WO2018199667A1 - 태양광 발전 시스템 및 그 제어 방법 - Google Patents

태양광 발전 시스템 및 그 제어 방법 Download PDF

Info

Publication number
WO2018199667A1
WO2018199667A1 PCT/KR2018/004882 KR2018004882W WO2018199667A1 WO 2018199667 A1 WO2018199667 A1 WO 2018199667A1 KR 2018004882 W KR2018004882 W KR 2018004882W WO 2018199667 A1 WO2018199667 A1 WO 2018199667A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
voltage
current
scan
determined
Prior art date
Application number
PCT/KR2018/004882
Other languages
English (en)
French (fr)
Inventor
김효성
Original Assignee
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단 filed Critical 공주대학교 산학협력단
Publication of WO2018199667A1 publication Critical patent/WO2018199667A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a solar power system and a control method thereof.
  • Such solar cells may be used alone, but a plurality of solar cells having the same structure may be connected in series or in parallel to manufacture solar modules in order to facilitate more efficient use and installation.
  • a user installs a solar panel, which is a module array in which a desired number of solar cell modules are connected, and obtains final power from the solar panel.
  • the efficiency of such a solar panel is low as about 20%, and a large difference in output voltage output from the solar panel occurs according to operating conditions of the solar panel.
  • the solar power system with the solar panel tracks the maximum power point (MPP) having the largest amount of power output from the solar panel.
  • Maximum Power Point Tracking (MPPT) is used to control the operation of the solar panel.
  • solar panels also have nonlinear operating characteristics that are neither current sources nor voltage sources.
  • the maximum power point which is the driving point at which the output power is maximum, exists between the short-circuit condition and the open condition, which are two operating conditions of the solar panel.
  • the solar panel Since the power generation amount of the solar panel is determined according to the amount of light to be irradiated, the solar panel has a short circuit current (Isc) of the solar panel increases in proportion to the amount of solar radiation.
  • the maximum power point is also changed according to the change in the solar radiation, it is necessary to find a new maximum power point according to the solar radiation using the maximum power point tracking method in order to maximize the power generation efficiency of the solar panel.
  • the conventional maximum power point tracking method causes a problem that the maximum power point fluctuates even when there is no change in the amount of insolation, and also a plurality of maximum powers in the solar panel due to shadows generated in the solar panel due to leaves or the like. If a point occurs, it cannot move to the position of the maximum power point, and the maximum power point tracking operation is performed at another position (that is, the local maximum power point position), and thus the operation efficiency of the solar panel cannot be maximized.
  • Patent Document 1 Republic of Korea Patent Registration No. 10-1595060 (Registration date: February 11, 2016, the name of the invention: Dynamics of the inverter device having a dynamic maximum power point tracking function of the solar power system and the inverter device Maximum power point tracking method)
  • Patent Document 2 Republic of Korea Patent Registration No. 10-1256433 (Registration date: April 12, 2013, the name of the invention: PV system of the maximum power point tracking method using PV current)
  • the technical problem to be achieved by the present invention is to improve the power generation efficiency of the solar panel by improving the accuracy and stability of the maximum power point tracking operation.
  • Photovoltaic power generation system is a current sensing unit for sensing the current of one output terminal of the solar panel and outputs, a voltage output unit for sensing and outputting a voltage between the output terminals of the solar panel,
  • a scan control unit having a capacitor, a switching element, and at least one resistor positioned between output terminals of both sides of the solar cell panel, and controlling a discharge operation and a charging operation of the capacitor according to a turn-on or turn-off state of the switching element; And connected to the current sensing unit, the voltage sensing unit, and the scan control unit, to control the turn-on operation and the turn-off operation of the switching element, and to the current sensing unit during a discharge operation or a charging operation of the capacitor.
  • a maximum power point tracking control device that determines the panel output voltage, calculates panel power using the determined panel output current and the panel output voltage, and performs a maximum power point tracking operation.
  • the scan controller includes one resistor and one switching element, and the resistor has one terminal connected to one output terminal of the solar cell panel, and the switching element has the resistor and the other output terminal of the solar cell panel. It is preferable that an input terminal and an output terminal are connected therebetween, and a control terminal is connected to the maximum power point tracking control device.
  • the scan controller includes a first resistor and a second resistor, and a switching device, wherein the switching device is connected to an input terminal and an output terminal between one output terminal and the other output terminal of the solar cell panel, and the first One terminal of the resistor is connected to the maximum power point tracking control device to receive a control signal from the maximum power point tracking control device, the other terminal is connected to the control terminal of the switching element, and one side terminal of the second resistor is It is preferable to be connected to the other terminal of the first resistor, and the other terminal is connected to the other output terminal of the solar cell panel.
  • the switching element may be a MOSFET or a bipolar transistor.
  • the maximum power point tracking control apparatus turns off the switching element for a predetermined time by using the control signal to charge the capacitor to a predetermined state, and turns on the switching element by using the control signal for a predetermined scan time.
  • the panel output current and the panel output voltage of the solar cell panel are determined at predetermined scan periods, and the current panel power is calculated using the determined panel output current and the panel output voltage, and then calculated. If the current panel power is larger than the previous panel power, the maximum power point voltage may be set as the determined panel output voltage, and the maximum power point tracking operation of storing the current panel power as the previous panel power may be performed.
  • the maximum power point tracking control device uses the control signal to turn off the switching element to charge the capacitor, and when the panel output voltage determined by the voltage sensing unit exceeds a predetermined maximum voltage, uses the control signal. Turn on the switching element to discharge the capacitor, and use the current sensing unit and the voltage sensing unit until the panel output voltage determined by the voltage sensing unit is less than the minimum voltage during the discharge of the capacitor.
  • the panel output current and panel output voltage of the solar cell panel are determined, and the current panel power is calculated using the determined panel output current and the panel output voltage. When the calculated current panel power is larger than the previous panel power, the maximum power point voltage is determined. Set the determined panel output voltage and replace the current panel power with the previous panel power. It is possible to perform maximum power point tracking operation of storing.
  • the maximum power point tracking control device turns on the switching element using the control signal for a set time to discharge the capacitor to a predetermined state, and turns off the switching element using the control signal for a predetermined scan time.
  • the panel output current and the panel output voltage of the solar panel are determined at predetermined scan periods, and the current panel power is calculated using the determined panel output current and the panel output voltage. If the current panel power is greater than the previous panel power, the maximum power point voltage may be the determined panel output voltage, and the maximum power point tracking operation of storing the current panel power as the previous panel power may be performed.
  • the maximum power point tracking control device uses the control signal to turn on the switching element so that the capacitor is discharged, and the panel output voltage determined by the voltage sensing unit during the discharge of the capacitor is less than a predetermined minimum voltage.
  • the switching element is turned off using the control signal to allow the capacitor to be charged, and the current until the panel output voltage determined by the voltage sensing unit exceeds the maximum voltage during charging of the capacitor.
  • the panel output current and the panel output voltage of the solar panel are determined using the detector and the voltage detector, the panel power is calculated using the determined panel output current and the panel output voltage, and the determined panel output current and the panel.
  • the current panel power is calculated using the output voltage, and the calculated current panel power is calculated. This prior panel power than the panel output voltage is determined by the maximum power point voltage is larger, and it is possible to perform maximum power point tracking operation to store the current power panel to the previous panel power.
  • a solar power generation system including: a current detector configured to detect and output a current of one output terminal of a solar cell panel, and a voltage output unit configured to detect and output a voltage between both output terminals of the solar panel; A capacitor located between both output terminals of the solar cell panel, and a plurality of scan control units connected in parallel to both output terminals of the solar cell panel, the current sensing unit, the voltage sensing unit, and the plurality of scan control units. And a maximum power point tracking control device connected to each other, wherein each of the plurality of scan controllers includes a resistor having one terminal connected to one output terminal of the solar panel, and between the resistor and the other output terminal of the solar panel. An input terminal and an output terminal are connected to the control terminal. It includes a switching element connected.
  • the apparatus for tracking the maximum power point uses the control signal applied to the switching element of one scan controller from among the plurality of scan controllers to turn on the switching element of the one scan controller to discharge the capacitor and
  • the panel output current and the panel output voltage of the solar cell panel are determined using signals applied from the current sensing unit and the voltage sensing unit during discharge of the panel, and the panel power is determined using the determined panel output current and the panel output voltage.
  • a first maximum power point tracking operation for calculating and tracking the maximum power point is performed, and all the switching elements of the plurality of scan controllers are turned on by using a control signal applied to the switching elements of all of the plurality of scan controllers.
  • the panel output current and the panel output voltage of the solar panel are determined using signals applied from the branch and the voltage detector, and the panel power is calculated using the determined panel output current and the panel output voltage to determine the maximum power point. Perform a second maximum power point tracking operation to track.
  • the first maximum power point tracking operation is based on a first scan based on a discharge time of the capacitor when the capacitor is discharged as the switching element of the one scan controller is turned on by a control signal applied to the switching element of one scan controller.
  • the second maximum power point tracking operation is performed when the capacitor is discharged as all the switching elements of the plurality of scan controllers are turned on by a control signal applied to the switching elements of all the scan controllers.
  • the second scan time is based on time, and the first scan time is longer than the second scan time.
  • a method of controlling a solar power generation system including charging or discharging a capacitor to a predetermined state by turning off or turning on the switching element by applying a control signal of a corresponding state to a switching element for a set time, Discharging or charging the capacitor by applying a control signal of a corresponding state to the switching element for a predetermined scan time, and discharging or charging the capacitor; during the discharge or charging of the capacitor, the current sensing unit at a predetermined scan period; Determining a panel output current and a panel output voltage of the solar panel using the voltage sensing unit, calculating a current panel power using the determined panel output current and the panel output voltage, and calculating the current panel power to the previous panel. Panel output with maximum power point voltage determined above power And storing the current panel power as the previous panel power.
  • a method of controlling a photovoltaic power generation system by applying a control signal of a corresponding state to a switching device to turn on or off the switching device to charge or discharge a capacitor, and to be determined by a voltage sensing unit. If the panel output voltage is greater than or equal to a predetermined maximum voltage or less than a minimum voltage, applying a control signal of a corresponding state to the switching element to turn the switching element on or off to discharge or charge the capacitor; Determining a panel output voltage of the solar panel using a signal output from the voltage detector during charging, using the current detector and the voltage detector until the determined panel output voltage is below the minimum voltage or above the maximum voltage.
  • a method of controlling a solar power generation system by applying a control signal of a corresponding state to a switching element of one scan controller among a plurality of scan controllers, thereby turning on the switching element of the one scan controller to remove the capacitor. Discharging for one hour, and reading the signals applied from the current sensing unit and the voltage sensing unit during the discharge of the capacitor during the first time to determine the panel output current and the panel output voltage of the solar cell panel, and the determined panel output.
  • the step of determining the panel output current and the panel output voltage of the solar cell panel using the signals applied from the current sensing unit and the voltage sensing unit during the discharging of the capacitor during the second time, and the determined panel And performing a second maximum power point tracking operation for tracking the maximum power point by calculating panel power by using an output current and a panel output voltage, wherein each of the plurality of scan controllers has one output terminal of the solar cell panel. And a switching element having an input terminal and an output terminal connected between the resistor and the other output terminal of the solar panel, and a control terminal connected to the maximum power point tracking control device. .
  • the first maximum power point tracking operation is based on the first time based on the first time when the switching element of the one scan control unit is turned on by the control signal applied to the switching element of one scan control unit and the capacitor is discharged.
  • the second maximum power point tracking operation is performed during the scan time, and when the switching elements of the plurality of scan controllers are all turned on by the control signal applied to the switching elements of all the scan controllers, the second time is discharged. Is performed for a second scan time based on the first scan time being longer than the second scan time.
  • the panel power is scanned using the charge / discharge operation of the smoothing capacitor of the power control device to achieve a stable and accurate maximum power point tracking operation.
  • FIG. 1 is a schematic block diagram of a solar power system according to an embodiment of the present invention.
  • FIG. 2 is a waveform diagram of panel output current, panel output voltage, and panel power detected during the discharging and charging of the smoothing capacitor of FIG. 1.
  • FIG. 3 is a diagram illustrating a test result of a maximum power point tracking operation for a solar cell panel when multiple power peaks are formed by shadows formed on the solar cell panel.
  • 4 and 5 are operation flowcharts for tracking the maximum power point using the discharge operation of the smoothing capacitor in the solar power generation system according to an embodiment of the present invention, respectively.
  • 6 and 7 are operation flowcharts of tracking a maximum power point using a charging operation of a smoothing capacitor in a photovoltaic power generation system according to an embodiment of the present invention, respectively.
  • FIG. 8 illustrates waveforms of the panel output current, the panel output voltage, and the panel power detected during the maximum power point tracking operation using the discharge operation of the smoothing capacitor in the solar power generation system according to the exemplary embodiment of the present invention.
  • FIG. 9 illustrates a waveform obtained by deriving a current-voltage curve and a power-voltage curve by using the signal waveform detected in FIG. 8 as the horizontal output axis of the panel output voltage.
  • FIG. 10 is a diagram illustrating a range of scan voltages according to values of resistance for MPPT of a photovoltaic system according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a solar power system according to another embodiment of the present invention.
  • FIG. 12 is an operation flowchart of tracking a maximum power point by using the discharge operation of the smoothing capacitor in the photovoltaic power generation system according to another embodiment of the present invention.
  • FIG. 13 and 14 are schematic block diagrams of examples of a photovoltaic power generation system according to another embodiment of the present invention, respectively.
  • the solar power generation system 100 includes a solar cell panel 11 and first and second output terminals (+, ⁇ ) of the solar cell panel 11, that is, ( Located between the maximum power point tracking detector 12, the maximum power point tracking detector 12, and the load Ro, which are connected between the output terminal (+) of (+) and the output terminal (-) of (-).
  • the output current of the solar panel 11 detected by the operation of the power conditioning system (PCS) 13 and the maximum power point tracking detection unit 12 (hereinafter, the output of the solar panel 11).
  • the solar cell panel 11 outputs a panel output current Ipv and a panel output voltage Vpv of a corresponding size according to the amount of light to be irradiated.
  • the maximum power point tracking detector 12 includes a current detector 121 positioned at the second output terminal ( ⁇ ) of the solar panel 11, and first and second output terminals (+) of the solar panel 11. Is connected to the voltage detector 122 connected to the maximum power point tracking control device 14 and the operating state is changed according to a control signal applied from the maximum power point tracking control device 14.
  • the detection operation of the panel output voltage Vpv and the panel output current Ipv by the detection unit 121 and the voltage detection unit 122 ie, the scan operation
  • the scan control unit 123 is provided.
  • the current detector 121 detects a current flowing through the second output terminal ( ⁇ ) of the solar panel 11 and outputs the current to the maximum power point tracking control device 14 as the panel output current Ipv.
  • the voltage detector 122 is located after the scan controller 123 and detects a voltage between both output terminals of the maximum power point tracking detector 12 to display the maximum power point tracking control device 14 as a panel output voltage Vpv. )
  • the scan controller 123 includes a resistor (ie, MPPT resistor) Rmppt and MPPT resistor (Rmppt) for maximum power point tracking having one terminal connected to the first output terminal (+) of the solar panel 11.
  • Input terminal is connected to the other terminal (eg, drain terminal) of), output terminal (eg, source terminal) is connected to the second output terminal (-) of the solar panel 11, and the maximum power point tracking control device
  • a switching element eg, first switching element
  • Smppt to which a control terminal (eg, gate terminal) is connected to 14 is provided.
  • the first switching element Smppt is formed of a transistor such as a metal oxide silicon field effect transistor (MOSFET), and operates in accordance with a control signal Gmppt applied from the maximum power point tracking control device 14 to the control terminal. Is changed to turn on or turn off.
  • MOSFET metal oxide silicon field effect transistor
  • the maximum power point tracking control device 14 performs a scan operation of the panel output current Ipv and the panel output voltage Vpv for tracking the maximum power point. Conduct.
  • the power regulator 13 includes a capacitor (ie, a smoothing capacitor) having one terminal and the other terminal connected to the first output terminal (+) and the second output terminal ( ⁇ ) of the solar cell panel 11, respectively. ), A switching element having an input terminal (eg, a drain terminal) connected to the first output terminal (+) of the solar cell panel 11 and a control terminal (eg, a gate terminal) connected to the power regulation control unit 15.
  • a capacitor ie, a smoothing capacitor
  • a switching element having an input terminal (eg, a drain terminal) connected to the first output terminal (+) of the solar cell panel 11 and a control terminal (eg, a gate terminal) connected to the power regulation control unit 15.
  • the cathode terminal is connected to the output terminal (eg, source terminal) of the second switch element (Sbuck), and to the second output terminal (-) of the solar cell panel 11
  • the diode Df having the anode terminal connected, the inductor Lf having one terminal connected to the output terminal of the switch Sbuck, and the other terminal connected to one side of the load resistor Ro, and the coil Lf
  • One terminal is connected to one terminal, and the other terminal is connected to the second output terminal (-) of the solar panel 11.
  • the capacitor Cf is connected in parallel with the load resistor Ro.
  • the power regulator 13 uses a buck converter composed of a second switching element Sbuck, a diode Df, an inductor L1, and a capacitor Cf, but is not limited thereto.
  • Other converters or inverters may be used, such as a back converter, a boost converter, or a forward converter.
  • the power regulator 13 of FIG. 1 turns on the second switching element Sbuck at a predetermined cycle according to the pulse width modulation signal PWM of the power regulation control unit 15 applied to the control terminal of the second switching element Sbuck. And turn off and smooth the pulse-shaped voltage output according to the turn-on and turn-off operation of the second switching element Sbuck by using the reactor Lf and the capacitor Cf to output a DC voltage having a corresponding magnitude.
  • the second switching element Sbuck is turned on or off according to the pulse width control signal PWM applied from the power regulation control unit 150 to control the operation state of the power regulation device 13.
  • the panel output current Ipv output from the solar cell panel 11 flows through the turned on second switching element Sbuck to the reactor Lf, whereby the reactor ( Energy accumulation to Lf) occurs and flows toward the diode Df through the capacitor Cf and the load resistor Ro.
  • the diode Df defines a path of the panel output current Ipv toward the reactor Lf when the second switching element Sbuck is turned on.
  • the capacitor Cf removes noise components of the signal applied to the switching element Sbuck and also performs a smoothing function.
  • the voltage detector 122 senses a voltage applied across the capacitor Cf and outputs the voltage to the panel output voltage Vpv.
  • the smoothing capacitor Cdc connected between the two input terminals of the power control device 13 smoothes the current applied to the second switching element Sbuck, and the smoothing capacitor Cdc of the first switching element Smppt of the scan controller 123.
  • the charging and discharging may be performed according to the turn-on and turn-off states so that a scan operation of the panel output voltage Vpv may be performed to detect the panel output voltage Vpv by the voltage detector 122.
  • the scanning time which is a time at which the scan operation of the panel output voltage Vpv and the panel output current Ipv can be performed, is determined.
  • the resistor Rmppt for MPPT provides a discharge path of charge charged in the smoothing capacitor Cdc when the second switching element Sbuck of the power regulator 13 is turned off.
  • the maximum power point tracking control device 14 includes an operation control unit 141 and an operation control unit for receiving the panel output current Ipv and the panel output voltage Vpv applied from the current detector 121 and the voltage detector 122. And a storage unit 142 connected to 141.
  • the operation control unit 141 applies the control signal Gmppt of the corresponding state to the control terminal of the first switching device Smppt to turn on or turn off the first switching device Smppt at a predetermined time. Controls the operation of (Smppt).
  • the first switching device Smppt When the first switching device Smppt is turned off according to the control signal Gmppt applied from the operation control unit 141, the charging operation of the smoothing capacitor Cdc of the power regulator 13 is performed, and conversely, the first switching is performed.
  • the device Smppt When the device Smppt is turned on, the discharge operation of the charge charged in the smoothing capacitor Cdc is performed.
  • the scan operation of the panel output current Ipv and the panel output voltage Vpv by the current sensing unit 121 and the voltage sensing unit 122, as described above, is charged with the smoothing capacitor Cdc. It can be done at the timing, but it can also be done at the discharge time.
  • the operation control unit 141 senses the panel output current Ipv and the panel output voltage Vpv at a predetermined maximum power point tracking period, and the magnitude of power by the panel output current Ipv and the panel output voltage Vpv.
  • the maximum power point MPP is tracked and the panel output voltage Vpv (that is, the maximum power operating voltage) at the tracked maximum power point MPP is used as the reference voltage Vref. )
  • the storage unit 142 stores data necessary for the operation of the maximum power point tracking control device 14 and data generated during the operation.
  • the storage unit 142 stores the output current Ipv and the panel output voltage Vpv sensed at each maximum power point tracking period, and tracks the maximum power point MPP during the scan time by the operation control unit 141. Allows operation to be made.
  • the power control control unit 15 receives the reference voltage Vref from the operation control unit 141 of the maximum power point tracking control unit 14, and controls the state of the pulse width modulation signal PWM according to the applied reference voltage Vref.
  • the control is output to the second switching element Sbuck of the power regulation device 13.
  • the power regulation device 13 operates according to the switching state of the second switching element Sbuck to perform the power generation operation.
  • a scan operation of the panel output current Ipv and the panel output voltage Vpv is performed using the discharge operation of the smoothing capacitor Cdc for the maximum power point tracking operation of the solar power generation system 100.
  • the scan operation of the panel output current Ipv and the panel output voltage Vpv may be performed by using the charging operation of the smoothing capacitor Cdc.
  • FIG. 2 shows a scan operation of the panel output current Ipv and the panel output voltage Vpv performed during the discharge of the smoothing capacitor Cdc and the scan of the panel output current Ipv and the panel output voltage Vpv performed during charging.
  • a graph for comparing the operation measurement graphs of the panel output current Ipv, the panel output voltage Vpv and the panel power Ppv of the solar panel 11 measured during the discharge and charging of the smoothing capacitor Cdc. to be.
  • Scan operation during discharge (that is, discharge scan operation) is performed by turning on the first switching element Smppt, which is a MOSFET semiconductor switch, while the solar panel 11 charges the smoothing capacitor Cdc to the open voltage Voc. While discharging the smoothing capacitor Cdc, the output voltage and output current of the solar cell panel 11 and the panel output voltage Vpv and the panel output current Ipv are measured while the operating voltage of the solar panel 11 is lowered. Is done.
  • the scan operation during charging turns off the first switching element Smppt while the smoothing capacitor Cdc is discharged so that the solar cell panel 11 opens the smoothing capacitor Cdc.
  • the panel output voltage Vpv and the panel output current Ipv of the Payang battery panel were measured while charging to the voltage Voc.
  • the charging time T c_Charge of the smoothing capacitor Cdc is much longer than the discharge time T c_Discharge , so that the scan time for the charge scan operation is longer than the scan time for the discharge scan operation.
  • the scan time is short, the time required for the solar cell panel 11 to stop the power generation operation of the photovoltaic system 100 in order to perform the maximum power point tracking operation is reduced, so that the generation efficiency of the photovoltaic system 100 is relatively high.
  • the maximum power point tracking operation may be made inaccurately, the efficiency of the maximum power point tracking operation may be lowered, and as a result, the overall power generation efficiency of the solar power generation system 100 may be lowered.
  • the scan time is preferably sufficient time to extract the current (I) -voltage (V) characteristic curve of the solar cell panel 11, but as short as possible.
  • the scan time for the discharge scan operation and the charge scan operation is preferably about 10ms to 50ms.
  • the efficiency ⁇ of the photovoltaic system 100 according to the power generation stop loss due to the maximum power point tracking operation is as follows. .
  • the efficiency ⁇ of the photovoltaic system 100 according to the power generation operation stop loss due to the maximum power point tracking operation is as follows.
  • the present embodiment accurately detects the maximum power point and performs stable power generation operation, power generation efficiency can be improved without increasing power generation loss of the photovoltaic power generation system.
  • the photovoltaic system 100 has a range of voltage for scanning the entire power (P) -voltage (V) curve even when there are a plurality of power peaks in the solar panel 11 due to a shadow or the like. Increases, so that exactly the maximum power point is found so that the power generation operation is performed.
  • the photovoltaic power generation system 100 of the present embodiment has a maximum power point tracking operation at a predetermined cycle, so that the stable power generation operation of the photovoltaic power generation system 100 is performed, and the maximum power point using the charging or discharging operation of the capacitor is performed. Since the scan range is determined, the scan range is increased more than the conventional case, and the maximum power point tracking operation is performed efficiently and stably even though multiple power peaks are formed.
  • FIG. 3 illustrates a test result of a maximum power point tracking operation for a solar cell panel 11 in which multiple power peaks are formed by a shadow SH11 formed in the solar cell panel 11. The left side of FIG. FIG.
  • FIG. 3 is a view illustrating a case in which the shadow SH11 is formed in the solar cell module 111 of the solar panel 11, and the graph on the right of FIG. 3 is a current (I) -voltage which is a scan result of the solar cell panel 11.
  • I current
  • V characteristic curve and power
  • P power
  • Table 1 shows the data of the solar cell module and the solar panel used in the experiment.
  • a total of two solar cell modules used in the experiment is a structure (3S2P) in which two solar cell arrays in which three solar cell modules 111 are connected in series are connected in parallel to each other.
  • the conventional slope search method for tracking the maximum power point may exit from the power maximum point MP1.
  • MP2 maximum power point
  • V MP2 working voltage
  • MP1 power maximum point
  • V MP1 the reference voltage
  • the maximum power point tracking operation of the photovoltaic system 100 using the discharge of the smoothing capacitor Cdc shown in FIG. 4 uses a scan time Tscan, which is a charging time of the smoothing capacitor Cdc.
  • the maximum power point tracking operation by the maximum power point tracking control unit 14 is performed every predetermined period (ie, the maximum power point tracking period) Pmppt, and the maximum power point tracking period Pmppt. May be about 1 second to 5 seconds.
