WO2017156699A1 - 确认信息的反馈装置、方法以及通信系统 - Google Patents

确认信息的反馈装置、方法以及通信系统 Download PDF

Info

Publication number
WO2017156699A1
WO2017156699A1 PCT/CN2016/076348 CN2016076348W WO2017156699A1 WO 2017156699 A1 WO2017156699 A1 WO 2017156699A1 CN 2016076348 W CN2016076348 W CN 2016076348W WO 2017156699 A1 WO2017156699 A1 WO 2017156699A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
user equipment
data
matrix
measurement
Prior art date
Application number
PCT/CN2016/076348
Other languages
English (en)
French (fr)
Inventor
杨现俊
王昕�
张健
Original Assignee
富士通株式会社
杨现俊
王昕�
张健
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 杨现俊, 王昕�, 张健 filed Critical 富士通株式会社
Priority to CN201680080881.XA priority Critical patent/CN108604943A/zh
Priority to PCT/CN2016/076348 priority patent/WO2017156699A1/zh
Publication of WO2017156699A1 publication Critical patent/WO2017156699A1/zh
Priority to US16/107,230 priority patent/US10530531B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1657Implicit acknowledgement of correct or incorrect reception, e.g. with a moving window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a feedback apparatus, method, and communication system for acknowledging (ACK, acknowledgment) information.
  • UE User Equipment
  • UE User Equipment
  • different user equipments may select the same transmission resource, causing data collisions.
  • the base station needs to confirm the successfully received data from different user equipments, that is, send acknowledgment (ACK) information to the corresponding user equipment. Therefore, when transmitting the ACK information, the base station needs to explicitly or implicitly indicate which user equipments the transmitted ACK information corresponds to.
  • ACK acknowledgment
  • a most intuitive implicit indication method is: based on user equipment identification information (UE-ID), establish a one-to-one mapping relationship table for all user equipments registered to the base station; each time feedback, the base station
  • the foregoing relationship table is broadcast to all user equipments, and the user equipment can obtain corresponding ACK information by receiving and demodulating the foregoing relationship table.
  • UE-ID based ACK information feedback method which can be called UIAF, UE-ID based ACK Feedback
  • UIAF UE-ID based ACK Feedback
  • the relationship between the ACK information and the user equipment is explicitly expressed. Specifically, the ACK information is transmitted through a dedicated control frame containing the corresponding UE-ID. In general, the size of the UE-ID is Bit, however, for the ACK information with only 1 bit, the overhead of this method is still relatively large.
  • LTE Long Term Evolution
  • the researchers by sending an ACK resource information with the base station previously assigned to the user device performs one mapping, so clever The above signaling overhead is avoided.
  • the feedback method based on the ACK information of the transmission resource (which may be referred to as REAF based ACK Feedback) in the above 3GPP LTE cannot be directly applied to contention-based data transmission. Because in contention-based data transmission, the user equipment does not have a dedicated transmission resource.
  • the embodiment of the invention provides a feedback device, a method and a communication system for confirming information; it is applicable not only to a contention-based data transmission scenario, but also has low signaling overhead and reliable performance.
  • a feedback method for confirming information including:
  • the measurement vector is broadcast to the plurality of user devices.
  • a feedback device for confirming information includes:
  • An information generating unit that generates an acknowledgment response vector according to whether the user equipment is correctly demodulated based on the data transmitted by the competition;
  • a vector generation unit that generates a measurement vector based on the predetermined compressed sensing measurement matrix and the confirmation response vector
  • a vector broadcast unit that broadcasts the measurement vector to the plurality of user devices.
  • a feedback method for confirming information including:
  • a feedback device for confirming information includes:
  • a vector receiving unit that receives a measurement vector for feedback confirmation information after transmitting data based on contention
  • An information recovery unit that recovers an acknowledgment response vector based on the predetermined compressed sensing measurement matrix and the measurement vector
  • a data determining unit that determines whether the transmitted data is correctly demodulated based on the acknowledgment response vector.
  • a communication system including:
  • a user equipment that transmits data to the base station based on the contention, and receives a measurement vector for feedback confirmation information; recovers an acknowledgment response vector based on the predetermined compressed sensing measurement matrix and the measurement vector; and determines to transmit according to the acknowledgment response vector Whether the data is correctly demodulated;
  • a base station that generates an acknowledgment response vector based on whether the user equipment is correctly demodulated based on content that is contending for transmission; generates a measurement vector based on the predetermined compressed sensing measurement matrix and the acknowledgment response vector; and provides the measurement vector to the plurality of users
  • the device broadcasts the measurement vector.
  • the beneficial effects of the embodiments of the present invention are: generating measurement vectors based on the compressed sensing measurement matrix and the acknowledgement response vector and broadcasting; thereby, not only applicable to the contention-based data transmission scenario, but also has lower signaling overhead and reliable performance.
  • FIG. 1 is a schematic diagram of a feedback method of confirmation information according to Embodiment 1 of the present invention.
  • FIG. 2 is another schematic diagram of a method for feeding back confirmation information according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of generating a compressed sensing measurement matrix according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a feedback method of confirmation information according to Embodiment 2 of the present invention.
  • Figure 5 is a schematic diagram showing the performance of Embodiment 3 of the present invention.
  • FIG. 6 is another schematic diagram of performance of Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of a feedback device for confirming information according to Embodiment 4 of the present invention.
  • FIG. 9 is another schematic diagram of a feedback device for confirming information according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram of a measurement matrix generating unit according to Embodiment 4 of the present invention.
  • FIG. 11 is a schematic diagram of a base station according to Embodiment 4 of the present invention.
  • Figure 12 is a schematic diagram of a feedback device for confirming information according to Embodiment 5 of the present invention.
  • FIG. 13 is a schematic diagram of a user equipment according to Embodiment 5 of the present invention.
  • Figure 14 is a schematic diagram of a communication system in accordance with Embodiment 6 of the present invention.
  • a base station may be referred to as an access point, a broadcast transmitter, a Node B, an evolved Node B (eNB), etc., and may include some or all of their functions.
  • the term “base station” will be used herein. Each base station pair Communication coverage is provided for a specific geographic area.
  • the term “cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • a mobile station or device may be referred to as a "user equipment” (UE).
  • UE may be fixed or mobile and may also be referred to as a mobile station, terminal, access terminal, subscriber unit, station, and the like.
  • the UE may be a cellular telephone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless telephone, and the like.
  • PDA personal digital assistant
  • FIG. 1 is a schematic diagram of a method for feeding back confirmation information according to an embodiment of the present invention. As shown in FIG. 1, the feedback method includes:
  • Step 101 The base station generates an acknowledgement response vector according to whether the user equipment is correctly demodulated based on the data sent by the competition.
  • Step 102 The base station generates a measurement vector based on the predetermined compressed sensing measurement matrix and the acknowledgement response vector;
  • Step 103 The base station broadcasts the measurement vector to a plurality of user equipments.
  • the user equipment may be a Machine Type Communication (MTC) terminal of an Internet of Things (IoT) system, and multiple user equipments send uplinks to base stations (eg, eNBs) of the IoT system based on contention. data.
  • MTC Machine Type Communication
  • IoT Internet of Things
  • the present invention is not limited thereto, and may be, for example, other communication systems, and can be applied to any communication system that performs data transmission and acknowledges information feedback.
  • the base station may be a macro base station (for example, an eNB), and a macro cell (for example, a macro cell) generated by the macro base station may provide a service for the user equipment; or the base station may also be a micro base station, and the micro base station generates a micro area.
  • a macro base station for example, an eNB
  • a macro cell for example, a macro cell
  • the base station may also be a micro base station, and the micro base station generates a micro area.
  • Pico cell or small cell can provide services for user equipment.
  • the present invention is not limited thereto, and a specific scenario can be determined according to actual needs.
  • the user equipment may receive the data and feed back the acknowledgment information based on the contention data.
  • the present invention is not limited thereto.
  • the user may receive the data and feed back the acknowledgment information, or may be another user equipment, or other Network side device.
  • the scenario in which the user equipment transmits uplink data to the base station based on the contention, and the base station feeds back the acknowledgement information according to the data demodulation situation is taken as an example.
  • the base station serves N user equipments, wherein K user equipments are activated. And send data, N is greater than or equal to K. Then, in step 101, the base station may generate an N ⁇ 1 acknowledgment response vector according to whether the data transmitted by the plurality of user equipments is correctly demodulated.
  • x n is an element in the acknowledgment response vector, n is greater than or equal to 1 and less than or equal to N; then x n is 1 to indicate that the data transmitted by the nth user equipment is correctly demodulated; x n is 0 may indicate that the data transmitted by the nth user equipment is not correctly demodulated, or the nth user equipment does not send data;
  • the base station may generate an M ⁇ 1 measurement vector based on the M ⁇ N ZC compressed sensing measurement matrix and the N ⁇ 1 acknowledgment response vector; where M ⁇ cKlog(N/K), c is a constant, N ZC is a prime number greater than or equal to N. According to the principle of compressed sensing, the number of rows M randomly selected needs to satisfy the above conditions.
  • the embodiment of the present invention only needs to transmit the measurement vector of M ⁇ 1 compared with the prior art (for example, UIAF), which originally needs to transmit the acknowledgment response vector of N ⁇ 1, and can be applied not only to the contention-based data transmission scenario. It also has low signaling overhead and reliable performance.
  • UIAF prior art
  • FIG. 2 is another schematic diagram of a method for feeding back confirmation information according to an embodiment of the present invention, showing a feedback process of the present invention from a user equipment side and a base station side.
  • the feedback method includes:
  • Step 201 The user equipment transmits uplink data to the base station based on the contention;
