669996U (zh) * 2015-02-15 2015-09-30 中联西北工程设计研究院有限公司 一种混合多功能光伏生态大棚
CN105028030A (zh) * 2015-06-26 2015-11-11 西北农林科技大学 一种可调透光率的光伏发电温室
CN204762502U (zh) * 2015-07-17 2015-11-18 中节能(临沂)光伏农业科技有限公司 银杏种子催芽用光伏大棚
CN205389724U (zh) * 2016-03-15 2016-07-27 中利腾晖光伏科技有限公司 光伏生态大棚及其支承架

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11641176B2 (en) 2018-02-01 2023-05-02 Monkilowatt Method for building a protective structure and kit therefor
CN114793707A (zh) * 2022-06-14 2022-07-29 含山县绿新蔬菜种植有限公司 一种应用于蔬菜种植的多功能大棚设备
CN116897738A (zh) * 2023-09-07 2023-10-20 淄博景能科技有限公司 一种温室大棚用光伏式顶棚遮罩系统及其工作方法
CN116897738B (zh) * 2023-09-07 2024-04-05 淄博景能科技有限公司 一种温室大棚用光伏式顶棚遮罩系统及其工作方法

Also Published As

Publication number Publication date
CN105594512A (zh) 2016-05-25
CN105594512B (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2017156847A1 (zh) 光伏生态大棚及其光伏组件单元
WO2017156848A1 (zh) 光伏生态大棚及其支承架
WO2014194483A1 (zh) 头灯亮度可调的电子烟及其亮度调节方法
WO2012133991A1 (ko) 태양전지모듈 지지구조물
WO2020231112A1 (en) Electronic device including antenna
WO2012124952A2 (ko) 사막기후 환경에 따른 내구성 시험장치
WO2012074341A2 (ko) 나무 형태의 태양전지 모듈
WO2013100736A1 (en) Led luminescence apparatus
WO2009096754A2 (ko) 태양 위치 추적 장치
WO2011115361A2 (ko) 복수개의 발광셀들을 갖는 발광 장치
WO2017156849A1 (zh) 光伏生态大棚的控制方法及控制装置
EP3551334A1 (en) Electronic dust collecting apparatus and method of manufacturing dust collector
WO2019098709A1 (en) Photovoltaic module
WO2020153752A1 (ko) 온실하우스용 천장 개폐장치
US9803677B2 (en) Method and apparatus for limiting travel and constraining liner movement of a nut element within a channel
US10903779B2 (en) Photovoltaic module unit and photovoltaic ecological greenhouse
WO2019132490A1 (ko) 반도체소자
WO2015167099A1 (ko) 무선 전력 송신 장치, 무선 전력 수신 장치 및 코일 구조물
GB2186429A (en) Plane antenna assembly
WO2018090497A1 (zh) 伸缩立柱及具有该伸缩立柱的帐篷
WO2018199363A1 (ko) 물품 검사 방법 및 물품 검사 장치
WO2018199667A1 (ko) 태양광 발전 시스템 및 그 제어 방법
CN205389724U (zh) 光伏生态大棚及其支承架
WO2021101266A1 (ko) 전력 시스템
WO2015030453A1 (ko) 태양광 에너지 발생 소스용 마이크로 컨버터 장치 및 그 제어방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894011

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894011

Country of ref document: EP

Kind code of ref document: A1