  • the panel output current Ipv and the panel output voltage Vpv are sensed every scan period Pscan during the scan time Tscan for finding the maximum power point.
  • the scan time Tscan may be about 20 ms and the scan period Pscan may be about 0.1 to 1 ms.
  • the operation controller 141 determines whether the maximum power point tracking period Pmppt has arrived by using time information output from a timer (not shown) (S11).
  • the operation control unit 141 When the maximum power point tracking period Pmppt arrives, the operation control unit 141 outputs the driving control signal in the driving stop state to the power adjustment control unit 15 (S12), and also the control terminal of the first switching element Smppt.
  • the control signal of the turn-off state is output (S13).
  • the power regulation control unit 15 When the driving control signal of the driving stop state is input from the maximum power point tracking control unit 14, the power regulation control unit 15 outputs the control signal of the turn-off state to the second switching element Sbuck of the power regulation device 13. Thus, the operation of the power regulation device 13 is stopped.
  • the element located behind the second switching element Sbuck that is, the reactor Lf, the capacitor Cf, and the diode Df is disconnected from the solar panel 11, and the second switching element Sbuck is disconnected. Only the smoothing capacitor (Cdc) located in front of the) is electrically connected to the solar panel (11).
  • the first switching element Smppt is also turned off by the control signal of the turn-off state applied from the control unit 141 of the maximum power point tracking control unit 14.
  • the smoothing capacitor Cdc maintaining the electrical connection with the solar panel 11 is output from the solar panel 11.
  • the charging operation is performed by the voltage, and at this time, the smoothing capacitor Cdc is charged up to the open voltage Voc.
  • control signal Gmppt in the turn-off state is output to the first switching element Smppt to turn off the first switching element Smppt to start charging of the smoothing capacitor Cdc, and then the operation control unit
  • the control unit 141 determines whether the set time has elapsed after outputting the turn-off control signal Gmppt to the first switching element Smppt (S14).
  • the setting time is determined based on the charging time of the smoothing capacitor Cdc, and may be the same as the charging time of the smoothing capacitor Cdc.
  • the smoothing capacitor Cdc may be charged to the desired open voltage Voc.
  • the operation controller 141 determines that the charging operation of the smoothing capacitor Cdc is completed and the first switching element for the predetermined scan time Tscan.
  • the control signal Gmppt in the turned-on state is output to the control terminal of Smppt (S16).
  • the charge charged in the smoothing capacitor Cdc is turned on with the resistance Rmppt for the MPPT. Discharge is started through the first switching element Smppt in the state.
  • the panel output voltage Vpv of the solar panel 11 gradually decreases from the open voltage Voc, which is the maximum charging state of the smoothing capacitor Cdc.
  • the operation control unit 141 is transferred to the maximum power point tracking operation routine S16.
  • the operation control unit 141 reads the signals applied from the current sensing unit 121 and the voltage sensing unit 122 at each scan period Pscan during the scan time Tscan to determine the current panel output current Ipv. And the panel output voltage Vpv are determined and stored in the storage unit 142 (S161).
  • the operation controller 141 calculates the current panel power Pnew by multiplying the current panel output current Ipv by the panel output voltage Vpv (S162).
  • the operation control unit 141 reads the previous panel power Pold calculated in the immediately previous step stored in the storage unit 142 to present the current panel power Pnew and The size of the previous panel power Pold is compared (S163).
  • the operation control unit 141 may determine the current maximum panel power voltage Vpv stored in the storage unit 142.
  • the storage unit 142 stores the point voltage Vmpp in the storage unit 142 (S164).
  • the current panel power Pnew is stored in the storage unit 142 as the previous panel power Pold (S165).
  • the operation controller 141 may determine the current maximum power point voltage Vmpp stored in the storage 142.
  • the current panel power Pnew is stored in the storage unit 142 as the previous panel power Pold while being maintained as it is without changing to the panel output voltage Vpv, thereby changing the previous panel power Pold (S165). .
  • the operation control unit 141 becomes a scan period Pscan during the scan time Tscan, and the process proceeds to step S161 again using the current sensing unit 121 and the voltage sensing unit 122.
  • the current panel power Pnew is calculated and compared with the previous panel power Pold to determine the maximum power point voltage Vmpp at this stage. Determine.
  • the operation controller 141 changes the state of the control signal Gmppt applied to the control terminal of the first switching element Smppt to a turn-off state.
  • the scan operation for the maximum power point tracking operation is terminated by turning off the first switching device Smppt (S17).
  • the operation control unit 141 outputs the driving control signal in the driving state to the power adjustment control unit 15 (S18), the current maximum power point voltage (Vmpp) reference voltage (stored in the storage unit 142) Vref) and outputs the determined reference voltage Vref to the power regulation control unit 15 (S19).
  • the power control control unit 15 that has been temporarily stopped for the maximum power point tracking operation is resumed by a drive control signal applied from the operation control unit 141 of the tracking control unit 140.
  • the pulse width modulation operation is performed by using the reference voltage Vvef applied from the maximum power point tracking control device 14 to control the pulse width modulation signal PWM of the corresponding state to the control terminal of the second switching element Sbuck. By applying to so that the operation of the power regulation device 13 is made.
  • the scan time Tscan is determined in consideration of the discharge time of the smoothing capacitor Cdc, and the panel output current Ipv and the panel output voltage Vpv are scanned during the predetermined scan time Tscan. Perform the maximum power point tracking operation.
  • the operation control unit 141 determines the maximum power point voltage Vmpp by comparing the current panel power Pnew and the previous panel power Pold every step during the maximum power point tracking routine S15.
  • the average value of the panel power calculated at the present stage and the panel power at the previous stage are calculated to obtain the current average panel power, Compare the previous average panel power to determine the maximum power point, and average the average value of the two panel output voltages corresponding to the panel output voltage Vpv corresponding to the determined maximum power point or the average panel power corresponding to the maximum power point.
  • the panel output voltage can be determined as the maximum power point voltage (Vmpp).
  • the panel output voltage Vpv and the panel output current Ipv are determined for each predetermined scan period Tscan during the predetermined scan time Tscan, and the panel power (or average panel power) is calculated.
  • the panel power (or average panel power) having the largest magnitude among the plurality of panel powers (or average panel outputs) calculated during the scan time Tscan is determined, and the panel output voltage at that time.
  • Vpv (or average panel output voltage) can be determined as the maximum power point voltage Vmpp and output to the power regulation control section 15 as the reference voltage Vref.
  • the panel output voltage Vpv detected by the voltage detector 122 is compared with the set voltages Vmax and Vmin to determine the discharge state of the smoothing capacitor Cdc.
  • the scan operation is performed on the output current Ipv and the panel output voltage Vpv.
  • the maximum power point tracking period Pmppt may be about 1 second to 5 seconds.
  • the operation control unit 141 determines whether the maximum power point tracking period Pmppt has arrived ( S21).
  • the operation control unit 141 When it is determined that the maximum power point tracking period Pmppt has arrived (S21), the operation control unit 141 outputs a driving control signal in a driving stop state to the power adjustment control unit 15 to operate the power adjusting device 13.
  • the control signal of the turn-off state is output to the control terminal of the first switching element Smppt (S22), and the control signal is output (S23).
  • the operation control unit 141 reads the signal applied from the voltage sensing unit 142 to determine the current panel output voltage Vpv (S24), and the determined panel output voltage Vpv is the maximum voltage Vmax. Determine whether greater than (S25).
  • the maximum voltage Vmax may be determined based on the capacity of the smoothing capacitor Cdc as a voltage determined in consideration of the charging completion state of the smoothing capacitor Cdc. Therefore, when the determined panel output voltage Vpv exceeds the set maximum voltage Vmax, the operation controller 141 reaches a state in which the smoothing capacitor Cdc is charged (eg, a state in which charging is completed). It is judged that it did.
  • the operation control unit 141 determines that the smoothing capacitor Cdc is not charged to a predetermined state and then performs the step again.
  • the panel output voltage Vpv is determined using the voltage detector 122.
  • the operation control unit 141 determines that the state of charge of the smoothing capacitor Cdc reaches a predetermined state as described above, and thus the smoothing capacitor Cdc.
  • the maximum power point tracking operation using the discharge operation of is performed.
  • the operation control unit 141 outputs the control signal Gmppt in the on state to the control terminal of the first switching element Smppt and turns on the first switching element Smppt (S26), thereby reducing the smoothing capacitor Cdc. Allow the charge to be discharged.
  • the operation controller 141 may operate as the current detector 121 and the voltage detector 122.
  • the current panel output current Ipv and the panel output voltage Vpv are determined using the signal outputted from the reference signal) and stored in the storage unit 142 (S27).
  • the operation controller 141 calculates the current panel power Pnew by multiplying the current panel output current Ipv by the panel output voltage Vpv (S28), and then the current panel power Pnew and the previous panel power. (Pold) is compared (S29).
  • the operation controller 141 may determine the current panel output voltage Vpv stored in the storage unit 142 at the maximum power point voltage Vmpp. As stored in the storage unit 142 (S210).
  • the current panel power (Pnew) is stored in the storage unit 142 as the previous panel power (Pold) (S211).
  • the operation control unit 141 does not change the maximum power point voltage Vmpp to the current panel output voltage Vpv. Instead, only the current panel power Pnew is changed to the previous panel power Pold and stored in the storage unit 142 (S211).
  • the operation control unit 141 determines whether the current panel output voltage Vpv determined in step S27 is smaller than the minimum voltage Vmin (S212).
  • the minimum voltage Vmin may also be determined based on the capacity of the smoothing capacitor Cdc, and is a voltage determined in consideration of the discharge completion state of the smoothing capacitor Cdc. Therefore, when the determined panel output voltage Vpv is smaller than the set minimum voltage Vmin, the operation control unit 141 proceeds to the state where the discharge operation of the smoothing capacitor Cdc is determined (eg, the discharge is completed). Determined by
  • the operation controller 141 stops the maximum power point tracking operation in the current maximum power point tracking period Pmppt.
  • the operation controller 141 turns off the state of the control signal Gmppt applied to the first switching element Smppt.
  • the first switching device Smppt is turned off by changing to the state, and the driving control signal in the driving state is output to the power regulation control unit 15 (S214).
  • the operation control unit 141 outputs the current maximum power point voltage Vmpp reference voltage Vref stored in the storage unit 142 to the power control control unit 15 (S215).
  • the power regulation control unit 15 controls the operation of the power regulation apparatus 13 by using the applied reference voltage Vref.
  • the operation controller 141 determines whether a new maximum power point tracking period Pmppt has arrived using the time information of the timer (S21), and performs the maximum power point tracking operation at that time.
  • the operation controller 141 determines that the discharge state of the smoothing capacitor Cdc does not reach the set state.
  • the operation control unit 141 proceeds to step S27 and uses the current sensing unit 121 and the voltage sensing unit 122 for the maximum power point tracking operation to the current panel output current Ipv and the panel output voltage (S27). Vpv) is determined.
  • the example shown in FIG. 6 uses a scan time determined based on the charging time of the smoothing capacitor Cdc
  • the example shown in FIG. 7 uses a smoothing capacitor using a set minimum voltage Vmin1 and a maximum voltage Vmax2. It uses the state of charge of (Cdc).
  • FIGS. 6 and 7 are similar to those of FIGS. 4 and 5, respectively.
  • the maximum power point tracking period Pmppt may be about 1 second to 5 seconds
  • the scan time Tscan may be about 20 ms
  • the scan period Pscan may be about 0.1 to 1 ms.
  • the operation controller 141 determines whether the set time (eg, the second set time) has elapsed (S34).
  • the set time is determined based on the discharge time of the smoothing capacitor Cdc.
  • the operation control unit 141 Outputs the control signal Gmppt in the off state to the control terminal of the first switching element Smppt during the scan time Tscan1 (S35), so that the charging operation of the smoothing capacitor Cdc is performed.
  • the second switching element (Sbuck) of the power regulation device 13 is maintained in the off state by the control of the adjustment control unit 15, so that the power regulation device 13 except the smoothing capacitor (Cdc) The operation of the other components of) does not occur.
  • the smoothing capacitor Cdc starts charging operation, and the charging voltage of the smoothing capacitor Cdc gradually increases from '0'. .
  • the operation of the operation controller 141 is transferred to the maximum power point tracking operation routine S36, and every scan period Pscan1 determined during the scan time Tscan1.
  • the maximum power point tracking operation is performed by using the current panel output current Ipv and the panel output voltage Vpv using the current detector 121 and the voltage detector 122.
  • the operation controller 141 determines the current panel output current Ipv and the panel output voltage Vpv by using the signals applied from the current detector 121 and the current detector 122 (S361).
  • the current panel power Pnew is calculated using the determined panel output current Ipv and the panel output voltage Vpv (S362).
  • the operation controller 141 compares the previous panel power Pold with the current panel power Pnew (S363).
  • the operation controller 141 may determine the current maximum panel power voltage Vpv stored in the storage unit 142.
  • the storage unit 142 stores the point voltage Vmpp in the storage unit 142 (S364).
  • the operation control unit 141 stores the current panel power Pnew as the previous panel power Pold in the storage unit 142 (S365).
  • step S363 the operation control unit 141 immediately proceeds to step S365 to transfer the current panel power Pnew to the previous panel power Pold. To the storage unit 142.
  • the operation of the operation control unit 141 is performed every scan period Pscan1 during the scan time Tscan1.
  • the operation control unit 141 When the scan time Tscan1 elapses, the operation control unit 141 outputs the driving control signal in the driving state to the power adjustment control unit 15 (S37), and then the current panel power Pnew during the scan time Tscan1.
  • the current maximum power point voltage Vmpp determined for the comparison operation with the previous panel power Pold is output to the power regulation control unit 15 as the reference voltage Vref (S38).
  • the power adjustment control unit 15 controls the state of the pulse width modulation signal PWM applied to the second switching element Sbuck according to the applied reference voltage Vref to operate the power adjustment device 13. To lose.
  • the current average panel power is compared with the immediately previous average panel power to determine the maximum power point, and the panel output voltage Vpv or the maximum power corresponding to the determined maximum power point.
  • the average panel output voltage which is an average value of two panel output voltages corresponding to the average panel power corresponding to the point, may be determined as the maximum power point voltage Vmpp.
  • the panel output voltage Vpv and the panel output current Ipv are determined for each predetermined scan period Tscan1 during the predetermined scan time Tscan1, and the panel power (or average panel power) is calculated and stored in the storage unit 142. After that, the panel power (or average panel power) having the largest magnitude among the plurality of panel powers (or average panel outputs) calculated during the scan time Tscan1 is determined and the panel output voltage Vpv (or average panel) at that time is determined. Output voltage) can be determined as the maximum power point voltage Vmpp and output to the power regulation control section 15 as the reference voltage Vref.
  • the operation control unit 141 of the maximum power point tracking control unit 14 determines whether the maximum power point tracking period Pmppt has arrived ( S41).
  • the operation control unit 141 When it is determined that the maximum power point tracking period Pmppt has arrived (S41), the operation control unit 141 outputs the driving control signal in the driving stop state to the power adjustment control unit 15 to operate the power adjusting device 13. (S42), and outputs the control signal of the turn-on state to the control terminal of the first switching element (Smppt) (S43), so that the smoothing capacitor (Cdc) to perform the discharge operation.
  • the operation control unit 141 reads the signal applied from the voltage sensing unit 122 to determine the current panel output voltage Vpv (S44), and the determined panel output voltage Vpv is the minimum voltage Vmin1. It is determined whether the smaller than (S45).
  • the minimum voltage Vmin1 may be determined based on the capacity of the smoothing capacitor Cdc as a voltage determined in consideration of the discharge completion state of the smoothing capacitor Cdc. Therefore, when the determined panel output voltage Vpv is smaller than the set minimum voltage Vmin1, the operation controller 141 determines that the discharge state of the smoothing capacitor Cdc is determined, for example, the discharge operation is completed. do.
  • the operation control unit 141 determines that the discharge of the smoothing capacitor Cdc is not made to a predetermined state and returns to step S44.
  • the panel output voltage Vpv is determined using the voltage detector 122.
  • the operation control unit 141 is a state in which the discharge state of the smoothing capacitor Cdc is set to a predetermined state as described above. The maximum power point tracking operation using the charging operation of Cdc) is performed.
  • the operation controller 141 outputs the control signal Gmppt in the off state to the control terminal of the first switching element Smppt and turns off the first switching element Smppt (S46), thereby adjusting the power regulation device 13.
  • the charging operation of the smoothing capacitor Cdc is performed.
  • the operation controller 141 determines the current panel output current Ipv and the panel output voltage Vpv by using the signals output from the current detector 121 and the voltage detector 122, and stores the storage unit 142. ) And calculate the current panel power Pnew by multiplying the current panel output current Ipv by the panel output voltage Vpv (S48), and then the current panel power Pnew and the previous panel power ( Pold) is compared (S49).
  • the operation controller 141 stores the current panel output voltage Vpv as the maximum power point voltage Vmpp in the storage 142. (S410).
  • the operation controller 141 stores the current panel power Pnew in the storage unit 142 as the previous panel power Pold (S411).
  • step S49 if it is determined in step S49 that the current panel power Pnew is not greater than the previous panel power Pold, the operation control unit 141 maintains the maximum power point voltage Vmpp in the previous state and then the current panel power. (Pnew) is changed to the previous panel power (Pold) and stored in the storage unit 142 (S411).
  • the operation control unit 141 determines whether the current panel output voltage Vpv determined in step S47 is greater than the maximum voltage Vmax1 (S412).
  • the maximum voltage Vmax1 may also be determined based on the capacity of the smoothing capacitor Cdc, and is a voltage determined in consideration of the charging completion state of the smoothing capacitor Cdc. Therefore, when the determined panel output voltage Vpv is greater than the set maximum voltage Vmax1, the operation controller 141 determines that the charging operation of the smoothing capacitor Cdc reaches a predetermined state (eg, a charging completion state). do.
  • a predetermined state eg, a charging completion state
  • the operation control unit 141 stops the maximum power point search operation and generates power by the operation of the power regulation device 13. .
  • the operation control unit 141 outputs the driving control signal in the driving state to the power adjustment control unit 15 (S413), and uses the current maximum power point voltage Vmpp as the reference voltage Vref to control the power adjustment control unit 15. (S414).
  • step S41 determines whether a new maximum power point tracking period Pmppt has arrived by using the time information of the timer, and when the new maximum power point tracking period Pmppt arrives, the maximum operation point is reached.
  • the power point tracking operation is performed.
  • the operation controller 141 determines that the charging state of the smoothing capacitor Cdc does not reach the set state.
  • the operation control unit 141 proceeds to step S47 and uses the current sensing unit 121 and the voltage sensing unit 122 to perform the maximum power point tracking operation. Vpv) is determined.
  • FIG. 8 illustrates waveforms of the panel output current Ipv, the panel output voltage Vpv, and the panel power Ppv sensed during the maximum power point tracking operation using the discharge operation of the smoothing capacitor Cdc.
  • the scan time Tscan was 16 ms.
  • a current (I) -voltage (V) curve and a power (P) -voltage (V) curve are derived by using the panel output voltage Vpv as the operating voltage as a horizontal axis using the signal waveform detected in FIG. 8. The waveform is shown.
  • the magnitude of the panel output voltage Vpv for outputting the maximum power (4.41W) in the solar panel is 20.49 [V]. Therefore, when the panel output voltage 20.47V is output to the power regulation control unit 15 as the reference voltage Vref to control the operation of the power regulation device 13, the solar panel outputs the maximum power.
  • the magnitude of the lowest scan voltage among the scan ranges of the panel output voltage Vpv of the solar panel is related to the magnitude of the resistor Rmppt for MPPT, and in FIG. 9, the magnitude of the minimum scan voltage is 7.50V. .
  • the range of the scan voltage is the open voltage (Voc) and the maximum power point ( Between the panel output voltage corresponding to MPP), that is, the maximum power point voltage Vmpp, and in FIG. 10, the maximum power point voltage Vmpp was 17.48V.
  • the value of the MPPT resistor (Rmppt) is equal to the equivalent resistance value (Rmpp) at the maximum power point of the solar panel. Small enough than).
  • the discharge time constant of the smoothing capacitor Cdc is proportional to the value of the MPPT resistor Rmppt, so that the discharge of the smoothing capacitor Cdc is performed. Since the time is short, the scan time Tscan may be reduced, so that the characteristics of the solar cell panel current (ie, panel output current) I-voltage (ie, panel output voltage V) may not be sufficiently analyzed.
  • the scan time for the maximum power point tracking operation is increased. Due to this, the driving time of the power regulating device 13 is reduced, and the reduction of the driving time of the power regulating device 13 leads to the reduction of the generated power of the solar power saving system.
  • the plurality of scan control units are used to stably secure the scan range of the panel output current Ipv and the panel output voltage Vpv using a plurality of MPPT resistors and to maintain a sufficient scan time Tscan. Can be connected in parallel.
  • the photovoltaic system 100a is similar to that shown in Figure 1, the solar panel 11, the maximum connected to both ends of the solar panel 11
  • a power control device 13a connected to the power point tracking detector 12a, a maximum power point tracking detector 12a, and an operation control unit 141a and a storage unit 142a connected to the maximum power point tracking detector 12a.
  • a maximum power point tracking control device 14a having a maximum power point tracking control device 14a and a power regulation control unit 15 connected to the power regulation device 13.
  • the maximum power point tracking detector 12a is provided with a current detector 121 and a voltage detector 122 as in FIG. 1, but unlike FIG. 1, the maximum power point tracking detector 12a is provided at both ends of the solar panel 11. Two scan control units 1231 and 1232 connected in parallel are provided.
  • each scan control unit 1231 and 1232 has the same structure as that of the scan control unit 123 shown in FIG. 1, and a resistor for MPPT having one terminal connected to the first output terminal (+) of the solar panel 11, respectively.
  • Rmppt1, Rmppt2 and input terminals are connected to the corresponding MPPT resistors (Rmppt1, Rmppt2), and the output terminals are connected to the second output terminal (-) of the solar panel 11, and the maximum power point tracking control device 14
  • the MPPT switching elements Smppt1 and Smppt2 to which the control terminals are connected are respectively provided at the operation control unit 141a of FIG.
  • the resistance values of a plurality of resistors eg, Rmppt1 and Rmppt2 connected in parallel to each other than the resistance value of one resistor (eg, Rmppt) This small principle is used.
  • the operation control unit 141a of the maximum power point tracking control device 14a primarily performs the first scan control unit, which is one scan control unit among the two scan control units 1231 and 1232.
  • the switching element Smppt1 positioned in the first scan controller 1231 is turned on to discharge the smoothing capacitor Cdc, thereby primarily scanning time (eg, The first scan time is secured, and a scan operation (eg, a first scan operation) of the panel output current Ipv and the panel output voltage Vpv is performed at each scan period during the scan time.
  • control signals Gmppt1 and Gmppt2 in the turned-on state are output to the control terminals of the switching elements Smppt1 and Smppt2 of the two scan controllers 1231 and 1232, respectively, so that the first and second scan controllers
  • the switching elements Smppt1 and Smppt2 located at 1231 and 1232 are turned on or the smoothing capacitor Cdc is discharged to secure a scan time (eg, a second scan time).
  • the second scan time is shorter than the first scan time by the resistors Rmppt and Rmppt connected in parallel with each other and having the same resistance value.
  • the scan operation (eg, the second scan operation) of the panel output current Ipv and the panel output voltage Vpv is performed at every scan period during the second scan time.
  • the scan operation is performed for a longer time than the second scan operation in the first scan operation, and the resistors Rmppt1 and Rmmpt2 connected in parallel during the second scan operation.
  • the scan range is increased than in the first scan operation, and thus the scan operation is performed to a lower panel output voltage than in the first scan operation.
  • the scan time and the scan range are securely secured to achieve the accurate maximum power point tracking operation.
  • the operation of the maximum power point tracking control device 14a for tracking the maximum power point in the photovoltaic system 100a is illustrated in FIG. 12.
  • the operation controller 411 turns off the first switching elements Smppt1 and Smppt2 of all the scan controllers 1231 and 1232 after controlling to stop driving the power regulation controller 15.
  • the charge of the smoothing capacitor Cdc is discharged for a set time (S51-S54).
  • the operation control unit 411 turns on the switching element Smppt1 of the scan control unit 1231 and turns off the switching element Smppt2 of the remaining scan control unit 1232 during the scan time Tscan21 (S55).
  • the maximum power point tracking routine (S56) to search the maximum power point voltage (Vmpp) for each scan period (Pscan21) during the corresponding scan time (Tscan21), and then scan again when the corresponding scan time (Tscan21) has elapsed.
  • the switching elements Smppt1 and Smppt2 of all the scan controllers 1231 and 1232 are turned on (S57) and a second maximum power point tracking routine S58 is executed to perform the corresponding scan period for the corresponding scan time Tscan22.
  • the maximum power point voltage Vmpp is searched for each Pscan22.
  • the operation controller 411 turns on and off all of the first switching elements Smppt1 and Smppt2 of the scan controllers 1231 and 1232 in the turned-on state, and then controls the power regulation control unit 15 to drive the first and second powers.
  • the corresponding maximum power point voltage Vmppt tracked by the maximum power point tracking operation is output to the power regulation control unit 15 as a reference voltage Vref (SS59-S511).
  • the solar light emitting systems 100b and 100c according to the present example have the same structure as that shown in FIG. 1 except for the structures of the scan controllers 123b1 and 123b2.
  • the switching element Smppt21 of the scan controller 123b1 of FIG. 13 uses a metal oxide silicon field effect transistor (MOSFET), and a voltage divider resistor is provided between the maximum power point tracking control device 14 and the switching element Smppt21. (R1, R2) are connected.
  • MOSFET metal oxide silicon field effect transistor
  • the scan controller 123b1 has a drain terminal, which is an input terminal, connected to the first output terminal (+) of the solar cell panel 11, and an output terminal to the second output terminal ( ⁇ ) of the solar cell panel 11.
  • Switching element Smppt21 having an in-source terminal connected thereto, and one terminal is connected to the operation control unit 141 of the maximum power point tracking control device 14 to receive a control signal Gmppt and the other terminal is a switching element Smppt21.
  • One terminal is connected to the resistor R1 and the other terminal of the resistor R1 and the other terminal is connected to the second output terminal (-) of the solar cell panel 11.
  • the resistor R1 may be a variable resistor (eg, a trimmer variable resistor).
  • the first voltage that is a semiconductor switching device made of a MOSFET is reduced by reducing the magnitude of the voltage (that is, the gate voltage) applied to the control terminal of the first switching device Smppt21 by using the resistors R1 and R2 that are voltage distribution circuits.
  • the switching element Smppt21 operates in the active region to limit the size of the main current I DS .
  • the magnitude of the current I DS flowing through the first switching element Smppt21 is adjusted by adjusting the resistance value of the resistor R1 that is a variable resistor.
  • the first switching element Smppt22 of the scan controller 123b2 is formed of a bipolar transistor. Same as the case of).
  • the first switching element Smppt22 has a collector terminal, which is an input terminal, connected to the first output terminal (+) of the solar cell panel 11, and one side of the other terminal of the resistors R1 and R2, which are voltage decomposition resistors.
  • the structure is the same as that of the photovoltaic system shown in FIG. 14, and thus a detailed description thereof will be omitted.
  • the first switching device Smppt22 which is a semiconductor switching device made of a bipolar transistor, is controlled to operate in the active driving region using a control signal applied to the base terminal, thereby controlling the discharge time of the smoothing capacitor Cdc.
  • the scan time of the solar cell panel 11 for the maximum power point tracking operation can be adjusted to a desired size.
  • the first switching element Smppt22 is the active driving region.
  • the size of the collector current I C which is the main current flowing through the first switching element Smppt22 while operating at, is limited.
  • the size of the main current I C is adjusted by adjusting the size of the resistor R1 which is a variable resistor.
  • the present invention has industrial applicability to increase the power generation efficiency of solar panels by improving the accuracy and stability of the maximum power point tracking operation.

