WO2022134050A1 - 无线通信方法和终端 - Google Patents

无线通信方法和终端 Download PDF

Info

Publication number
WO2022134050A1
WO2022134050A1 PCT/CN2020/139561 CN2020139561W WO2022134050A1 WO 2022134050 A1 WO2022134050 A1 WO 2022134050A1 CN 2020139561 W CN2020139561 W CN 2020139561W WO 2022134050 A1 WO2022134050 A1 WO 2022134050A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
pstch
prb
present application
prb set
Prior art date
Application number
PCT/CN2020/139561
Other languages
English (en)
French (fr)
Inventor
张世昌
丁伊
赵振山
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/139561 priority Critical patent/WO2022134050A1/zh
Priority to CN202080105902.5A priority patent/CN116326010A/zh
Publication of WO2022134050A1 publication Critical patent/WO2022134050A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to a wireless communication method and terminal.
  • Device-to-device communication is a Sidelink (SL) transmission technology based on Device to Device (D2D), which is different from the way in which communication data is received or sent by the base station in traditional cellular systems. Higher spectral efficiency and lower transmission delay.
  • the IoV system adopts terminal-to-terminal direct communication.
  • the 3rd Generation Partnership Project (3GPP) defines two transmission modes, namely the first mode and the second mode. In the transmission mode of the second mode, the terminal randomly selects transmission resources in the resource pool, or selects transmission resources according to the listening result. This resource selection mode can avoid interference between terminals to a certain extent.
  • Embodiments of the present application provide a wireless communication method and terminal. By perfecting the second mode, system performance can be improved.
  • a wireless communication method including:
  • the first terminal sends trigger signaling by using the physical sideline trigger channel PSTCH, where the trigger signaling is used to instruct the second terminal to send a reference resource set used to assist the first terminal in selecting resources.
  • a wireless communication method including:
  • the second terminal uses the physical sideline trigger channel PSTCH to receive trigger signaling, where the trigger signaling is used to instruct the second terminal to send a reference resource set for assisting the first terminal in selecting resources.
  • a first terminal is provided, which is configured to execute the method in the above-mentioned first aspect or each of its implementations.
  • the first terminal includes a functional module for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • a second terminal for executing the method in the second aspect or each of its implementations.
  • the second terminal includes a functional module for executing the method in the above-mentioned second aspect or each implementation manner thereof.
  • a first terminal including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a second terminal including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • a chip for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes any one of the above-mentioned first to second aspects or each of its implementations method in .
  • a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first aspect to the second aspect or each of its implementations.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above-mentioned first to second aspects or the implementations thereof.
  • a computer program which, when run on a computer, causes the computer to perform the method in any one of the above-mentioned first to second aspects or the respective implementations thereof.
  • FIG. 1 to FIG. 6 are examples of scenarios provided by the embodiments of the present application.
  • Fig. 7 is a schematic diagram of PSCCH and PSSCH frame structures provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a first PRB set and a second PRB set provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a first terminal provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a second terminal provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the embodiments of the present application can be applied to any terminal-device-to-terminal-device communication framework.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • D2D Device to Device
  • the terminal device in this embodiment of the present application may be any device or apparatus configured with a physical layer and a media access control layer, and the terminal device may also be referred to as an access terminal.
  • UE User Equipment
  • subscriber unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless Communication-enabled handheld devices, computing devices or other linear processing devices connected to wireless modems, in-vehicle devices, wearable devices, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the embodiment of the present invention is described by taking a vehicle-mounted terminal as an example, but is not limited thereto.
  • FIG. 1 to FIG. 4 are a system framework from a vehicle-mounted terminal to a vehicle-mounted terminal provided by an embodiment of the present application.
  • all the terminals including the terminal 1 and the terminal 2) performing the lateral communication are within the coverage of the same network device, so that all the terminals can receive the network device’s Configure signaling for sideline communication based on the same sideline configuration.
  • some terminals performing sideline communication are located within the coverage of network equipment, and these terminals (ie, terminal 1) can receive the configuration signaling of network equipment, and Lateral communication is performed according to the configuration of the network device.
  • the terminal located outside the network coverage ie, terminal 2 cannot receive the configuration signaling of the network device.
  • the terminal outside the network coverage will The information carried in the sideline broadcast channel PSBCH sent by the terminal inside determines the sideline configuration, and performs sideline communication.
  • all the terminals including terminal 1 and terminal 2 performing the lateral communication are located outside the network coverage, and all the terminals determine the lateral configuration according to the pre-configured information to carry out the lateral communication .
  • Device-to-device communication is a D2D-based sidelink (Sidelink, SL) transmission technology, which is different from the way in which communication data is received or sent through network devices in traditional cellular systems, so it has higher spectral efficiency and lower transmission delay.
  • the IoV system adopts terminal-to-terminal direct communication, and 3GPP defines two transmission modes: the first mode and the second mode.
  • the transmission resources of the terminal are allocated by the network device, and the terminal sends data on the sidelink according to the resources allocated by the network device; the network device can allocate resources for a single transmission to the terminal, or can allocate semi-static transmission to the terminal. resource. As shown in FIG. 1 , the terminal is located within the coverage of the network, and the network allocates transmission resources for sideline transmission to the terminal.
  • the terminal selects a resource in the resource pool for data transmission. As shown in FIG. 3 , the terminal is located outside the coverage of the cell, and the terminal autonomously selects transmission resources from the preconfigured resource pool for sideline transmission; or in FIG. 1 , the terminal autonomously selects transmission resources from the network-configured resource pool for sideline transmission transmission.
  • the second mode resource selection is performed in the following two steps:
  • step 1
  • the terminal takes all available resources in the resource selection window as resource set A.
  • the terminal transmits data in some time slots in the listening window and does not perform listening, all the resources on the time slots corresponding to these time slots in the selection window are excluded.
  • the terminal uses the value set of the "resource reservation period" field in the used resource pool configuration to determine the corresponding time slot in the selection window.
  • the terminal senses the PSCCH within the listening window, it measures the RSRP of the PSCCH or the RSRP of the PSSCH scheduled by the PSCCH, if the measured RSRP is greater than the SL-RSRP threshold, and according to the resources in the sideline control information transmitted in the PSCCH If the reservation information determines that the reserved resources are within the resource selection window, the corresponding resources are excluded from the set A. If the remaining resources in the resource set A are less than X% of the total resources before the resource set A performs resource exclusion, the SL-RSRP threshold is raised by 3dB, and step 1 is performed again.
  • the possible values of the above X are ⁇ 20, 35, 50 ⁇ , and the terminal determines the parameter X from the value set according to the priority of the data to be sent.
  • the above-mentioned SL-RSRP threshold is related to the priority carried in the PSCCH sensed by the terminal and the priority of the data to be sent by the terminal.
  • the terminal takes the remaining resources in the set A after the resources are excluded as the candidate resource set.
  • the terminal randomly selects several resources from the candidate resource set as the sending resources for its initial transmission and retransmission.
  • FIG. 4 is a schematic diagram of unicast transmission provided by an embodiment of the present application. As shown in FIG. 4 , unicast transmission is performed between terminal 1 and terminal 2 .
  • the receivers are all terminals in a communication group, or all terminals within a certain transmission distance.
  • FIG. 5 is a schematic diagram of multicast transmission provided by an embodiment of the present application. As shown in FIG. 5 , terminal 1, terminal 2, terminal 3 and terminal 4 form a communication group, in which terminal 1 transmits data, and other terminal devices in the group are all receiver terminals.
  • the receiver is any terminal around the sender terminal.
  • FIG. 5 is a schematic diagram of broadcast transmission provided by an embodiment of the present application.
  • terminal 1 is a transmitting terminal, and other terminals around it, terminal 2 to terminal 6 are all receiving terminals.
  • 2-order SCI is introduced in NR-V2X
  • the first-order SCI is carried in PSCCH, which is used to indicate PSSCH transmission resources, reserved resource information, MCS level, priority and other information
  • the second-order SCI is sent in PSSCH resources , using the DMRS of the PSSCH for demodulation, which is used to indicate the information used for data demodulation, such as the ID of the sender, the ID of the receiver, the HARQ ID, and the NDI.
  • the second-order SCI starts mapping from the first DMRS symbol of PSSCH, first in the frequency domain and then in the time domain.
  • FIG. 7 is a schematic diagram of the frame structure of PSCCH and PSSCH provided by an embodiment of the present application. As shown in FIG.
  • PSCCH occupies 3 symbols (symbols 1, 2, and 3), DMRS of PSSCH occupies symbols 4 and 11, and the second-order SCI
  • the mapping starts from symbol 4, and frequency division multiplexing with DMRS on symbol 4.
  • the second-order SCI is mapped to symbols 4, 5, and 6.
  • the size of the resources occupied by the second-order SCI depends on the number of bits of the second-order SCI.
  • the terminal randomly selects transmission resources in the resource pool, or selects transmission resources according to the listening result.
  • This resource selection method can avoid interference between terminals to a certain extent, but there are also the following The problem:
  • FIG. 8 is a schematic diagram of a hidden node provided by an embodiment of the present application.
  • terminal B selects resources according to the interception, and uses the resources to send sideline data to terminal A. Because terminal B and terminal C are far apart, they cannot listen to each other's transmission. Therefore, B and C If the same transmission resources are selected, the data sent by terminal C will interfere with the data sent by terminal B, which is the hidden node problem.
  • a terminal selects transmission resources by listening, within the listening window, if the terminal sends sideline data on a certain time slot, due to the limitation of half-duplex, the terminal cannot receive the data sent by other terminals on this time slot. Therefore, when the terminal performs resource exclusion, all resources corresponding to the time slot in the selection window will be excluded to avoid interference with other terminals. Due to the limitation of half-duplex, the terminal excludes many resources that do not need to be excluded.
  • FIG. 9 is a schematic diagram of a framework with an exposed terminal problem provided by an embodiment of the present application.
  • both the sending terminal B and the sending terminal C can monitor each other, but the target receiving terminal A of the sending terminal B is far away from the sending terminal C, and the target receiving terminal D of the sending terminal C is far away from the sending terminal B.
  • the transmitting terminal B and the transmitting terminal C use the same time-frequency resources, they will not affect the reception of their respective target receiving terminals, but due to the geographical proximity of the two parties, the received signal power of the other party's signal detected during the listening process may be very high, so Both parties will choose orthogonal video resources, which may eventually lead to a decrease in resource utilization efficiency.
  • the terminal needs to continuously listen to resources to determine which resources are available, and the terminal needs to consume a lot of energy to continuously listen to resources, which is not a problem for the vehicle terminal, because the vehicle terminal has power supply equipment
  • the terminal needs to consume a lot of energy to continuously listen to resources, which is not a problem for the vehicle terminal, because the vehicle terminal has power supply equipment
  • excessive power consumption will cause the terminal to run out of power quickly. Therefore, how to reduce the power consumption of the terminal is also a problem that needs to be considered in the resource selection process.
  • one terminal may also send a resource set to another terminal (the first terminal) to assist the first terminal in resource selection.
  • the resource collection can be of two different types:
  • the second terminal may obtain an available resource set according to information such as a resource listening result, an indication of a network device, or a detected SCI, and send the resource set to the first terminal.
  • the resource set may be a set of resources suitable for use by the first terminal.
  • resources may be preferentially selected from the available resource set, so that the target receiving terminal can be improved.
  • the reliability of the terminal receiving the sideline data; or, the resource set may also be a resource set that is not suitable for the first terminal to use, and the first terminal avoids selecting resources in the resource set when selecting resources, thereby avoiding the above-mentioned concealment. Nodes, half-duplex limitations, etc.
  • the terminal that undertakes the function of the second terminal may also be referred to as a resource coordination terminal.
  • the information sent by the second terminal to the first terminal includes the transmission resources directly allocated to the first terminal, and the first terminal uses the transmission resources to send sideline data to the target receiving terminal. In this case, it is equivalent to the second terminal.
  • the terminal allocates sideline transmission resources to the first terminal.
  • the terminal needs to combine the resource sets sent by other terminals during the resource selection process, thereby improving transmission reliability.
  • the terminal autonomously selects transmission resources.
  • the terminal can also combine the resource sets sent by other terminals, thereby improving transmission reliability.
  • the first terminal needs to send trigger signaling to the second terminal to trigger the second terminal to send the reference resource set. At this time, what physical channel does the first terminal use? There is no specific solution for sending the trigger signaling with physical resources.
  • Embodiments of the present application provide a wireless communication method and terminal, which can improve system performance by improving physical channels and physical resources for sending trigger signaling. That is, the present application mainly addresses how the first terminal triggers the second terminal to send the reference resource set through the physical channel in the sidelink communication based on resource coordination.
  • FIG. 10 is a schematic interaction diagram of a wireless communication method 100 provided by an embodiment of the present application.
  • the method 100 may be performed interactively by the first terminal and the second terminal.
  • the first terminal may be a transmitter that is about to send data
  • the second terminal may be a terminal that is about to receive data or terminals around the first terminal.
  • the first terminal may be the terminal B mentioned above
  • the first terminal may be the terminal A mentioned above.
  • the method 100 may include:
  • the first terminal uses a Physical Sidelink Triggering Channel (PSTCH) to send trigger signaling, where the trigger signaling is used to instruct the second terminal to send a reference resource set used to assist the first terminal in selecting resources .
  • PSTCH Physical Sidelink Triggering Channel
  • the first terminal When the first terminal according to a specific condition, for example, the first terminal triggers resource reselection and the priority of the data to be sent by the first terminal is higher than a specific threshold, etc., the first terminal determines to trigger the second terminal to send the reference resource set;
  • a terminal may send the trigger information by using a physical channel of sequence type, and the physical channel of sequence format used for sending trigger information is hereinafter referred to as PSTCH.
  • the first terminal After determining the PSTCH resource, the first terminal sends the PSTCH on the PSTCH resource.
  • PSTCH Physical Sidelink Feedback Channel
  • the sequence type PSFCH is supported, which is called PSFCH format 0.
  • PSFCH format 0 occupies one PRB in the frequency domain and one OFDM symbol in the time domain.
  • the sequence type and physical uplink control channel ( Physical Uplink Control Channel, PUCCH) format 0 is the same.
  • the PSFCH resources are configured periodically with 1, 2 or 4 time slots. On the time slot where the PSFCH resource exists, the PSFCH resource is located on the last OFDM symbol in the time slot that can be used for sidelink communication.
  • AGC Automatic gain control
  • PSFCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the transmission resources of the PSFCH are determined according to the time-frequency positions of the corresponding transmission resources of the PSSCH.
  • the following two PSFCH resource determination methods are supported, and which determination method is adopted is configured according to high-layer signaling.
  • Mode 1 Determine the transmission resource of the PSFCH according to the first subchannel of the PSSCH frequency domain resource
  • Mode 2 Determine the transmission resources of the PSFCH according to all the subchannels occupied by the PSSCH frequency domain.
  • the transmission resources of the PSFCH are only determined according to the first sub-channel occupied by the PSSCH, no matter how many sub-channels the PSSCH occupies, the corresponding number of feedback resources of the PSFCH is fixed; for the mode 2, The number of transmission resources of the PSFCH is determined according to the number of sub-channels occupied by the PSSCH. Therefore, the more sub-channels occupied by the PSSCH, the more transmission resources of the PSFCH.
  • Mode 2 is more suitable for scenarios requiring more sideline HARQ feedback resources, for example, the second type of sideline HARQ feedback mode in multicast.
  • the set of PRBs that can be used to send the PSFCH can be determined according to the time slot and sub-channel for transmitting the PSSCH.
  • the indexes of the resources in the set of PRBs that can be used to send the PSFCH are first in the order of resource blocks (Resource Block, RB) from low to high, and then according to Carrier Sense (CS) pairs are determined in order from low to high.
  • resource Block Resource Block
  • CS Carrier Sense
  • PID represents the identifier of the sender, that is, the source ID of the sender carried in the SCI.
  • M ID 0; for ACK/NACK multicast side HARQ In the feedback mode, M ID represents the intra-group identifier of the receiver configured by the high layer. Indicates the number of resources in the PRB set available for transmitting PSFCH.
  • SL-PSFCH-Config-r16 signaling is used to configure PSFCH resources that can be used to send PSFCH
  • sl-PSFCH-Period-r16 is used to configure the period of PSFCH resources
  • sl-PSFCH-RB-Set-r16 is used to configure PSFCH PRBs available for PSFCH transmission on the OFDM symbol where the resource is located
  • sl-NumMuxCS-Pair-r16 is used to configure the number of cyclic shifts of the sequence of PFSCH resources allowed in a PRB
  • sl-MinTimeGapPSFCH-r16 is used to configure PSFCH resources and its associated The minimum time interval of the associated PSSCH
  • sl-PSFCH-HopID-r16 is used to configure the frequency hopping identifier (ID) of the PSFCH resource
  • the frequency hopping identifier is used to determine the sequence of the PSFCH resource
  • the method 100 may further include:
  • the first terminal determines a first set of PRBs that can be used to transmit the PSTCH.
  • the orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol where the first PRB set is located is the same as the OFDM symbol where the second PRB set is located, and the second PRB set is A set of PRBs that can be used to transmit the physical sideline feedback channel PSFCH.
  • the period of the first PRB set is the same as the period of the second PRB set; within the target period of the first PRB set, the The time slot is the same as the time slot in which the second PRB set is located.
  • the first PRB set is located on the OFDM symbol in the resource pool where the PSFCH is located.
  • the period of the first PRB set is the same as the period of the second PRB set in the one resource pool, and in each period, the time slot where the first PRB set is located is the same as the time slot where the second PRB set is located in this cycle. gap is the same.