  • Step 202 The base station generates an acknowledgement response vector according to whether the data is correctly demodulated.
  • the base station may generate an ACK response vector x, where x is, for example, an N ⁇ 1 binary vector with a sparsity of K.
  • data, x n 0 representative base station is not successfully demodulated data from the n-th user equipment, or the n-th user equipment does not transmit data to the base station.
  • the present invention is not limited thereto, and a specific implementation manner of confirming the response vector may be determined according to actual conditions.
  • Step 203 The base station generates a measurement vector based on the predetermined compressed sensing measurement matrix and the acknowledgement response vector.
  • the compressed sensing measurement matrix may be predetermined, for example, the compressed sensing measurement matrix may be generated based on a partial circulant orthogonal matrix, as described in the following embodiments.
  • the present invention is not limited thereto, and for example, it may be based on a Gaussian distribution or a Bernoulli distribution.
  • the compressed sensing measurement matrix is determined.
  • the base station may further send the compressed sensing measurement matrix to the user equipment.
  • the user equipment can also generate the compressed sensing measurement matrix by itself.
  • the present invention is not limited thereto, as long as the base station side and the user equipment side obtain the compressed sensing measurement matrix in advance.
  • the measurement vector ⁇ x can be generated based on the compressed sensing measurement matrix ⁇ and the acknowledgment response vector x. Wherein, a zero is added to the N ⁇ 1 acknowledgment response vector to generate a vector of N ZC ⁇ 1; then, the compressed sensing measurement matrix of M ⁇ N ZC is multiplied by the vector of N ZC ⁇ 1 to generate M ⁇ The measurement vector of 1.
  • Step 204 The base station broadcasts the measurement vector to a plurality of user equipments.
  • Step 205 After receiving the measurement vector, the user equipment may recover the acknowledgement response vector based on the compressed sensing measurement matrix and the measurement vector.
  • the compressed sensing recovery algorithm such as CoSaMP (Compressive Sampling Matching Pursuit) algorithm, RSP (Regularized Subspace pursuit) algorithm, AMP (Approximate Massage Passing) algorithm, etc., can be used to estimate the received signal y based on the compressed sensing measurement matrix.
  • the transmitted ACK response vector x can be used to estimate the received signal y based on the compressed sensing measurement matrix.
  • Step 206 The user equipment determines, according to the acknowledgement response vector, whether the transmitted data is correctly demodulated.
  • the above is a schematic description of the feedback process of the confirmation information; the following describes a method for generating a compressed sensing measurement matrix by taking a partial cyclic orthogonal matrix as an example.
  • FIG. 3 is a schematic diagram of generating a compressed sensing measurement matrix according to an embodiment of the present invention. As shown in FIG. 3, the method for generating a compressed sensing measurement matrix may include:
  • Step 301 Select a prime number N ZC greater than N based on the number N of the plurality of user equipments;
  • N ZC 503.
  • the present invention is not limited thereto, and for example, other prime numbers larger than N may be selected.
  • Step 302 generating a ZC sequence of length N ZC ;
  • Step 303 generating a cyclic orthogonal matrix based on the ZC sequence, wherein each row in the cyclic orthogonal matrix is formed by cyclically shifting the ZC sequence;
  • the ZC sequence can be cyclically shifted from 1 to 503 bits, and the cyclic shifts are sequentially performed as rows of a matrix, and a cyclic orthogonal matrix Z of N ZC ⁇ N ZC is generated.
  • Step 304 randomly selecting M rows from the cyclic orthogonal matrix
  • R ⁇ is a 124 ⁇ 503 random selection matrix
  • specifies the subscript of the randomly extracted row.
  • M lines or the like may be selected according to a preset rule.
  • Step 305 generating a compressed sensing measurement matrix of M ⁇ N ZC based on the M rows.
  • the compressed sensing measurement matrix is generated by the partial cyclic orthogonal matrix described above, and the required storage space is small, the performance is good, and the complexity is small.
  • the present invention is not limited thereto, and the compressed sensing measurement matrix may be generated in other manners.
  • FIGS. 2 and 3 are only illustrative of the embodiments of the present invention, but the invention is not limited thereto.
  • the order of execution between the various steps can be appropriately adjusted, and other steps can be added or some of the steps can be reduced.
  • Those skilled in the art can appropriately modify the above based on the above contents, and are not limited to the description of the above drawings.
  • the measurement vector is generated and broadcast based on the compressed sensing measurement matrix and the acknowledgment response vector; thus, it is applicable not only to the contention-based uplink data transmission scenario, but also has low signaling overhead and reliable performance.
  • the embodiment of the present invention provides a method for the feedback of the acknowledgment information, which is described from the receiving end of the acknowledgment information (for example, the user equipment).
  • the same content of the embodiment of the present invention is not described herein.
  • FIG. 4 is a schematic diagram of a method for feeding back confirmation information according to an embodiment of the present invention. As shown in FIG. 4, the feedback method includes:
  • Step 401 After transmitting the data based on contention, the user equipment receives a measurement vector for feeding back the confirmation information.
  • Step 402 The user equipment recovers the acknowledgement response vector based on the predetermined compressed sensing measurement matrix and the measurement vector;
  • Step 403 The user equipment determines, according to the acknowledgement response vector, whether the transmitted data is correctly demodulated.
  • the acknowledgment response vector may be a vector of N ⁇ 1, where N is the number of multiple user equipments. K is the number of user devices in the plurality of user devices that are in an active state and transmit data, and N is greater than or equal to K.
  • x n is an element in the acknowledgment response vector, n is greater than or equal to 1 and less than or equal to N; x n is 1 indicating that the data transmitted by the nth user equipment is correctly demodulated; x n is 0 indicating The data sent by the n user equipments is not correctly demodulated, or the nth user equipment does not send data;
  • the compressed sensing measurement matrix may be a matrix of M ⁇ N ZC , and the measurement vector is a vector of M ⁇ 1; wherein M ⁇ cKlog(N/K), c is a constant, and N ZC is greater than or equal to The prime number of N.
  • the user equipment may generate the compressed sensing measurement matrix based on the partial cyclic orthogonal matrix.
  • the user equipment may also receive the compressed sensing measurement matrix sent by the base station, thereby obtaining the compressed sensing measurement matrix.
  • the present invention is not limited thereto, and may be preset, for example, before leaving the factory.
  • the transmitted ACK response vector x can then be estimated from the received signal y based on the compressed sensing measurement matrix using a compressed sensing recovery algorithm, such as the CoSaMP algorithm, the RSP algorithm, the AMP algorithm, and the like.
  • a measurement vector is generated and broadcast based on the compressed sensing measurement matrix and the acknowledgment response vector; thus, it is applicable not only to the contention-based uplink data transmission scenario, but also has low signaling overhead and reliable performance.
  • the present invention is further illustrated by way of examples on the basis of the embodiments 1 and 2.
  • N 500
  • P the probability that each user equipment is in an active state
  • K the average number of active user equipments
  • UE-ID user equipment identifier
  • the base station can generate a ZC sequence of length 503, and then perform the cyclic shift of the ZC sequence from 1 to 503 bits, and sequentially use the cyclic shift as a row of a certain matrix to generate an N ZC ⁇ N ZC Cyclic orthogonal matrix Z.
  • the measurement matrix ⁇ is 124 ⁇ 503 and the ACK response vector x is 500 ⁇ 1
  • a zero can be added to the end of the original ACK response vector x to become a 503 ⁇ 1 ACK response vector. x'.
  • the measurement vector finally generated by the base station is ⁇ x', and the measurement vector can be broadcast to all user equipments.
  • a compression-aware recovery algorithm such as a CoSaMP algorithm, an RSP algorithm, an AMP algorithm, etc.
  • N 500
  • the number of resources for contention as N r 64.
  • the signaling overhead of the ACK feedback that is, the signaling size required by the base station to feed back ACK information to all user equipments;
  • the probability of correctly detecting P cd that is, the probability that the base station successfully demodulates the data transmitted by the user equipment, and the user equipment successfully demodulates the ACK information from the base station;
  • the probability P mu of the user equipment data is missed, that is, the probability that the base station does not successfully demodulate the data sent by the user equipment, but the user equipment receives the ACK information from the base station;
  • the probability of missed detection of ACK P ma is the probability that the base station successfully demodulates the data transmitted by the user equipment, but the user equipment does not successfully demodulate the ACK information from the base station.
  • Table 1 shows the comparison of the signaling overhead of each scheme.
  • the signaling required by the REAF scheme is the smallest, and the signaling overhead required by the UIAF is the largest.
  • FIG. 5 is a schematic diagram of performance of an embodiment of the present invention, comparing the correct detection probability P cd of CSAF, UIAF, and REAF at different signal to noise ratios (SNR).
  • the CSAF scheme proposed by the present invention has the highest correct detection probability P cd under the AMP algorithm; the REAF has the worst P cd , because the transmission resource and the user equipment are in the contention-based uplink data transmission.
  • the UIAF scheme performs better at lower SNR than CSAF under CoSaMP algorithm and RSP algorithm, but when SNR is higher, CSAF has higher P cd ; CSAF under RSP algorithm Better P cd than under the CoSaMP algorithm.
  • FIG. 6 is another performance diagram of an embodiment of the present invention.
  • the probability P mu of the missed user equipment data under different SNRs of the CSAF, UIAF, and REAF schemes is compared, wherein the REAF has the highest missed user equipment data probability P mu .
  • UIAF and CSAF are similar to the missed user equipment data probability P mu under the CoSaMP algorithm and the RSP algorithm; however, the CSAF performance under the AMP algorithm is up to 5 times higher than the UIAF.
  • FIG. 7 is another schematic diagram of performance of the embodiment of the present invention, comparing the missed detection ACK probability of CSAF, UIAF, and REAF schemes under different SNRs, wherein the CSAF scheme proposed by the present invention has the lowest missed detection ACK probability under the AMP algorithm.
  • P ma a missed detection ACK probability
  • REAF has the highest missed detection ACK probability
  • UIAF and CSAF are similar to the missed detection ACK probability P ma under the CoSaMP algorithm and the RSP algorithm.
  • the CSAF scheme proposed by the present invention achieves similar detection performance with UIAF under the CoSaMP algorithm and the RSP algorithm with a 25% signaling overhead of the UIAF scheme; the CSAF scheme has the best under the AMP algorithm. Proper detection probability, lowest missed ACK probability, but the probability of missing user equipment data Relatively large; REAF has poor signalling overhead, but performance is too poor.