Abstract

본 발명은 태양광 발전 시스템에 관한 것으로서, 상기 태양광 발전 시스템은 태양전지 패널의 일측 출력단자의 전류를 감지하여 출력하는 전류 감지부, 상기 태양전지 패널의 양측 출력단자 사이의 전압을 감지하여 출력하는 전압 출력부, 상기 태양전지 패널의 양측 출력단자 사이에 위치하는 커패시터, 스위칭 소자와 적어도 하나의 저항을 구비하고 있고, 상기 스위칭 소자의 턴온 또는 턴오프 상태에 따라 상기 커패시터의 방전 동작과 충전 동작을 제어하는 스캔 제어부, 그리고 상기 전류 감지부, 상기 전압 감지부 및 상기 스캔 제어부에 연결되어 있고, 상기 스위칭 소자의 턴온 동작과 턴오프 동작을 제어하며, 상기 커패시터의 방전 동작 시 또는 충전 동작 시에 상기 전류 감지부와 상기 전압 감지부로부터 인가되는 신호를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점 추적 동작을 실시하는 최대 전력점 추적 제어 장치를 포함한다.

Description

태양광 발전 시스템 및 그 제어 방법
본 발명은 태양광 발전 시스템 및 그 제어 방법에 관한 것이다.
최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 대체 에너지에 대한 관심이 높아지고, 이에 따라 태양 에너지로부터 전기 에너지를 생산하는 태양 전지가 주목 받고 있다.
태양 전지에 빛이 입사되면 복수의 전자-정공 쌍이 생성되고, 생성된 전자-정공 쌍은 광기전력 효과(photovoltaic effect)에 의해 전하인 전자와 정공으로 각각 분리되고, 분리된 전자와 정공은 각각 서로 다른 전극으로 수집되고 전자와 정공을 수집한 전극을 전선으로 연결하여 전력을 얻게 된다.
이러한 태양 전지는 단독으로도 이용 가능하지만, 좀더 효율적인 사용과 설치를 용이하기 위해 동일한 구조를 갖는 복수의 태양 전지를 직렬 또는 병렬로 연결하여 태양 전지 모듈을 제작한다.
따라서 사용자는 원하는 개수만큼의 태양 전지 모듈을 연결한 모듈 어레이인 태양 전지 패널을 설치하고, 이 태양 전지 패널로부터 최종 전력을 얻어 사용한다.
이러한 태양 전지 패널의 효율은 약 20%로 낮으며, 태양 전지 패널의 운전 조건에 따라서 태양 전지 패널에서 출력되는 출력 전압의 차이가 크게 발생하게 된다.
따라서, 태양 전지 패널의 발전 효율을 극대화시키기 위해, 태양 전지 패널을 구비한 태양광 발전 시스템은 태양 전지 패널에서 출력되는 전력 중에서 최대 크기의 전력을 갖는 최대 전력점(Maximum Power Point, MPP)을 추적하여 태양 전지 패널의 동작을 제어하는 최대 전력점 추적법(Maximum Power Point Tracking, MPPT)을 이용한다.
태양 전지 패널은 전압원과 전류원의 복합적인 특성을 갖고 있다.
따라서, 태양 전지 패널은 단락 회로 운전점(Vpv=0, Ipv=Isc) 즉, 태양 전지 패널의 출력 전압인 패널 출력전압(Vpv)은 0이고 태양 전지 패널의 출력 전류인 패널 출력전류(Ipv)는 단락 전류(Isc)인 부근에서는 전류원의 형태로 동작하고, 개방 전압(Voc)의 동작점 부근에서는 전압원의 형태로 동작한다.
또한 최대 전력점에서 태양 전지 패널은 전류원도 아니고 전압원도 아닌 비선형적 동작 특성을 갖는다.
따라서, 태양 전지 패널의 출력 단자를 단락(short)시킬 경우 단락전류(Isc)가 흐르며, 태양 전지 패널의 출력단자를 개방(open)시킬 경우 태양 전지 패널의 출력 단자 사이의 전압은 최대 전압인 개방 전압(Voc)이 된다.
따라서, 태양 전지 패널에서, 출력 전력이 최대가 되는 운전점인 최대 전력점(MPP)은 태양 전지 패널의 두 운전 조건인 단락 조건과 개방 조건 사이에 존재함을 알 수 있다.
조사되는 빛의 양에 따라 태양 전지 패널의 발전량이 정해지므로 태양 전지 패널은 일사량에 비례하여 태양 전지 패널의 단락 전류(Isc)가 증가하게 된다.
이로 인해, 일사량의 변화에 따라 최대 전력점 역시 바뀌게 되므로, 태양 전지 패널의 발전 효율을 극대화하기 위해 최대 전력점 추적법을 이용하여 일사량에 따라 새로운 최대 전력점을 찾아야 된다.
하지만, 종래의 최대 전력점 추적법은 일사량의 변화가 없는 상황에서도 최대 전력점이 변동하는 문제가 발생하며, 또한, 나뭇잎 등으로 인해 태양 전지 패널에 발생하는 그림자 등으로 태양 전지 패널에 복수 개의 최대 전력점이 발생할 경우, 최대 전력점의 위치로 이동하지 못하고 다른 위치(즉, 지역적 극대 전력점 위치)에서 최대 전력점 추적 동작이 이루어져 태양 전지 패널의 동작 효율을 극대화할 수 없게 된다.
(특허문헌 1) 대한민국 등록특허 등록번호 10-1595060(등록일자: 2016년 02월 11일, 발명의 명칭: 태양광 발전 시스템의 동적 최대전력지점 추종 기능을 구비한 인버터장치 및 상기 인버터장치의 동적최대전력지점 추종방법)
(특허문헌 2) 대한민국 등록특허 등록번호 10-1256433(등록일자: 2013년 04월 12일, 발명의 명칭: PV 전류를 이용한 최대 전력점 추적 방식의 태양광 발전 시스템)
본 발명이 이루고자 하는 기술적 과제는 최대 전력점 추적 동작의 정확도와 안정성을 향상시켜 태양 전지 패널의 발전 효율을 높이기 위한 것이다.
본 발명의 한 특징에 따른 태양광 발전 시스템은 태양전지 패널의 일측 출력단자의 전류를 감지하여 출력하는 전류 감지부, 상기 태양전지 패널의 양측 출력단자 사이의 전압을 감지하여 출력하는 전압 출력부, 상기 태양전지 패널의 양측 출력단자 사이에 위치하는 커패시터, 스위칭 소자와 적어도 하나의 저항을 구비하고 있고, 상기 스위칭 소자의 턴온 또는 턴오프 상태에 따라 상기 커패시터의 방전 동작과 충전 동작을 제어하는 스캔 제어부, 그리고 상기 전류 감지부, 상기 전압 감지부 및 상기 스캔 제어부에 연결되어 있고, 상기 스위칭 소자의 턴온 동작과 턴오프 동작을 제어하며, 상기 커패시터의 방전 동작 시 또는 충전 동작 시에 상기 전류 감지부와 상기 전압 감지부로부터 인가되는 신호를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점 추적 동작을 실시하는 최대 전력점 추적 제어 장치를 포함한다.
상기 스캔 제어부는 하나의 저항과 하나의 스위칭 소자를 포함하고, 상기 저항은 상기 태양전지 패널의 일측 출력단자에 일측 단자가 연결되어 있고, 상기 스위칭 소자는 상기 저항과 상기 태양전지 패널의 타측 출력단자 사이에 입력단자와 출력단자가 연결되어 있고 상기 최대 전력점 추적 제어 장치에 제어 단자가 연결되어 있는 것이 좋다.
상기 스캔 제어부는 제1 저항 및 제2 저항과 하나의 스위칭 소자를 포함하고, 상기 스위칭 소자는 상기 태양전지 패널의 일측 출력단자와 타측 출력단자 사이에 입력단자와 출력단자가 연결되어 있고, 상기 제1 저항의 일측단자는 최대 전력점 추적 제어 장치에 연결되어 상기 최대 전력점 추적 제어 장치로부터 제어 신호를 인가받고 타측단자는 상기 스위칭 소자의 제어 단자에 연결되어 있고, 상기 제2 저항의 일측단자는 상기 제1 저항의 타측 단자에 연결되어 있고, 타측단자는 태양전지 패널의 타측 출력단자에 연결되어 있는 것이 좋다.
상기 스위칭 소자는 MOSFET나 바이폴라 트랜지스터일 수 있다.
상기 최대 전력점 추적 제어 장치는 상기 제어 신호를 이용하여 상기 스위칭 소자를 설정 시간 동안 턴오프시켜 상기 커패시터를 정해진 상태까지 충전시키고, 정해진 스캔시간 동안 상기 제어 신호를 이용하여 상기 스위칭 소자를 턴온시켜 상기 커패시터의 방전 동작이 이루어지도록 한 후, 정해진 스캔 주기마다 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하고, 산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 최대전력점 추적 동작을 실시할 수 있다.
상기 최대 전력점 추적 제어 장치는 상기 제어 신호를 이용하여 상기 스위칭 소자를 턴오프시켜 상기 커패시터를 충전시키고, 상기 전압 감지부에 의해 판정된 패널 출력전압이 정해진 최대 전압 초과이면, 상기 제어 신호를 이용하여 상기 스위칭 소자를 턴온시켜 상기 커패시터의 방전이 이루어지도록 하고, 상기 커패시터의 방전 중에 상기 전압 감지부에 의해 판정된 패널 출력전압이 최소 전압 미만일 때까지 상기 전류 감지부와 상기 전압 감지부를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하고, 산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 최대전력점 추적 동작을 실시할 수 있다.
상기 최대 전력점 추적 제어 장치는 상기 제어 신호를 이용하여 상기 스위칭 소자를 설정 시간 동안 턴온시켜 상기 커패시터를 정해진 상태까지 방전시키고, 정해진 스캔시간 동안 상기 제어 신호를 이용하여 상기 스위칭 소자를 턴오프 상기 커패시터의 충전 동작이 이루어지도록 한 후, 정해진 스캔 주기마다 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하고, 산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 최대전력점 추적 동작을 실시할 수 있다.
상기 최대 전력점 추적 제어 장치는 상기 제어 신호를 이용하여 상기 스위칭 소자를 턴온시켜 상기 커패시터의 방전이 이루어지도록 하고, 상기 커패시터의 방전 중에 상기 전압 감지부에 의해 판정된 패널 출력전압이 정해진 최소 전압 미만이면, 상기 제어 신호를 이용하여 상기 스위칭 소자를 턴오프시켜 상기 커패시터의 충전이 이루어지도록 하고, 상기 커패시터의 충전 중에 상기 전압 감지부에 의해 판정된 패널 출력전압이 최대 전압을 초과할 때까지 상기 전류 감지부와 상기 전압 감지부를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하고, 산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 최대전력점 추적 동작을 실시할 수 있다.
본 발명의 다른 특징에 따른 태양광 발전 시스템은 태양전지 패널의 일측 출력단자의 전류를 감지하여 출력하는 전류 감지부, 상기 태양전지 패널의 양측 출력단자 사이의 전압을 감지하여 출력하는 전압 출력부, 상기 태양전지 패널의 양측 출력단자 사이의 위치하는 커패시터, 그리고 상기 태양전지 패널의 양측 출력단자에 병렬로 연결되어 있는 복수의 스캔 제어부, 상기 전류 감지부, 상기 전압 감지부 및 상기 복수의 스캔 제어부에 연결되어 있는 최대 전력점 추적 제어 장치를 포함하고, 상기 복수의 스캔 제어부 각각은 상기 태양전지 패널의 일측 출력단자에 일측 단자가 연결되어 있는 저항, 그리고 상기 저항과 상기 태양전지 패널의 타측 출력단자 사이에 입력단자와 출력단자가 연결되어 있고 상기 최대 전력점 추적 제어 장치에 제어 단자가 연결되어 있는 스위칭 소자를 포함한다.
상기 특징에 따른 상기 최대 전력점 추적 제어 장치는 복수 개의 스캔 제어부 중에서 하나의 스캔 제어부의 스위칭 소자로 인가되는 제어 신호를 이용하여 상기 하나의 스캔 제어부의 스위칭 소자를 턴온시켜 상기 커패시터를 방전시키고 상기 커패시터의 방전 중에 상기 전류 감지부와 상기 전압 감지부로부터 인가되는 신호를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점을 추적하는 제1 최대 전력점 추적 동작을 실시하고, 다시 복수의 스캔 제어부 모두의 스위칭 소자로 인가되는 제어 신호를 이용하여 상기 복수의 스캔 제어부의 스위칭 소자를 모두 턴온시켜 상기 커패시터를 방전시키고 상기 커패시터의 방전 중에 상기 전류 감지부와 상기 전압 감지부로부터 인가되는 신호를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점을 추적하는 제2 최대 전력점 추적 동작을 실시한다.
제1 최대 전력점 추적 동작은 하나의 스캔 제어부의 스위칭 소자로 인가되는 제어 신호에 의해 상기 하나의 스캔 제어부의 스위칭 소자가 턴온 됨에 따라 상기 커패시터가 방전될 때 상기 커패시터의 방전 시간에 기초한 제1 스캔시간 동안 행해지고, 제2 최대 전력점 추적 동작은 복수의 스캔 제어부 모두의 스위칭 소자로 인가되는 제어 신호에 의해 상기 복수의 스캔 제어부의 스위칭 소자가 모두 턴온됨에 따라 상기 커패시터가 방전될 때 상기 커패시터의 방전 시간에 기초한 제2 스캔시간 동안 행해지며, 상기 제1 스캔 시간은 상기 제2 스캔 시간보다 긴 것이 좋다.
본 발명의 또 다른 특징에 따른 태양광 발전 시스템의 제어 방법은 해당 상태의 제어 신호를 설정 시간 동안 스위칭 소자로 인가하여 상기 스위칭 소자를 턴오프 또는 턴온시켜 커패시터를 정해진 상태까지 충전 또는 방전시키는 단계, 정해진 스캔시간 동안 해당 상태의 제어 신호를 상기 스위칭 소자로 인가하여 상기 스위칭 소자를 턴온 또는 턴오프시켜 상기 커패시터를 방전 또는 충전시키는 단계, 상기 커패시터의 방전 또는 충전 중에, 정해진 스캔 주기마다 전류 감지부와 전압 감지부를 이용하여 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하는 단계, 판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하는 단계, 그리고 산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 단계를 포함한다.
본 발명의 또 다른 특징에 따른 태양광 발전 시스템의 제어 방법은 해당 상태의 제어 신호를 스위칭 소자로 인가하여 상기 스위칭 소자를 턴온 또는 턴오프시켜 커패시터를 충전 또는 방전시키는 단계, 전압 감지부에 의해 판정된 패널 출력전압이 정해진 최대 전압 초과 또는 최소 전압 미만이면, 해당 상태의 제어 신호를 상기 스위칭 소자로 인가하여 상기 스위칭 소자를 턴온 또는 턴오프시켜 상기 커패시터를 방전 또는 충전시키는 단계, 상기 커패시터의 방전 또는 충전 중에 전압 감지부에서 출력되는 신호를 이용하여 태양전지 패널의 패널 출력전압을 판정하는 단계, 판정된 패널 출력전압이 최소 전압 미만 또는 최대 전압 초과일 때까지 전류 감지부와 전압 감지부를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하는 단계, 판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하는 단계, 그리고 산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 단계를 포함한다.
본 발명의 다른 특징에 따른 태양광 발전 시스템의 제어 방법은 복수 개의 스캔 제어부 중에서 하나의 스캔 제어부의 스위칭 소자로 해당 상태의 제어 신호를 인가하여 상기 하나의 스캔 제어부의 스위칭 소자를 턴온시켜 커패시터를 제1 시간 동안 방전시키는 단계, 상기 제1 시간 동안의 커패시터의 방전 중에 전류 감지부와 전압 감지부로부터 인가되는 신호를 판독하여 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점을 추적하는 제1 최대 전력점 추적 동작을 실시하는 단계, 복수의 스캔 제어부 모두의 스위칭 소자로 해당 상태의 제어 신호를 인가하여 상기 복수의 스캔 제어부의 스위칭 소자를 모두 턴온시켜 상기 커패시터를 제2 시간 동안 방전시키는 단계, 그리고 상기 제2 시간 동안의 커패시터의 방전 중에 상기 전류 감지부와 상기 전압 감지부로부터 인가되는 신호를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점을 추적하는 제2 최대 전력점 추적 동작을 실시하는 단계를 포함하고, 상기 복수의 스캔 제어부 각각은 상기 태양전지 패널의 일측 출력단자에 일측 단자가 연결되어 있는 저항, 그리고 상기 저항과 상기 태양전지 패널의 타측 출력단자 사이에 입력단자와 출력단자가 연결되어 있고 상기 최대 전력점 추적 제어 장치에 제어 단자가 연결되어 있는 스위칭 소자를 포함한다.
이때, 제1 최대 전력점 추적 동작은 하나의 스캔 제어부의 스위칭 소자로 인가되는 제어 신호에 의해 상기 하나의 스캔 제어부의 스위칭 소자가 턴온되어 상기 커패시터가 방전될 때, 상기 제1 시간에 기초한 제1 스캔시간 동안 행해지고, 제2 최대 전력점 추적 동작은 복수의 스캔 제어부 모두의 스위칭 소자로 인가되는 제어 신호에 의해 상기 복수의 스캔 제어부의 스위칭 소자가 모두 턴온되어 상기 커패시터가 방전될 때, 제2 시간에 기초한 제2 스캔시간 동안 행해지며, 상기 제1 시간은 상기 제2 스캔 시간보다 긴 것이 좋다.
이러한 특징에 따르면, 전력 조절 장치의 평활용 커패시터의 충방전 동작을 이용하여 패널 전력의 스캔 동작이 이루어져 안정적이고 정확한 최대 전력점 추적 동작이 이루어진다.
도 1은 본 발명의 한 실시예에 따른 태양광 발전 시스템의 개략적인 블럭도이다.
도 2는 도 1의 평활용 커패시터의 방전 및 충전 중에 검출한 패널 출력전류, 패널 출력전압 및 패널 전력에 대한 파형도이다.
도 3은 태양전지 패널에 형성된 그림자에 의해 다중 전력 극대점이 형성된 때 태양전지 패널에 대한 최대 전력점 추적 동작에 대한 시험 결과를 도시한 도면이다.
도 4와 도 5는 각각 본 발명의 한 실시예에 따른 태양광 발전 시스템에서 평활용 커패시터의 방전 동작을 이용하여 최대 전력점을 추적하는 동작 순서도이다.
도 6과 도 7은 각각 본 발명의 한 실시예에 따른 태양광 발전 시스템에서 평활용 커패시터의 충전 동작을 이용하여 최대 전력점을 추적하는 동작 순서도이다.
도 8은 본 발명의 한 실시예에 따른 태양광 발전 시스템에서 평활용 커패시터의 방전 동작을 이용하여 최대 전력점 추적 동작할 때 감지된 패널 출력전류, 패널 출력전압 및 패널 전력의 파형을 도시한다.
도 9는 도 8에서 검출된 신호 파형을 이용하여 운전 전압인 패널 출력전압을 수평축으로 하여 전류-전압 곡선과 전력-전압 곡선을 도출한 파형을 도시한다.
도 10은 본 발명의 한 실시예에 따른 태양광 발전 시스템의 MPPT용 저항의 값에 따른 스캔 전압의 범위를 도시한 도면이다.
도 11은 본 발명의 다른 실시예에 따른 태양광 발전 시스템의 개략적인 블럭도이다.
도 12는 본 발명의 다른 실시예에 따른 태양광 발전 시스템에서 평활용 커패시터의 방전 동작을 이용하여 최대 전력점을 추적하는 동작 순서도이다.
도 13과 도 14는 각각 본 발명의 또 다른 실시예에 따른 태양광 발전 시스템의 예에 대한 개략적인 블럭도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
어떤 구성요소가 다른 구성요소에 "접속되어" 있다거나 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 접속되어 있거나 연결되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 한다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 접속되어" 있다거나 "직접 연결되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
그러면 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 태양광 발전 시스템 및 그 제어 방법에 대하여 설명한다.
도 1을 참고로 하여 본 발명의 한 실시예에 따른 태양광 발전 시스템에 대하여 상세히 설명한다.