  • the first PRB set in the time slot where the first PRB set is located, is located on the last two OFDM symbols available for sideline transmission.
  • the PRBs included in the first PRB set and the PRBs included in the second PRB set are different.
  • the PRBs included in the first PRB set and the PRBs included in the second PRB set are configured by different high-layer parameters.
  • the first PRB set in a resource pool, is located on the last OFDM symbol available for sidelink communication in each time slot.
  • the last OFDM symbol that can be used for sidelink communication is a guard interval symbol
  • the first PRB set includes part or all of the PRBs in the guard interval symbol.
  • the first PRB set in the time slot where the first PRB set is located, is located on the last two OFDM symbols available for sideline transmission.
  • the PRBs included in the first PRB set and the PRBs included in the second PRB set are the same.
  • the first terminal determines the first PRB set, and the first PRB set is located on the OFDM symbol where the PSFCH is located in the resource pool, or is located on the last GAP symbol in the time slot, or is the same as the PRB used for PSFCH transmission in the resource pool, or different.
  • the PRBs included in the first PRB set and the PRBs included in the second PRB set are different.
  • the period of the first PRB set is the same as the period of the second PRB set in the one resource pool.
  • the time slots where the PRB sets are located are the same, and in the time slots where the first PRB set is located, both the first PRB set and the second PRB set are located on the last two OFDM symbols available for sideline transmission.
  • the PRBs included in the first PRB set and the PRBs included in the second PRB set are configured by different high-layer parameters; The PRBs included in the PRB set are different from the PRBs included in the second PRB set.
  • FIG. 11 is a schematic structural diagram of a first PRB set and a second PRB set provided by an embodiment of the present application.
  • PRB#0 to PRB#9 there may be 10 PRBs (ie PRB#0 to PRB#9) in a time slot in a resource pool, and the 11th and 14th OFDM symbols of the time slot are guard intervals (GAPs).
  • the 12th OFDM symbol of the slot is the AGC symbol.
  • the thirteenth OFDM symbol of the slot is a symbol for PSFCH and PSTCH.
  • the first PRB set includes PRB#4 and PRB#5, and the second PRB set includes PRB#6 ⁇ PRB#9.
  • PRB#4 to PRB#9 on the twelfth OFDM symbol and PRB#4 to PRB#9 on the thirteenth OFDM symbol may carry the same information.
  • the information carried by PRB#4 to PRB#9 on the twelfth OFDM symbol is the replica information of the information carried by PRB#4 to PRB#9 on the thirteenth OFDM symbol, respectively.
  • the first PRB set is located on the last OFDM symbol available for sideline communication in each time slot.
  • the first PRB set is located in the last OFDM symbol in each time slot that can be used for sideline communication, that is, in the last GAP symbol in the time slot that can be used for sideline communication; optional Yes, in this case, all PRBs in the GAP symbol can be used for PSTCH transmission.
  • the PRBs included in the first PRB set and the PRBs included in the second PRB set are the same.
  • the period of the first PRB set is the same as the period of the second PRB set in the one resource pool.
  • the time slots where the PRB sets are located are the same.
  • the first PRB set and the second PRB set are both located on the last two OFDM symbols that can be used for sideline transmission.
  • the PRBs included in the first PRB set and the PRBs included in the second PRB set are the same.
  • the method 100 may further include:
  • the first terminal determines a first PRB for transmitting the PSTCH from the first PRB set.
  • the first terminal determines the first PRB in the first PRB set on time slot m , where n and m are non-negative integers.
  • the interval between n and m is predefined; or, the interval between n and m is pre-configured; or, the interval between n and m is configured by the network; or, the interval between n and m is The interval between is a non-zero interval or zero.
  • the first terminal determines that a PSTCH needs to be sent at time slot n
  • the first terminal selects the first PRB in the first PRB set at time slot m, where the interval between n and m is a specific value, the specific The value can be defined by standard, network configuration or pre-configured, and the interval can be zero.
  • the "predefinition" may be pre-saved in a device (for example, including a terminal device and a network device), a corresponding code, a table, or other methods that can be used to indicate relevant information
  • a device for example, including a terminal device and a network device
  • predefined may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied in future communication systems, which are not specifically limited in this application.
  • the "predefinition” involved in other parameters below is applicable to the above description, and in order to avoid repetition, it will not be repeated in the following.
  • the first terminal determines the first PRB according to at least one identifier and a transmission time of the PSTCH.
  • the number of the at least one identifier is n, and the first terminal determines the first PRB based on the following formula:
  • P represents the index of the first PRB
  • ID 1 , . . . , ID n represents the at least one identifier
  • t represents the index of the time slot where the PSTCH is located and/or the OFDM symbol where the PSTCH is located
  • f(ID 1 , . . . , ID n , t) represents a characteristic integer determined based on the at least one identifier and t
  • C(S_T) represents the number of reference resources in the reference resource set.
  • the first terminal determines the f(ID 1 ,....,ID n ,t) based on the following formula:
  • c() represents a pseudo-random sequence initialized by a certain ID in ID 1 ,....,ID n , and f 1 (ID 1 ,....,ID n ) represents ID 1 ,.. .., IDs in ID n other than one of the IDs.
  • the at least one identifier includes at least one of the following: a source identifier of the first terminal, a random number randomly generated by the first terminal, a target identifier of the second terminal, the second terminal The multicast identifier of the terminal, the member identifier of the first terminal, or the unicast identifier between the first terminal and the second terminal.
  • the at least one identifier includes a random number randomly generated by the first terminal, and the first terminal sends the random number to the second terminal. For example, in the process of establishing unicast or multicast communication, the first terminal generates the random number; the first terminal sends the random number to the second terminal through high layer signaling or physical layer signaling .
  • the first terminal may determine the first PRB in the following manner:
  • the first terminal determines the first PRB according to a specific ID and the transmission time of the PSTCH.
  • c( ⁇ ) is the pseudo-random sequence initialized by the S ID .
  • the S ID can be, but is not limited to, the source ID (SourceID) of the first terminal, a random number randomly generated by the first terminal, the destination ID (DestinationID) of the second terminal, the multicast ID (GroupID), the member ID ( member ID), the unicast ID between the first terminal and the second terminal, etc. If it is a random number randomly generated by the first terminal, the first terminal needs to notify the second terminal of the random number before sending the PSTCH. For example, when unicast or multicast communication is established between the first terminal and the second terminal, the first terminal A terminal randomly generates the random number and notifies the second terminal of the random number through higher layer or physical layer signaling.
  • the first terminal determines the first PRB according to the multiple specific IDs and the transmission time of the PSTCH.
  • the multiple specific IDs may be, but are not limited to, the source ID (SourceID) of the first terminal, a random number randomly generated by the first terminal, the destination ID (DestinationID) of the second terminal, and the multicast ID (GroupID). , a member ID (member ID) of the first terminal, a unicast ID between the first terminal and the second terminal, and multiple IDs.
  • c( ⁇ ) is the pseudo-random sequence initialized by the S ID .
  • c( ⁇ ) is a pseudo-random sequence initialized by D ID .
  • the first terminal is randomly selected for the first PRB within the first set of PRBs.
  • the first terminal notifies the second terminal of the selected first PRB before sending the PSTCH.
  • the first terminal selects the first PRB, and notifies the second terminal of the location of the first PRB through higher layer or physical layer signaling .
  • the first terminal determines the first PRB for sending the PSTCH from the first PRB set
  • the first terminal determines the first PRB for sending the PSTCH according to one or more specific IDs and the transmission time of the PSTCH, Or randomly select the first PRB for transmitting the PSTCH.
  • the method 100 may further include:
  • the first terminal determines the root sequence of the PSTCH.
  • the first terminal determines the root sequence of the PSTCH based on the following formula:
  • M ZC 12
  • the frequency hopping identifier of the PSTCH and the frequency hopping identifier of the PSFCH are the same, or the frequency hopping identifier of the PSTCH and the frequency hopping identifier of the PSFCH are different.
  • the root sequence of the PSTCH and the root sequence of the PSFCH are the same, or the root sequence of the PSTCH and the root sequence of the PSFCH are different.
  • the root sequence of PSTCH and the root sequence of PSFCH in the resource pool may be different, that is, n ID is a value indicated by another RRC parameter different from sl-PSFCH-HopID-r16.
  • ⁇ (n) is as shown in Table 2 below.
  • the value of ⁇ (n) can be determined based on u.
  • the method 100 may further include:
  • the first terminal determines available cyclic shifts for the PSTCH.
  • the available cyclic shift of the PSTCH and the available cyclic shift of the PSFCH are different, or the available cyclic shift of the PSTCH and the available cyclic shift of the PSFCH are the same.
  • the available cyclic shift of the PSTCH is configured by the network, or the available cyclic shift of the PSTCH is pre-configured.
  • the cyclic shift of the PSTCH and the cyclic shift that may be used by the PSFCH in the resource pool are different.
  • the cyclic shift that the PSTCH may use may be configured or pre-configured in the resource pool and different from the cyclic shift that may be used by the PSFCH.
  • One or more cyclic shift values for the shift value may be configured or pre-configured in the resource pool and different from the cyclic shift that may be used by the PSFCH.
  • the available cyclic shifts for the PSTCH are multiple cyclic shifts
  • the first terminal determines the first cyclic shift used by the PSTCH from the multiple cyclic shifts.
  • the first terminal determines the first cyclic shift from the plurality of cyclic shifts based on a latest feedback time expected by the first terminal, where the latest feedback time refers to the The latest time at which the second terminal sends the reference resource set, where the latest time is expressed as N time slots after the PSTCH, and N is a positive integer.
  • N is predefined, or N is network-configured, or N is pre-configured.
  • the first terminal determines, based on the latest feedback time expected by the first terminal and the first mapping relationship, the cyclic shift corresponding to the latest feedback time expected by the first terminal as the first Cyclic shift, the first mapping relationship includes multiple latest feedback times corresponding to the multiple cyclic shifts, and the multiple latest feedback times include the latest feedback time expected by the first terminal.
  • the first mapping relationship is predefined, or the first mapping relationship is network-configured, or the first mapping relationship is pre-configured.
  • the first terminal determines the first cyclic shift from the plurality of cyclic shifts based on a minimum time span; the minimum time span means that the first terminal expects the first cyclic shift
  • the minimum time span of the resources included in the reference resource set sent by the two terminals, the minimum time span is expressed as W time slots starting at a specific time after the time slot where the signaling of the reference resource set is carried, so The specific time is used for the first terminal to decode the signaling used to carry the reference resource set, and W is a positive integer.
  • W is a positive integer.
  • the optional value of W is predefined, or the optional value of W is network-configured, or the optional value of W is pre-configured.
  • the first terminal determines, based on the minimum time span and a second mapping relationship, a cyclic shift corresponding to the minimum time span as the first cyclic shift, and the second mapping relationship includes the first cyclic shift.
  • the second mapping relationship is predefined, or the second mapping relationship is network-configured, or the second mapping relationship is pre-configured.
  • the first terminal should use The first cyclic shift; if the latest time that the first terminal expects the second terminal to feed back the reference resource set is N1 time slots after receiving the PSTCH, and the minimum time span of the reference resource set is W2 time slots, then the first The terminal shall employ the second cyclic shift; and so on.
  • the first terminal determines the root sequence and cyclic shift of the PSTCH
  • the root sequence of the PSTCH may be the same as or different from the root sequence that may be used by the PSFCH in the resource pool, and one or more cyclic shifts used by the PSTCH may be the same as the root sequence in the resource pool.
  • the cyclic shifts that may be used by the PSFCH are the same or different.
  • the cyclic shift finally used by the PSTCH is related to the information carried by the PSTCH.
  • the method 100 may further include:
  • the first terminal receives the reference resource set sent by the second terminal.
  • the first terminal receives a bitmap sent by the second terminal, and the number of bits in the bitmap is equal to the number of subchannels in the time span of the reference resource set, Each bit in the bitmap is used to indicate whether the subchannel corresponding to the bit is included in the reference resource set.
  • the ith least significant bit LSB in the bitmap is used to indicate whether the ith subchannel in the time span is included in the reference resource set, i is a non-negative integer, and i is less than the specified value. number of bits in the bitmap.
  • the second terminal should detect the PSTCH on the time-frequency resources where PSTCH may occur. If the PSTCH for the second terminal is detected, the second terminal should send a reference resource set with a time span of not less than W to the first terminal before N. a terminal.
  • the second terminal may send the reference resource set in the form of a bitmap, the number of bits in the bitmap is equal to the number of sub-channels in the time span of the reference resource set, and each bitmap in the bitmap One bit corresponds to one subchannel in the time span.
  • the LSB of the bitmap corresponds to the first subchannel of the first slot in the time span
  • the second LSB of the bitmap corresponds to the first subchannel of the first slot in the time span.
  • the resources included in the reference resource set may be resources reserved by other terminals determined by the second terminal and whose estimated RSRP is higher than a certain threshold, or resources determined by the second terminal and the receiving terminal of the first terminal (including the second terminal). The resources reserved by the terminal) are located in the same time slot.
  • the reference resource set includes resources suitable for use by the first terminal; and the first terminal preferentially selects resources for sending sideline data from the reference resource set.
  • the reference resource set includes a resource set that is not suitable for use by the first terminal; the first terminal avoids selecting a resource for sending sideline data from the reference resource set.
  • the first terminal sends the trigger signaling through the PSTCH of the sequence type.
  • the first terminal first determines the first PRB set, and the first PRB set is located on the OFDM symbol where the PSFCH is located in the resource pool, Or it is located on the last GAP symbol in the time slot, or it is the same or the same as the PRB set used by the PSFCH in the resource pool.
  • the first terminal determines the first PRB for sending the PSTCH from the first PRB set, and the first terminal may determine the first PTB for sending the PSTCH according to one or more specific IDs and the transmission time of the PSTCH, or randomly select a For sending the first PRB of the PSTCH.
  • the first terminal determines the root sequence and cyclic shift of the PSTCH.
  • the root sequence of the PSTCH may be the same as or different from the root sequence used by the PSFCH in the resource pool, and the one or more cyclic shifts used by the PSTCH may be the same as that used by the PSFCH in the resource pool.
  • the cyclic shifts are the same or different.
  • the cyclic shift finally adopted by the PSTCH is related to the information carried by the PSTCH.
  • the second terminal may receive the PSTCH on the PSTCH resource. It should be noted that, for the manner in which the second terminal determines the PSTCH resource, reference may be made to the manner in which the first terminal determines the PSTCH resource. In order to avoid repetition, details are not described herein again.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • the term "and/or" is only an association relationship for describing associated objects, indicating that there may be three kinds of relationships. Specifically, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this document generally indicates that the related objects are an "or" relationship.
  • FIG. 12 is a schematic block diagram of a first terminal 200 according to an embodiment of the present application.
  • the first terminal 200 may include:
  • the sending unit 210 is configured to send trigger signaling by using a physical sideline trigger channel PSTCH, where the trigger signaling is used to instruct the second terminal to send a reference resource set used to assist the first terminal in selecting resources.
  • the sending unit 210 is further configured to:
  • a first set of physical resource blocks, PRBs, available for transmitting the PSTCH is determined.
  • the OFDM symbol where the first PRB set is located is the same as the OFDM symbol where the second PRB set is located, and the second PRB set is available for use in Send the PRB set of the physical sideline feedback channel PSFCH.
  • the period of the first PRB set and the period of the second PRB set are the same; within the target period of the first PRB set, the time slot in which the first PRB set is located is the same as that of the first PRB set. The time slots in which the second PRB set is located are the same.
  • the first PRB set in the time slot where the first PRB set is located, is located on the last two OFDM symbols available for sideline transmission.
  • the PRBs included in the first PRB set are the same as the PRBs included in the second PRB set, or the first PRB set The included PRBs are different from the PRBs included in the second PRB set.
  • the PRBs included in the first PRB set and the PRBs included in the second PRB set are different, and the PRBs included in the first PRB set and the PRBs included in the second PRB set pass through Different high-level parameter configurations.
  • the first PRB set in a resource pool, is located on the last OFDM symbol available for sideline communication in each time slot.
  • the last OFDM symbol available for sideline communication is a guard interval symbol
  • the first PRB set includes part or all of the PRBs in the guard interval symbol.
  • the sending unit 210 is further configured to:
  • a first PRB for transmitting the PSTCH is determined from the first set of PRBs.
  • the sending unit 210 is specifically configured to:
  • the first terminal determines the first PRB in the first PRB set on the time slot m, and both n and m are non-negative integers.
  • the interval between n and m is predefined; or, the interval between n and m is pre-configured; or, the interval between n and m is configured by the network; or , the interval between n and m is a non-zero interval or zero.
  • the sending unit 210 is specifically configured to:
  • the first PRB is determined according to at least one identifier and the transmission time of the PSTCH.
  • the number of the at least one identifier is n, and the sending unit 210 is specifically configured to:
  • the first PRB is determined based on the following formula:
  • P represents the index of the first PRB
  • ID 1 , . . . , ID n represents the at least one identifier
  • t represents the index of the time slot where the PSTCH is located and/or the OFDM symbol where the PSTCH is located
  • f(ID 1 , . . . , ID n , t) represents a characteristic integer determined based on the at least one identifier and t
  • C(S_T) represents the number of reference resources in the reference resource set.
  • the sending unit 210 is further configured to:
  • the f(ID 1 ,....,ID n ,t) is determined based on the following formula:
  • c() represents a pseudo-random sequence initialized by a certain ID in ID 1 ,....,ID n , and f 1 (ID 1 ,....,ID n ) represents ID 1 ,.. .., IDs in ID n other than one of the IDs.
  • the at least one identifier includes at least one of the following:
  • the source identifier of the first terminal the random number randomly generated by the first terminal, the target identifier of the second terminal, the multicast identifier of the second terminal, the member identifier of the first terminal, or the Unicast identification between the first terminal and the second terminal.
  • the at least one identifier includes a random number randomly generated by the first terminal, and the sending unit 210 is further configured to:
  • the sending unit 210 is specifically configured to:
  • the first terminal In the process of establishing unicast or multicast communication, the first terminal generates the random number
  • the first terminal sends the random number to the second terminal through higher layer signaling or physical layer signaling.