  • the embodiment of the present invention provides a feedback device for confirming information, and the same content as that of Embodiment 1 will not be described again.
  • FIG. 8 is a schematic diagram of a feedback device for confirming information according to an embodiment of the present invention.
  • the feedback device 800 for confirming information includes:
  • An information generating unit 801 configured to generate a confirmation response vector according to whether the plurality of user equipments correctly demodulate the data transmitted according to the competition;
  • a vector generation unit 802 that generates a measurement vector based on a predetermined compressed sensing measurement matrix and the confirmation response vector;
  • a vector broadcast unit 803 that broadcasts the measurement vector to the plurality of user equipments.
  • the acknowledgment response vector may be an N ⁇ 1 vector, N is the number of multiple user equipments, and K is the number of user equipments in the plurality of user equipments that are in an active state and transmit data, and N is greater than or equal to K. .
  • n is greater than or equal to 1 and less than or equal to N;
  • x n 1 indicates that the data transmitted by the nth user equipment is correctly demodulated; x n is 0 indicating that the data transmitted by the nth user equipment is not correctly demodulated, or the nth user equipment does not transmit data;
  • the compressed sensing measurement matrix may be a matrix of M ⁇ N ZC , and the measurement vector is a vector of M ⁇ 1; wherein M ⁇ cKlog(N/K), c is a constant, and N ZC is greater than or equal to The prime number of N.
  • the feedback device 900 for confirming information includes: an information generating unit 801, a vector generating unit 802, and a vector broadcasting unit 803, as described above. .
  • the feedback device 900 for confirming information may further include:
  • a measurement matrix generation unit 901 that generates the compressed perceptual measurement matrix based on a partial cyclic orthogonal matrix.
  • the feedback device 900 for confirming information may further include:
  • a measurement matrix transmitting unit 902 that transmits the compressed sensing measurement matrix to the user equipment.
  • the vector generating unit 802 may include:
  • a vector processing unit 8021 that adds zeros to the N ⁇ 1 acknowledgment response vector to generate a vector of N ZC ⁇ 1;
  • a matrix multiplying unit 8022 multiplies the M x N ZC compressed sensing measurement matrix by a vector of N ZC ⁇ 1 to generate an M ⁇ 1 measurement vector.
  • FIG. 10 is a schematic diagram of a measurement matrix generating unit according to an embodiment of the present invention.
  • the measurement matrix generating unit 901 may include:
  • a number determining unit 1001 that selects a prime number N ZC greater than N based on the number N of the plurality of user equipments;
  • a sequence generating unit 1002 which generates a ZC sequence of length N ZC ;
  • An orthogonal matrix generating unit 1003 that generates a cyclic orthogonal matrix based on the ZC sequence, wherein each of the cyclic orthogonal matrices is formed by cyclically shifting the ZC sequence;
  • a row selection unit 1004 selects M rows from the cyclic orthogonal matrix to generate a M x N ZC compressed sensing measurement matrix.
  • the embodiment further provides a base station, a feedback device 800 or 900 configured with the confirmation information as described above.
  • FIG. 11 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • base station 1100 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processor 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the feedback device 800 or 900 of the confirmation information may implement the feedback method of the confirmation information as described in Embodiment 1.
  • the central processor 200 can be configured to implement the functionality of the feedback device 800 or 900 of the acknowledgment information.
  • the central processing unit 200 may be configured to perform control to generate an acknowledgment response vector based on whether the plurality of user equipments are correctly demodulated based on the content transmitted by the competition; based on the predetermined compressed sensing measurement matrix and the acknowledgment response vector, Generating a measurement vector; and broadcasting the measurement vector to a plurality of user devices.
  • the base station 1100 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and details are not described herein again. It should be noted that the base station 1100 does not have to include all the components shown in FIG. 11; in addition, the base station 1100 may further include components not shown in FIG. 11, and reference may be made to the prior art.
  • a measurement vector is generated and broadcast based on the compressed sensing measurement matrix and the acknowledgment response vector; thus, it is applicable not only to the contention-based uplink data transmission scenario, but also has low signaling overhead and reliable performance.
  • the embodiment of the present invention provides a feedback device for confirming information, and the same content as that of Embodiment 2 will not be described again.
  • FIG. 12 is a schematic diagram of a feedback device for confirming information according to an embodiment of the present invention.
  • the feedback device 1200 for confirming information includes:
  • a vector receiving unit 1201 after receiving data based on contention, receiving a measurement vector for feeding back confirmation information;
  • An information recovery unit 1202 that recovers an acknowledgment response vector based on the predetermined compressed sensing measurement matrix and the measurement vector;
  • the data determining unit 1203 determines whether the transmitted data is correctly demodulated based on the acknowledgment response vector.
  • the acknowledgment response vector may be an N ⁇ 1 vector, N is the number of multiple user equipments, and K is the number of user equipments in the plurality of user equipments that are in an active state and transmit data, and N is greater than or equal to K. .
  • n is greater than or equal to 1 and less than or equal to N;
  • x n 1 indicates that the data transmitted by the nth user equipment is correctly demodulated; x n is 0 indicating that the data transmitted by the nth user equipment is not correctly demodulated, or the nth user equipment does not transmit data;
  • the compressed sensing measurement matrix may be a matrix of M ⁇ N ZC
  • the measurement vector may be a vector of M ⁇ 1; wherein M ⁇ cKlog(N/K), c is a constant, and N ZC is greater than or equal to N.
  • the prime number may be a matrix of M ⁇ N ZC , and the measurement vector may be a vector of M ⁇ 1; wherein M ⁇ cKlog(N/K), c is a constant, and N ZC is greater than or equal to N.
  • the prime number may be used to be a vector of M ⁇ 1; wherein M ⁇ cKlog(N/K), c is a constant, and N ZC is greater than or equal to N.
  • the feedback device 1200 for confirming information may further include:
  • the measurement matrix obtaining unit 1204 generates the compressed sensing measurement matrix based on the partial cyclic orthogonal matrix, or receives the compressed sensing measurement matrix transmitted by the base station.
  • the embodiment further provides a user equipment, and a feedback device 1200 configured with the confirmation information as described above.
  • FIG. 13 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 1300 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures can be used to supplement or replace the structure. Now telecommunications or other features.
  • the functionality of the feedback device 1200 that confirms the information may be integrated into the central processor 100.
  • the central processing unit 100 may be configured to implement the feedback method of the confirmation information described in Embodiment 2.
  • the central processing unit 100 may be configured to perform control of receiving a measurement vector for feedback confirmation information after transmitting data based on contention; recovering the confirmation response vector based on the predetermined compressed sensing measurement matrix and the measurement vector And determining, based on the acknowledgment response vector, whether the transmitted data is correctly demodulated.
  • the feedback device 1200 for confirming information may be configured separately from the central processing unit 100.
  • the feedback device 1200 that can confirm the information may be configured as a chip connected to the central processing unit 100, and controlled by the central processing unit 100. The function of the feedback device 1200 that implements the confirmation information.
  • the user equipment 1300 may further include: a communication module 110, an input unit 120, an audio processor 130, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 1300 does not have to include all the components shown in FIG. 13, and the above components are not required; in addition, the user equipment 1300 may further include components not shown in FIG. There are technologies.
  • a measurement vector is generated and broadcast based on the compressed sensing measurement matrix and the acknowledgment response vector; thus, it is applicable not only to the contention-based uplink data transmission scenario, but also has low signaling overhead and reliable performance.
  • the embodiment of the present invention further provides a communication system, and the same contents as those of Embodiments 1 to 5 are not described herein.
  • the communication system 1400 may include a base station 1401 and a user equipment 1402.
  • the user equipment 1402 transmits data to the base station 1401 based on the contention, and receives a measurement vector for feeding back the confirmation information; recovers the confirmation response vector based on the predetermined compressed sensing measurement matrix and the measurement vector; and according to the confirmation response vector Determine if the transmitted data is correctly demodulated;
  • the base station 1401 generates an acknowledgment response vector based on whether the plurality of user equipments 1402 correctly demodulate data transmitted based on contention; generates a measurement vector based on the predetermined compressed sensing measurement matrix and the acknowledgment response vector; and broadcasts to the plurality of user equipments 1402 The measurement vector.
  • the base station 1401 can serve N user equipments 1402, and wherein K user equipments 1402 are in an active state and transmit data.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the base station to perform a feedback method of the confirmation information described in Embodiment 1 when the program is executed in a base station.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a base station to perform a feedback method of the confirmation information described in Embodiment 1.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the user equipment to perform the feedback method of the confirmation information described in Embodiment 2 when the program is executed in the user equipment.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the user equipment to perform the feedback method of the confirmation information described in Embodiment 2.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the feedback device and/or method of confirming information described in connection with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 8 and/or one or more combinations of functional block diagrams may correspond to various software modules of a computer program flow, or Corresponds to each hardware module.
  • These software modules may correspond to the respective steps shown in FIG. 1, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor for performing the functions described herein can be implemented.
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种确认信息的反馈装置、方法和通信系统。所述确认信息的反馈方法包括:根据是否正确解调出多个用户设备基于竞争发送的数据而生成确认响应向量;基于预先确定的压缩感知测量矩阵和所述确认响应向量而生成测量向量;以及向多个用户设备广播所述测量向量;用户设备基于压缩感知测量矩阵和该测量向量恢复出该确认响应向量,根据该确认响应向量确定发送的数据是否被正确解调。由此,不仅适用于基于竞争的数据传输场景,而且具有较低的信令开销且性能可靠。