도 1에 도시한 본 발명의 한 실시예에 따른 태양광 발전 시스템(100)은 태양전지 패널(11), 태양전지 패널(11)의 제1 및 제2 출력 단자(+, -), 즉 (+)의 출력단자(+)와 (-)의 출력단자(-) 사이에 연결되어 있는 최대 전력점 추적 감지부(12), 최대 전력점 추적 감지부(12)와 부하(Ro) 사이에 위치하고 있는 전력 조절 장치(PCS, power conditioning system)(13), 최대 전력점 추적 감지부(12)의 동작에 의해 감지된 태양전지 패널(11)의 출력 전류[이하, 태양전지 패널(11)의 출력전류를 '패널 출력전류'라 함](Ipv)와 출력 전압[이하, 태양전지 패널(11)의 출력전압을 '패널 출력전압'이라 함](Vpv)을 이용하여 최대 전력점 추적 감지부(12)의 동작을 제어하는 최대 전력점 추적 제어 장치(14), 그리고 최대 전력점 추적 제어 장치(14)와 전력 조절 장치(13)에 연결되어 있는 전력 조절 제어부(15)를 구비한다.
태양 전지 패널(11)은 조사되는 빛의 양에 따라 해당하는 크기의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 출력한다.
최대 전력점 추적 감지부(12)는 태양 전지 패널(11)의 제2 출력단자(-)에 위치하는 전류 감지부(121), 태양 전지 패널(11)의 제1 및 제2 출력단자(+, -)에 연결되어 있는 전압 감지부(122), 그리고 최대 전력점 추적 제어 장치(14)에 연결되어 있고, 최대 전력점 추적 제어 장치(14)로부터 인가되는 제어 신호에 따라 동작 상태가 변하여 전류 감지부(121)와 전압 감지부(122)에 의한 패널 출력전압(Vpv)과 패널 출력전류(Ipv)의 감지 동작(즉, 스캔 동작)이 최대 전력점 추적 제어 장치(14)에 의해 행해지도록 하는 스캔 제어부(123)을 구비한다.
전류 감지부(121)는 태양 전지 패널(11)의 제2 출력단자(-)를 흐르는 전류를 감지하여 패널 출력전류(Ipv)으로서 최대 전력점 추적 제어 장치(14)로 출력한다.
전압 감지부(122)는 스캔 제어부(123) 이후에 위치하여 최대 전력점 추적 감지부(12)의 양 출력단자 사이의 전압을 감지하여 패널 출력전압(Vpv)으로서 최대 전력점 추적 제어 장치(14)로 출력한다.
스캔 제어부(123)은 태양 전지 패널(11)의 제1 출력단자(+)에 일측 단자가 연결되어 있는 최대 전력점 추적을 위한 저항(즉, MPPT용 저항)(Rmppt)과 MPPT용 저항(Rmppt)의 타측 단자(예, 드레인 단자)에 입력단자가 연결되어 있고 태양 전지 패널(11)의 제2 출력단자(-)에 출력단자(예, 소스 단자)가 연결되어 있으며 최대 전력점 추적 제어 장치(14)에 제어 단자(예, 게이트 단자)가 연결되어 있는 스위칭 소자(예, 제1 스위칭 소자)(Smppt)를 구비한다.
이때, 제1 스위칭 소자(Smppt)는 MOSFET(metal oxide silicon field effect transistor)와 같은 트랜지스터로 이루어져 있고, 최대 전력점 추적 제어 장치(14)로부터 제어 단자로 인가되는 제어 신호(Gmppt)에 따라 동작 상태가 변하여 턴온(turn-on) 또는 턴오프(turn-off)된다.
이러한 제1 스위칭 소자(Smppt)의 턴오프 및 턴온 동작에 의해, 최대 전력점 추적 제어 장치(14)는 최대 전력점 추적을 위한 패널 출력전류(Ipv)와 패널 출력전압(Vpv)의 스캔 동작을 실시한다.
전력 조절 장치(13)는 태양전지 패널(11)의 제1 출력단자(+)와 제2 출력단자(-)에 각각 일측 단자와 타측 단자가 연결되어 있는 커패시터(즉, 평활용 커패시터)(Cdc), 태양전지 패널(11)의 제1 출력단자(+)에 입력 단자(예, 드레인 단자)가 연결되어 있고 전력 조절 제어부(15)에 제어 단자(예, 게이트 단자)가 연결되어 있는 스위칭 소자(예, 제2 스위칭 소자)(Sbuck), 제2 스위치 소자(Sbuck)의 출력 단자(예, 소스 단자)에 캐소드 단자가 연결되어 있고 태양전지 패널(11)의 제2 출력단자(-)에 애노드 단자가 연결되어 있는 다이오드(Df), 스위치(Sbuck)의 출력단자에 일측 단자가 연결되어 있고 부하 저항(Ro)의 일측에 타측 단자가 연결되어 있는 인덕터(Lf), 그리고 코일(Lf)의 일측 단자에 일측 단자가 연결되어 있고 태양 전지 패널(11)의 제2 출력단자(-)에 타측 단자가 연결되어 부하 저항(Ro)과 병렬로 연결되어 있는 커패시터(Cf)를 구비한다.
전력 조절 장치(13)는 제2 스위칭 소자(Sbuck), 다이오드(Df) 및 인덕터(L1), 커패시터(Cf)로 이루어진 벅 컨버터(buck converter)를 이용하지만, 이에 한정되지 않고, 벅 컨버터 이외에 프라이백 컨버터(flyback converter), 부스트 컨버터(boost converter), 또는 포워드 컨버터(forward converter) 등과 같이 다른 컨버터나 인버터(Inverter)를 사용할 수 있다.
도 1의 전력 조절 장치(13)는 제2 스위칭 소자(Sbuck)의 제어 단자로 인가되는 전력 조절 제어부(15)의 펄스폭 변조 신호(PWM)에 따라 제2 스위칭 소자(Sbuck)를 정해진 주기로 턴온 및 턴오프 시키고, 제2 스위칭 소자(Sbuck)의 턴온 및 턴오프 동작에 따라 출력되는 펄스 모양의 전압을 리액터(Lf)와 커패시터(Cf)를 이용해 평활하여 해당 크기의 직류 전압을 출력하게 된다.
즉, 제2 스위칭 소자(Sbuck)는 전력 조절 제어부(150)로부터 인가되는 펄스폭 제어 신호(PWM)에 따라 턴온 또는 턴오프되어 전력 조절 장치(13)의 동작 상태를 제어한다.
따라서, 제2 스위칭 소자(Sbuck)가 턴온될 때, 태양전지 패널(11)에서 출력되는 패널 출력전류(Ipv)는 턴온된 제2 스위칭 소자(Sbuck)를 거처 리액터(Lf)로 흐르게 되어 리액터(Lf)로의 에너지 축적이 이루어지고 커패시터(Cf)와 부하 저항(Ro)을 통해 다이오드(Df) 쪽으로 흐르게 된다. 이때, 다이오드(Df)는 제2 스위칭 소자(Sbuck)의 턴온 시 패널 출력전류(Ipv)의 경로를 리액터(Lf) 쪽으로 한정한다.
반대로, 제2 스위칭 소자(Sbuck)가 턴오프되면, 다이오드(Df)가 전류 흐름 경로를 제공하므로, 리액터(Lf)에 축적된 에너지인 인덕터 전류는 커패시터(Cf)와 저항(Ro)을 통해 다이오드(Df)로 흐르게 된다.
또한, 커패시터(Cf)는 스위칭 소자(Sbuck)로 인가되는 신호의 노이즈 성분을 제거하고 평활 기능도 수행한다.
이로 인해, 전압 감지부(122)는 커패시터(Cf) 양단에 인가되는 전압을 감지하여 패널 출력전압(Vpv)으로 출력한다.
전력 조절 장치(13)의 두 입력단 사이에 연결되어 있는 평활용 커패시터(Cdc)는 제2 스위칭 소자(Sbuck)로 인가되는 전류를 평활하며, 스캔 제어부(123)의 제1 스위칭 소자(Smppt)의 턴온 및 턴오프 상태에 따라 전하의 충전 및 방전이 이루어져 패널 출력전압(Vpv)의 스캔 동작이 이루어질 수 있도록 하여 전압 감지부(122)에 의한 패널 출력전압(Vpv)의 검출이 이루어지도록 한다.
이때, 평활용 커패시터(Cdc)의 방전 시정수(τdischarge =Rmppt×Cdc)는 MPPT용 저항(Rmppt)의 저항값과 커패시터(Cdc)의 크기에 따라 정해지므로, MPPT용 저항(Rmppt)의 값에 따라 패널 출력전압(Vpv) 및 패널 출력전류(Ipv)의 스캔 동작이 이루어질 수 있는 시간인 스캔 시간(scanning time)이 정해진다.
이러한 MPPT용 저항(Rmppt)은 전력 조절 장치(13)의 제2 스위칭 소자(Sbuck)가 턴오프 상태일 때 평활용 커패시터(Cdc)에 충전된 전하의 방전 경로를 제공한다.
최대 전력점 추적 제어 장치(14)는 전류 감지부(121)와 전압 감지부(122)로부터 인가되는 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 인가받는 동작 제어부(141)와 동작 제어부(141)에 연결되어 있는 저장부(142)를 구비한다.
동작 제어부(141)는 정해진 시기에 제1 스위칭 소자(Smppt)를 턴온 시키거나 턴오프 시키기 위해 해당 상태의 제어 신호(Gmppt)를 제1 스위칭 소자(Smppt)의 제어 단자로 인가하여 제1 스위칭 소자(Smppt)의 동작을 제어한다.
동작 제어부(141)로부터 인가되는 제어 신호(Gmppt)에 따라 제1 스위칭 소자(Smppt)가 턴오프되면 전력 조절 장치(13)의 평활용 커패시터(Cdc)의 충전 동작이 이루어지고, 반대로 제1 스위칭 소자(Smppt)가 턴온되면 평활용 커패시터(Cdc)에 충전되어 있는 전하의 방전 동작이 이루어진다.
본 예의 경우, 전류 감지부(121)와 전압 감지부(122)에 의한 패널 출력전류(Ipv)와 패널 출력전압(Vpv)의 스캔 동작은, 위에 기재한 것처럼, 평활용 커패시터(Cdc)의 충전 시기에 이루어질 수 있지만 방전 시기에도 이루어질 수 있다.
이와 같이, 동작 제어부(141)는 정해진 최대 전력점 추적 주기마다 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 감지하고 이들 패널 출력전류(Ipv)와 패널 출력전압(Vpv)으로 전력의 크기를 산출하여 최대 전력점(MPP)을 추적하며, 추적된 최대 전력점(MPP)일 때의 패널 출력전압(Vpv)(즉, 최대전력 운전전압)을 기준 전압(Vref)으로서 전력 조절 제어부(15)로 출력한다.
저장부(142)는 최대 전력점 추적 제어 장치(14)의 동작에 필요한 데이터와 동작 중에 생성된 데이터 등이 저장되어 있다.
또한, 저장부(142)는 최대 전력점 추적 주기마다 감지한 출력전류(Ipv)와 패널 출력전압(Vpv)을 저장하여, 동작 제어부(141)에 의해 스캔 시간 동안 최대 전력점(MPP)의 추적 동작이 이루어질 수 있도록 한다.
전력 조절 제어부(15)는 최대 전력점 추적 제어부(14)의 동작 제어부(141)로부터 기준 전압(Vref)을 인가받고, 인가되는 기준 전압(Vref)에 따라 펄스폭 변조 신호(PWM)의 상태를 제어하여 전력 조절 장치(13)의 제2 스위칭 소자(Sbuck)로 출력한다.
이로 인해, 전력 조절 장치(13)는 제2 스위칭 소자(Sbuck)의 스위칭 상태에 따라 동작하여 발전 운전을 실시하게 된다.
이미 기술한 것처럼, 태양광 발전 시스템(100)의 최대 전력점 추적 동작을 위해 평활용 커패시터(Cdc)의 방전 동작을 이용하여 패널 출력전류(Ipv)와 패널 출력전압(Vpv)의 스캔 동작을 실시하거나 스캔 동작이 방전 동작 중에 안정적으로 이루어지지 못하는 경우 평활용 커패시터(Cdc)의 충전 동작을 이용하여 패널 출력전류(Ipv)와 패널 출력전압(Vpv)의 스캔 동작을 실시할 수 있다.
도 2는 평활용 커패시터(Cdc)의 방전 중에 행해지는 패널 출력전류(Ipv)와 패널 출력전압(Vpv)의 스캔 동작과 충전 중에 행해지는 패널 출력전류(Ipv)와 패널 출력전압(Vpv)의 스캔 동작을 비교하기 위한 그래프로서, 평활용 커패시터(Cdc)의 방전과 충전 중에 측정된 태양전지 패널(11)의 패널 출력전류(Ipv), 패널 출력전압(Vpv) 및 패널 전력(Ppv)의 측정 그래프이다.
방전 중의 스캔 동작(즉, 방전 스캔동작)은 태양전지 패널(11)이 개방 전압(Voc)까지 평활용 커패시터(Cdc)를 충전한 상태에서 MOSFET 반도체 스위치인 제1 스위칭 소자(Smppt)를 턴온시켜 평활용 커패시터(Cdc)를 방전시키는 중에 태양전지 패널(11)의 운전전압을 낮추어 가면서 태양전지 패널(11)의 출력 전압과 출력 전류인 패널 출력전압(Vpv)과 패널 출력전류(Ipv)을 측정하여 행해진다.
또한 충전 중의 스캔 동작(즉, 충전 스캔동작)은 평활용 커패시터(Cdc)가 방전된 상태에서 제1 스위칭 소자(Smppt)를 턴오프시켜 태양전지 패널(11)이 평활용 커패시터(Cdc)를 개방 전압(Voc)까지 충전시키는 중에 패양전지 패널의 패널 출력전압(Vpv)과 패널 출력전류(Ipv)을 측정하는 것으로 실시하였다.
도 2를 참고로 하면, 평활용 커패시터(Cdc)의 방전 시간(Tc_Discharge)이 약 6ms이므로 방전 스캔동작은 제1 스위칭 소자(Smppt)가 턴온된 후 방전 시간(Tc_Discharge)인 약 6ms 동안 이루어졌고, 반면에 평활용 커패시터(Cdc)의 충전 시간(Tc_Charge)이 약 40ms이므로 충전 스캔동작은 제1 스위칭 소자(Smppt1)가 턴오프된 후 충전 시간(Tc_Charge)인 약 40ms 동안의 이루어졌음을 알 수 있었다.
이처럼, 평활용 커패시터(Cdc)의 충전 시간(Tc_Charge)이 방전 시간(Tc_Discharge)보다 훨씬 길어 충전 스캔 동작을 위한 스캔 시간이 방전 스캔동작을 위한 스캔시간보다 길다.
스캔시간이 짧으면 태양전지 패널(11)이 최대 전력점 추적 동작을 수행하기 위하여 태양광 발전 시스템(100)의 발전 운전을 정지시키는 시간이 감소하여 상대적으로 태양광 발전 시스템(100)의 발전 효율이 높아질 수 있으나, 최대 전력점 추적 동작이 부정확하게 이루어질 수 있어 최대 전력점 추적 동작의 효율이 낮아져서 결과적으로 태양광 발전 시스템(100)의 전체 발전 효율이 낮아질 수 있다.
반대로, 스캔시간이 너무 길어지면 최대 전력점 추적 동작을 위한 추적시간에 여유가 있어서 상대적으로 최대 전력점 추적의 정확도가 향상되지만, 최대 전력점 추적 동작을 위한 발전 정지 시간이 상대적으로 증가하여 태양광 발전 시스템(100)의 발전효율이 떨어질 수 있다.
따라서 스캔시간은 태양전지 패널(11)의 전류(I)-전압(V) 특성 곡선을 추출하기에 충분하면서도 가능한 짧은 시간인 것이 좋다.
예를 들어, 태양전지 패널(11)의 종류와 크기에 따라 가변되지만, 방전 스캔동작과 충전 스캔동작을 위한 스캔시간은 대략 10ms 내지 50ms인 것이 좋다.
한 예로, 스캔시간이 10ms이고 최대 전력점 추적 주기(Pmppt)가 10초인 경우, 최대 전력점 추적 동작으로 인한 발전운전 정지 손실에 따란 태양광 발전 시스템(100)의 효율(η)은 다음과 같다.
Figure PCTKR2018004882-appb-I000001
또한, 스캔시간이 50ms이고 최대 전력점 추적 주기(Pmppt)가 10초인 경우, 최대 전력점 추적 동작으로 인한 발전운전 정지 손실에 따란 태양광 발전 시스템(100)의 효율(η)은 다음과 같다.
Figure PCTKR2018004882-appb-I000002
그러나, 본 실시예는 최대 전력점을 정확하게 검출하고 안정된 발전운전을 하므로 태양광 발전 시스템의 발전손실을 증가시키지 않고 발전 효율을 향상시킬 수 있다.
또한, 본 실시예의 태양광 발전 시스템(100)은 그림자 등에 의해서 태양전지 패널(11)에 여러 개의 전력 극대점이 존재하는 경우에도, 전체적인 전력(P)-전압(V) 곡선을 스캔하는 전압의 범위가 증가하므로 정확히 최대 전력점을 찾아 발전 운전이 이루어지도록 한다.
기존의 Perturb and Observe(P&O) 알고리즘과 같은 경사법은 여러 개의 전력 극대점이 형성된 형성된 경우에 처음 검색된 전력 극대점을 중심으로 하여 최대 전력점 추적 동작이 이루어지는 지역적 극대점(Local maximum)에 빠져서 나오지 못하므로 실제 최대 전력점을 추적하지 못하는 문제가 있었다.
하지만, 본 실시예의 태양광 발전 시스템(100)은 정해진 주기마다 최대 전력점 추적 동작이 이루어져 안정적인 태양광 발전 시스템(100)의 발전 동작이 이루어지고, 커패시터의 충전 또는 방전 동작을 이용하여 최대 전력점 스캔 범위가 정해지므로, 기존의 경우보다 스캔 범위가 크게 증가하게 되어 전력 극대점이 여러 개 형성되더라고 효율적이고 안정적으로 최대 전력점 추적 동작이 이루어진다. 도 3은 태양전지 패널(11)에 형성된 그림자(SH11)에 의하여 다중 전력 극대점이 형성된 태양전지 패널(11)에 대한 최대 전력점 추적 동작에 대한 시험 결과를 도시한 것으로서, 도 3의 왼쪽은 태양전지 패널(11) 중 어느 한 태양전지 모듈(111)에 그림자(SH11)가 형성된 경우를 도시한 도면이고, 도 3의 오른쪽 그래프는 태양전지 패널(11)의 스캔결과인 전류(I)-전압(V) 특성 곡선과 전력(P)-전압(V) 특성 곡선은 도시한다.
[표 1]에는 실험에 사용된 태양전지 모듈과 태양전지 패널의 데이터를 나타낸다. 실험에 사용된 태양전지 모듈은 총 2개로서, 세 개의 태양전지 모듈(111)이 직렬로 연결된 두 개의 태양전지 어레이가 서로 병렬 연결되어 있는 구조(3S2P)이다.
태양전지 패널 태양전지 모듈(6개)
1EA 3S2P
정격출력(Rated Power)(Pmax) 325W 1,950W
정격출력 시의 전압(Vmp) 37.3V 111.9V
정격출력 시의 전류(Imp) 8.72A 17.44A
동작전압(Operating Voltage) 25~47V 70V~142V
단락전류(short-circuit Current)(Isc) 9.20A 19.4A
개방전압(open-circuit Voltage)(Voc) 47.3V 142.2V
도 3의 왼쪽 그림의 경우 도 3의 오른족 그래프에 도시된 바와 같이 전력 극대점(MP1, MP2)가 존재할 때, 최대 전력점 추적을 위한 기존의 경사 탐색방법은 전력 극대점(MP1)에서 빠져 나올 수 없어서 실질적으로 최대 전력점(MP2)을 추적할 수 없게 되어, 최대 전력점(MP2)일 때의 전압(VMP2)이 아닌 전력 극대점(MP1)일 때의 전압(VMP1)을 기준전압(Vref)으로 이용하여 태양광 발전 시스템의 발전 동작이 이루어지므로, 발전 효율이 감소하게 된다.하지만, 본 실시예의 경우, 최대 전력점 추적 동작 중에 최대 전력점(MP2)으로의 이동이 신속하게 이루어지므로 정상적으로 최대 전력점(MP2)의 추적이 이루어져 태양광 발전 시스템의 동작은 최대 전력점(MP2)일 때의 전압(VMP2)을 기준전압(Vref)으로 이용하여 태양광 발전 시스템의 발전 동작이 이루어져 최대 출력 전력을 생산하게 된다.
다음, 도 4 내지 도 14를 참고로 하여, 이러한 구조를 갖는 태양광 발전 시스템(100)에서 평활용 커피시터(Cdc)의 방전 동작이나 충전 동작을 이용한 최대 전력점 추적 동작의 다양한 예를 설명한다.
먼저, 도 4 및 도 5을 참고로 하여, 평활용 커패시터(Cdc)의 방전을 이용한 태양광 발전 시스템(100)의 최대 전력점 추적 동작을 설명한다.
도 4에 도시한 평활용 커패시터(Cdc)의 방전을 이용한 태양광 발전 시스템(100)의 최대 전력점 추적 동작은 평활용 커패시터(Cdc)의 충전 시간인 스캔 시간(Tscan)을 이용한 것이다.
이러한 도 4의 예에서, 최대 전력점 추적 제어부(14)에 의한 최대 전력점 추적 동작은 미리 정해진 주기(즉, 최대 전력점 추적 주기)(Pmppt)마다 행해지며, 최대 전력점 추적 주기(Pmppt)는 약 1초 내지 5초일 수 있다.
최대 전력점 추적 주기(Tmppt)가 되면 최대 전력점을 찾기 위한 스캔 시간(Tscan) 동안 스캔 주기(Pscan)마다 패널 출력전류(Ipv)과 패널 출력전압(Vpv)을 감지한다.
이때, 스캔 시간(Tscan)은 약 20ms일 수 있고 스캔 주기(Pscan)는 약 0.1 내지 1ms 일수 있다. 이 경우, 매 스캔 주기마다 검출하기 위한 패널 출력전류(Ipv)과 패널 출력전압(Vpv)의 검출 횟수는 검출 횟수는 200회(=Tscan/Pscan)이다.
도 4에 도시한 것처럼, 태양광 전력 시스템(100)의 동작에 필요한 전원이 공급되어 태양광 전력 시스템(100)의 동작이 시작되면, 최대 전력점 추적 제어부(14)의 동작 제어부(141)의 동작 역시 시작된다(S10).
따라서, 동작 제어부(141)는 도시하지 않는 타이머(timer)에서 출력되는 시간 정보를 이용하여 최대 전력점 추적 주기(Pmppt)가 도래했는지 판단한다(S11).