  • the sending unit 210 is specifically configured to:
  • the first PRB is randomly selected from the first set of PRBs.
  • the sending unit 210 is further configured to:
  • the root sequence of the PSTCH is determined.
  • the sending unit 210 is specifically configured to:
  • the root sequence of the PSTCH is determined based on the following formula:
  • M ZC represents the length of the root sequence of the PSTCH
  • j represents an imaginary unit
  • ⁇ (n) represents a parameter determined based on the frequency hopping identifier u of the PSTCH.
  • the frequency hopping identifier of the PSTCH and the frequency hopping identifier of the PSFCH are the same, or the frequency hopping identifier of the PSTCH and the frequency hopping identifier of the PSFCH are different.
  • the root sequence of the PSTCH and the root sequence of the PSFCH are the same, or the root sequence of the PSTCH and the root sequence of the PSFCH are different.
  • the sending unit 210 is further configured to:
  • the available cyclic shift of the PSTCH and the available cyclic shift of the PSFCH are different, or the available cyclic shift of the PSTCH and the available cyclic shift of the PSFCH are the same .
  • the available cyclic shift of the PSTCH is configured by the network, or the available cyclic shift of the PSTCH is pre-configured.
  • the available cyclic shifts of the PSTCH are multiple cyclic shifts
  • the sending unit 210 is further configured to:
  • a first cyclic shift used by the PSTCH is determined from the plurality of cyclic shifts.
  • the sending unit 210 is specifically configured to:
  • the first cyclic shift is determined from the plurality of cyclic shifts based on the latest feedback time expected by the first terminal, where the latest feedback time refers to the latest time at which the second terminal sends the reference resource set Late time, the latest time is expressed as N time slots after the PSTCH, and N is a positive integer.
  • the sending unit 210 is specifically configured to:
  • the cyclic shift corresponding to the latest feedback time expected by the first terminal is determined as the first cyclic shift, and the first mapping
  • the relationship includes multiple latest feedback times corresponding to the multiple cyclic shifts, and the multiple latest feedback times include the latest feedback time expected by the first terminal.
  • the first mapping relationship is predefined, or the first mapping relationship is network-configured, or the first mapping relationship is pre-configured.
  • N is predefined, or N is network-configured, or N is pre-configured.
  • the sending unit 210 is specifically configured to:
  • the first cyclic shift is determined from the plurality of cyclic shifts based on a minimum time span; the minimum time span refers to resources included in the reference resource set that the first terminal expects the second terminal to send
  • the minimum span in time, the minimum time span is expressed as W time slots starting from a specific time after the time slot where the signaling carrying the reference resource set is located, and the specific time is used for the first terminal to decode the Bearing the signaling of the reference resource set, W is a positive integer.
  • the sending unit 210 is specifically configured to:
  • a cyclic shift corresponding to the minimum time span is determined as the first cyclic shift, and the second mapping relationship includes multiple cyclic shifts corresponding to the multiple cyclic shifts. time spans, the plurality of time spans including the minimum time span.
  • the second mapping relationship is predefined, or the second mapping relationship is network-configured, or the second mapping relationship is pre-configured.
  • the optional value of W is predefined, or the optional value of W is network-configured, or the optional value of W is pre-configured.
  • the sending unit 210 is further configured to:
  • a reference resource set sent by the second terminal is received.
  • the sending unit 210 is specifically configured to:
  • the number of bits in the bitmap is equal to the number of subchannels in the time span of the reference resource set, and each bit in the bitmap is used for Indicates whether the subchannel corresponding to the bit is included in the reference resource set.
  • the ith least significant bit LSB in the bitmap is used to indicate whether the ith subchannel in the time span is included in the reference resource set, and i is non-negative Integer, i is less than the number of bits in the bitmap.
  • the reference resource set includes resources suitable for use by the first terminal; the sending unit 210 is further configured to:
  • a resource for transmitting sideline data is preferentially selected from the reference resource set.
  • the reference resource set includes a resource set that is not suitable for use by the first terminal; the sending unit 210 is further configured to:
  • a resource for sending sideline data from the set of reference resources is avoided.
  • FIG. 13 is a schematic block diagram of a second terminal 300 according to an embodiment of the present application.
  • the second terminal 300 may include:
  • the receiving unit 310 uses the physical sideline trigger channel PSTCH to receive trigger signaling, where the trigger signaling is used to instruct the second terminal to send a reference resource set for assisting the first terminal in selecting resources.
  • the receiving unit 310 is further configured to:
  • a first set of physical resource blocks, PRBs, available for transmitting the PSTCH is determined.
  • the OFDM symbol where the first PRB set is located is the same as the OFDM symbol where the second PRB set is located, and the second PRB set is available for use in Send the PRB set of the physical sideline feedback channel PSFCH.
  • the period of the first PRB set and the period of the second PRB set are the same; within the target period of the first PRB set, the time slot in which the first PRB set is located is the same as that of the first PRB set. The time slots in which the second PRB set is located are the same.
  • the first PRB set in the time slot where the first PRB set is located, is located on the last two OFDM symbols available for sideline transmission.
  • the PRBs included in the first PRB set are the same as the PRBs included in the second PRB set, or the first PRB set The included PRBs are different from the PRBs included in the second PRB set.
  • the PRBs included in the first PRB set and the PRBs included in the second PRB set are different, and the PRBs included in the first PRB set and the PRBs included in the second PRB set pass through Different high-level parameter configurations.
  • the first PRB set in a resource pool, is located on the last OFDM symbol available for sideline communication in each time slot.
  • the last OFDM symbol available for sideline communication is a guard interval symbol
  • the first PRB set includes part or all of the PRBs in the guard interval symbol.
  • the receiving unit 310 is further configured to:
  • a first PRB for transmitting the PSTCH is determined from the first set of PRBs.
  • the receiving unit 310 is specifically configured to:
  • the first terminal determines the first PRB in the first PRB set on the time slot m, and both n and m are non-negative integers.
  • the interval between n and m is predefined; or, the interval between n and m is pre-configured; or, the interval between n and m is configured by the network; or , the interval between n and m is a non-zero interval or zero.
  • the receiving unit 310 is specifically configured to:
  • the first PRB is determined according to at least one identifier and the transmission time of the PSTCH.
  • the number of the at least one identifier is n, and the receiving unit 310 is specifically configured to:
  • the first PRB is determined based on the following formula:
  • P represents the index of the first PRB
  • ID 1 , . . . , ID n represents the at least one identifier
  • t represents the index of the time slot where the PSTCH is located and/or the OFDM symbol where the PSTCH is located
  • f(ID 1 , . . . , ID n , t) represents a characteristic integer determined based on the at least one identifier and t
  • C(S_T) represents the number of reference resources in the reference resource set.
  • the receiving unit 310 is further configured to:
  • the f(ID 1 ,....,ID n ,t) is determined based on the following formula:
  • c() represents a pseudo-random sequence initialized by a certain ID in ID 1 ,....,ID n , and f 1 (ID 1 ,....,ID n ) represents ID 1 ,.. .., IDs in ID n other than one of the IDs.
  • the at least one identifier includes at least one of the following:
  • the source identifier of the first terminal the random number randomly generated by the first terminal, the target identifier of the second terminal, the multicast identifier of the second terminal, the member identifier of the first terminal, or the Unicast identification between the first terminal and the second terminal.
  • the at least one identifier includes a random number randomly generated by the first terminal, and the receiving unit 310 is further configured to:
  • the receiving unit 310 is further configured to:
  • the random number sent by the first terminal is received through high layer signaling or physical layer signaling.
  • the receiving unit 310 is further configured to:
  • the first PRB is randomly selected from the first set of PRBs.
  • the receiving unit 310 is further configured to:
  • the root sequence of the PSTCH is determined.
  • the receiving unit 310 is further configured to:
  • the root sequence of the PSTCH is determined based on the following formula:
  • M ZC represents the length of the root sequence of the PSTCH
  • j represents an imaginary unit
  • ⁇ (n) represents a parameter determined based on the frequency hopping identifier u of the PSTCH.
  • the frequency hopping identifier of the PSTCH and the frequency hopping identifier of the PSFCH are the same, or the frequency hopping identifier of the PSTCH and the frequency hopping identifier of the PSFCH are different.
  • the root sequence of the PSTCH and the root sequence of the PSFCH are the same, or the root sequence of the PSTCH and the root sequence of the PSFCH are different.
  • the receiving unit 310 is further configured to:
  • the available cyclic shift of the PSTCH and the available cyclic shift of the PSFCH are different, or the available cyclic shift of the PSTCH and the available cyclic shift of the PSFCH are the same .
  • the available cyclic shift of the PSTCH is configured by the network, or the available cyclic shift of the PSTCH is pre-configured.
  • the available cyclic shifts of the PSTCH are multiple cyclic shifts
  • the receiving unit 310 is further configured to:
  • a first cyclic shift used by the PSTCH is determined from the plurality of cyclic shifts.
  • the receiving unit 310 is further configured to:
  • the first cyclic shift is determined from the plurality of cyclic shifts based on the latest feedback time expected by the first terminal, where the latest feedback time refers to the latest time at which the second terminal sends the reference resource set Late time, the latest time is expressed as N time slots after the PSTCH, and N is a positive integer.
  • the receiving unit 310 is further configured to:
  • the cyclic shift corresponding to the latest feedback time expected by the first terminal is determined as the first cyclic shift, and the first mapping
  • the relationship includes multiple latest feedback times corresponding to the multiple cyclic shifts, and the multiple latest feedback times include the latest feedback time expected by the first terminal.
  • the first mapping relationship is predefined, or the first mapping relationship is network-configured, or the first mapping relationship is pre-configured.
  • N is predefined, or N is network-configured, or N is pre-configured.
  • the receiving unit 310 is further configured to:
  • the first cyclic shift is determined from the plurality of cyclic shifts based on a minimum time span; the minimum time span refers to resources included in the reference resource set that the first terminal expects the second terminal to send
  • the minimum span in time, the minimum time span is expressed as W time slots starting from a specific time after the time slot where the signaling carrying the reference resource set is located, and the specific time is used for the first terminal to decode the Bearing the signaling of the reference resource set, W is a positive integer.
  • the receiving unit 310 is further configured to:
  • a cyclic shift corresponding to the minimum time span is determined as the first cyclic shift, and the second mapping relationship includes multiple cyclic shifts corresponding to the multiple cyclic shifts. time spans, the plurality of time spans including the minimum time span.
  • the second mapping relationship is predefined, or the second mapping relationship is network-configured, or the second mapping relationship is pre-configured.
  • the optional value of W is predefined, or the optional value of W is network-configured, or the optional value of W is pre-configured.
  • the receiving unit 310 is further configured to:
  • a reference resource set is sent to the first terminal.
  • the receiving unit 310 is further configured to:
  • the number of bits in the bitmap is equal to the number of subchannels in the time span of the reference resource set, and each bit in the bitmap is used to indicate Whether the subchannel corresponding to the bit is included in the reference resource set.
  • the ith least significant bit LSB in the bitmap is used to indicate whether the ith subchannel in the time span is included in the reference resource set, and i is non-negative Integer, i is less than the number of bits in the bitmap.
  • the reference resource set includes resources suitable for use by the first terminal.
  • the reference resource set includes a resource set that is not suitable for use by the first terminal.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the first terminal 200 shown in FIG. 12 may correspond to a corresponding subject in executing the method 100 of the embodiment of the present application, and the foregoing and other operations and/or functions of the units in the first terminal 200 are for the purpose of realizing the 10.
  • the second terminal 300 shown in FIG. 13 may correspond to the corresponding subject in executing the method 100 of the embodiments of the present application, and the aforementioned and The other operations and/or functions are respectively to implement the corresponding processes in each method in FIG. 10 , and are not repeated here for brevity.
  • the communication device of the embodiments of the present application is described above from the perspective of functional modules with reference to the accompanying drawings.
  • the functional modules can be implemented in the form of hardware, can also be implemented by instructions in the form of software, and can also be implemented by a combination of hardware and software modules.
  • the steps of the method embodiments in the embodiments of the present application may be completed by hardware integrated logic circuits in the processor and/or instructions in the form of software, and the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as hardware
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • processing unit and the communication unit referred to above may be implemented by a processor and a transceiver, respectively.
  • FIG. 14 is a schematic structural diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 may include a processor 410 .
  • the processor 410 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the communication device 400 may further include a memory 420 .
  • the memory 420 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 410 .
  • the processor 410 may call and run a computer program from the memory 420 to implement the methods in the embodiments of the present application.
  • the memory 420 may be a separate device independent of the processor 410 , or may be integrated in the processor 410 .
  • the communication device 400 may further include a transceiver 430 .
  • the processor 410 may control the transceiver 430 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include antennas, and the number of the antennas may be one or more.
  • each component in the communication device 400 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the communication device 400 may be the first terminal of the embodiments of the present application, and the communication device 400 may implement the corresponding processes implemented by the first terminal in each method of the embodiments of the present application.
  • the communication device 400 of the example may correspond to the first terminal 200 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 100 according to the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 400 may be the second terminal of the embodiment of the present application, and the communication device 400 may implement the corresponding processes implemented by the second terminal in each method of the embodiment of the present application. That is to say, the communication device 300 in the embodiment of the present application may correspond to the second terminal 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 100 according to the embodiment of the present application. Repeat.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has a signal processing capability, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 15 is a schematic structural diagram of a chip 500 according to an embodiment of the present application.
  • the chip 500 includes a processor 510 .
  • the processor 510 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the chip 500 may further include a memory 520 .
  • the processor 510 may call and run a computer program from the memory 520 to implement the methods in the embodiments of the present application.
  • the memory 520 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 510 .
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated in the processor 510 .
  • the chip 500 may further include an input interface 530 .
  • the processor 510 may control the input interface 530 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 500 may further include an output interface 540 .
  • the processor 510 may control the output interface 540 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip 500 can be applied to the first terminal in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the first terminal in each method of the embodiments of the present application, and can also implement the embodiments of the present application.
  • the corresponding processes implemented by the second terminal in each method will not be repeated here.
  • each component in the chip 500 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the processors referred to above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but is not limited to:
  • Non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions, which, when executed by a portable electronic device including a plurality of application programs, can cause the portable electronic device to execute the embodiments of the present application.
  • the computer-readable storage medium can be applied to the first terminal in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first terminal in each method of the embodiments of the present application. For brevity, It is not repeated here.
  • the computer-readable storage medium can be applied to the second terminal in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second terminal in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the second terminal in the various methods of the embodiments of the present application.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the first terminal in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first terminal in each method of the embodiments of the present application.
  • the computer program product can be applied to the second terminal in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second terminal in each method of the embodiments of the present application.
  • the computer program product can be applied to the second terminal in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second terminal in each method of the embodiments of the present application.
  • the computer program product can be applied to the second terminal in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second terminal in each method of the embodiments of the present application.
  • the computer program product can be applied to the second terminal in the embodiments of the present application
  • a computer program is also provided in the embodiments of the present application.
  • the computer program When the computer program is executed by a computer, the computer can execute the methods provided by the embodiments of the present application.
  • the computer program may be applied to the first terminal in the embodiments of the present application, and when the computer program is run on the computer, the computer executes the corresponding processes implemented by the first terminal in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the computer program may be applied to the second terminal in the embodiments of the present application, and when the computer program runs on the computer, the computer is made to execute the corresponding processes implemented by the second terminal in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • an embodiment of the present application also provides a communication system.
  • the communication system may include the above-mentioned terminal devices (including the first terminal and the second terminal) and network devices to form a communication system.
  • network management architecture or “network system” and the like.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the division of units, modules or components in the apparatus embodiments described above is only a logical function division, and other division methods may be used in actual implementation.
  • multiple units, modules or components may be combined or integrated To another system, or some units or modules or components can be ignored, or not implemented.
  • the above-mentioned units/modules/components described as separate/display components may or may not be physically separated, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units/modules/components may be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, indirect coupling or communication connection of devices or units, which may be electrical, mechanical or other forms .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法和终端。所述方法包括:第一终端利用物理侧行触发信道PSTCH发送触发信令,所述触发信令用于指示第二终端发送用于辅助所述第一终端选择资源的参考资源集合。基于以上技术方案,通过引入PSTCH作为用于发送触发信令的信道,完善了用于发送触发信令的物理信道,能够提升系统性能。