Description

确认信息的反馈装置、方法以及通信系统 技术领域
本发明涉及通信技术领域,特别涉及一种确认(ACK,acknowledge)信息的反馈装置、方法和通信系统。
背景技术
在基于竞争的上行数据传输中,用户设备(UE,User Equipment)没有专用的资源来传送数据。因此,不同的用户设备可能会选择相同的传输资源,从而造成数据冲突。为了保证数据的可靠传输,基站需要对成功接收到的来自不同用户设备的数据进行确认,即给相应的用户设备发送确认(ACK)信息。因此,基站在发送ACK信息时,需要显式地或隐式地指明所发送的ACK信息与哪些用户设备相对应。
一种最直观的隐式指明方法是:基于用户设备的标识信息(UE-ID),对所有注册到基站的用户设备建立一个关于ACK信息的一一映射的关系表;每次反馈时,基站向所有用户设备广播上述关系表,用户设备通过接收并解调上述关系表,可以获得对应的ACK信息。上述基于UE-ID的ACK信息的反馈方法(可称为UIAF,UE-ID based ACK Feedback)的最大缺点是,当只有少量用户设备处于活跃状态时,上述关系表中有很大一部分资源是没有传输有效数据的。
在IEEE 802.11中,ACK信息与用户设备之间的关系是显式表达的,具体而言,ACK信息是通过一个包含相应UE-ID的专门的控制帧来发送的。通常而言,UE-ID的大小为
Figure PCTCN2016076348-appb-000001
比特,然而针对只有1比特的ACK信息而言,该方法的开销仍然比较大。
在第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)长期演进(LTE,Long Term Evolution)中,研究者通过将ACK信息与基站预先分配给用户设备的发送资源进行一一映射,从而巧妙地避开了上述信令开销。然而,不幸的是,上述3GPP LTE中基于发送资源的ACK信息的反馈方法(可称为REAF,REsource based ACK Feedback),不能直接应用于基于竞争的数据传输。因为在基于竞争的数据传输中,用户设备没有专属的发送资源。
综上所述,当前迫切需要一种具有较低信令开销、性能可靠的、适用于基于竞争的数据传输场景的ACK信息的反馈方法。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
下面列出了对于理解本发明和常规技术有益的文献,通过引用将它们并入本文中,如同在本文中完全阐明了一样。
[参考文献1]D.L.Donoho,“Compressed sensing,”IEEE Transactions on Information Theory,vol.52,no.4,pp.1289-1306,2006。
[参考文献2]D.Needell and J.A.Tropp,“Cosamp:Iterative signal recovery from incomplete and inaccurate samples,”Applied and Computational Harmonic Analysis,vol.26,no.3,pp.301-321,2009.
[参考文献3]X.Yang,Q.Cui,E.Dutkiewicz,X.Huang,X.Tao and G.Fang,″Anti-noise-folding regularized subspace pursuit recovery algorithm for noisy sparse signals,″Wireless Communications and Networking Conference(WCNC),2014 IEEE,Istanbul,2014,pp.275-280.
[参考文献4]V.Chandar,D.Shah and G.W.Wornell,″A simple message-passing algorithm for compressed sensing,″Information Theory Proceedings(ISIT),2010 IEEE International Symposium on,Austin,TX,2010,pp.1968-1972.
发明内容
本发明实施例提供一种确认信息的反馈装置、方法和通信系统;不仅适用于基于竞争的数据传输场景,而且具有较低的信令开销且性能可靠。
根据本发明实施例的第一个方面,提供一种确认信息的反馈方法,包括:
根据是否正确解调出多个用户设备基于竞争发送的数据而生成确认响应向量;
基于预先确定的压缩感知测量矩阵和所述确认响应向量而生成测量向量;以及
向所述多个用户设备广播所述测量向量。
根据本发明实施例的第二个方面,提供一种确认信息的反馈装置,所述确认信息的反馈装置包括:
信息生成单元,其根据是否正确解调出多个用户设备基于竞争发送的数据而生成确认响应向量;
向量生成单元,其基于预先确定的压缩感知测量矩阵和所述确认响应向量而生成测量向量;以及
向量广播单元,其向所述多个用户设备广播所述测量向量。
根据本发明实施例的第三个方面,提供一种确认信息的反馈方法,包括:
在基于竞争发送数据之后,接收用于反馈确认信息的测量向量;
基于预先确定的压缩感知测量矩阵和所述测量向量恢复出确认响应向量;以及
根据所述确认响应向量确定发送的所述数据是否被正确解调。
根据本发明实施例的第四个方面,提供一种确认信息的反馈装置,所述确认信息的反馈装置包括:
向量接收单元,其在基于竞争发送数据之后,接收用于反馈确认信息的测量向量;
信息恢复单元,其基于预先确定的压缩感知测量矩阵和所述测量向量恢复出确认响应向量;以及
数据确定单元,其根据所述确认响应向量确定发送的所述数据是否被正确解调。
根据本发明实施例的第五个方面,提供一种通信系统,包括:
用户设备,其基于竞争向基站发送数据,并接收用于反馈确认信息的测量向量;基于预先确定的压缩感知测量矩阵和所述测量向量恢复出确认响应向量;以及根据所述确认响应向量确定发送的所述数据是否被正确解调;
基站,其根据是否正确解调出多个用户设备基于竞争发送的数据而生成确认响应向量;基于预先确定的压缩感知测量矩阵和所述确认响应向量而生成测量向量;以及向所述多个用户设备广播所述测量向量。
本发明实施例的有益效果在于:基于压缩感知测量矩阵和确认响应向量而生成测量向量并广播;由此,不仅适用于基于竞争的数据传输场景,而且具有较低的信令开销且性能可靠。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本发明实施例1的确认信息的反馈方法的示意图;
图2是本发明实施例1的确认信息的反馈方法的另一示意图;
图3是本发明实施例1的生成压缩感知测量矩阵的示意图;
图4是本发明实施例2的确认信息的反馈方法的示意图;
图5是本发明实施例3的性能示意图;
图6是本发明实施例3的另一性能示意图;
图7是本发明实施例3的另一性能示意图;
图8是本发明实施例4的确认信息的反馈装置的示意图;
图9是本发明实施例4的确认信息的反馈装置的另一示意图;
图10是本发明实施例4的测量矩阵生成单元的示意图;
图11是本发明实施例4的基站的示意图;
图12是本发明实施例5的确认信息的反馈装置的示意图;
图13是本发明实施例5的用户设备的示意图;
图14是本发明实施例6的通信系统的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请中,基站可以被称为接入点、广播发射机、节点B、演进节点B(eNB)等,并且可以包括它们的一些或所有功能。在文中将使用术语“基站”。每个基站对 特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请中,移动站或设备可以被称为“用户设备”(UE)。UE可以是固定的或移动的,并且也可以称为移动台、终端、接入终端、用户单元、站等。UE可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、膝上型计算机、无绳电话等。
实施例1
本发明实施例提供一种确认信息的反馈方法,从确认信息的发送端(例如基站)进行说明。图1是本发明实施例的确认信息的反馈方法的一示意图,如图1所示,所述反馈方法包括:
步骤101,基站根据是否正确解调出多个用户设备基于竞争发送的数据而生成确认响应向量;
步骤102,基站基于预先确定的压缩感知测量矩阵和该确认响应向量而生成测量向量;以及
步骤103,基站向多个用户设备广播该测量向量。
在本实施例中,用户设备可以是物联网(IoT,Internet of Things)系统的机器类型通信(MTC,Machine Type Communication)终端,多个用户设备基于竞争向IoT系统的基站(例如eNB)发送上行数据。但本发明不限于此,例如还可以是其他的通信系统,可以适用于任何进行数据传输和确认信息反馈的通信系统。
在本实施例中,基站可以为宏基站(例如eNB),该宏基站产生的宏小区(例如Macro cell)可以为用户设备提供服务;或者基站也可以为微基站,该微基站产生的微小区(例如Pico cell或者small cell)可以为用户设备提供服务。本发明不限于此,可以根据实际的需要确定具体的场景。
在本实施例中,用户设备基于竞争传输数据,接收数据并反馈确认信息的可以是基站,但本发明不限于此,例如接收数据并反馈确认信息的还可以是另一用户设备,或者是其他的网络侧设备。本发明实施例仅以“用户设备基于竞争向基站传输上行数据,基站根据数据解调的情况反馈确认信息”这一场景为例进行说明。
在本实施例中,假设基站为N个用户设备服务,其中K个用户设备处于激活状 态且发送数据,N大于或等于K。则在步骤101中,基站可以根据是否正确解调出多个用户设备发送的数据,而生成N×1的确认响应向量。
其中,假设xn为该确认响应向量中的某一元素,n大于或等于1且小于或等于N;则xn为1可以表示第n个用户设备发送的数据被正确解调;xn为0可以表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据;
或者,xn为0可以表示第n个用户设备发送的数据被正确解调;xn为1可以表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据。
值得注意的是,以上仅示意性说明了确认响应向量的内容,但本发明不限于此,可以根据实际情况确定确认响应向量的具体实施方式。
在步骤102中,基站可以基于M×NZC的压缩感知测量矩阵以及该N×1的确认响应向量,生成M×1的测量向量;其中M≥cKlog(N/K),c为常数,NZC是大于或等于N的质数。根据压缩感知原理,随机抽取的行数M需要满足上述条件。
由此,与原来需要传输N×1的确认响应向量的现有技术(例如UIAF)相比,本发明实施例仅需要传输M×1的测量向量;不仅可以适用于基于竞争的数据传输场景,而且具有较低的信令开销且性能可靠。