최대 전력점 추적 주기(Pmppt)가 도래하면, 동작 제어부(141)는 전력 조절 제어부(15)로 구동 중지 상태의 구동 제어 신호를 출력하고(S12), 또한 제1 스위칭 소자(Smppt)의 제어 단자로 턴오프 상태의 제어 신호를 출력한다(S13).
최대 전력점 추적 제어부(14)로부터 구동 중지 상태의 구동 제어 신호가 입력되면, 전력 조절 제어부(15)는 전력 조절 장치(13)의 제2 스위칭 소자(Sbuck)로 턴오프 상태의 제어 신호로 출력하여, 전력 조절 장치(13)의 동작을 중지시킨다.
따라서, 제2 스위칭 소자(Sbuck) 후단에 위치한 소자 즉, 리액터(Lf), 커패시터(Cf) 및 다이오드(Df)는 태양 전지 패널(11)과의 전기적 연결이 단절되고, 제2 스위칭 소자(Sbuck)의 전단에 위치한 평활용 커패시터(Cdc)만 태양 전지 패널(11)과 전기적으로 연결된다.
또한, 최대 전력점 추적 제어부(14)의 제어부(141)로부터 인가되는 턴오프 상태의 제어 신호에 의해 제1 스위칭 소자(Smppt) 역시 턴오프 상태가 된다.
이와 같이, 두 개의 스위칭 소자(Smppt, Sbuck)가 모두 턴오프 상태가 되면, 태양 전지 패널(11)과 전기적인 연결 상태를 유지하고 있는 평활용 커패시터(Cdc)는 태양 전지 패널(11)에서 출력되는 전압에 의해 충전 동작이 이루어지고, 이때, 평활용 커패시터(Cdc)는 개방 전압(Voc)까지 충전된다.
이처럼, 제1 스위칭 소자(Smppt)로 턴오프 상태의 제어신호(Gmppt)를 출력하여 제1 스위칭 소자(Smppt)를 턴오프시켜 평활용 커패시터(Cdc)의 충전이 시작되도록 한 후, 동작 제어부(141)는 제1 스위칭 소자(Smppt)로 턴오프 상태의 제어 신호(Gmppt)를 출력한 후 설정 시간이 경과했는지 판단한다(S14).
이때, 설정 시간은 평활용 커패시터(Cdc)의 충전 시간을 기초로 하여 정해지며, 평활용 커패시터(Cdc)의 충전 시간과 동일할 수 있다.
따라서, 설정시간 동안 제1 및 제2 스위칭 소자(Smppt, Sbuck)가 턴오프 상태를 유지하면 평활용 커패시터(Cdc)는 원하는 상태인 개방전압(Voc)까지 충전이 완료될 수 있다.
그런 다음, 설정 시간이 경과한 상태로 판단되면(S14), 동작 제어부(141)는 평활용 커패시터(Cdc)의 충전 동작이 완료된 상태로 판단하여 미리 정해져 있는 스캔 시간(Tscan) 동안 제1 스위칭 소자(Smppt)의 제어 단자로 턴온 상태의 제어 신호(Gmppt)를 출력한다(S16).
이와 같이, 동작 제어부(141)의 제어 동작에 의해 제1 스위칭 소자(Smppt)가 턴오프 상태에서 턴온 상태로 전환되면, 평활용 커패시터(Cdc)에 충전되어 있던 전하는 MPPT용 저항(Rmppt)과 턴온 상태의 제1 스위칭 소자(Smppt)를 통해 방전이 시작된다.
이러한 평활용 커패시터(Cdc)의 방전 동작에 의해 태양 전지 패널(11)의 패널 출력전압(Vpv)은 평활용 커패시터(Cdc)의 최대 충전 상태인 개방전압(Voc)에서부터 서서히 하강하게 된다.
이처럼, 제1 스위칭 소자(Smppt)가 턴오프에서 턴온 상태로 변환되어 평활용 커패시터(Cdc)의 방전 동작이 시작되면, 동작 제어부(141)는 최대 전력점 추적 동작 루틴(S16)으로 넘어간다.
따라서, 동작 제어부(141)는 스캔 시간(Tscan) 동안 정해진 스캔 주기(Pscan)마다 전류 감지부(121)와 전압 감지부(122)로부터 인가되는 신호를 각각 판독하여 현재의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 판정하여 저장부(142)에 저장한다(S161).
다음, 동작 제어부(141)는 현재의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 곱하여 현재 패널 전력(Pnew)을 산출한다(S162).
현재 패널 전력(Pnew)이 산출되면(S162), 동작 제어부(141)는 저장부(142)에 저장되어 있는 바로 이전 단계에서 산출된 이전 패널 전력(Pold)을 읽어와 현재 패널 전력(Pnew)과 이전 패널 전력(Pold)의 크기를 비교한다(S163).
따라서, 현재 패널 전력(Pnew)이 이전 패널 전력(Pold)보다 큰 경우(S153), 동작 제어부(141)은 저장부(142)에 저장되어 있는 현재의 패널 출력전압(Vpv)을 현재의 최대 전력점 전압(Vmpp)으로서 저장부(142)에 저장한다(S164).
그런 다음, 현재 패널 전력(Pnew)을 이전 패널 전력(Pold)으로서 저장부(142)에 저장한다(S165).
하지만, 단계(S153)에서 현재 패널 전력(Pnew)이 이전 패널 전력(Pold)보다 크지 않는 경우, 동작 제어부(141)은 저장부(142)에 저장되어 있는 최대 전력점 전압(Vmpp)을 현재의 패널 출력전압(Vpv)으로 변경하지 않고 그대로 유지한 채, 현재 패널 전력(Pnew)을 이전 패널 전력(Pold)으로서 저장부(142)에 저장하여, 이전 패널 전력(Pold)을 변경한다(S165).
이러한 동작 제어부(141)는, 이미 기술한 것처럼, 스캔시간(Tscan)동안 스캔 주기(Pscan)가 되며 다시 단계(S161)로 넘어가 전류 감지부(121)와 전압 감지부(122)를 이용해 현재의 패널 출력전류(Ipv)와 패널 출력 전압(Vpv)을 판정한 후 현재 패널 전력(Pnew)을 산출하여 이전 패널 전력(Pold)과의 비교 동작을 통해 현 단계에서의 최대 전력점 전압(Vmpp)을 판정한다.
이러한 동작을 통해, 스캔 시간(Tscan)이 경과하면(S15), 동작 제어부(141)는 제1 스위칭 소자(Smppt)의 제어 단자로 인가되는 제어 신호(Gmppt)의 상태를 턴오프 상태로 변경하여 제1 스위칭 소자(Smppt)를 턴오프시켜 최대 전력점 추적 동작을 위한 스캔 동작을 종료시킨다(S17).
그런 다음, 동작 제어부(141)는 전력 조절 제어부(15)로 구동 상태의 구동 제어 신호를 출력하고(S18), 저장부(142)에 저장되어 있는 현재의 최대 전력점 전압(Vmpp) 기준전압(Vref)으로 판정하여, 판정된 기준전압(Vref)을 전력조절 제어부(15)로 출력한다(S19).
따라서, 최대 전력점 추적 동작을 위해 잠시 동작이 중지되었던 전력조절 제어부(15)는 추적 제어장치(140)의 동작 제어부(141)로부터 인가되는 구동 제어 신호에 의해 동작이 재개된다.
이로 인해, 최대 전력점 추적 제어장치(14)로부터 인가되는 기준 전압(Vvef)을 이용하여 펄스폭 변조 동작을 실시해 해당 상태의 펄스폭 변조 신호(PWM)를 제2 스위칭 소자(Sbuck)의 제어 단자로 인가하여 전력 조절 장치(13)의 동작이 이루어지도록 한다.
이와 같이, 도 4의 경우, 평활용 커패시터(Cdc)의 방전 시간을 고려하여 스캔 시간(Tscan)을 정하여 정해진 스캔 시간(Tscan) 동안 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 스캔 동작을 실시하여 최대 전력점 추적 동작을 실시한다.
도 4의 경우, 동작 제어부(141)는 최대 전력점 추적 루틴(S15) 동안 매 단계마다 현재 패널 전력(Pnew)과 이전 패널 전력(Pold)을 비교하여 최대 전력점 전압(Vmpp)를 정한다.
하지만, 다른 예로서 검출값의 노이즈 성분을 필터링하기 위하여, 현 단계에서 산출된 패널 전력과 바로 이전 단계에서의 패널 전력의 평균값을 산출하여 현재 평균 패널 전력을 구하고, 산출된 현재 평균 패널 전력과 바로 이전의 평균 패널 전력을 비교하여 최대 전력점을 판정하고, 판정된 최대 전력점에 대응하는 패널 출력전압(Vpv) 또는 최대 전력점에 대응하는 평균 패널 전력에 대응하는 두 패널 출력전압의 평균값인 평균 패널 출력전압을 최대 전력점 전압(Vmpp)으로서 정할 수 있다.
또한, 본 예와는 달리, 정해진 스캔 시간(Tscan) 동안 정해진 스캔 주기(Tscan)마다 패널 출력전압(Vpv)과 패널 출력전류(Ipv)을 판정하고 패널 전력(또는 평균 패널 전력)을 산출하여 모두 저장부(142)에 저장한 후, 스캔 시간(Tscan)동안 산출된 복수의 패널 전력(또는 평균 패널 출력) 중에서 가장 큰 크기를 갖는 패널 전력(또는 평균 패널 전력)을 판정하고 그때의 패널 출력전압(Vpv)(또는 평균 패널 출력전압)을 최대 전력점 전압(Vmpp)으로 판정해 기준 전압(Vref)으로서 전력 조절 제어부(15)로 출력할 수 있다.
다음, 도 5를 참고로 하여, 본 예의 태양광 발전 시스템(100)에서 평활용 커패시터(Cdc)의 방전을 이용한 최대 전력점 추적 제어 장치(14)의 다른 예를 설명한다.
본 예의 경우, 도 4와는 달리, 전압 감지부(122)에 의해 감지된 패널 출력전압(Vpv)의 크기를 설정 전압(Vmax, Vmin)과 비교하여 평활 커패시터(Cdc)의 방전 상태를 판정해 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 스캔 동작을 실시한다.
본 예에서도 최대 전력점 추적 주기(Pmppt)는 약 1초 내지 5초일 수 있다.
도 5을 참고로 하면, 최대 전력점 추적 제어부(14)의 동작 제어부(141)의 동작이 시작되면(20), 동작 제어부(141)는 최대 전력점 추적 주기(Pmppt)가 도래했는지 판단한다(S21).
최대 전력점 추적 주기(Pmppt)가 도래한 상태로 판단되면(S21), 동작 제어부(141)는 전력 조절 제어부(15)로 구동 중지 상태의 구동 제어 신호를 출력하여 전력 조절 장치(13)의 동작을 중지시키고(S22), 제1 스위칭 소자(Smppt)의 제어 단자로 턴오프 상태의 제어 신호를 출력한다(S23).
그런 다음, 동작 제어부(141)는 전압 감지부(142)로부터 인가되는 신호를 판독하여 현재의 패널 출력전압(Vpv)을 판정하여(S24), 판정된 패널 출력전압(Vpv)이 최대 전압(Vmax) 보다 큰지 판단한다(S25).
이때, 최대 전압(Vmax)은 평활용 커패시터(Cdc)의 충전 완료 상태를 고려하여 정해진 전압으로서 평활용 커패시터(Cdc)의 용량을 기초로 정해질 수 있다. 따라서, 판단된 패널 출력전압(Vpv)이 설정된 최대 전압(Vmax)을 초과한 상태이면, 동작 제어부(141)는 평활 커패시터(Cdc)의 충전 상태가 정해진 상태(예, 충전이 완료된 상태)에 도달한 것으로 판정한다.
따라서, 현재의 패널 출력전압(Vpv)가 최대 전압(Vmax)보다 크지 않을 경우(S25), 동작 제어부(141)는 평활 커패시터(Cdc)의 충전이 정해진 상태까지 이루어지지 않는 상태로 판단하여 다시 단계(S24)로 넘어가 전압 감지부(122)를 이용하여 패널 출력전압(Vpv)을 판단한다.
하지만, 현재의 패널 출력전압(Vpv)가 최대 전압(Vmax)보다 크면, 동작 제어부(141)는 이미 설명한 것처럼 평활 커패시터(Cdc)의 충전 상태가 정해진 상태까지 도달한 것으로 판정하여 평활 커패시터(Cdc)의 방전 동작을 이용한 최대 전력점 추적 동작을 실시한다.
따라서, 동작 제어부(141)는 제1 스위칭 소자(Smppt)의 제어 단자로 온 상태의 제어 신호(Gmppt)를 출력하여 제1 스위칭 소자(Smppt)를 턴온시켜(S26), 평활 커패시터(Cdc)의 충전 전하가 방전되도록 한다.
이처럼, MPPT용 저항(Rmppt)와 턴온된 제1 스위칭 소자(Smppt)를 통해 평활 커패시터(Cdc)의 방전 동작이 이루어지면, 동작 제어부(141)는 전류 감지부(121)와 전압 감지부(122)에서 출력되는 신호를 이용하여 현재의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 판정해 저장부(142)에 저장한다(S27).
그런 다음, 동작 제어부(141)는 현재의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 곱하여 현재 패널 전력(Pnew)을 산출한 후(S28), 현재 패널 전력(Pnew)과 이전 패널 전력(Pold)을 비교한다(S29).
현재 패널 전력(Pnew)이 이전 패널 전력(Pold)보다 크면(S29), 동작 제어부(141)은 저장부(142)에 저장되어 있는 현재의 패널 출력전압(Vpv)을 최대 전력점 전압(Vmpp)으로서 저장부(142)에 저장한다(S210).
그런 다음, 현재 패널 전력(Pnew)을 이전 패널 전력(Pold)으로서 저장부(142)에 저장한다(S211).
하지만, 단계(S29)에서 현재 패널 전력(Pnew)이 이전 패널 전력(Pold)보다 크지 않는 경우, 동작 제어부(141)은 최대 전력점 전압(Vmpp)을 현재의 패널출력전압(Vpv)으로 변경하지 않고 현재 패널 전력(Pnew)을 이전 패널 전력(Pold)으로만 변경하여 저장부(142)에 저장한다(S211).
그런 다음, 동작 제어부(141)는, 단계(S27)에서 판정된 현재의 패널 출력전압(Vpv)이 최소 전압(Vmin)보다 작은 지 판단한다(S212).
이때, 최소 전압(Vmin)은 역시 평활 커패시터(Cdc)의 용량을 기초로 하여 정해질 수 있고, 평활용 커패시터(Cdc)의 방전 완료 완료 상태를 고려하여 정해진 전압이다. 따라서, 판단된 패널 출력전압(Vpv)이 설정된 최소 전압(Vmin)보다 작으면, 동작 제어부(141)는 평활용 커패시터(Cdc)의 방전 동작이 정해진 상태(예, 방전이 완료된 상태)까지 진행된 상태로 판정한다.
따라서, 현재의 패널 출력전압(Vpv)이 최소 전압(Vmin)보다 작은 경우(S212), 동작 제어부(141)는 현재의 최대 전력점 추적 주기(Pmppt)에서의 최대 전력점 추적 동작을 중지한다.
이로 인해, 현재의 패널 출력전압(Vpv)이 최소 전압(Vmin)보다 작은 경우(S212), 동작 제어부(141)는 제1 스위칭 소자(Smppt)로 인가되는 제어 신호(Gmppt)의 상태를 턴오프 상태로 변경하여 제1 스위칭 소자(Smppt)를 턴오프시키고(S213), 전력 조절 제어부(15)로 구동 상태의 구동 제어 신호를 출력한다(S214).
그런 다음, 동작 제어부(141)는 저장부(142)에 저장되어 있는 현재의 최대 전력점 전압(Vmpp) 기준전압(Vref)으로 전력조절 제어부(15)로 출력한다(S215).
이로 인해, 전력 조절 제어부(15)는 인가된 기준 전압(Vref)를 이용해 전력 조절 장치(13)의 동작을 제어한다.
다음, 동작 제어부(141)는 타이머의 시간 정보를 이용하여 새로운 최대 전력점 추적 주기(Pmppt)가 도래했는지를 판단하고(S21), 해당 시기에 최대 전력점 추적 동작을 실시한다.
하지만, 현재의 패널 출력전압(Vpv)이 최소 전압(Vmin) 이상인 경우, 동작 제어부(141)는 평활용 커패시터(Cdc)의 방전 상태가 설정된 상태까지 도달하지 않는 상태로 판단한다.
따라서, 동작 제어부(141)는 단계(S27)로 넘어가 최대 전력점 추적 동작을 위해 전류 감지부(121)와 전압 감지부(122)를 이용하여 현재의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 판정한다.
다음, 도 6 및 도 7를 참고로 하여, 평활용 커피시터(Cdc)의 충전 동작을 이용한 최대 전력점 추적 동작에 대하여 설명한다.
도 6에 도시한 예는 평활용 커패시터(Cdc)의 충전 시간을 기초해 정해진 스캔 시간을 이용한 것이고, 도 7에 도시한 예는 설정된 최소 전압(Vmin1)과 최대 전압(Vmax2)을 이용한 평활용 커패시터(Cdc)의 충전 상태를 이용한 것이다.
이러한 도 6과 도 7의 동작은 각각 도 4와 도 5의 동작과 유사하다.
본 예의 경우에도 최대 전력점 추적 주기(Pmppt)는 약 1초 내지 5초일 수 있고, 스캔 시간(Tscan)은 약 20ms일 수 있으며, 스캔 주기(Pscan)는 약 0.1 내지 1ms 일수 있다.
먼저, 도 6을 참고로 하면, 최대 전력점 추적 제어부(14)의 동작 제어부(141)의 동작이 시작되면(S30), 최대 전력점 추적 주기(Pmppt)가 도래했는지 판단하고(S31), 최대 전력점 추적 주기(Pmppt)가 도래하면(S31), 동작 제어부(141)는 전력 조절 제어부(15)로 구동 중지 상태의 구동 제어 신호를 출력하며(S32), 제1 스위칭 소자(Smppt)의 제어 단자로 턴온 상태의 제어 신호(Gmppt)를 출력한다(S33).
다음, 동작 제어부(141)는 설정 시간(예, 제2 설정시간)이 경과했는지 판단한다(S34).
이때, 설정 시간은 평활용 커패시터(Cdc)의 방전 시간을 기초하여 정해진다.
따라서, 제1 스위칭 소자(Smppt)가 턴온된 후 설정 시간이 경과한 상태로 판단되면, 즉 평활용 커패시터(Cdc)의 방전 동작이 정해진 상태까지 행해진 상태로 판단되면(S34), 동작 제어부(141)는 스캔 시간(Tscan1) 동안 제1 스위칭 소자(Smppt)의 제어 단자로 오프 상태의 제어 신호(Gmppt)를 출력하여(S35), 평활용 커패시터(Cdc)의 충전 동작이 이루어지도록 한다.
이때, 전력 조절 장치(13)의 제2 스위칭 소자(Sbuck)는, 이미 설명한 것처럼, 조절 조절 제어부(15)의 제어에 의해 오프 상태를 유지하므로 평활용 커패시터(Cdc)를 제외한 전력 조절 장치(13)의 다른 구성요소의 동작은 이루어지지 않는다.
따라서, 제1 스위칭 소자(Smppt)가 턴온 상태에서 턴오프 상태로 전환되면, 평활용 커패시터(Cdc)는 충전 동작이 시작되어 평활용 커패시터(Cdc)의 충전 전압은 '0'에서부터 서서히 증가하게 된다.
이와 같이, 제1 스위칭 소자(Smppt)의 충전 동작이 시작되면 동작 제어부(141)의 동작이 최대 전력점 추적 동작 루틴(S36)으로 넘어가서, 스캔 시간(Tscan1) 동안 정해진 스캔 주기(Pscan1)마다 전류 감지부(121)와 전압 감지부(122)를 이용한 현재의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 이용하여 최대 전력점 추적 동작을 실시한다.
즉, 동작 제어부(141)는 전류 감지부(121)와 전류 감지부(122)로부터 인가되는 신호를 이용하여 현재의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)를 판정하고(S361), 판정된 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 이용하여 현재 패널 전력(Pnew)을 산출한다(S362).
현재 패널 전력(Pnew)이 산출되면(S362), 동작 제어부(141)는 이전 패널 전력(Pold)과 현재 패널 전력(Pnew)을 비교한다(S363).
따라서, 현재 패널 전력(Pnew)이 이전 패널 전력(Pold)보다 큰 경우(S363), 동작 제어부(141)은 저장부(142)에 저장되어 있는 현재의 패널 출력전압(Vpv)을 현재의 최대 전력점 전압(Vmpp)으로서 저장부(142)에 저장한다(S364).
그런 다음, 동작 제어부(141)는 현재 패널 전력(Pnew)을 이전 패널 전력(Pold)으로서 저장부(142)에 저장한다(S365).
하지만, 단계(S363)에서 현재 패널 전력(Pnew)이 이전 패널 전력(Pold)보다 크지 않으면, 동작 제어부(141)은 바로 단계(S365)로 넘어가 현재 패널 전력(Pnew)을 이전 패널 전력(Pold)으로 저장부(142)에 저장한다.
이러한 동작 제어부(141)의 동작은 스캔시간(Tscan1)동안 스캔 주기(Pscan1)마다 실시된다.
스캔 시간(Tscan1)이 경과하면, 동작 제어부(141)는 전력 조절 제어부(15)로 구동 상태의 구동 제어 신호를 출력한 후(S37), 스캔 시간(Tscan1) 시간 동안 현재 패널 전력(Pnew)과 이전 패널 전력(Pold)과의 비교 동작에 위해 정해진 현재의 최대 전력점 전압(Vmpp)을 기준 전압(Vref)으로 전력 조절 제어부(15)로 출력한다(S38).