Description

无线通信方法和终端 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法和终端。
背景技术
设备到设备通信是基于终端到终端(Device to Device,D2D)的一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,因此具有更高的频谱效率以及更低的传输时延。车联网系统采用终端到终端直接通信的方式,第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)定义了两种传输模式,即第一模式和第二模式。在第二模式的传输方式中,终端在资源池中随机选取传输资源,或者根据侦听结果选取传输资源,这种资源选取方式可以在一定程度上避免终端之间的干扰。
在新空口(New Radio,NR)车辆到其他设备(Vehicle to Everything,V2X)中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等,因此,需要进一步完善终端到终端直接通信的方式,以提升系统性能。
发明内容
本申请实施例提供一种无线通信方法和终端,通过完善第二模式,能够提升系统性能。
第一方面,提供了一种无线通信方法,包括:
第一终端利用物理侧行触发信道PSTCH发送触发信令,所述触发信令用于指示第二终端发送用于辅助所述第一终端选择资源的参考资源集合。
第二方面,提供了一种无线通信方法,包括:
第二终端利用物理侧行触发信道PSTCH接收触发信令,所述触发信令用于指示第二终端发送用于辅助所述第一终端选择资源的参考资源集合。
第三方面,提供了一种第一终端,用于执行上述第一方面或其各实现方式中的方法。具体地,所述第一终端包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种第二终端,用于执行上述第二方面或其各实现方式中的方法。具体地,所述第二终端包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种第一终端,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种第二终端,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,通过引入PSTCH作为用于发送触发信令的信道,完善了用于发送触发信令的物理信道,能够提升系统性能。
附图说明
图1是至图6是本申请实施例提供的场景的示例。
图7是本申请实施例提供的PSCCH和PSSCH帧结构的示意图.
图8至图9是本申请实施例提供的存在隐患的场景的示例。
图10是本申请实施例提供的无线通信方法的示意性流程图。
图11是本申请实施例提供的第一PRB集合和第二PRB集合的示意性结构图。
图12是本申请实施例提供的第一终端的示意性结构图。
图13是本申请实施例提供的第二终端的示意性结构图。
图14是本申请实施例提供的通信设备的示意性结构图。
图15是本申请实施例提供的芯片的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例可以适用于任何终端设备到终端设备的通信框架。例如,车辆到车辆(Vehicle to Vehicle,V2V)、车辆到其他设备(Vehicle to Everything,V2X)、终端到终端(Device to Device,D2D)等。其中,本申请实施例中的终端设备可以是任何配置有物理层和媒体接入控制层的设备或装置,终端设备也可称为接入终端。例如,用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字线性处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它线性处理设备、车载设备、可穿戴设备等等。本发明实施例以车载终端为例进行说明,但并不限于此。
图1至图4是本申请实施例提供的车载终端到车载终端的系统框架。
如图1所示,在网络覆盖内侧行通信中,所有进行侧行通信的终端(包括终端1和终端2)均处于同一网络设备的覆盖范围内,从而,所有终端均可以通过接收网络设备的配置信令,基于相同的侧行配置进行侧行通信。
如图2所示,在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于网络设备的覆盖范围内,这部分终端(即终端1)能够接收到网络设备的配置信令,而且根据网络设备的配置进行侧行通信。而位于网络覆盖范围外的终端(即终端2),无法接收网络设备的配置信令,在这种情况下,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的侧行广播信道PSBCH中携带的信息确定侧行配置,进行侧行通信。
如图3所示,对于网络覆盖外侧行通信,所有进行侧行通信的终端(包括终端1和终端2)均位于网络覆盖范围外,所有终端均根据预配置信息确定侧行配置进行侧行通信。
设备到设备通信是基于D2D的一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝系统中通信数据通过网络设备接收或者发送的方式不同,因此具有更高的频谱效率以及更低的传输时延。车联网系统采用终端到终端直接通信的方式,在3GPP定义了两种传输模式:第一模式和第二模式。
第一模式:
终端的传输资源是由网络设备分配的,终端根据网络设备分配的资源在侧行链路上进行数据的发送;网络设备可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。如图1中,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:
终端在资源池中选取一个资源进行数据的传输。如图3中,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输;或者在图1中,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
第二模式资源选择按照以下两个步骤进行:
步骤1:
终端将资源选择窗内所有的可用资源作为资源集合A。
如果终端在侦听窗内某些时隙发送数据,没有进行侦听,则这些时隙在选择窗内对应的时隙上的全部资源被排除掉。终端利用所用资源池配置中的“resource reservation period”域的取值集合确定选择窗内对应的时隙。
如果终端在侦听窗内侦听到PSCCH,测量该PSCCH的RSRP或者该PSCCH调度的PSSCH的RSRP,如果测量的RSRP大于SL-RSRP阈值,并且根据该PSCCH中传输的侧行控制信息中的资源预留信息确定其预留的资源在资源选择窗内,则从集合A中排除对应资源。如果资源集合A中剩余资源不足资源集合A进行资源排除前全部资源的X%,则将SL-RSRP阈值抬升3dB,重新执行步骤1。上述X可能的取值为{20,35,50},终端根据待发送数据的优先级从该取值集合中确定参数X。同时,上述SL-RSRP阈值与终端侦听到的PSCCH中携带的优先级以及终端待发送数据的优先级有关。终端将集合A中经资源排除后的剩余资源作为候选资源集合。
步骤2:
终端从候选资源集合中随机选择若干资源,作为其初次传输以及重传的发送资源。
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在LTE-V2X中,支持广播传输方式,在NR-V2X中,引入了单播和组播的传输方式。对于单播传输,其接收端终端只有一个终端。图4是本申请实施例提供的单播传输的示意图。如图4所示,终端1、终端2之间进行单播传输。对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。图5是本申请实施例提供的组播传输的示意图。如图5所示,终端1、终端2、终端3和终端4构成一个通信组,其中终端1发送数据,该组内的其他终端设备都是接收端终端。对于广播传输方式,其接收端是发送端终端周围的任意一个终端。图5是本申请实施例提供的广播传输的示意图。如图6所示,终端1是发送端终端,其周围的其他终端,第终端2-终端6都是接收端终端。
在NR-V2X中引入2阶SCI,第一阶SCI承载在PSCCH中,用于指示PSSCH的传输资源、预留资源信息、MCS等级、优先级等信息,第二阶SCI在PSSCH的资源中发送,利用PSSCH的DMRS进行解调,用于指示发送端ID、接收端ID、HARQ ID、NDI等用于数据解调的信息。第二阶SCI从PSSCH的第一个DMRS符号开始映射,先频域再时域映射。图7是本申请实施例提供的PSCCH和PSSCH帧结构的示意图,如图7所示,PSCCH占据3个符号(符号1、2、3),PSSCH的DMRS占据符号4、11,第二阶SCI从符号4开始映射,在符号4上和DMRS频分复用,第二阶SCI映射到符号4、5、6,第二阶SCI占据的资源大小取决于第二阶SCI的比特数。
在上述第二模式的传输方式中,终端在资源池中随机选取传输资源,或者根据侦听结果选取传输资源,这种资源选取方式可以在一定程度上避免终端之间的干扰,但是还存在下面的问题:
隐藏节点(Hidden node)问题:
图8是本申请实施例提供的隐藏节点的示意性图。如图8所示,终端B根据侦听选取资源,并利用该资源向终端A发送侧行数据,由于终端B和终端C相距较远,互相侦听不到对方的传输,因此,B和C可能选取相同的传输资源,则终端C发送的数据会对终端B发送的数据造成干扰,这就是隐藏节点问题。
半双工(Half-duplex)问题:
当终端通过侦听选取传输资源时,在侦听窗口内,如果该终端在某个时隙上发送侧行数据,由于半双工的限制,该终端在该时隙上不能接收其他终端发送的数据,也没有侦听结果,因此,终端在进行资源排除时,会把选择窗内与该时隙对应的资源全部排除掉,以避免和其他终端的干扰。由于半双工的限制会导致该终端排除了很多不需要排除的资源。
暴露终端问题:
图9是本申请实施例提供的存在暴露终端问题的框架的示意性图。如图9所示,发送终端B和发送终端C均可以监听到对方,但发送终端B的目标接收终端A远离发送终端C,发送终端C的目标接收终端D远离发送终端B,这种情况下,发送终端B和发送终端C即使使用相同的时频资源也不会影响各自目标接收终端的接收,但由于双方地理位置接近,侦听过程中检测到对方的信号接收功率可能会很高,从而双方会选择到正交的视频资源,最终可能导致资源利用效率的下降。
功耗问题:
在上述侦听过程中,需要终端持续的进行资源侦听以判断哪些资源是可用的,而终端持续进行资源侦听需要消耗很大的能量,这对于车载终端不是问题,因为车载终端有供电设备,但是对于手持终端,能耗过大会导致终端很快就没电了,因此,如何降低终端的能耗也是资源选择过程中需要考虑的问题。
由于上述第二模式中资源选取过程中存在的问题,提出了增强的资源选取方案。在第二模式采用的资源侦听的基础上,还可以通过一个终端(第二终端)为另一个终端(第一终端)发送一个资源集合,用于辅助第一终端进行资源选取。该资源集合可以是以下两种不同类型:
参考资源集合:第二终端可以根据资源侦听结果、网络设备指示或检测到的SCI等信息获取可用资源集合,并且将该资源集合发送给第一终端。该资源集合可以是适合于第一终端使用的资源集合,当第一终端选择用于向目标接收终端发送侧行数据的资源时,可以优先从该可用资源集合中选取资源,从而可以提升目标接收终端接收该侧行数据的可靠性;或者,该资源集合也可以是不适合第一终端使用的资源集合,第一终端在选取资源的时避免选取该资源集合中的资源,从而避免发生上述隐藏节点,半双工限制等问题。承担所述第二终端功能的终端也可称为资源协调终端。
分配的传输资源:第二终端向第一终端发送的信息中包括直接分配给第一终端的传输资源,第一终端利用该传输资源向目标接收终端发送侧行数据,此时,相当于第二终端为第一终端分配了侧行传输资源。
相对于第二模式中终端自主选取传输资源的方式,在上述资源分配方式中,终端在进行资源选取过程中,需要结合其他终端发送的资源集合,从而可以提高传输可靠性。在上述增强的资源选取方案中,第二模式中终端自主选取传输资源的方式终端在进行资源选取过程中,终端还可以结合其他终端发送的资源集合,从而可以提高传输可靠性。
但是,在上述增强的资源选取方案中,在有的情况下第一终端需要向第二终端发送触发信令以触发第二终端发送参考资源集合,此时,第一终端通过什么样的物理信道和物理资源发送所述触发信令并没有具体的解决方案。
本申请实施例提供一种无线通信方法和终端,通过完善用于发送触发信令的物理信道和物理资源,能够提升系统性能。即本申请主要解决在基于资源协调的侧行通信中,第一终端如何通过物理信道触发第二终端发送参考资源集合。
下面对本申请实施例提供的无线通信方法进行说明。
图10是本申请实施例提供的无线通信方法100的示意性交互图。所述方法100可以由第一终端和第二终端交互执行。所述第一终端可以是即将发送数据的发送端,所述第二终端可以是即将接收数据的终端或所述第一终端周围的终端。例如,所述第一终端可以是上文涉及的终端B,所述第一终端可以是上文涉及的终端A。
如图10所示,所述方法100可包括:
S110,第一终端利用物理侧行触发信道(Physical Sidelink Triggering Channel,PSTCH)发送触发信令,所述触发信令用于指示第二终端发送用于辅助所述第一终端选择资源的参考资源集合。
当第一终端根据特定的条件,例如第一终端触发了资源重选而且第一终端将要发送的数据的优先级高于特定门限等时,第一终端确定触发第二终端发送参考资源集合;第一终端可以利用序列类型的物理信道发送所述触发信息,下文中将用于发送触发信息的序列格式物理信道称为PSTCH。
基于以上技术方案,通过引入PSTCH作为用于发送触发信令的信道,完善了用于发送触发信令的物理信道,能够提升系统性能。
第一终端确定PSTCH资源后,在PSTCH资源上发送PSTCH。为便于对本申请方案的理解,下面对物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)的资源进行说明。
在R16NR-V2X中支持序列类型的PSFCH,称为PSFCH格式0,PSFCH格式0在频域上占用一个PRB,在时域上占用一个OFDM符号,PSFCH格式0采用的序列类型和物理上行控制信道(Physical Uplink Control Channel,PUCCH)格式0相同。在一个资源池内,PSFCH资源以1,2或4个时隙为周期配置。存在PSFCH资源的时隙上,PSFCH资源位于时隙内最后一个可用于侧行通信的OFDM符号上。为了支持收发转换以及自动增益控制(Auto gain control,AGC)的调整,PSFCH符号之前存在两个OFDM符号分别用于收发转换和AGC调整,即保护间隔符号和AGC符号。AGC符号上可承载有和最后一个可用于侧行通信的OFDM符号相同的信息。此外,在上述三个符号上不允许发送物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)和物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)。在R16NR-V2X中,PSFCH只用于承载混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)反馈信息,一个PSFCH的容量为一个比特。
PSFCH的传输资源根据其对应的PSSCH的传输资源的时频位置确定。在NR-V2X中,支持以下两种PSFCH的资源确定方式,具体采用哪种确定方式是根据高层信令配置的。
方式1:根据PSSCH频域资源的第一个子信道确定PSFCH的传输资源;
方式2:根据PSSCH频域占据的所有子信道确定PSFCH的传输资源。
对于方式1的确定方式,由于PSFCH的传输资源只根据PSSCH占据的第一个子信道确定,因此,无论PSSCH占据多少子信道,其对应的PSFCH的反馈资源个数是固定的;对于方式2,PSFCH的传输资源个数根据PSSCH占据的子信道数确定,因此,PSSCH占据的子信道越多,其PSFCH的传输资源也越多。方式2更适用于需要更多侧行HARQ反馈资源的场景,例如,组播中的第二类侧行HARQ反馈方式。根据传输PSSCH的时隙以及子信道可以确定可用于发送PSFCH的PRB集合,可用于发送PSFCH的PRB集合中的资源的索引先按照资源块(Resource Block,RB)从低到高的顺序,再按照载波检测(CS)对从低到高的顺序确定。在可用于发送PSFCH的PRB集合中,通过下面的公式确定用于传输PSFCH的资源:
Figure PCTCN2020139561-appb-000001
其中,P ID表示发送端的标识,即SCI中携带的发送端的源ID,对于单播或NACK-only的组播侧行HARQ反馈方式,M ID=0;对于ACK/NACK的组播侧行HARQ反馈方式,M ID表示高层配置的 接收端的组内标识。
Figure PCTCN2020139561-appb-000002
表示可用于发送PSFCH的PRB集合中资源的数量。
下面结合表1对可用于发送PSFCH的PRB集合的确定方式进行说明。
表1
Figure PCTCN2020139561-appb-000003
其中,SL-PSFCH-Config-r16信令用于配置可用于发送PSFCH的PSFCH资源,sl-PSFCH-Period-r16用于配置PSFCH资源的周期,sl-PSFCH-RB-Set-r16用于配置PSFCH资源所在OFDM符号上可用于PSFCH发送的PRB,sl-NumMuxCS-Pair-r16用于配置一个PRB内允许的PFSCH资源的序列的循环移位个数,sl-MinTimeGapPSFCH-r16用于配置PSFCH资源和与其关联的PSSCH的最小时间间隔,sl-PSFCH-HopID-r16用于配置PSFCH资源的跳频标识(ID),该跳频标识用于确定PSFCH资源的序列,sl-PSFCH-CandidateResourceType-r16用于配置PSFCH备选资源的确定方式。
在本申请的一些实施例中,所述方法100还可包括:
所述第一终端确定可用于发送所述PSTCH的第一物理资源块PRB集合。
可选的,在一个资源池内,所述第一PRB集合所在的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号和第二PRB集合所在的OFDM符号相同,所述第二PRB集合为可用于发送物理侧行反馈信道PSFCH的PRB集合。可选的,在本申请的一些实施例中,所述第一PRB集合的周期和第二PRB集合的周期相同;在所述第一PRB集合的目标周期内,所述第一PRB集合所在的时隙和所述第二PRB集合所在的时隙相同。
换言之,第一PRB集合位于资源池内PSFCH所在的OFDM符号上。
例如,在一个资源池内,第一PRB集合的周期和所述一个资源池内第二PRB集合的周期相同,在每一个周期内,第一PRB集合所在时隙和本周期内第二PRB集合所在时隙相同。