图2是本发明实施例的确认信息的反馈方法的另一示意图,从用户设备侧和基站侧示出了本发明的反馈过程。如图2所示,所述反馈方法包括:
步骤201,用户设备基于竞争向基站传输上行数据;
步骤202,基站根据是否正确解调出数据的情况而生成确认响应向量;
在本实施例中,基站可以生成一个ACK响应向量x,其中x例如是一个稀疏度为K的N×1的二进制向量,例如xn=1代表基站成功解调了来自第n个用户设备的数据,xn=0代表基站没有成功解调来自第n个用户设备的数据,或第n个用户设备没有向基站发送数据。但本发明不限于此,可以根据实际情况确定确认响应向量的具体实施方式。
步骤203,基站基于预先确定的压缩感知测量矩阵和该确认响应向量而生成测量向量;
在本实施例中,该压缩感知测量矩阵可以被预先确定,例如可以基于部分循环正交矩阵(partial circulant orthogonal matrix)生成该压缩感知测量矩阵,具体可以如后面实施例所述。但本发明不限于此,例如还可以根据高斯分布或者贝努利分布等,确 定该压缩感知测量矩阵。
在本实施例中,基站在生成该压缩感知测量矩阵之后,还可以向用户设备发送该压缩感知测量矩阵。此外,用户设备也可以自己生成该压缩感知测量矩阵。本发明不限于此,只要基站侧和用户设备侧预先获得该压缩感知测量矩阵即可。
在本实施例中,可以基于该压缩感知测量矩阵Φ和该确认响应向量x生成测量向量Φx。其中,可以向N×1的确认响应向量中加零,以生成NZC×1的向量;然后,将M×NZC的压缩感知测量矩阵与该NZC×1的向量相乘,生成M×1的测量向量。
步骤204,基站向多个用户设备广播该测量向量。
步骤205,用户设备接收到该测量向量之后,可以基于压缩感知测量矩阵和该测量向量恢复出确认响应向量;
在本实施例中,对于没有发送数据的用户设备,可以忽略该测量向量;对于发送过数据的用户设备,可以接收基站发送的信号:y=Φx+n,其中Φx为上述广播的测量向量,n是均值为0方差为σ2的高斯白噪声。然后可以利用压缩感知的恢复算法,例如CoSaMP(Compressive Sampling Matching Pursuit)算法、RSP(Regularized subspace pursuit)算法、AMP(Approximate Massage Passing)算法,等等,基于压缩感知测量矩阵从接收信号y中估计出发送的ACK响应向量x。
步骤206,用户设备根据该确认响应向量确定发送的数据是否被正确解调。
以上对于确认信息的反馈过程进行了示意性说明;以下以部分循环正交矩阵为例,对如何生成压缩感知测量矩阵进行说明。
图3是本发明实施例的生成压缩感知测量矩阵的一示意图,如图3所示,生成压缩感知测量矩阵的方法可以包括:
步骤301,基于多个用户设备的数目N,选择大于N的质数NZC
例如,注册到基站的用户设备的数目是N=500,则可以选择大于500的最小质数503,即NZC=503。但本发明不限于此,例如可以选择大于N的其他质数。
步骤302,生成长度为NZC的ZC序列;
关于ZC(Zadoff-Chu)序列的具体内容可以参考相关技术。
步骤303,基于该ZC序列生成循环正交矩阵,其中该循环正交矩阵中的每一行通过对该ZC序列进行循环移位而形成;
例如,可以将该ZC序列进行1至503位的循环移位,并将上述循环移位依次作 为矩阵的行,则生成了一个NZC×NZC的循环正交矩阵Z。
步骤304,从该循环正交矩阵中随机选择M行;
例如,随机抽取上述循环正交矩阵Z的M行,其中
Figure PCTCN2016076348-appb-000002
例如取值为M=124,得到部分循环正交矩阵Φ=RΩZ,其中RΩ是一个124×503的随机选择矩阵,Ω指定了随机抽取的行的下标。但本发明不限于此,例如还可以根据预设的规则选择M行等。
步骤305,基于该M行生成M×NZC的压缩感知测量矩阵。
在本实施例中,通过上述的部分循环正交矩阵来生成该压缩感知测量矩阵,需要的存储空间小,性能良好且复杂度小。但本发明不限于此,还可以采用其他的方式来生成该压缩感知测量矩阵。
值得注意的是,图2和3仅示意性地对本发明实施例进行了说明,但本发明不限于此。例如可以适当地调整各个步骤之间的执行顺序,此外还可以增加其他的一些步骤或者减少其中的某些步骤。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图的记载。
由上述实施例可知,基于压缩感知测量矩阵和确认响应向量生成测量向量并广播;由此,不仅适用于基于竞争的上行数据传输场景,而且具有较低的信令开销且性能可靠。
实施例2
本发明实施例提供一种确认信息的反馈方法,从确认信息的接收端(例如用户设备)进行说明;本发明实施例与实施例1相同的内容不再赘述。
图4是本发明实施例的确认信息的反馈方法的一示意图,如图4所示,所述反馈方法包括:
步骤401,用户设备在基于竞争发送数据之后,接收用于反馈确认信息的测量向量;
步骤402,用户设备基于预先确定的压缩感知测量矩阵和该测量向量恢复出确认响应向量;以及
步骤403,用户设备根据该确认响应向量,确定发送的数据是否被正确解调。
在本实施例中,该确认响应向量可以为N×1的向量,N为多个用户设备的数目, K为多个用户设备中处于激活状态且发送数据的用户设备的数目,N大于或等于K。
其中,xn为该确认响应向量中的某一元素,n大于或等于1且小于或等于N;xn为1表示第n个用户设备发送的数据被正确解调;xn为0表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据;
或者,xn为0表示第n个用户设备发送的数据被正确解调;xn为1表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据。
值得注意的是,以上仅示意性说明了确认响应向量的内容,但本发明不限于此,可以根据实际情况确定确认响应向量的具体实施方式。
在本实施例中,该压缩感知测量矩阵可以为M×NZC的矩阵,该测量向量为M×1的向量;其中M≥cKlog(N/K),c为常数,NZC是大于或等于N的质数。
在本实施例中,用户设备可以基于部分循环正交矩阵生成该压缩感知测量矩阵;或者,用户设备也可以接收基站发送的该压缩感知测量矩阵,由此获得该压缩感知测量矩阵。但本发明不限于此,例如还可以是在出厂前即被预先设置。
在本实施例中,用户设备可以接收例如基站发送的信号:y=Φx+n,其中Φx为上述测量向量,n是均值为0方差为σ2的高斯白噪声。然后可以利用压缩感知的恢复算法,例如CoSaMP算法、RSP算法、AMP算法,等等,基于压缩感知测量矩阵从接收信号y中估计出发送的ACK响应向量x。
由上述实施例可知,基于压缩感知测量矩阵和确认响应向量生成一测量向量并广播;由此,不仅适用于基于竞争的上行数据传输场景,而且具有较低的信令开销且性能可靠。
实施例3
本发明实施例在实施例1和2的基础上,通过实例对本发明进行进一步说明。
在本实施例中,假设所有注册到基站的用户设备的数目是N=500,每个用户设备处于活跃状态的概率为Pa=0.05,则用户设备活跃的平均数为K=25,用于竞争的资源数为Nr=64。
在本实施例中,每个活跃的用户设备可以从预设的Nr=64个资源中随机选择一个,以基于竞争的方式向基站发送数据。基站根据成功解调的数据及其相应的用户设备标识(UE-ID),可以生成一个500×1的二进制稀疏向量x,其中xn=1代表基站成功解 调了来自第n个用户设备的数据,xn=0代表基站没有成功解调来自第n个用户设备的数据或第n个用户设备处于非活跃状态。
在本实施例中,基站可以选择大于用户设备数N=500的最小质数NZC=503,作为用于生成压缩感知测量矩阵的ZC序列的长度。基站可以生成一长度为503的ZC序列,然后将上述ZC序列进行1至503位的循环移位,并将上述循环移位依次作为某一矩阵的行,则生成了一个NZC×NZC的循环正交矩阵Z。
然后,例如随机抽取上述循环正交矩阵Z的M行,其中
Figure PCTCN2016076348-appb-000003
例如取值为M=124。这样得到部分循环正交矩阵Φ=RΩZ,其中RΩ是一个124×503的随机选择矩阵,Ω指定了随机抽取的行的下标。
在本实施例中,由于测量矩阵Φ是124×503,而ACK响应向量x为500×1,为得到测量向量,可以在原ACK响应向量x的末端添零,变为503×1的ACK响应向量x’。
因此,基站最终生成的测量向量为Φx′,可以将该测量向量广播给所有用户设备。
在本实施例中,活跃的用户设备可以接收基站广播的信号y=Φx+n,其中n是均值为0方差为σ2的高斯白噪声。然后,该用户设备可以利用压缩感知的恢复算法,例如CoSaMP算法、RSP算法、AMP算法等,基于压缩感知测量矩阵从接收信号y中估计出基站发送的ACK响应向量x,从而得到与该用户设备发送数据相对应的ACK信息。
以上通过实例对本发明进行了说明,以下再对本发明的性能评估进行说明。
假设注册到基站的用户设备的数目是N=500,每个用户设备处于活跃状态的概率为Pa=0.05,则用户设备活跃的平均数为K=25,用于竞争的资源数为Nr=64。
若用户设备没有遇到数据冲突,则假设基站能够成功解调来自用户设备的数据的概率为Pd1=0.95;若两个用户设备同时选择了相同的资源发送数据,即发送数据冲突时,假设基站能成功解调来自其中任意一个用户设备的数据的概率为Pd2=0.4;若三个用户设备同时选择了相同的资源发送数据,即发送数据冲突时,假设基站能够成功解调来自其中任意一个用户设备的数据的概率为Pd3=0.1;测量值的数目为M=124。
为综合评估本发明的基于压缩感知的ACK反馈(可以称为CSAF,Compressed Sensing ACK Feedback)方案的性能,定义如下四个性能指标:
ACK反馈的信令开销,即基站对所有用户设备反馈ACK信息所需的信令大小;
正确检测的概率Pcd,即当基站成功解调用户设备发送的数据,且用户设备成功解调来自基站的ACK信息的概率;
漏检用户设备数据的概率Pmu,即当基站没有成功解调用户设备发送的数据,但是用户设备收到了来自基站的ACK信息的概率;
漏检ACK的概率Pma,即当基站成功解调用户设备发送的数据,但是用户设备没有成功解调来自基站的ACK信息的概率。
表1示出了各个方案的信令开销的比较情况
表1
方案 UIAF REAF IEEE 802.11 CSAF
信令开销 500 64 225 124
如表1所示,REAF方案所需的信令最小,UIAF所需的信令开销最大。
图5是本发明实施例的一性能示意图,比较了CSAF、UIAF以及REAF等方案在不同信噪比(SNR,Signal to Noise Ratio)下的正确检测概率Pcd。如图5所示,本发明提出的CSAF方案在AMP算法下具有最高的正确检测概率Pcd;REAF具有最差的Pcd,这是由于在基于竞争的上行数据传输中,传输资源与用户设备之间没有一一对应的关系;UIAF方案在较低SNR时比CSAF在CoSaMP算法、RSP算法下的性能要好些,但是当SNR较高时,CSAF具有更高的Pcd;CSAF在RSP算法下比在CoSaMP算法下具有更好的Pcd