따라서, 전력 조절 제어부(15)는 인가되는 기준 전압(Vref)에 따라 제2 스위칭 소자(Sbuck)로 인가되는 펄스폭 변조 신호(PWM)의 상태를 제어하여 전력 조절 장치(13)의 동작이 이루어지도록 한다.
본 예의 경우에도, 도 4의 경우와 같이, 현재 평균 패널 전력과 바로 이전의 평균 패널 전력을 비교하여 최대 전력점을 판정하고, 판정된 최대 전력점에 대응하는 패널 출력전압(Vpv) 또는 최대 전력점에 대응하는 평균 패널 전력에 대응하는 두 패널 출력전압의 평균값인 평균 패널 출력전압을 최대 전력점 전압(Vmpp)으로서 정할 수 있다.
또한, 정해진 스캔 시간(Tscan1) 동안 정해진 스캔 주기(Tscan1)마다 패널 출력전압(Vpv)과 패널 출력전류(Ipv)을 판정하고 패널 전력(또는 평균 패널 전력)을 산출하여 저장부(142)에 저장한 후, 스캔 시간(Tscan1)동안 산출된 복수의 패널 전력(또는 평균 패널 출력) 중에서 가장 큰 크기를 갖는 패널 전력(또는 평균 패널 전력)을 판정하고 그때의 패널 출력전압(Vpv)(또는 평균 패널 출력전압)을 최대 전력점 전압(Vmpp)으로 판정해 기준 전압(Vref)으로서 전력 조절 제어부(15)로 출력할 수 있다.
다음, 도 7을을 참고로 하여, 본 예의 태양광 발전 시스템(100)에서 평활용 커패시터(Cdc)의 충전 동작을 이용한 최대 전력점 추적 제어 장치(14)의 동작에 대한 다른 예를 설명한다.
도 7을 참고로 하면, 최대 전력점 추적 제어부(14)의 동작 제어부(141)의 동작이 시작되면(S40), 동작 제어부(141)는 최대 전력점 추적 주기(Pmppt)가 도래했는지 판단한다(S41).
최대 전력점 추적 주기(Pmppt)가 도래한 상태로 판단되면(S41), 동작 제어부(141)는 전력 조절 제어부(15)로 구동 중지 상태의 구동 제어 신호를 출력하여 전력 조절 장치(13)의 동작을 중지시키고(S42), 제1 스위칭 소자(Smppt)의 제어 단자로 턴온 상태의 제어 신호를 출력하여(S43), 평활용 커패시터(Cdc)가 방전 동작을 실시하도록 한다.
그런 다음, 동작 제어부(141)는 전압 감지부(122)로부터 인가되는 신호를 판독하여 현재의 패널 출력전압(Vpv)을 판정하여(S44), 판정된 패널 출력전압(Vpv)이 최소 전압(Vmin1) 보다 작은지 판단한다(S45).
이때, 최소 전압(Vmin1)은 평활용 커패시터(Cdc)의 방전 완료 상태를 고려하여 정해진 전압으로서 평활용 커패시터(Cdc)의 용량을 기초로 정해질 수 있다. 따라서, 판단된 패널 출력전압(Vpv)이 설정된 최소 전압(Vmin1)보다 작으면, 동작 제어부(141)는 평활 커패시터(Cdc)의 방전 상태가 정해진 상태, 예를 들어, 방전 동작이 완료된 상태로 판정한다.
따라서, 현재의 패널 출력전압(Vpv)이 최소 전압(Vmin1) 이상이면(S45), 동작 제어부(141)는 평활 커패시터(Cdc)의 방전이 정해진 상태까지 이루어지지 않는 상태로 판단하여 다시 단계(S44)로 넘어가 전압 감지부(122)를 이용하여 패널 출력전압(Vpv)을 판단한다.
하지만, 현재의 패널 출력전압(Vpv)이 최소 전압(Vmin1)보다 작으면(S45), 동작 제어부(141)는 이미 설명한 것처럼 평활 커패시터(Cdc)의 방전 상태가 정해진 상태까지 이루어진 상태이므로 평활 커패시터(Cdc)의 충전 동작을 이용한 최대 전력점 추적 동작을 실시한다.
따라서, 동작 제어부(141)는 제1 스위칭 소자(Smppt)의 제어 단자로 오프 상태의 제어 신호(Gmppt)를 출력하여 제1 스위칭 소자(Smppt)를 턴오프시켜(S46), 전력 조절 장치(13)의 평활 커패시터(Cdc)의 충전 동작이 이루어지도록 한다.
다음, 동작 제어부(141)는 전류 감지부(121)와 전압 감지부(122)에서 출력되는 신호를 이용하여 현재의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 판정해 저장부(142)에 저장하고(S47), 현재의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 곱하여 현재 패널 전력(Pnew)을 산출한 후(S48), 현재 패널 전력(Pnew)과 이전 패널 전력(Pold)을 비교한다(S49).
현재 패널 전력(Pnew)이 이전 패널 전력(Pold)보다 크면(S49), 동작 제어부(141)은 현재의 패널 출력전압(Vpv)을 최대 전력점 전압(Vmpp)으로서 저장부(142)에 저장한다(S410).
다음, 동작 제어부(141)는 현재 패널 전력(Pnew)을 이전 패널 전력(Pold)으로서 저장부(142)에 저장한다(S411).
하지만, 단계(S49)에서 현재 패널 전력(Pnew)이 이전 패널 전력(Pold)보다 크지 않는 것으로 판단되면, 동작 제어부(141)은 최대 전력점 전압(Vmpp)을 이전 상태로 유지한 후 현재 패널 전력(Pnew)을 이전 패널 전력(Pold)으로 변경하여 저장부(142)에 저장한다(S411).
그런 다음, 동작 제어부(141)는, 단계(S47)에서 판정된 현재의 패널 출력전압(Vpv)이 최대 전압(Vmax1)보다 큰지 판단한다(S412).
이때, 최대 전압(Vmax1) 역시 평활 커패시터(Cdc)의 용량을 기초로 하여 정해질 수 있고, 평활용 커패시터(Cdc)의 충전 완료 상태를 고려하여 정해진 전압이다. 따라서, 판단된 패널 출력전압(Vpv)이 설정된 최대 전압(Vmax1)보다 크면, 동작 제어부(141)는 평활용 커패시터(Cdc)의 충전 동작이 정해진 상태(예, 충전 완료 상태)에 도달한 것으로 판정한다.
따라서, 현재의 패널 출력전압(Vpv)이 최대 전압(Vmax1)보다 크면(S412), 동작 제어부(141)는 최대 전력점 검색 동작을 중지하고 전력 조절 장치(13)의 동작으로 전력을 생성하도록 한다.
따라서, 동작 제어부(141)는 전력 조절 제어부(15)로 구동 상태의 구동 제어 신호를 출력하고(S413), 현재의 최대 전력점 전압(Vmpp)을 기준 전압(Vref)으로서 전력 조절 제어부(15))로 출력한다(S414).
다음, 동작 제어부(141)는 단계(S41)로 넘어가 타이머의 시간 정보를 이용하여 새로운 최대 전력점 추적 주기(Pmppt)가 도래했는지를 판단하여, 새로운 최대 전력점 추적 주기(Pmppt)가 도래하면 최대 전력점 추적 동작을 실시하게 된다.
하지만, 현재의 패널 출력전압(Vpv)이 최대 전압(Vmax1) 이상인 경우(S412), 동작 제어부(141)는 평활용 커패시터(Cdc)의 충전 상태가 설정된 상태까지 도달하지 않는 상태로 판단한다.
따라서, 동작 제어부(141)는 단계(S47)로 넘어가 최대 전력점 추적 동작을 위해 전류 감지부(121)와 전압 감지부(122)를 이용하여 현재의 패널 출력전류(Ipv)와 패널 출력전압(Vpv)을 판정한다.
도 8에는 평활용 커패시터(Cdc)의 방전 동작을 이용하여 최대 전력점 추적 동작할 때 감지된 패널 출력전류(Ipv), 패널 출력전압(Vpv) 및 패널 전력(Ppv)의 파형을 도시한다.
도 8의 경우, 스캔 시간(Tscan)은 16ms이었다.
도 9에는 도 8에서 검출된 신호 파형을 이용하여 운전 전압인 패널 출력전압(Vpv)을 수평축으로 하여 전류(I)-전압(V) 곡선과 전력(P)-전압(V) 곡선을 도출한 파형을 도시한다.
도 9의 파형에서, 해당 태양 전지 패널에서 최대 전력(4.41W)을 출력하기 위한 패널 출력전압(Vpv)의 크기는 20.49[V]임을 알 수 있었다. 따라서, 이 패널 출력전압(20.47V)을 기준 전압(Vref)으로서 전력 조절 제어부(15)로 출력하여 전력 조절 장치(13)의 동작을 제어하면 해당 태양 전지 패널은 최대 전력을 출력하게 된다.
태양 전지 패널의 패널 출력전압(Vpv)의 스캔범위 중 최저 스캔 전압의 크기는 MPPT용 저항(Rmppt)의 크기와 관련이 있고, 도 9의 경우, 최저 스캔 전압의 크기는 7.50V임을 알 수 있다.
MPPT용 저항(Rmppt)의 값이 태양 전지 패널의 최대 전력 운전점에서의 등가 저항값(RMPP)과 같다면 스캔 전압의 범위는 도 10에 도시하는 것처럼 개방 전압(Voc)과 최대 전력점(MPP)에 대응하는 패널 출력전압, 즉 최대 전력 전력점 전압(Vmpp) 사이가 되며, 도 10에서 최대 전력 전력점 전압(Vmpp)은 17.48V이었다.
최대 전력점 추적 동작을 위한 스캔 구간을 여유 있게 확보하여 좀 더 정확하게 최대 전력점 추적 동작을 실시하기 위해, MPPT용 저항(Rmppt)의 값은 태양전지 패널의 최대전력점에서의 등가 저항값(Rmpp) 보다 충분히 작은 것이 좋다.
하지만, MPPT용 저항(Rmppt)의 값을 너무 작게 설정하면, 이미 설명한 것처럼, MPPT용 저항(Rmppt)의 값에 평활용 커패시터(Cdc)의 방전 시정수가 비례하므로, 평활용 커패시터(Cdc)의 방전 시간이 짧아서 스캔 시간(Tscan)이 감소해, 태양전지 패널의 전류(즉, 패널 출력전류)(I)-전압(즉, 패널 출력전압(V)의 특성을 충분히 분석할 수 없게 될 수 있다.
이를 방지하기 위해, 제1 스위칭 소자(Rmppt)의 저항값을 증가시켜 태양 전지 패널의 최대 전력점에서의 등가 저항값(Rmpp)보다 커지게 되면, 최대 전력점 추적 동작을 위한 스캔 시간의 증가로 인해 전력 조절 장치(13)의 구동 시간이 감소하고, 이러한 전력 조절 장치(13)의 구동 시간 감소는 태양광 절전 시스템의 발전 전력 감소로 이어진다.
따라서, 도 11과 같이, 복수 개의 MPPT용 저항을 사용하여 패널 출력전류(Ipv)와 패널 출력전압(Vpv)의 스캔 범위로 안정적으로 확보하고 충분한 스캔 시간(Tscan)을 유지하기 위해 복수 개의 스캔 제어부를 병렬로 연결할 수 있다.
즉, 도 11와 같이, 본 발명의 다른 실시예에 따른 태양광 발전 시스템(100a)은 도 1에 도시한 것과 유사하게, 태양 전지 패널(11), 태양 전지 패널(11)의 양단에 연결된 최대 전력점 추적 감지부(12a), 최대 전력점 추적 감지부(12a)에 연결된 전력 조절 장치(13), 최대 전력점 추적 감지부(12a)에 연결되고 동작 제어부(141a)와 저장부(142a)를 구비한 최대 전력점 추적 제어 장치(14a) 그리고 최대 전력점 추적 제어 장치(14a)와 전력 조절 장치(13)에 연결된 전력 조절 제어부(15)를 구비한다.
이때, 최대 전력점 추적 감지부(12a)는 도 1과 동일하게 전류 감지부(121)와 전압 감지부(122)를 구비하고 있지만, 도 1과는 달리, 태양 전지 패널(11)의 양단에 병렬로 연결된 두 개의 스캔 제어부(1231, 1232)를 구비한다.
각 스캔 제어부(1231, 1232)의 구조는 도 1에 도시한 스캔 제어부(123)와 구조와 동일하여, 태양 전지 패널(11)의 제1 출력단자(+)에 일측 단자가 각각 연결된 MPPT용 저항(Rmppt1, Rmppt2)과 해당 MPPT용 저항(Rmppt1, Rmppt2)에 입력 단자가 연결되어 있고 태양전지 패널(11)의 제2 출력단자(-)에 출력단자가 연결되어 있으며 최대 전력점 추적 제어장치(14)의 동작 제어부(141a)에 제어 단자가 연결되어 있는 MPPT용 스위칭 소자(Smppt1, Smppt2)를 각각 구비하고 있다.
이러한 예의 최대 전력점 추적 감지부(12a)는 서로 동일한 저항값을 갖고 있는 경우, 하나의 저항(예, Rmppt)의 저항값보다 서로 병렬로 연결된 복수의 저항(예, Rmppt1 및 Rmppt2)의 저항값이 작다는 원리를 이용한 것이다.
즉, 최대 전력점 추적 주기에 도달하면, 최대 전력점 추적 제어 장치(14a)의 동작 제어부(141a)는 1차적으로 두 개의 스캔 제어부(1231, 1232) 중에서 하나의 스캔 제어부인 제1 스캔 제어부(예, 1231)의 제어 신호(Gmppt1)의 상태를 제어하여 제1 스캔 제어부(1231)에 위치하는 스위칭 소자(Smppt1)를 턴온시켜 평활용 커패시터(Cdc)를 방전시켜 1차적으로 스캔 시간(예, 제1 스캔시간)을 확보하여, 스캔 시간 동안 정해진 스캔 주기마다 패널 출력전류(Ipv)와 패널 출력전압(Vpv)의 스캔 동작(예, 제1 스캔 동작)을 실시한다.
그런 다음, 다시 2차적으로 두 개의 스캔 제어부(1231, 1232)의 스위칭 소자(Smppt1, Smppt2)의 제어단자로 각각 턴온 상태의 제어 신호(Gmppt1, Gmppt2)의 출력하여 제1 및 제2 스캔 제어부(1231, 1232)에 위치하는 스위칭 소자(Smppt1, Smppt2)를 턴온시키거나 평활용 커패시터(Cdc)를 방전시켜 2차적으로 스캔 시간(예, 제2 스캔 시간)을 확보한다. 이때, 제2 스캔 시간은 서로 병렬로 연결되어 있고 동일한 저항값을 갖는 저항(Rmppt, Rmppt)에 의해 제1 스캔 시간보다 짧다.
따라서, 제2 스캔 시간 동안 정해진 스캔 주기마다 패널 출력전류(Ipv)와 패널 출력전압(Vpv)의 스캔 동작(예, 제2 스캔 동작)을 실시한다.
이와 같이, 서로 다른 스캔 시간 동안 각각 스캔 동작이 이루어질 경우, 제1 스캔 동작 시에는 제2 스캔 동작 시보다 긴 시간 동안 스캔 동작이 이루어지고, 제2 스캔 동작 시에는 병렬 연결된 저항(Rmppt1, Rmmpt2)에 의한 저항값 감소로 스캔 범위가 제1 스캔 동작 시보다 증가하게 되어 제1 스캔 동작 시보다 낮은 패널 출력전압까지 스캔 동작이 이루어진다.
이처럼, 하나의 스캔 제어부(123)를 이용할 때보다 병렬로 연결된 복수 개의 스캔 제어부(1231, 1232)를 이용할 경우, 스캔 시간과 스캔 범위가 안정적으로 확보되어 정확한 최대 전력점 추적 동작이 이루어지게 된다.
이러한 태양광 발전 시스템(100a)에서 최대 전력점을 추적하기 위한 최대 전력점 추적 제어 장치(14a)의 동작은 도 12와 같다.
도 12에 도시한 것처럼 서로 다른 스캔 시간 동안 스캔 동작을 행하기 위해 두 번의 최대 전력점 추적 루틴(S56, S58)을 실시하는 것을 제외하고, 첫 번째 최대 전력점 추적 루틴(S56)일 때는 하나의 스캔 제어부(1231)만을 구동시키고 두 번째 최대 전력점 추적 루틴(S58)일 때는 모든 스캔 제어부(1231, 1232)를 구동시키는 것을 제외하면 도 4를 참고로 하여 설명한 동작과 동일하다.
즉, 최대 전력점 추적 주기가 되면, 동작 제어부(411)는 전력 조절 제어부(15)를 구동 중지 제어한 후 모든 스캔 제어부(1231, 1232)의 제1 스위칭 소자(Smppt1, Smppt2)를 턴오프시켜 평활용 커패시터(Cdc)의 전하를 설정 시간 동안 방전시킨다(S51-S54).
다음, 동작 제어부(411)는 해당 스캔 시간(Tscan21)동안 해당 스캔 제어부(1231)의 스위칭 소자(Smppt1)는 턴온시키고 나머지 스캔 제어부(1232)의 스위칭 소자(Smppt2)를 턴오프시켜(S55) 첫 번째 최대 전력점 추적 루틴(S56)을 실시하여 해당 스캔 시간(Tscan21) 동안 해당 스캔주기(Pscan21)마다 최대 전력점 전압(Vmpp)을 탐색한 후, 해당 스캔 시간(Tscan21)이 경과하면 다시 해당 스캔시간(Tscan22) 동안 모든 스캔 제어부(1231, 1232)의 스위칭 소자(Smppt1, Smppt2)는 턴온시키고(S57) 두 번째 최대 전력점 추적 루틴(S58)을 실시하여 해당 스캔 시간(Tscan22) 동안 해당 스캔주기(Pscan22)마다 최대 전력점 전압(Vmpp)을 탐색한다.
그런 다음, 동작 제어부(411)는 턴온 상태인 스캔 제어부(1231, 1232)의 제1 스위칭 소자(Smppt1, Smppt2)를 모두 온오프시킨 후 전력 조절 제어부(15)를 구동 제어한 후 제1 및 제2 최대 전력점 추적 동작에 의해 추적된 해당 최대 전력점 전압(Vmppt)을 기준전압(Vref)으로서 전력 조절 제어부(15)로 출력한다(SS59-S511).
다음 도 13과 도 14를 를 참고로 하여 본 발명의 또 다른 실시예를 설명한다.
도 13과 도 14에 도시한 것처럼, 본 예에 따른 태양광 발광 시스템(100b, 100c)은 스캔 제어부(123b1, 123b2)의 구조를 제외하면 도 1에 도시한 구조와 동일하다.
즉, 도 13의 스캔 제어부(123b1)의 스위칭 소자(Smppt21)는 MOSFET(metal oxide silicon field effect transistor)를 사용하고, 최대 전력점 추적 제어 장치(14)와 스위칭 소자(Smppt21) 사이에 전압 분배 저항(R1, R2)이 연결되어 있다.
따라서, 스캔 제어부(123b1)는 태양전지 패널(11)의 제1 출력단자(+)에 입력 단자인 드레인 단자가 연결되어 있고, 태양전지 패널(11)의 제2 출력단자(-)에 출력단자인 소스 단자가 연결되어 있는 스위칭 소자(Smppt21), 일측 단자는 최대 전력점 추적 제어 장치(14)의 동작 제어부(141)와 연결되어 제어 신호(Gmppt)를 인가받고 타측 단자는 스위칭 소자(Smppt21)의 제어 단자인 게이트 단자에 연결되어 있는 저항(R1) 및 저항(R1)의 타측 단자에 일측단자가 연결되어 있고 태양전지 패널(11)의 제2 출력단자(-)에 타측 단자가 연결되어 있는 저항(R2)을 구비한다.
이때, 저항(R1)은 가변저항(예, 트리머 가변 저항)일 수 있다.
이로 인해, 전압분배회로인 저항(R1 및 R2)을 이용하여 제1 스위칭 소자(Smppt21)의 제어 단자로 인가되는 전압(즉, 게이트 전압)의 크기를 감소시켜 MOSFET로 이루어진 반도체 스위칭 소자인 제1 스위칭 소자(Smppt21)가 능동영역에서 운전되면서 주 전류인 IDS의 크기를 제한할 수 있도록 한다.
이때, 가변 저항인 저항(R1)의 저항값을 조정하여 제1 스위칭 소자(Smppt21)를 흐르는 전류(IDS)의 크기가 조정된다.
또한, 도 14는 본 실시예에 따른 태양광 발전 시스템(100c)의 다른 예로서, 스캔 제어부(123b2)의 제1 스위칭 소자(Smppt22)가 바이폴라 트랜지스터로 이루어진 것을 제외하면 도 14의 스캔 제어부(123b1)의 경우와 동일하다.
따라서, 제1 스위칭 소자(Smppt22)는 태양전지 패널(11)의 제1 출력단자(+)에 입력단자인 컬렉터 단자가 연결되어 있고, 전압 분해 저항인 저항(R1, R2)의 타측 단자와 일측 단자에 제어 단자인 베이스 단자가 연결되어 있으며 태양전지 패널(11)의 제2 출력단자(-)에 출력단자인 베이스 단자가 연결되어 있다.
이러한 제1 스위칭 소자(Smppt22)의 종류를 제외하면, 도 14에 도시한 태양광 발전 시스템의 구조와 동일하므로 그에 대한 자세한 설명은 생략한다.
이와 같이, 바이폴라 트랜지스터로 이루어진 반도체 스위칭 소자인 제1 스위칭 소자(Smppt22)로 베이스 단자로 인가되는 제어 신호를 이용하여 능동 운전 영역에서 운전하도록 제어하여 평활용 커패시터(Cdc)의 방전시간을 제어한다.
이로 인해, 최대 전력점 추적 동작을 위한 태양전지 패널(11)의 스캔시간을 원하는 크기대로 조정할 수 있다.
이미 설명한 것처럼, 전압 분해 저항인 저항(R1, R2)을 통해 제1 스위칭 소자(Smppt11)의 베이스 단자로 인가되는 제어 신호(Gmppt)를 감소시켜 인가하므로 제1 스위칭 소자(Smppt22)가 능동 운전 영역에서 운전되면서 제1 스위칭 소자(Smppt22)를 흐르는 주 전류인 컬렉터 전류(IC)의 크기가 제한된다. 또한, 가변저항인 저항(R1)의 크기를 조정하여 주 전류 IC의 크기가 조정된다.
도 13과 도 14에 도시한 태양광 발전 시스템(100b, 100c)을 위한 최대 전력점 추적 제어 장치(14)의 동작은 도 4 및 도 5를 참고로 하여 설명한 것과 동일하므로, 그에 대한 자세한 설명은 생략한다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 최대 전력점 추적 동작의 정확도와 안정성을 향상시켜 태양 전지 패널의 발전 효율을 높이는 산업상 이용 가능성이 있다.