在一种实现方式中,在所述第一PRB集合所在的时隙内,所述第一PRB集合位于最后两个可用于侧行传输的OFDM符号上。可选的,在所述第一PRB集合所在的OFDM符号上,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB不同。可选的,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB通过不同的高层参数配置。在另一种实现方式中,在一个资源池内,所述第一PRB集合位于每个时隙内的最后一个可用于侧行通信的OFDM符号上。可选的,所述最后一个可用于侧行通信的OFDM符号为保护间隔符号,所述第一PRB集合包括所述保护间隔符号内的部分或全部PRB。在另一种实现方式中,在所述第一PRB集合所在的时隙内,所述第一PRB集合位于最后两个可用于侧行传输的OFDM符号上。可选的,在所述第一PRB集合所在的OFDM符号上,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB相同。
简言之,第一终端确定第一PRB集合,第一PRB集合位于资源池内PSFCH所在的OFDM符号上,或位于时隙内最后一个GAP符号上,或和资源池内用于PSFCH发送的PRB相同或不同。
下面结合具体实施例对本申请的方案进行说明。
实施例1-1:
在本实施例中,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB不同。
具体来说,在一个资源池内,第一PRB集合的周期和所述一个资源池内的第二PRB集合的周期相同,在每一个周期内,第一PRB集合所在的时隙和本周期内第二PRB集合所在的时隙相同,在所述第一PRB集合所在的时隙内,所述第一PRB集合和所述第二PRB集合均位于最后两个可用于侧行传输的OFDM符号上。然而,在最后两个可用于侧行传输的OFDM符号上,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB通过不同的高层参数配置;可选的,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB不同。
图11是本申请实施例提供的第一PRB集合和第二PRB集合的示意性结构图。
如图11所示,在一个资源池内的一个时隙上可存在10个PRB(即PRB#0~PRB#9),时隙的第11个OFDM符号和14个OFDM符号是保护间隔(GAP)符号,时隙的第12个OFDM符号是AGC符号。本实施例中,时隙的第13个OFDM符号是用于PSFCH和PSTCH的符号。其中,所述第一PRB集合包括的PRB#4和PRB#5,所述第二PRB集合包括PRB#6~PRB#9。可选的,第12个OFDM符号上的PRB#4~PRB#9和第13个OFDM符号上的PRB#4~PRB#9可承载有相同的信息。第12个OFDM符号上的PRB#4~PRB#9承载的信息分别第13个OFDM符号上的PRB#4~PRB#9承载的信息的复制信息。
实施例1-2:
在本实施例中,所述第一PRB集合位于每个时隙内的最后一个可用于侧行通信的OFDM符号上。
具体来说,在一个资源池内,第一PRB集合位于每个时隙内的最后一个可用于侧行通信的OFDM符号内,即位于可用于侧行的时隙内最后一个GAP符号内;可选的,在这种情况下,GAP符号内所有的PRB均可用于PSTCH发送。
实施例1-3:
在本实施例中,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB相同。
具体来说,在一个资源池内,第一PRB集合的周期和所述一个资源池内的第二PRB集合的周期相同,在每一个周期内,第一PRB集合所在的时隙和本周期内第二PRB集合所在的时隙相同,在所述第一PRB集合所在的时隙内,所述第一PRB集合和所述第二PRB集合均位于最后两个可用于侧行传输的OFDM符号上,在最后两个可用于侧行传输的OFDM符号上,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB相同。
在本申请的一些实施例中,所述方法100还可包括:
所述第一终端从所述第一PRB集合中确定用于发送所述PSTCH的第一PRB。
在一种实现方式中,所述第一终端在时隙n确定需要发送所述PSTCH的情况下,所述第一终端在时隙m上的所述第一PRB集合内确定所述第一PRB,n、m均为非负整数。可选的,n和m之间的间隔为预定义的;或,n和m之间的间隔为预配置的;或,n和m之间的间隔为网络配置的;或,n和m之间的间隔为非零间隔或零。
换言之,如果第一终端在时隙n确定需要发送PSTCH,第一终端在时隙m上的第一PRB集合内选择所述第一PRB,其中n和m之间的间隔为特定值,该特定值可以由标准定义,网络配置或预配置,而且该间隔可以为零。
需要说明的是,在本申请各个实施例中,所述"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义的可以是指协议中定义的。可选地,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做具体限定。当然,下文其他参数涉及的“预定义”均适用于上述描述,为避免重复,后续不再赘述。
在一种实现方式中,所述第一终端根据至少一个标识和所述PSTCH的发送时间,确定所述第一PRB。
可选的,所述至少一个标识的数量为n,所述第一终端基于以下公式确定所述第一PRB:
P=f(ID 1,....,ID n,t)mod C(S_T);
其中,P表示所述第一PRB的索引,ID 1,....,ID n表示所述至少一个标识,t表示所述PSTCH所在的时隙的索引和/或所述PSTCH所在的OFDM符号的索引,f(ID 1,....,ID n,t)表示基于所述至少一个标识和t确定的特征整数,C(S_T)表示所述参考资源集合中的参考资源的数量。
可选的,所述第一终端基于以下公式,确定所述f(ID 1,....,ID n,t):
Figure PCTCN2020139561-appb-000004
其中,中c()表示由ID 1,....,ID n中的某一个ID初始化得到的伪随机序列,f 1(ID 1,....,ID n)表示ID 1,....,ID n中的除所述某一个ID外的ID。
可选的,所述至少一个标识包括以下中的至少一项:所述第一终端的源标识、所述第一终端随机产生的随机数、所述第二终端的目标标识、所述第二终端的组播标识、所述第一终端的成员标识或所 述第一终端和所述第二终端之间的单播标识。可选的,所述至少一个标识包括所述第一终端随机产生的随机数,所述第一终端向所述第二终端发送所述随机数。例如,在建立单播或组播通信的过程中,所述第一终端产生所述随机数;所述第一终端通过高层信令或物理层信令向所述第二终端发送所述随机数。
针对所述至少一个标识为一个特定ID的情况,所述第一终端可采用以下方式确定所述第一PRB:
方式2-1:
第一终端根据一个特定ID和PSTCH的发送时间确定第一PRB。可选的,如果特定ID表示为S ID,则第一PRB的索引P为:P=f(S ID,t)modC(S_T),其中f(S ID,t)表示由S ID和PSTCH发送时间t确定的特征整数,t可以为PSTCH所在的时隙的索引和/或PSTCH所在的OFDM符号的索引。例如
Figure PCTCN2020139561-appb-000005
其中c(·)为由S ID初始化得到的伪随机序列。S ID可以为但不限于第一终端的源ID(SourceID),第一终端随机产生的随机数,第二终端的目标ID(DestinationID),组播ID(GroupID),第一终端的成员ID(member ID),第一终端和第二终端之间的单播ID等。如果为第一终端随机产生的随机数,则第一终端需要在发送PSTCH之前将该随机数通知第二终端,例如当第一终端和第二终端之间建立单播或组播通信时,第一终端便随机产生该随机数,并将该随机数通过高层或物理层信令通知第二终端。
方式2-2:
第一终端根据多个特定ID和PSTCH的发送时间确定第一PRB。可选的,所述多个特定ID可以为但不限于第一终端的源ID(SourceID),第一终端随机产生的随机数,第二终端的目标ID(DestinationID),组播ID(GroupID),第一终端的成员ID(member ID),第一终端和第二终端之间的单播ID,等ID中的多个。可选的,所述多个特定ID可以为第一终端的源IDS ID和第二终端的目标IDD ID,则第一PRB的索引P为:P=f(S ID,D ID,t)modC(S_T),其中f(S ID,D ID,t)表示由S ID,D ID和PSTCH发送时间t确定的特征整数,t可以为PSTCH所在的时隙的索引和/或PSTCH所在的OFDM符号的索引。例如,
Figure PCTCN2020139561-appb-000006
其中c(·)为由S ID初始化得到的伪随机序列。再例如,
Figure PCTCN2020139561-appb-000007
其中c(·)为由D ID初始化得到伪随机序列。
方式2-3:
第一终端在第一PRB集合内随机选择用于第一PRB。在这种情况下,第一终端在发送PSTCH之前将所述选择的第一PRB通知第二终端。例如,当第一终端和第二终端之间建立单播或组播通信时,第一终端便选择第一PRB,并将所述第一PRB的位置通过高层或物理层信令通知第二终端。
综上所述,第一终端从第一PRB集合中确定用于发送PSTCH的第一PRB时,第一终端根据一个或多个特定ID和PSTCH的发送时间确定用于发送PSTCH的第一PRB,或者随机选择用于发送PSTCH的第一PRB。
在本申请的一些实施例中,所述方法100还可包括:
所述第一终端确定所述PSTCH的根序列。
在一种实现方式中,所述第一终端基于以下公式确定所述PSTCH的根序列:
Figure PCTCN2020139561-appb-000008
其中,0≤n≤M ZC-1,M ZC表示所述PSTCH的根序列的长度,j表示虚数单位,φ(n)表示基于所述PSTCH的跳频标识u确定的参数,jφ(n)π/4为虚部。可选的,M ZC=12。
可选的,在一个资源池内,所述PSTCH的跳频标识和PSFCH的跳频标识相同,或所述PSTCH的跳频标识和PSFCH的跳频标识不同。可选的,在一个资源池内,所述PSTCH的根序列和PSFCH的根序列相同,或所述PSTCH的根序列和PSFCH的根序列不同。可选的,u=n ID mod 30,按照本申请的一种实现方式,资源池内PSTCH的根序列和PSFCH的根序列相同,即n ID为sl-PSFCH-HopID-r16指示的值。按照本申请的另一种实现方式,资源池内PSTCH的根序列和PSFCH的根序列可以不同,即n ID为不同于sl-PSFCH-HopID-r16的另外一个RRC参数指示的值。
可选的,φ(n)的取值如下述表2所示。
表2
Figure PCTCN2020139561-appb-000009
Figure PCTCN2020139561-appb-000010
如表2所示,确定出u值后,可以基于u确定φ(n)的取值。
在本申请的一些实施例中,所述方法100还可包括:
所述第一终端确定所述PSTCH可用的循环移位。
可选的,在一个资源池内,所述PSTCH可用的循环移位和PSFCH可用的循环移位不同,或所述PSTCH可用的循环移位和所述PSFCH可用的循环移位相同。可选的,所述PSTCH可用的循环移位为网络配置的,或所述PSTCH可用的循环移位为预配置的。例如,所述PSTCH的循环移位和资源池内PSFCH可能采用的循环移位均不相同,例如,所述PSTCH可以采用的循环移位可以为资源池内配置或预配置的不同于PSFCH可能采用的循环移位值的一个或多个循环移位值。
在本申请的一些实施例中,所述PSTCH可用的循环移位为多个循环移位,所述第一终端从所述多个循环移位中确定所述PSTCH使用的第一循环移位。
在一种实现方式中,所述第一终端基于所述第一终端期望的最晚反馈时间从所述多个循环移位中确定所述第一循环移位,所述最晚反馈时间指所述第二终端发送所述参考资源集合的最晚时间,所述最晚时间表示为所述PSTCH之后的N个时隙,N为正整数。可选的,N为预定义的,或N为网络配置的,或N为预配置的。可选的,所述第一终端基于所述第一终端期望的最晚反馈时间和第一映射关系,将所述第一终端期望的最晚反馈时间对应的循环移位确定为所述第一循环移位,所述第一映射关系包括所述多个循环移位对应的多个最晚反馈时间,所述多个最晚反馈时间包括所述第一终端期望的最晚反馈时间。可选的,所述第一映射关系为预定义的,或所述第一映射关系为网络配置的,或所述第一映射关系为预配置的。
在另一种实现方式中,所述第一终端基于最小时间跨度从所述多个循环移位中确定所述第一循环移位;所述最小时间跨度指所述第一终端期望所述第二终端发送的所述参考资源集合中包括的资源在时间上的最小跨度,所述最小时间跨度表示为承载所述参考资源集合的信令所在时隙之后特定时间开始的W个时隙,所述特定时间用于所述第一终端解码用于承载所述参考资源集合的信令,W为正整数。可选的,W的可选值为预定义的,或W的可选值为网络配置的,或W的可选值为预配置的。可选的,所述第一终端基于所述最小时间跨度和第二映射关系,将所述最小时间跨度对应的循环移位确定为所述第一循环移位,所述第二映射关系包括所述多个循环移位对应的多个时间跨度,所述多个时间跨度包括所述最小时间跨度。可选的,在本申请的一些实施例中,所述第二映射关系为预定义的,或所述第二映射关系为网络配置的,或所述第二映射关系为预配置的。
例如,如果第一终端期望第二终端反馈参考资源集合的最晚反馈时间为接收到PSTCH之后的N1个时隙,而且参考资源集合的最小时间跨度为W1个时隙,则第一终端应采用第一循环移位;如果第 一终端期望第二终端反馈参考资源集合的最晚时间为接收到PSTCH之后的N1个时隙,而且参考资源集合的最小时间跨度为W2个时隙,则第一终端应采用第二循环移位;以此类推。
综上所示,第一终端确定PSTCH的根序列和循环移位,PSTCH的根序列可以和资源池内PSFCH可能采用的根序列相同或不同,PSTCH采用的一个或多个循环移位可以和资源池内PSFCH可能采用的循环移位相同或不同,当PSTCH可用的循环移位有多个时,PSTCH最终采用的循环移位和PSTCH承载的信息有关。
在本申请的一些实施例中,所述方法100还可包括:
所述第一终端接收所述第二终端发送的参考资源集合。
在一种实现方式中,所述第一终端接收所述第二终端发送的比特位图,所述比特位图内的比特数等于所述参考资源集合的时间跨度内的子信道的个数,所述比特位图中的每一个比特用于指示所述比特对应的子信道是否包括在所述参考资源集合内。可选的,所述比特位图内的第i个最低有效位LSB用于指示所述时间跨度内的第i个子信道是否包括在所述参考资源集合内,i为非负整数,i小于所述比特位图内的比特数。
具体来说,第二终端应在可能出现PSTCH的时频资源上检测PSTCH,如果检测到针对第二终端的PSTCH,第二终端应在N之前将时间跨度不小于W的参考资源集合发送给第一终端。第二终端可以通过比特位图的方式发送所述参考资源集合,比特位图内的比特数等于所述参考资源集合的时间跨度内子信道(sub-channel)的个数,比特位图内的每一个比特对应所述时间跨度内的一个子信道,例如,所述比特位图的LSB对应所述时间跨度内第一个时隙的第一个子信道,所述比特位图的第二LSB对应所述时间跨度内第一时隙的第二个子信道,以此类推。如果某个比特为0/1,则表示该比特对应的子信道不包含/包含在参考资源集合中。包含在参考资源集合内的资源可以为第二终端确定的其他终端预留的且估计的RSRP高于某一特定门限的资源,或者为第二终端确定和第一终端的接收终端(包括第二终端)预留的资源位于相同时隙内的资源。
在本申请的一些实施例中,所述参考资源集合包括适合所述第一终端使用的资源;所述第一终端优先从所述参考资源集合中选择用于发送侧行数据的资源。
在本申请的一些实施例中,所述参考资源集合包括不适合所述第一终端使用的资源集合;所述第一终端避免从所述参考资源集合中选择用于发送侧行数据的资源。
本申请实施例中,第一终端通过序列类型的PSTCH发送触发信令,根据本申请提出的方法,第一终端首先确定第一PRB集合,第一PRB集合位于资源池内PSFCH所在的OFDM符号上,或者位于时隙内最后一个GAP符号上,或者和资源池内的PSFCH采用的PRB集合相同或相同。第一终端从上述第一PRB集合中确定用于发送PSTCH的第一PRB,第一终端可以根据一个或多个特定ID以及PSTCH的发送时间确定用于发送PSTCH的第一PTB,或者随机选择用于发送PSTCH的第一PRB。最后,第一终端确定PSTCH的根序列和循环移位,PSTCH的根序列可以和资源池内PSFCH采用的根序列相同或不同,而PSTCH采用的一个或多个循环移位可以和资源池内PSFCH可能采用的循环移位相同或不同,当PSTCH可用的循环移位有多个时,PSTCH最终采用的循环移位和PSTCH承载的信息有关。
本申请实施例中,所述第二终端可以在PSTCH资源上接收PSTCH。需要说明的是,所述第二终端确定PSTCH资源的方式可以参考所述第一终端确定PSTCH资源的方式,为避免重复,此处不再赘述。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文详细描述了本申请的方法实施例,下文结合图12至图15,详细描述本申请的装置实施例。
图12是本申请实施例的第一终端200的示意性框图。
如图12所示,所述第一终端200可包括:
发送单元210,用于利用物理侧行触发信道PSTCH发送触发信令,所述触发信令用于指示第二终端发送用于辅助所述第一终端选择资源的参考资源集合。
在本申请的一些实施例中,所述发送单元210还用于:
确定可用于发送所述PSTCH的第一物理资源块PRB集合。
在本申请的一些实施例中,在一个资源池内,所述第一PRB集合所在的正交频分复用OFDM符号和第二PRB集合所在的OFDM符号相同,所述第二PRB集合为可用于发送物理侧行反馈信道PSFCH的PRB集合。
在本申请的一些实施例中,所述第一PRB集合的周期和第二PRB集合的周期相同;在所述第一PRB集合的目标周期内,所述第一PRB集合所在的时隙和所述第二PRB集合所在的时隙相同。
在本申请的一些实施例中,在所述第一PRB集合所在的时隙内,所述第一PRB集合位于最后两个可用于侧行传输的OFDM符号上。
在本申请的一些实施例中,在所述第一PRB集合所在的OFDM符号上,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB相同,或所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB不同。
在本申请的一些实施例中,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB不同,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB通过不同的高层参数配置。
在本申请的一些实施例中,在一个资源池内,所述第一PRB集合位于每个时隙内的最后一个可用于侧行通信的OFDM符号上。
在本申请的一些实施例中,所述最后一个可用于侧行通信的OFDM符号为保护间隔符号,所述第一PRB集合包括所述保护间隔符号内的部分或全部PRB。
在本申请的一些实施例中,所述发送单元210还用于:
从所述第一PRB集合中确定用于发送所述PSTCH的第一PRB。
在本申请的一些实施例中,所述发送单元210具体用于:
在时隙n确定需要发送所述PSTCH的情况下,所述第一终端在时隙m上的所述第一PRB集合内确定所述第一PRB,n、m均为非负整数。
在本申请的一些实施例中,n和m之间的间隔为预定义的;或,n和m之间的间隔为预配置的;或,n和m之间的间隔为网络配置的;或,n和m之间的间隔为非零间隔或零。
在本申请的一些实施例中,所述发送单元210具体用于:
根据至少一个标识和所述PSTCH的发送时间,确定所述第一PRB。
在本申请的一些实施例中,所述至少一个标识的数量为n,所述发送单元210具体用于:
基于以下公式确定所述第一PRB:
P=f(ID 1,....,ID n,t)mod C(S_T);
其中,P表示所述第一PRB的索引,ID 1,....,ID n表示所述至少一个标识,t表示所述PSTCH所在的时隙的索引和/或所述PSTCH所在的OFDM符号的索引,f(ID 1,....,ID n,t)表示基于所述至少一个标识和t确定的特征整数,C(S_T)表示所述参考资源集合中的参考资源的数量。
在本申请的一些实施例中,所述发送单元210还用于:
基于以下公式,确定所述f(ID 1,....,ID n,t):
Figure PCTCN2020139561-appb-000011
其中,中c()表示由ID 1,....,ID n中的某一个ID初始化得到的伪随机序列,f 1(ID 1,....,ID n)表示ID 1,....,ID n中的除所述某一个ID外的ID。
在本申请的一些实施例中,所述至少一个标识包括以下中的至少一项:
所述第一终端的源标识、所述第一终端随机产生的随机数、所述第二终端的目标标识、所述第二终端的组播标识、所述第一终端的成员标识或所述第一终端和所述第二终端之间的单播标识。
在本申请的一些实施例中,所述至少一个标识包括所述第一终端随机产生的随机数,所述发送单元210还用于:
向所述第二终端发送所述随机数。
在本申请的一些实施例中,所述发送单元210具体用于:
在建立单播或组播通信的过程中,所述第一终端产生所述随机数;
所述第一终端通过高层信令或物理层信令向所述第二终端发送所述随机数。
在本申请的一些实施例中,所述发送单元210具体用于:
从所述第一PRB集合中随机选择所述第一PRB。
在本申请的一些实施例中,所述发送单元210还用于:
确定所述PSTCH的根序列。
在本申请的一些实施例中,所述发送单元210具体用于:
基于以下公式确定所述PSTCH的根序列:
Figure PCTCN2020139561-appb-000012
其中,0≤n≤M ZC-1,M ZC表示所述PSTCH的根序列的长度,j表示虚数单位,φ(n)表示基于所述PSTCH的跳频标识u确定的参数。
在本申请的一些实施例中,在一个资源池内,所述PSTCH的跳频标识和PSFCH的跳频标识相同,或所述PSTCH的跳频标识和PSFCH的跳频标识不同。
在本申请的一些实施例中,在一个资源池内,所述PSTCH的根序列和PSFCH的根序列相同,或所述PSTCH的根序列和PSFCH的根序列不同。
在本申请的一些实施例中,所述发送单元210还用于:
确定所述PSTCH可用的循环移位。
在本申请的一些实施例中,在一个资源池内,所述PSTCH可用的循环移位和PSFCH可用的循环移位不同,或所述PSTCH可用的循环移位和所述PSFCH可用的循环移位相同。
在本申请的一些实施例中,所述PSTCH可用的循环移位为网络配置的,或所述PSTCH可用的循环移位为预配置的。
在本申请的一些实施例中,所述PSTCH可用的循环移位为多个循环移位,所述发送单元210还用于:
从所述多个循环移位中确定所述PSTCH使用的第一循环移位。
在本申请的一些实施例中,所述发送单元210具体用于:
基于所述第一终端期望的最晚反馈时间从所述多个循环移位中确定所述第一循环移位,所述最晚反馈时间指所述第二终端发送所述参考资源集合的最晚时间,所述最晚时间表示为所述PSTCH之后的N个时隙,N为正整数。
在本申请的一些实施例中,所述发送单元210具体用于:
基于所述第一终端期望的最晚反馈时间和第一映射关系,将所述第一终端期望的最晚反馈时间对应的循环移位确定为所述第一循环移位,所述第一映射关系包括所述多个循环移位对应的多个最晚反馈时间,所述多个最晚反馈时间包括所述第一终端期望的最晚反馈时间。
在本申请的一些实施例中,所述第一映射关系为预定义的,或所述第一映射关系为网络配置的,或所述第一映射关系为预配置的。
在本申请的一些实施例中,N为预定义的,或N为网络配置的,或N为预配置的。
在本申请的一些实施例中,所述发送单元210具体用于:
基于最小时间跨度从所述多个循环移位中确定所述第一循环移位;所述最小时间跨度指所述第一终端期望所述第二终端发送的所述参考资源集合中包括的资源在时间上的最小跨度,所述最小时间跨度表示为承载所述参考资源集合的信令所在时隙之后特定时间开始的W个时隙,所述特定时间用于所述第一终端解码用于承载所述参考资源集合的信令,W为正整数。
在本申请的一些实施例中,所述发送单元210具体用于:
基于所述最小时间跨度和第二映射关系,将所述最小时间跨度对应的循环移位确定为所述第一循环移位,所述第二映射关系包括所述多个循环移位对应的多个时间跨度,所述多个时间跨度包括所述最小时间跨度。
在本申请的一些实施例中,所述第二映射关系为预定义的,或所述第二映射关系为网络配置的,或所述第二映射关系为预配置的。
在本申请的一些实施例中,W的可选值为预定义的,或W的可选值为网络配置的,或W的可选值为预配置的。
在本申请的一些实施例中,所述发送单元210还用于:
接收所述第二终端发送的参考资源集合。
在本申请的一些实施例中,所述发送单元210具体用于:
接收所述第二终端发送的比特位图,所述比特位图内的比特数等于所述参考资源集合的时间跨度 内的子信道的个数,所述比特位图中的每一个比特用于指示所述比特对应的子信道是否包括在所述参考资源集合内。
在本申请的一些实施例中,所述比特位图内的第i个最低有效位LSB用于指示所述时间跨度内的第i个子信道是否包括在所述参考资源集合内,i为非负整数,i小于所述比特位图内的比特数。
在本申请的一些实施例中,所述参考资源集合包括适合所述第一终端使用的资源;所述发送单元210还用于:
优先从所述参考资源集合中选择用于发送侧行数据的资源。
在本申请的一些实施例中,所述参考资源集合包括不适合所述第一终端使用的资源集合;所述发送单元210还用于:
避免从所述参考资源集合中选择用于发送侧行数据的资源。
图13是本申请实施例的第二终端300的示意性框图。
如图13所示,所述第二终端300可包括:
接收单元310,利用物理侧行触发信道PSTCH接收触发信令,所述触发信令用于指示第二终端发送用于辅助所述第一终端选择资源的参考资源集合。
在本申请的一些实施例中,所述接收单元310还用于:
确定可用于发送所述PSTCH的第一物理资源块PRB集合。
在本申请的一些实施例中,在一个资源池内,所述第一PRB集合所在的正交频分复用OFDM符号和第二PRB集合所在的OFDM符号相同,所述第二PRB集合为可用于发送物理侧行反馈信道PSFCH的PRB集合。
在本申请的一些实施例中,所述第一PRB集合的周期和第二PRB集合的周期相同;在所述第一PRB集合的目标周期内,所述第一PRB集合所在的时隙和所述第二PRB集合所在的时隙相同。
在本申请的一些实施例中,在所述第一PRB集合所在的时隙内,所述第一PRB集合位于最后两个可用于侧行传输的OFDM符号上。
在本申请的一些实施例中,在所述第一PRB集合所在的OFDM符号上,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB相同,或所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB不同。
在本申请的一些实施例中,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB不同,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB通过不同的高层参数配置。
在本申请的一些实施例中,在一个资源池内,所述第一PRB集合位于每个时隙内的最后一个可用于侧行通信的OFDM符号上。
在本申请的一些实施例中,所述最后一个可用于侧行通信的OFDM符号为保护间隔符号,所述第一PRB集合包括所述保护间隔符号内的部分或全部PRB。
在本申请的一些实施例中,所述接收单元310还用于:
从所述第一PRB集合中确定用于发送所述PSTCH的第一PRB。
在本申请的一些实施例中,所述接收单元310具体用于:
在时隙n确定需要发送所述PSTCH的情况下,所述第一终端在时隙m上的所述第一PRB集合内确定所述第一PRB,n、m均为非负整数。
在本申请的一些实施例中,n和m之间的间隔为预定义的;或,n和m之间的间隔为预配置的;或,n和m之间的间隔为网络配置的;或,n和m之间的间隔为非零间隔或零。
在本申请的一些实施例中,所述接收单元310具体用于:
根据至少一个标识和所述PSTCH的发送时间,确定所述第一PRB。
在本申请的一些实施例中,所述至少一个标识的数量为n,所述接收单元310具体用于:
基于以下公式确定所述第一PRB:
P=f(ID 1,....,ID n,t)mod C(S_T);
其中,P表示所述第一PRB的索引,ID 1,....,ID n表示所述至少一个标识,t表示所述PSTCH所在的时隙的索引和/或所述PSTCH所在的OFDM符号的索引,f(ID 1,....,ID n,t)表示基于所述至少一个标识和t确定的特征整数,C(S_T)表示所述参考资源集合中的参考资源的数量。
在本申请的一些实施例中,所述接收单元310还用于:
基于以下公式,确定所述f(ID 1,....,ID n,t):
Figure PCTCN2020139561-appb-000013
其中,中c()表示由ID 1,....,ID n中的某一个ID初始化得到的伪随机序列,f 1(ID 1,....,ID n)表示ID 1,....,ID n中的除所述某一个ID外的ID。
在本申请的一些实施例中,所述至少一个标识包括以下中的至少一项:
所述第一终端的源标识、所述第一终端随机产生的随机数、所述第二终端的目标标识、所述第二终端的组播标识、所述第一终端的成员标识或所述第一终端和所述第二终端之间的单播标识。
在本申请的一些实施例中,所述至少一个标识包括所述第一终端随机产生的随机数,所述接收单元310还用于:
接收所述第一终端发送的所述随机数。
在本申请的一些实施例中,所述接收单元310还用于:
通过高层信令或物理层信令接收所述第一终端发送的所述随机数。
在本申请的一些实施例中,所述接收单元310还用于:
从所述第一PRB集合中随机选择所述第一PRB。
在本申请的一些实施例中,所述接收单元310还用于:
确定所述PSTCH的根序列。
在本申请的一些实施例中,所述接收单元310还用于:
基于以下公式确定所述PSTCH的根序列:
Figure PCTCN2020139561-appb-000014
其中,0≤n≤M ZC-1,M ZC表示所述PSTCH的根序列的长度,j表示虚数单位,φ(n)表示基于所述PSTCH的跳频标识u确定的参数。
在本申请的一些实施例中,在一个资源池内,所述PSTCH的跳频标识和PSFCH的跳频标识相同,或所述PSTCH的跳频标识和PSFCH的跳频标识不同。
在本申请的一些实施例中,在一个资源池内,所述PSTCH的根序列和PSFCH的根序列相同,或所述PSTCH的根序列和PSFCH的根序列不同。
在本申请的一些实施例中,所述接收单元310还用于:
确定所述PSTCH可用的循环移位。
在本申请的一些实施例中,在一个资源池内,所述PSTCH可用的循环移位和PSFCH可用的循环移位不同,或所述PSTCH可用的循环移位和所述PSFCH可用的循环移位相同。
在本申请的一些实施例中,所述PSTCH可用的循环移位为网络配置的,或所述PSTCH可用的循环移位为预配置的。
在本申请的一些实施例中,所述PSTCH可用的循环移位为多个循环移位,所述接收单元310还用于:
从所述多个循环移位中确定所述PSTCH使用的第一循环移位。
在本申请的一些实施例中,所述接收单元310还用于:
基于所述第一终端期望的最晚反馈时间从所述多个循环移位中确定所述第一循环移位,所述最晚反馈时间指所述第二终端发送所述参考资源集合的最晚时间,所述最晚时间表示为所述PSTCH之后的N个时隙,N为正整数。
在本申请的一些实施例中,所述接收单元310还用于:
基于所述第一终端期望的最晚反馈时间和第一映射关系,将所述第一终端期望的最晚反馈时间对应的循环移位确定为所述第一循环移位,所述第一映射关系包括所述多个循环移位对应的多个最晚反馈时间,所述多个最晚反馈时间包括所述第一终端期望的最晚反馈时间。
在本申请的一些实施例中,所述第一映射关系为预定义的,或所述第一映射关系为网络配置的,或所述第一映射关系为预配置的。
在本申请的一些实施例中,N为预定义的,或N为网络配置的,或N为预配置的。
在本申请的一些实施例中,所述接收单元310还用于:
基于最小时间跨度从所述多个循环移位中确定所述第一循环移位;所述最小时间跨度指所述第一终端期望所述第二终端发送的所述参考资源集合中包括的资源在时间上的最小跨度,所述最小时间跨度表示为承载所述参考资源集合的信令所在时隙之后特定时间开始的W个时隙,所述特定时间用于所述第一终端解码用于承载所述参考资源集合的信令,W为正整数。
在本申请的一些实施例中,所述接收单元310还用于:
基于所述最小时间跨度和第二映射关系,将所述最小时间跨度对应的循环移位确定为所述第一循环移位,所述第二映射关系包括所述多个循环移位对应的多个时间跨度,所述多个时间跨度包括所述最小时间跨度。
在本申请的一些实施例中,所述第二映射关系为预定义的,或所述第二映射关系为网络配置的,或所述第二映射关系为预配置的。
在本申请的一些实施例中,W的可选值为预定义的,或W的可选值为网络配置的,或W的可选值为预配置的。
在本申请的一些实施例中,所述接收单元310还用于:
向所述第一终端发送参考资源集合。
在本申请的一些实施例中,所述接收单元310还用于:
向所述第一终端发送比特位图,所述比特位图内的比特数等于所述参考资源集合的时间跨度内的子信道的个数,所述比特位图中的每一个比特用于指示所述比特对应的子信道是否包括在所述参考资源集合内。
在本申请的一些实施例中,所述比特位图内的第i个最低有效位LSB用于指示所述时间跨度内的第i个子信道是否包括在所述参考资源集合内,i为非负整数,i小于所述比特位图内的比特数。
在本申请的一些实施例中,所述参考资源集合包括适合所述第一终端使用的资源。
在本申请的一些实施例中,所述参考资源集合包括不适合所述第一终端使用的资源集合。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图12所示的第一终端200可以对应于执行本申请实施例的方法100中的相应主体,并且第一终端200中的各个单元的前述和其它操作和/或功能分别为了实现图10中的各个方法中的相应流程,类似的,图13所示的第二终端300可以对应于执行本申请实施例的方法100中的相应主体,并且第二终端300中的各个单元的前述和其它操作和/或功能分别为了实现图10中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元和通信单元可分别由处理器和收发器实现。
图14是本申请实施例的通信设备400示意性结构图。
如图14所示,所述通信设备400可包括处理器410。
其中,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图14,通信设备400还可以包括存储器420。
其中,该存储器420可以用于存储指示信息,还可以用于存储处理器410执行的代码、指令等。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
请继续参见图14,通信设备400还可以包括收发器430。
其中,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备400中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备400可为本申请实施例的第一终端,并且该通信设备400可以实现本申请实施例的各个方法中由第一终端实现的相应流程,也就是说,本申请实施例的通信设备400可对应于本申请实施例中的第一终端200,并可以对应于执行根据本申请实施例的方法100中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备400可为本申请实施例的第二终端,并且该通信设备400可以实现本申请实施例的各个方法中由第二终端实现的相应流程。也就是说,本申请实施例的通信设备300可对应于本申请实施例中的第二终端400,并可以对应于执行根据本申请实施例的方法100中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图15是根据本申请实施例的芯片500的示意性结构图。
如图15所示,所述芯片500包括处理器510。
其中,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图15,所述芯片500还可以包括存储器520。
其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
请继续参见图15,所述芯片500还可以包括输入接口530。
其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
请继续参见图15,所述芯片500还可以包括输出接口540。
其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片500可应用于本申请实施例中的第一终端,并且该芯片可以实现本申请实施例的各个方法中由第一终端实现的相应流程,也可以实现本申请实施例的各个方法中由第二终端实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行本申请实施例提供的方法。可选的,该计算机可读存储介质可应用于本申请实施例中的第一终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一终端实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的第二终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的第一终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由 第一终端实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的第二终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请实施例提供的方法。可选的,该计算机程序可应用于本申请实施例中的第一终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一终端实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的第二终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二终端实现的相应流程,为了简洁,在此不再赘述。
此外,本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备(包括所述第一终端和所述第二终端)和网络设备,以形成通信系统,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
需要说明的是,所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (48)