图6是本发明实施例的另一性能示意图,比较了CSAF、UIAF以及REAF等方案在不同SNR下的漏检用户设备数据的概率Pmu,其中REAF具有最高的漏检用户设备数据概率Pmu;而UIAF与CSAF在CoSaMP算法、RSP算法下的漏检用户设备数据概率Pmu相差不多;但是CSAF在AMP算法下的性能要比UIAF最多高5倍。
图7是本发明实施例的另一性能示意图,比较了CSAF、UIAF以及REAF等方案在不同SNR下的漏检ACK概率,其中本发明提出的CSAF方案在AMP算法下具有最低的漏检ACK概率Pma;REAF具有最高的漏检ACK概率Pma;而UIAF与CSAF在CoSaMP算法、RSP算法下的漏检ACK概率Pma相差不多。
综上所述,本发明所提的CSAF方案在CoSaMP算法、RSP算法下,以UIAF方案25%的信令开销,取得了与UIAF相似的检测性能;CSAF方案在AMP算法下,具有最好的正确检测概率、最低的漏检ACK概率,但是其漏检用户设备数据的概率 相对较大;REAF虽然具有最小的信令开销,但是性能太差。
实施例4
本发明实施例提供一种确认信息的反馈装置,与实施例1相同的内容不再赘述。
图8是本发明实施例的确认信息的反馈装置的一示意图,如图8所示,确认信息的反馈装置800包括:
信息生成单元801,其根据是否正确解调出多个用户设备基于竞争发送的数据而生成确认响应向量;
向量生成单元802,其基于预先确定的压缩感知测量矩阵和所述确认响应向量而生成测量向量;以及
向量广播单元803,其向所述多个用户设备广播所述测量向量。
在本实施例中,确认响应向量可以为N×1的向量,N为多个用户设备的数目,K为多个用户设备中处于激活状态且发送数据的用户设备的数目,N大于或等于K。
其中,xn为确认响应向量中的某一元素,n大于或等于1且小于或等于N;
xn为1表示第n个用户设备发送的数据被正确解调;xn为0表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据;
或者,xn为0表示第n个用户设备发送的数据被正确解调;xn为1表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据。
值得注意的是,以上仅示意性说明了确认响应向量的内容,但本发明不限于此,可以根据实际情况确定确认响应向量的具体实施方式。
在本实施例中,压缩感知测量矩阵可以为M×NZC的矩阵,所述测量向量为M×1的向量;其中M≥cKlog(N/K),c为常数,NZC是大于或等于N的质数。
图9是本发明实施例的确认信息的反馈装置的另一示意图,如图9所示,确认信息的反馈装置900包括:信息生成单元801、向量生成单元802和向量广播单元803,如上所述。
如图9所示,确认信息的反馈装置900还可以包括:
测量矩阵生成单元901,其基于部分循环正交矩阵生成所述压缩感知测量矩阵。
如图9所示,确认信息的反馈装置900还可以包括:
测量矩阵发送单元902,其向所述用户设备发送所述压缩感知测量矩阵。
如图9所示,向量生成单元802可以包括:
向量处理单元8021,其向N×1的确认响应向量加零,以生成NZC×1的向量;
矩阵相乘单元8022,其将M×NZC的压缩感知测量矩阵与NZC×1的向量相乘,生成M×1的测量向量。
图10是本发明实施例的测量矩阵生成单元的一示意图,如图10所示,测量矩阵生成单元901可以包括:
数目确定单元1001,其基于多个用户设备的数目N,选择大于N的质数NZC
序列生成单元1002,其生成长度为NZC的ZC序列;
正交矩阵生成单元1003,其基于ZC序列生成循环正交矩阵,其中该循环正交矩阵中的每一行通过对ZC序列进行循环移位而形成;以及
行选择单元1004,其从循环正交矩阵中选择M行,以生成M×NZC的压缩感知测量矩阵。
本实施例还提供一种基站,配置有如上所述的确认信息的反馈装置800或900。
图11是本发明实施例的基站的一构成示意图。如图11所示,基站1100可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,确认信息的反馈装置800或900可以实现如实施例1所述的确认信息的反馈方法。中央处理器200可以被配置为实现确认信息的反馈装置800或900的功能。
例如,中央处理器200可以被配置为进行如下控制:根据是否正确解调出多个用户设备基于竞争发送的数据,生成确认响应向量;基于预先确定的压缩感知测量矩阵和所述确认响应向量,生成测量向量;以及向多个用户设备广播所述测量向量。
此外,如图11所示,基站1100还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站1100也并不是必须要包括图11中所示的所有部件;此外,基站1100还可以包括图11中没有示出的部件,可以参考现有技术。
由上述实施例可知,基于压缩感知测量矩阵和确认响应向量生成一测量向量并广播;由此,不仅适用于基于竞争的上行数据传输场景,而且具有较低的信令开销且性能可靠。
实施例5
本发明实施例提供一种确认信息的反馈装置,与实施例2相同的内容不再赘述。
图12是本发明实施例的确认信息的反馈装置的一示意图,如图12所示,确认信息的反馈装置1200包括:
向量接收单元1201,其在基于竞争发送数据之后,接收用于反馈确认信息的测量向量;
信息恢复单元1202,其基于预先确定的压缩感知测量矩阵和所述测量向量恢复出确认响应向量;以及
数据确定单元1203,其根据所述确认响应向量确定发送的所述数据是否被正确解调。
在本实施例中,确认响应向量可以为N×1的向量,N为多个用户设备的数目,K为多个用户设备中处于激活状态且发送数据的用户设备的数目,N大于或等于K。
其中,xn为确认响应向量中的某一元素,n大于或等于1且小于或等于N;
xn为1表示第n个用户设备发送的数据被正确解调;xn为0表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据;
或者,xn为0表示第n个用户设备发送的数据被正确解调;xn为1表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据。
值得注意的是,以上仅示意性说明了确认响应向量的内容,但本发明不限于此,可以根据实际情况确定确认响应向量的具体实施方式。
在本实施例中,压缩感知测量矩阵可以为M×NZC的矩阵,测量向量可以为M×1的向量;其中M≥cKlog(N/K),c为常数,NZC是大于或等于N的质数。
在本实施例中,如图12所示,确认信息的反馈装置1200还可以包括:
测量矩阵获得单元1204,其基于部分循环正交矩阵生成所述压缩感知测量矩阵,或者接收基站发送的所述压缩感知测量矩阵。
本实施例还提供一种用户设备,配置有如上所述的确认信息的反馈装置1200。
图13是本发明实施例的用户设备的一示意图。如图13所示,该用户设备1300可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实 现电信功能或其他功能。
在一个实施方式中,确认信息的反馈装置1200的功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为实现实施例2中所述的确认信息的反馈方法。
例如,中央处理器100可以被配置为进行如下的控制:在基于竞争发送数据之后,接收用于反馈确认信息的测量向量;基于预先确定的压缩感知测量矩阵和所述测量向量恢复出确认响应向量;以及根据所述确认响应向量确定发送的数据是否被正确解调。
在另一个实施方式中,确认信息的反馈装置1200可以与中央处理器100分开配置,例如可以将确认信息的反馈装置1200配置为与中央处理器100连接的芯片,通过中央处理器100的控制来实现确认信息的反馈装置1200的功能。
如图13所示,该用户设备1300还可以包括:通信模块110、输入单元120、音频处理器130、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备1300也并不是必须要包括图13中所示的所有部件,上述部件并不是必需的;此外,用户设备1300还可以包括图13中没有示出的部件,可以参考现有技术。
由上述实施例可知,基于压缩感知测量矩阵和确认响应向量生成一测量向量并广播;由此,不仅适用于基于竞争的上行数据传输场景,而且具有较低的信令开销且性能可靠。
实施例6
本发明实施例还提供一种通信系统,与实施例1至5相同的内容不再赘述。
图14是本发明实施例的通信系统的一示意图,如图14所示,通信系统1400可以包括基站1401和用户设备1402。
其中,用户设备1402基于竞争向基站1401发送数据,并接收用于反馈确认信息的测量向量;基于预先确定的压缩感知测量矩阵和所述测量向量恢复出确认响应向量;以及根据所述确认响应向量确定发送的数据是否被正确解调;
基站1401根据是否正确解调出多个用户设备1402基于竞争发送的数据,生成确认响应向量;基于预先确定的压缩感知测量矩阵和所述确认响应向量生成测量向量;以及向多个用户设备1402广播该测量向量。
在本实施例中,所述基站1401可以为N个用户设备1402服务,以及其中K个用户设备1402处于激活状态并发送数据。
本发明实施例还提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得所述基站执行实施例1所述的确认信息的反馈方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得基站执行实施例1所述的确认信息的反馈方法。
本发明实施例还提供一种计算机可读程序,其中当在用户设备中执行所述程序时,所述程序使得所述用户设备执行实施例2所述的确认信息的反馈方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得用户设备执行实施例2所述的确认信息的反馈方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的确认信息的反馈装置和/或方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图8中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合(例如,向量生成单元等),既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图1所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合, 可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (15)