Claims (14)

  1. 태양전지 패널의 일측 출력단자의 전류를 감지하여 출력하는 전류 감지부,
    상기 태양전지 패널의 양측 출력단자 사이의 전압을 감지하여 출력하는 전압 출력부,
    상기 태양전지 패널의 양측 출력단자 사이에 위치하는 커패시터,
    스위칭 소자와 적어도 하나의 저항을 구비하고 있고, 상기 스위칭 소자의 턴온 또는 턴오프 상태에 따라 상기 커패시터의 방전 동작과 충전 동작을 제어하는 스캔 제어부, 그리고
    상기 전류 감지부, 상기 전압 감지부 및 상기 스캔 제어부에 연결되어 있고, 상기 스위칭 소자의 턴온 동작과 턴오프 동작을 제어하며, 상기 커패시터의 방전 동작 시 또는 충전 동작 시에 상기 전류 감지부와 상기 전압 감지부로부터 인가되는 신호를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점 추적 동작을 실시하는 최대 전력점 추적 제어 장치
    를 포함하는 태양광 발전 시스템.
  2. 제1항에서,
    상기 스캔 제어부는 하나의 저항과 하나의 스위칭 소자를 포함하고,
    상기 저항은 상기 태양전지 패널의 일측 출력단자에 일측 단자가 연결되어 있고,
    상기 스위칭 소자는 상기 저항과 상기 태양전지 패널의 타측 출력단자 사이에 입력단자와 출력단자가 연결되어 있고 상기 최대 전력점 추적 제어 장치에 제어 단자가 연결되어, 상기 최대 전력점 추적 제어 장치로부터 제어 신호를 인가받아 동작 상태가 정해지는
    태양광 발전 시스템.
  3. 제1항에서,
    상기 스캔 제어부는 제1 저항 및 제2 저항과 하나의 스위칭 소자를 포함하고,
    상기 스위칭 소자는 상기 태양전지 패널의 일측 출력단자와 타측 출력단자 사이에 입력단자와 출력단자가 연결되어 있고,
    상기 제1 저항의 일측단자는 최대 전력점 추적 제어 장치에 연결되어 상기 최대 전력점 추적 제어 장치로부터 제어 신호를 인가받고 타측단자는 상기 스위칭 소자의 제어 단자에 연결되어 있고,
    상기 제2 저항의 일측단자는 상기 제1 저항의 타측 단자에 연결되어 있고, 타측단자는 태양전지 패널의 타측 출력단자에 연결되어 있는
    태양광 발전 시스템.
  4. 제3항에서,
    상기 스위칭 소자는 MOSFET나 바이폴라 트랜지스터로 이루어져 있는 태양광 발전 시스템.
  5. 제1항에서,
    상기 최대 전력점 추적 제어 장치는,
    제어 신호를 이용하여 상기 스위칭 소자를 설정 시간 동안 턴오프시켜 상기 커패시터를 정해진 상태까지 충전시키고,
    정해진 스캔시간 동안 제어 신호를 이용하여 상기 스위칭 소자를 턴온시켜 상기 커패시터의 방전 동작이 이루어지도록 한 후, 정해진 스캔 주기마다 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하고, 산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 최대전력점 추적 동작을 실시하는
    태양광 발전 시스템.
  6. 제1항에서,
    상기 최대 전력점 추적 제어 장치는,
    제어 신호를 이용하여 상기 스위칭 소자를 턴오프시켜 상기 커패시터를 충전시키고,
    상기 전압 감지부에 의해 판정된 패널 출력전압이 정해진 최대 전압 초과이면, 상기 제어 신호를 이용하여 상기 스위칭 소자를 턴온시켜 상기 커패시터의 방전이 이루어지도록 하고,
    상기 커패시터의 방전 중에 상기 전압 감지부에 의해 판정된 패널 출력전압이 최소 전압 미만일 때까지 상기 전류 감지부와 상기 전압 감지부를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하고, 산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 최대전력점 추적 동작을 실시하는
    태양광 발전 시스템.
  7. 제1항에서,
    상기 최대 전력점 추적 제어 장치는,
    제어 신호를 이용하여 상기 스위칭 소자를 설정 시간 동안 턴온시켜 상기 커패시터를 정해진 상태까지 방전시키고,
    정해진 스캔시간 동안 상기 제어 신호를 이용하여 상기 스위칭 소자를 턴오프 상기 커패시터의 충전 동작이 이루어지도록 한 후, 정해진 스캔 주기마다 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하고, 산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 최대전력점 추적 동작을 실시하는
    태양광 발전 시스템.
  8. 제1항에서,
    상기 최대 전력점 추적 제어 장치는,
    제어 신호를 이용하여 상기 스위칭 소자를 턴온시켜 상기 커패시터의 방전이 이루어지도록 하고,
    상기 커패시터의 방전 중에 상기 전압 감지부에 의해 판정된 패널 출력전압이 정해진 최소 전압 미만이면, 상기 제어 신호를 이용하여 상기 스위칭 소자를 턴오프시켜 상기 커패시터의 충전이 이루어지도록 하고,
    상기 커패시터의 충전 중에 상기 전압 감지부에 의해 판정된 패널 출력전압이 최대 전압을 초과할 때까지 상기 전류 감지부와 상기 전압 감지부를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하고, 산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 최대전력점 추적 동작을 실시하는
    태양광 발전 시스템.
  9. 태양전지 패널의 일측 출력단자의 전류를 감지하여 출력하는 전류 감지부,
    상기 태양전지 패널의 양측 출력단자 사이의 전압을 감지하여 출력하는 전압 출력부,
    상기 태양전지 패널의 양측 출력단자 사이의 위치하는 커패시터,
    상기 태양전지 패널의 양측 출력단자에 병렬로 연결되어 있는 복수의 스캔 제어부, 그리고
    상기 전류 감지부, 상기 전압 감지부 및 상기 복수의 스캔 제어부에 연결되어 있는 최대 전력점 추적 제어 장치
    를 포함하고,
    상기 복수의 스캔 제어부 각각은,
    상기 태양전지 패널의 일측 출력단자에 일측 단자가 연결되어 있는 저항,
    그리고 상기 저항과 상기 태양전지 패널의 타측 출력단자 사이에 입력단자와 출력단자가 연결되어 있고 상기 최대 전력점 추적 제어 장치에 제어 단자가 연결되어 있는 스위칭 소자
    를 포함하고,
    상기 최대 전력점 추적 제어 장치는,
    복수 개의 스캔 제어부 중에서 하나의 스캔 제어부의 스위칭 소자로 인가되는 제어 신호를 이용하여 상기 하나의 스캔 제어부의 스위칭 소자를 턴온시켜 상기 커패시터를 방전시키고 상기 커패시터의 방전 중에 상기 전류 감지부와 상기 전압 감지부로부터 인가되는 신호를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점을 추적하는 제1 최대 전력점 추적 동작을 실시하고,
    다시 복수의 스캔 제어부 모두의 스위칭 소자로 인가되는 제어 신호를 이용하여 상기 복수의 스캔 제어부의 스위칭 소자를 모두 턴온시켜 상기 커패시터를 방전시키고 상기 커패시터의 방전 중에 상기 전류 감지부와 상기 전압 감지부로부터 인가되는 신호를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점을 추적하는 제2 최대 전력점 추적 동작을 실시하는
    태양광 발전 시스템.
  10. 제9항에서,
    제1 최대 전력점 추적 동작은 하나의 스캔 제어부의 스위칭 소자로 인가되는 제어 신호에 의해 상기 하나의 스캔 제어부의 스위칭 소자가 턴온 됨에 따라 상기 커패시터가 방전될 때 상기 커패시터의 방전 시간에 기초한 제1 스캔시간 동안 행해지고,
    제2 최대 전력점 추적 동작은 복수의 스캔 제어부 모두의 스위칭 소자로 인가되는 제어 신호에 의해 상기 복수의 스캔 제어부의 스위칭 소자가 모두 턴온됨에 따라 상기 커패시터가 방전될 때 상기 커패시터의 방전 시간에 기초한 제2 스캔시간 동안 행해지며,
    상기 제1 스캔 시간은 상기 제2 스캔 시간보다 긴
    태양광 발전 시스템.
  11. 해당 상태의 제어 신호를 설정 시간 동안 스위칭 소자로 인가하여 상기 스위칭 소자를 턴오프 또는 턴온시켜 커패시터를 정해진 상태까지 충전 또는 방전시키는 단계,
    정해진 스캔시간 동안 해당 상태의 제어 신호를 상기 스위칭 소자로 인가하여 상기 스위칭 소자를 턴온 또는 턴오프시켜 상기 커패시터를 방전 또는 충전시키는 단계,
    상기 커패시터의 방전 또는 충전 중에, 정해진 스캔 주기마다 전류 감지부와 전압 감지부를 이용하여 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하는 단계,
    판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하는 단계, 그리고
    산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 단계
    를 포함하는 태양광 발전 시스템의 제어 방법.
  12. 해당 상태의 제어 신호를 스위칭 소자로 인가하여 상기 스위칭 소자를 턴온 또는 턴오프시켜 커패시터를 충전 또는 방전시키는 단계,
    전압 감지부에 의해 판정된 패널 출력전압이 정해진 최대 전압 초과 또는 최소 전압 미만이면, 해당 상태의 제어 신호를 상기 스위칭 소자로 인가하여 상기 스위칭 소자를 턴온 또는 턴오프시켜 상기 커패시터를 방전 또는 충전시키는 단계,
    상기 커패시터의 방전 또는 충전 중에 전압 감지부에서 출력되는 신호를 이용하여 태양전지 패널의 패널 출력전압을 판정하는 단계,
    판정된 패널 출력전압이 최소 전압 미만 또는 최대 전압 초과일 때까지 전류 감지부와 전압 감지부를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하는 단계,
    판정된 패널 출력전류와 패널 출력전압을 이용하여 현재 패널 전력을 산출하는 단계, 그리고
    산출된 현재 패널 전력이 이전 패널 전력보다 크면 최대 전력점 전압을 판정된 패널 출력전압으로 하고, 현재 패널 전력을 이전 패널 전력으로 저장하는 단계
    를 포함하는 태양광 발전 시스템의 제어 방법.
  13. 복수 개의 스캔 제어부 중에서 하나의 스캔 제어부의 스위칭 소자로 해당 상태의 제어 신호를 인가하여 상기 하나의 스캔 제어부의 스위칭 소자를 턴온시켜 커패시터를 제1 시간 동안 방전시키는 단계,
    상기 제1 시간 동안의 커패시터의 방전 중에 전류 감지부와 전압 감지부로부터 인가되는 신호를 판독하여 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점을 추적하는 제1 최대 전력점 추적 동작을 실시하는 단계,
    복수의 스캔 제어부 모두의 스위칭 소자로 해당 상태의 제어 신호를 인가하여 상기 복수의 스캔 제어부의 스위칭 소자를 모두 턴온시켜 상기 커패시터를 제2 시간 동안 방전시키는 단계, 그리고
    상기 제2 시간 동안의 커패시터의 방전 중에 상기 전류 감지부와 상기 전압 감지부로부터 인가되는 신호를 이용하여 상기 태양전지 패널의 패널 출력전류와 패널 출력전압을 판정하고, 판정된 패널 출력전류와 패널 출력전압을 이용하여 패널 전력을 산출하여 최대 전력점을 추적하는 제2 최대 전력점 추적 동작을 실시하는 단계
    를 포함하고,
    상기 복수의 스캔 제어부 각각은,
    상기 태양전지 패널의 일측 출력단자에 일측 단자가 연결되어 있는 저항, 그리고
    상기 저항과 상기 태양전지 패널의 타측 출력단자 사이에 입력단자와 출력단자가 연결되어 있고 상기 최대 전력점 추적 제어 장치에 제어 단자가 연결되어 있는 스위칭 소자
    를 포함하는
    태양광 발전 시스템의 제어 방법.
  14. 제13항에서,
    제1 최대 전력점 추적 동작은 하나의 스캔 제어부의 스위칭 소자로 인가되는 제어 신호에 의해 상기 하나의 스캔 제어부의 스위칭 소자가 턴온되어 상기 커패시터가 방전될 때, 상기 제1 시간에 기초한 제1 스캔시간 동안 행해지고,
    제2 최대 전력점 추적 동작은 복수의 스캔 제어부 모두의 스위칭 소자로 인가되는 제어 신호에 의해 상기 복수의 스캔 제어부의 스위칭 소자가 모두 턴온되어 상기 커패시터가 방전될 때, 제2 시간에 기초한 제2 스캔시간 동안 행해지며,
    상기 제1 시간은 상기 제2 스캔 시간보다 긴
    태양광 발전 시스템의 제어 방법.
PCT/KR2018/004882 2017-04-26 2018-04-26 태양광 발전 시스템 및 그 제어 방법 WO2018199667A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0053624 2017-04-26
KR1020170053624A KR101968154B1 (ko) 2017-04-26 2017-04-26 태양광 발전 시스템 및 그 제어 방법