  1. 一种无线通信方法,其特征在于,包括:
    第一终端利用物理侧行触发信道PSTCH发送触发信令,所述触发信令用于指示第二终端发送用于辅助所述第一终端选择资源的参考资源集合。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端确定可用于发送所述PSTCH的第一物理资源块PRB集合。
  3. 根据权利要求2所述的方法,其特征在于,在一个资源池内,所述第一PRB集合所在的正交频分复用OFDM符号和第二PRB集合所在的OFDM符号相同,所述第二PRB集合为可用于发送物理侧行反馈信道PSFCH的PRB集合。
  4. 根据权利要求3所述的方法,其特征在于,所述第一PRB集合的周期和第二PRB集合的周期相同;在所述第一PRB集合的目标周期内,所述第一PRB集合所在的时隙和所述第二PRB集合所在的时隙相同。
  5. 根据权利要求3所述的方法,其特征在于,在所述第一PRB集合所在的时隙内,所述第一PRB集合位于最后两个可用于侧行传输的OFDM符号上。
  6. 根据权利要求5所述的方法,其特征在于,在所述第一PRB集合所在的OFDM符号上,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB相同,或所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB不同。
  7. 根据权利要求6所述的方法,其特征在于,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB不同,所述第一PRB集合包括的PRB和所述第二PRB集合包括的PRB通过不同的高层参数配置。
  8. 根据权利要求2所述的方法,其特征在于,在一个资源池内,所述第一PRB集合位于每个时隙内的最后一个可用于侧行通信的OFDM符号上。
  9. 根据权利要求8所述的方法,其特征在于,所述最后一个可用于侧行通信的OFDM符号为保护间隔符号,所述第一PRB集合包括所述保护间隔符号内的部分或全部PRB。
  10. 根据权利要求2至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端从所述第一PRB集合中确定用于发送所述PSTCH的第一PRB。
  11. 根据权利要求10所述的方法,其特征在于,所述第一终端从所述第一PRB集合中确定用于发送所述PSTCH的第一PRB,包括:
    所述第一终端在时隙n确定需要发送所述PSTCH的情况下,所述第一终端在时隙m上的所述第一PRB集合内确定所述第一PRB,n、m均为非负整数。
  12. 根据权利要求11所述的方法,其特征在于,n和m之间的间隔为预定义的;或,n和m之间的间隔为预配置的;或,n和m之间的间隔为网络配置的;或,n和m之间的间隔为非零间隔或零。
  13. 根据权利要求10所述的方法,其特征在于,所述第一终端从所述第一PRB集合中确定用于发送所述PSTCH的第一PRB,包括:
    所述第一终端根据至少一个标识和所述PSTCH的发送时间,确定所述第一PRB。
  14. 根据权利要求13所述的方法,其特征在于,所述至少一个标识的数量为n,所述第一终端根据至少一个标识和所述PSTCH的发送时间,确定所述第一PRB,包括:
    所述第一终端基于以下公式确定所述第一PRB:
    P=f(ID 1,....,ID n,t)mod C(S_T);
    其中,P表示所述第一PRB的索引,ID 1,....,ID n表示所述至少一个标识,t表示所述PSTCH所在的时隙的索引和/或所述PSTCH所在的OFDM符号的索引,f(ID 1,....,ID n,t)表示基于所述至少一个标识和t确定的特征整数,C(S_T)表示所述参考资源集合中的参考资源的数量。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第一终端基于以下公式,确定所述f(ID 1,....,ID n,t):
    Figure PCTCN2020139561-appb-100001
    其中,中c( )表示由ID 1,....,ID n中的某一个ID初始化得到的伪随机序列,f 1(ID 1,....,ID n)表示ID 1,....,ID n中的除所述某一个ID外的ID。
  16. 根据权利要求13所述的方法,其特征在于,所述至少一个标识包括以下中的至少一项:
    所述第一终端的源标识、所述第一终端随机产生的随机数、所述第二终端的目标标识、所述第二终端的组播标识、所述第一终端的成员标识或所述第一终端和所述第二终端之间的单播标识。
  17. 根据权利要求16所述的方法,其特征在于,所述至少一个标识包括所述第一终端随机产生的随机数,所述方法还包括:
    所述第一终端向所述第二终端发送所述随机数。
  18. 根据权利要求17所述的方法,其特征在于,所述第一终端向所述第二终端发送所述随机数,包括:
    在建立单播或组播通信的过程中,所述第一终端产生所述随机数;
    所述第一终端通过高层信令或物理层信令向所述第二终端发送所述随机数。
  19. 根据权利要求10所述的方法,其特征在于,所述第一终端从所述第一PRB集合中确定用于发送所述PSTCH的第一PRB,包括:
    所述第一终端从所述第一PRB集合中随机选择所述第一PRB。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端确定所述PSTCH的根序列。
  21. 根据权利要求20所述的方法,其特征在于,所述第一终端确定所述PSTCH的根序列,包括:
    所述第一终端基于以下公式确定所述PSTCH的根序列:
    Figure PCTCN2020139561-appb-100002
    其中,0≤n≤M ZC-1,M ZC表示所述PSTCH的根序列的长度,j表示虚数单位,φ(n)表示基于所述PSTCH的跳频标识u确定的参数。
  22. 根据权利要求21所述的方法,其特征在于,在一个资源池内,所述PSTCH的跳频标识和PSFCH的跳频标识相同,或所述PSTCH的跳频标识和PSFCH的跳频标识不同。
  23. 根据权利要求20所述的方法,其特征在于,在一个资源池内,所述PSTCH的根序列和PSFCH的根序列相同,或所述PSTCH的根序列和PSFCH的根序列不同。
  24. 根据权利要求1至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端确定所述PSTCH可用的循环移位。
  25. 根据权利要求24所述的方法,其特征在于,在一个资源池内,所述PSTCH可用的循环移位和PSFCH可用的循环移位不同,或所述PSTCH可用的循环移位和所述PSFCH可用的循环移位相同。
  26. 根据权利要求25所述的方法,其特征在于,所述PSTCH可用的循环移位为网络配置的,或所述PSTCH可用的循环移位为预配置的。
  27. 根据权利要求24所述的方法,其特征在于,所述PSTCH可用的循环移位为多个循环移位,所述方法还包括:
    所述第一终端从所述多个循环移位中确定所述PSTCH使用的第一循环移位。
  28. 根据权利要求27所述的方法,其特征在于,所述第一终端从所述多个循环移位中确定所述PSTCH使用的第一循环移位,包括:
    所述第一终端基于所述第一终端期望的最晚反馈时间从所述多个循环移位中确定所述第一循环移位,所述最晚反馈时间指所述第二终端发送所述参考资源集合的最晚时间,所述最晚时间表示为所述PSTCH之后的N个时隙,N为正整数。
  29. 根据权利要求28所述的方法,其特征在于,所述第一终端基于最晚反馈时间从所述多个循环移位中确定所述第一循环移位,包括:
    所述第一终端基于所述第一终端期望的最晚反馈时间和第一映射关系,将所述第一终端期望的最晚反馈时间对应的循环移位确定为所述第一循环移位,所述第一映射关系包括所述多个循环移位对应的多个最晚反馈时间,所述多个最晚反馈时间包括所述第一终端期望的最晚反馈时间。
  30. 根据权利要求29所述的方法,其特征在于,所述第一映射关系为预定义的,或所述第一映射关系为网络配置的,或所述第一映射关系为预配置的。
  31. 根据权利要求28所述的方法,其特征在于,N为预定义的,或N为网络配置的,或N为预配置的。
  32. 根据权利要求27所述的方法,其特征在于,所述第一终端从所述多个循环移位中确定所述PSTCH使用的第一循环移位,包括:
    所述第一终端基于最小时间跨度从所述多个循环移位中确定所述第一循环移位;所述最小时间跨度指所述第一终端期望所述第二终端发送的所述参考资源集合中包括的资源在时间上的最小跨度,所 述最小时间跨度表示为承载所述参考资源集合的信令所在时隙之后特定时间开始的W个时隙,所述特定时间用于所述第一终端解码用于承载所述参考资源集合的信令,W为正整数。
  33. 根据权利要求32所述的方法,其特征在于,所述第一终端基于最小时间跨度从所述多个循环移位中确定所述第一循环移位,包括:
    所述第一终端基于所述最小时间跨度和第二映射关系,将所述最小时间跨度对应的循环移位确定为所述第一循环移位,所述第二映射关系包括所述多个循环移位对应的多个时间跨度,所述多个时间跨度包括所述最小时间跨度。
  34. 根据权利要求33所述的方法,其特征在于,所述第二映射关系为预定义的,或所述第二映射关系为网络配置的,或所述第二映射关系为预配置的。
  35. 根据权利要求32所述的方法,其特征在于,W的可选值为预定义的,或W的可选值为网络配置的,或W的可选值为预配置的。
  36. 根据权利要求1至35中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端接收所述第二终端发送的参考资源集合。
  37. 根据权利要求36所述的方法,其特征在于,所述第一终端接收所述第二终端发送的参考资源集合,包括:
    所述第一终端接收所述第二终端发送的比特位图,所述比特位图内的比特数等于所述参考资源集合的时间跨度内的子信道的个数,所述比特位图中的每一个比特用于指示所述比特对应的子信道是否包括在所述参考资源集合内。
  38. 根据权利要求37所述的方法,其特征在于,所述比特位图内的第i个最低有效位LSB用于指示所述时间跨度内的第i个子信道是否包括在所述参考资源集合内,i为非负整数,i小于所述比特位图内的比特数。
  39. 根据权利要求1至38中任一项所述的方法,其特征在于,所述参考资源集合包括适合所述第一终端使用的资源;所述方法还包括:
    所述第一终端优先从所述参考资源集合中选择用于发送侧行数据的资源。
  40. 根据权利要求1至38中任一项所述的方法,其特征在于,所述参考资源集合包括不适合所述第一终端使用的资源集合;所述方法还包括:
    所述第一终端避免从所述参考资源集合中选择用于发送侧行数据的资源。
  41. 一种无线通信方法,其特征在于,包括:
    第二终端利用物理侧行触发信道PSTCH接收触发信令,所述触发信令用于指示第二终端发送用于辅助第一终端选择资源的参考资源集合。
  42. 一种第一终端,其特征在于,包括:
    发送单元,用于利用物理侧行触发信道PSTCH发送触发信令,所述触发信令用于指示第二终端发送用于辅助所述第一终端选择资源的参考资源集合。
  43. 一种第二终端,其特征在于,包括:
    接收单元,用于利用物理侧行触发信道PSTCH接收触发信令,所述触发信令用于指示第二终端发送用于辅助第一终端选择资源的参考资源集合。
  44. 一种通信设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1至40中任一项所述的方法或如权利要求41所述的方法。
  45. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至40中任一项所述的方法或如权利要求41所述的方法。
  46. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至40中任一项所述的方法或如权利要求41所述的方法。
  47. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至40中任一项所述的方法或如权利要求41所述的方法。
  48. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至40中任一项所述的方法或如权利要求41所述的方法。
PCT/CN2020/139561 2020-12-25 2020-12-25 无线通信方法和终端 WO2022134050A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/139561 WO2022134050A1 (zh) 2020-12-25 2020-12-25 无线通信方法和终端
CN202080105902.5A CN116326010A (zh) 2020-12-25 2020-12-25 无线通信方法和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139561 WO2022134050A1 (zh) 2020-12-25 2020-12-25 无线通信方法和终端