  1. 一种确认信息的反馈装置,所述确认信息的反馈装置包括:
    信息生成单元,其根据是否正确解调出多个用户设备基于竞争发送的数据而生成确认响应向量;
    向量生成单元,其基于预先确定的压缩感知测量矩阵和所述确认响应向量而生成测量向量;以及
    向量广播单元,其向所述多个用户设备广播所述测量向量。
  2. 根据权利要求1所述的反馈装置,其中,所述确认响应向量为N×1的向量,N为多个用户设备的数目,K为所述多个用户设备中处于激活状态且发送数据的用户设备的数目,N大于或等于K。
  3. 根据权利要求2所述的反馈装置,其中,xn为所述确认响应向量中的某一元素,n大于或等于1且小于或等于N;
    xn为1表示第n个用户设备发送的数据被正确解调;xn为0表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据;
    或者,xn为0表示第n个用户设备发送的数据被正确解调;xn为1表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据。
  4. 根据权利要求2所述的反馈装置,其中,所述压缩感知测量矩阵为M×NZC的矩阵,所述测量向量为M×1的向量;
    其中M≥cKlog(N/K),c为常数,NZC是大于或等于N的质数。
  5. 根据权利要求1所述的反馈装置,其中,所述反馈装置还包括:
    测量矩阵生成单元,其基于部分循环正交矩阵生成所述压缩感知测量矩阵。
  6. 根据权利要求5所述的反馈装置,其中,所述测量矩阵生成单元包括:
    数目确定单元,其基于所述多个用户设备的数目N,选择大于N的质数NZC
    序列生成单元,其生成长度为NZC的ZC序列;
    正交矩阵生成单元,其基于所述ZC序列生成循环正交矩阵,其中所述循环正交矩阵中的每一行通过对所述ZC序列进行循环移位而形成;以及
    行选择单元,其从所述循环正交矩阵中随机选择M行,以生成M×NZC的所述压缩感知测量矩阵。
  7. 根据权利要求5所述的反馈装置,其中,所述反馈装置还包括:
    测量矩阵发送单元,其向所述用户设备发送所述压缩感知测量矩阵。
  8. 根据权利要求4所述的反馈装置,其中,所述向量生成单元包括:
    向量处理单元,其向N×1的所述确认响应向量加零,以生成NZC×1的向量;
    矩阵相乘单元,其将M×NZC的所述压缩感知测量矩阵与所述NZC×1的向量相乘,生成M×1的所述测量向量。
  9. 一种确认信息的反馈装置,所述确认信息的反馈装置包括:
    向量接收单元,其在基于竞争发送数据之后,接收用于反馈确认信息的测量向量;
    信息恢复单元,其基于预先确定的压缩感知测量矩阵和所述测量向量而恢复出确认响应向量;以及
    数据确定单元,其根据所述确认响应向量确定发送的所述数据是否被正确解调。
  10. 根据权利要求9所述的反馈装置,其中,所述确认响应向量为N×1的向量,N为多个用户设备的数目,K为所述多个用户设备中处于激活状态且发送数据的用户设备的数目,N大于或等于K。
  11. 根据权利要求10所述的反馈装置,其中,xn为所述确认响应向量中的某一元素,n大于或等于1且小于或等于N;
    xn为1表示第n个用户设备发送的数据被正确解调;xn为0表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据;
    或者,xn为0表示第n个用户设备发送的数据被正确解调;xn为1表示第n个用户设备发送的数据没有被正确解调,或者第n个用户设备没有发送数据。
  12. 根据权利要求10所述的反馈装置,其中,所述压缩感知测量矩阵为M×NZC的矩阵,所述测量向量为M×1的向量;
    其中M≥cKlog(N/K),c为常数,NZC是大于或等于N的质数。
  13. 根据权利要求9所述的反馈装置,其中,所述反馈装置还包括:
    测量矩阵获得单元,其基于部分循环正交矩阵生成所述压缩感知测量矩阵,或者接收基站发送的所述压缩感知测量矩阵。
  14. 一种通信系统,所述通信系统包括:
    用户设备,其基于竞争向基站发送数据,并接收用于反馈确认信息的测量向量;基于预先确定的压缩感知测量矩阵和所述测量向量恢复出确认响应向量;以及根据所 述确认响应向量确定发送的所述数据是否被正确解调;
    基站,其根据是否正确解调出多个用户设备基于竞争发送的数据而生成确认响应向量;基于预先确定的压缩感知测量矩阵和所述确认响应向量而生成测量向量;以及向所述多个用户设备广播所述测量向量。
  15. 根据权利要求14所述的通信系统,其中,所述基站为N个用户设备服务,以及其中K个用户设备处于激活状态并发送数据。
PCT/CN2016/076348 2016-03-15 2016-03-15 确认信息的反馈装置、方法以及通信系统 WO2017156699A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680080881.XA CN108604943A (zh) 2016-03-15 2016-03-15 确认信息的反馈装置、方法以及通信系统
PCT/CN2016/076348 WO2017156699A1 (zh) 2016-03-15 2016-03-15 确认信息的反馈装置、方法以及通信系统
US16/107,230 US10530531B2 (en) 2016-03-15 2018-08-21 Acknowledgement information feedback apparatus, method and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076348 WO2017156699A1 (zh) 2016-03-15 2016-03-15 确认信息的反馈装置、方法以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/107,230 Continuation US10530531B2 (en) 2016-03-15 2018-08-21 Acknowledgement information feedback apparatus, method and communication system