Publications (1)

Publication Number Publication Date
WO2018199667A1 true WO2018199667A1 (ko) 2018-11-01

Family

ID=63918451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004882 WO2018199667A1 (ko) 2017-04-26 2018-04-26 태양광 발전 시스템 및 그 제어 방법

Country Status (2)

Country Link
KR (1) KR101968154B1 (ko)
WO (1) WO2018199667A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174920A (zh) * 2019-06-10 2019-08-27 上海空间电源研究所 一种太阳电池阵变步长mppt控制电路及控制方法
CN112787593A (zh) * 2021-01-21 2021-05-11 德雷射科(廊坊)科技有限公司 测试光伏电池的最大功率的方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134235A (ko) * 2005-06-22 2006-12-28 인티그런트 테크놀로지즈(주) 튜닝 회로.
JP2012533105A (ja) * 2009-07-10 2012-12-20 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィ 電源の最大電力点の決定を可能にする情報を取得する装置
JP2014081921A (ja) * 2012-10-16 2014-05-08 Mitsubishi Electric R&D Centre Europe B.V. 太陽光電源の最大電力点を検出するための電力曲線測定の発生を制御する装置及び方法
US20140192568A1 (en) * 2009-02-20 2014-07-10 Sparq Systems Inc. Inverter for a Distributed Power Generator
KR20160075054A (ko) * 2014-12-19 2016-06-29 공주대학교 산학협력단 태양광 발전 시스템의 최대 전력점 추종 장치 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256433B1 (ko) 2012-12-06 2013-04-23 주식회사 광명전기 Pv 전류를 이용한 최대 전력점 추적 방식의 태양광 발전 시스템
KR101595060B1 (ko) 2014-10-01 2016-02-17 한국에너지기술연구원 태양광 발전 시스템의 동적 최대전력지점 추종 기능을 구비한 인버터장치 및 상기 인버터장치의 동적최대전력지점 추종 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134235A (ko) * 2005-06-22 2006-12-28 인티그런트 테크놀로지즈(주) 튜닝 회로.
US20140192568A1 (en) * 2009-02-20 2014-07-10 Sparq Systems Inc. Inverter for a Distributed Power Generator
JP2012533105A (ja) * 2009-07-10 2012-12-20 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィ 電源の最大電力点の決定を可能にする情報を取得する装置
JP2014081921A (ja) * 2012-10-16 2014-05-08 Mitsubishi Electric R&D Centre Europe B.V. 太陽光電源の最大電力点を検出するための電力曲線測定の発生を制御する装置及び方法
KR20160075054A (ko) * 2014-12-19 2016-06-29 공주대학교 산학협력단 태양광 발전 시스템의 최대 전력점 추종 장치 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174920A (zh) * 2019-06-10 2019-08-27 上海空间电源研究所 一种太阳电池阵变步长mppt控制电路及控制方法
CN112787593A (zh) * 2021-01-21 2021-05-11 德雷射科(廊坊)科技有限公司 测试光伏电池的最大功率的方法、装置及电子设备
CN112787593B (zh) * 2021-01-21 2022-05-27 德雷射科(廊坊)科技有限公司 测试光伏电池的最大功率的方法、装置及电子设备

Also Published As

Publication number Publication date
KR20180119912A (ko) 2018-11-05
KR101968154B1 (ko) 2019-04-12

Similar Documents

Publication Publication Date Title
WO2010104297A2 (ko) 능동형 정전력 공급장치
WO2014104776A1 (ko) Led 연속구동을 위한 led 구동회로, 이를 포함하는 led 조명장치 및 구동방법
WO2010093186A2 (ko) 배터리 셀 균등 충전 장치 및 그 제어 방법
WO2018052163A1 (ko) Pcs 효율을 고려한 마이크로그리드 운영장치 및 운영방법
WO2017069555A1 (en) Power supply device and power supply system including the same
WO2018199667A1 (ko) 태양광 발전 시스템 및 그 제어 방법
WO2019124678A1 (ko) 직류직류 컨버터를 포함하는 전력 공급 시스템 및 이의 제어 방법
WO2019088678A1 (en) Air conditioner and rectifier
WO2018030754A1 (en) Photovoltaic module and photovoltaic system including the same
WO2021049882A1 (ko) 배터리 관리 장치 및 방법
WO2019172643A1 (ko) 전원 장치
WO2021230593A1 (ko) 신재생 열병합발전소를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법
WO2019146899A1 (ko) 직류직류 컨버터 및 이의 전력 변환 방법
WO2016093534A1 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2023054928A1 (ko) 단락 전류 예측 장치 및 방법
CN107112767A (zh) 充电控制电路、充电装置、充电系统及充电控制方法
WO2018236088A1 (ko) 전원 공급 장치 및 부하에 전원을 공급하는 방법
US10090691B2 (en) Power generation system of renewable-energy-based electric power generator and DC power source combiner provided with reverse current prevention device capable of preventing power loss in power generation system
WO2019098709A1 (en) Photovoltaic module
EP3676945A1 (en) Air conditioner and rectifier
WO2015020463A1 (ko) 전원 장치
WO2023140566A1 (ko) 성능 상태 회로와 우회 회로가 장착된 태양광 모듈용 직렬 연결 차동 전력 변환기
WO2024043679A1 (ko) 이차전지 충전시스템 및 방법
WO2020251273A1 (ko) 모니터링 장치, 및 이를 구비하는 태양광 시스템
WO2018048233A1 (en) Photovoltaic module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791915

Country of ref document: EP

Kind code of ref document: A1