Publications (1)

Publication Number Publication Date
WO2022134050A1 true WO2022134050A1 (zh) 2022-06-30

Family

ID=82157130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139561 WO2022134050A1 (zh) 2020-12-25 2020-12-25 无线通信方法和终端

Country Status (2)

Country Link
CN (1) CN116326010A (zh)
WO (1) WO2022134050A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028891A1 (en) * 2017-08-11 2019-02-14 Zte Corporation METHOD AND APPARATUS FOR PROVIDING RADIO RESOURCE INFORMATION FOR LATERAL BINDING CONTROL
WO2020064553A1 (en) * 2018-09-26 2020-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. V2x dynamic groupcast resource allocation
CN111278108A (zh) * 2018-12-04 2020-06-12 华为技术有限公司 确定传输资源的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019091143A1 (zh) * 2017-11-08 2019-05-16 Oppo广东移动通信有限公司 D2d通信中资源配置的方法、终端设备和网络设备
EP3905569A4 (en) * 2018-12-29 2022-07-20 Beijing Xiaomi Mobile Software Co., Ltd. DATA TRANSMISSION METHOD AND DEVICE FOR DIRECT COMMUNICATIONS, DEVICE AND DATA TRANSMISSION SYSTEM FOR DIRECT COMMUNICATIONS
WO2020220290A1 (zh) * 2019-04-30 2020-11-05 富士通株式会社 边链路数据的发送和接收方法以及装置
US11576157B2 (en) * 2019-08-15 2023-02-07 Intel Corporation NR V2X sidelink resource selection and reselection using scheduling window

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028891A1 (en) * 2017-08-11 2019-02-14 Zte Corporation METHOD AND APPARATUS FOR PROVIDING RADIO RESOURCE INFORMATION FOR LATERAL BINDING CONTROL
WO2020064553A1 (en) * 2018-09-26 2020-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. V2x dynamic groupcast resource allocation
CN111278108A (zh) * 2018-12-04 2020-06-12 华为技术有限公司 确定传输资源的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUBISHI ELECTRIC: "Inter-UE coordination for enhanced resource allocation", 3GPP DRAFT; R1-2008861, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946717 *

Also Published As

Publication number Publication date
CN116326010A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
JP7412437B2 (ja) 情報伝送方法、端末デバイス及びネットワークデバイス
JP2022549595A (ja) データ送信方法と装置
JP7093856B2 (ja) フィードバック情報の伝送方法及び装置
WO2020063289A1 (zh) 一种信号传输方法及装置
TWI829760B (zh) 用於側行鏈路的通信方法和設備
TWI725160B (zh) 用於設備間通信的方法和裝置
JP2015503869A (ja) アップリンクでの制御信号に関する通信リソース割当
US10873430B2 (en) Signal sending method and apparatus
WO2021217674A1 (zh) 侧行反馈方法和终端设备
EP3242525A1 (en) Data transmission method and apparatus
WO2019148443A1 (zh) 确定竞争窗口的方法和设备
WO2018223399A1 (zh) 无线通信方法和设备
CN115380588A (zh) 信息传输方法及装置
WO2020103028A1 (zh) 一种传输数据的方法和终端设备
WO2022134076A1 (zh) 无线通信的方法和终端设备
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2022134050A1 (zh) 无线通信方法和终端
WO2021164603A1 (zh) 辅链路控制信息的资源指示方法与装置、终端设备
WO2022021811A1 (zh) 无线通信方法、终端设备和网络设备
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2020029558A1 (zh) 反馈信息的方法、终端、芯片和存储介质
WO2022120610A1 (zh) 无线通信方法和终端
WO2020077624A1 (zh) 传输数据的方法、终端设备和网络设备
WO2022222105A1 (zh) 无线通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966615

Country of ref document: EP

Kind code of ref document: A1