Publications (1)

Publication Number Publication Date
WO2017156699A1 true WO2017156699A1 (zh) 2017-09-21

Family

ID=59851737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076348 WO2017156699A1 (zh) 2016-03-15 2016-03-15 确认信息的反馈装置、方法以及通信系统

Country Status (3)

Country Link
US (1) US10530531B2 (zh)
CN (1) CN108604943A (zh)
WO (1) WO2017156699A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795170A (zh) * 2009-02-02 2010-08-04 中兴通讯股份有限公司 一种实现数据反馈的方法、接收设备及系统
WO2014206167A1 (zh) * 2013-06-27 2014-12-31 华为技术有限公司 反馈csi的方法、调度ue的方法、ue及基站
CN105162548A (zh) * 2015-07-21 2015-12-16 北京邮电大学 认知无线网络中的编码、译码方法及装置
CN105338509A (zh) * 2014-07-15 2016-02-17 富士通株式会社 邻居节点的发现方法以及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1747568A (zh) * 2004-09-06 2006-03-15 松下电器产业株式会社 基站中多用户反馈信息的分类组合传送方法
EP2056505B1 (en) * 2006-07-07 2014-08-27 Mitsubishi Electric Corporation Wireless communication system
US8059622B2 (en) * 2008-09-04 2011-11-15 Intel Corporation Multi-radio platform and method for coordinating activities between a broadband wireless access network transceiver and co-located transceiver
CN102237991B (zh) * 2010-04-30 2016-08-24 北京三星通信技术研究有限公司 在tdd系统中发送ack/nack信息的方法
US8750807B2 (en) 2011-01-10 2014-06-10 Mediatek Inc. Measurement gap configuration in wireless communication systems with carrier aggregation
CN102647246B (zh) 2011-02-22 2014-08-13 上海无线通信研究中心 一种d2d对或d2d簇通信建立方法
CN102412945B (zh) 2011-11-01 2014-05-07 新邮通信设备有限公司 物理混合重传指示信道的功率配置方法
CN104113851B (zh) 2013-04-16 2019-04-16 中兴通讯股份有限公司 一种d2d发现方法及基站、用户设备
CN105187157B (zh) * 2015-08-06 2019-01-29 北京北方烽火科技有限公司 一种反馈ack/nack信息的方法、装置及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795170A (zh) * 2009-02-02 2010-08-04 中兴通讯股份有限公司 一种实现数据反馈的方法、接收设备及系统
WO2014206167A1 (zh) * 2013-06-27 2014-12-31 华为技术有限公司 反馈csi的方法、调度ue的方法、ue及基站
CN105338509A (zh) * 2014-07-15 2016-02-17 富士通株式会社 邻居节点的发现方法以及装置
CN105162548A (zh) * 2015-07-21 2015-12-16 北京邮电大学 认知无线网络中的编码、译码方法及装置

Also Published As

Publication number Publication date
US20180359056A1 (en) 2018-12-13
CN108604943A (zh) 2018-09-28
US10530531B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
US11882065B2 (en) Transmission apparatus and transmission method
WO2017041677A1 (zh) 传输数据的方法和装置
CN113302518B (zh) 确认ieee 802.15.4z的测距配置的框架和方法
CN110771249B (zh) 信息传输方法以及装置、随机接入方法以及装置、通信系统
CN111492714B (zh) 用于与未关联站进行通信的系统
CN113273115B (zh) 信息发送和接收方法以及装置
WO2017202375A1 (zh) 信息传输方法和装置
WO2018090952A1 (zh) 用于增强无随机接入切换的方法、装置、基站及终端
WO2017000900A1 (zh) 传输信息的方法和设备
WO2020194924A1 (ja) 端末及び送信方法
US10143035B2 (en) Device and method of handling communication with communication device
CN111294165B (zh) 资源分配方法及装置、存储介质、终端
US11728939B2 (en) Transport block communication as part of multiple access wireless communication
WO2019223605A1 (zh) Rrc重配置期间的数据发送与接收方法和装置
CN114287115A (zh) 基于侧链路cbg的harq反馈和保留资源上的相关联的重传
WO2017156699A1 (zh) 确认信息的反馈装置、方法以及通信系统
WO2017114033A1 (zh) 一种传输机会确定方法及接入点
WO2022134050A1 (zh) 无线通信方法和终端
WO2022111470A1 (zh) 资源处理方法、装置、系统及存储介质
WO2021228182A1 (zh) Pdsch传输方法及装置
WO2017004819A1 (zh) 资源调度的方法、装置和设备
WO2021155569A1 (zh) 边链路资源的选择方法以及装置
WO2019028619A1 (zh) 一种数据调度方法及装置、计算机存储介质
WO2019213974A1 (zh) 随机接入过程中消息传输的方法及相关装置
WO2018227394A1 (zh) 下行反馈发送、接收方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893864

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893864

Country of ref document: EP

Kind code of ref document: A1