WO2017155224A1 - 태양전지 모듈용 연선 도체 와이어 - Google Patents

태양전지 모듈용 연선 도체 와이어 Download PDF

Info

Publication number
WO2017155224A1
WO2017155224A1 PCT/KR2017/001824 KR2017001824W WO2017155224A1 WO 2017155224 A1 WO2017155224 A1 WO 2017155224A1 KR 2017001824 W KR2017001824 W KR 2017001824W WO 2017155224 A1 WO2017155224 A1 WO 2017155224A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
conductor wire
stranded conductor
cell module
wire
Prior art date
Application number
PCT/KR2017/001824
Other languages
English (en)
French (fr)
Inventor
김진우
김정익
박기홍
김지성
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2017155224A1 publication Critical patent/WO2017155224A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/20Metal tubes, e.g. lead sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a stranded conductor wire for a solar cell module. Specifically, the present invention can not only increase the output of the solar cell module, but also has excellent flexibility to suppress cracks on the substrate, and also has excellent bend resistance and the like, which can improve workability. It relates to a stranded conductor wire.
  • a solar cell is a device that converts light energy into electrical energy by using a p-type semiconductor and an n-type semiconductor, and electrons and electrons generated inside the light beam move to the p-pole and n-pole, respectively, between the p-pole and the n-pole. It is a device based on the photoelectric effect through which a potential difference (photovoltaic power) occurs and current flows.
  • FIG. 1 schematically shows a conventional solar cell module.
  • a plurality of solar cells 1, which are the smallest unit for generating electricity, are arranged in a panel, and the solar cell cells 1 are disposed to obtain a desired electromotive force.
  • FIG. 2 schematically illustrates a cross section of a flat ribbon wire 100 used in a conventional solar cell module.
  • the conventional flat ribbon wire 100 includes a flat conductor 110 and a solder plating layer 120 formed on the surface thereof for connection with the solar cell 1.
  • the conventional flat ribbon wire 100 is fixed to the substrate of the solar cell 1 by soldering as shown in FIG. 3, the area covering the light absorbing surface of the substrate is large because the contact area with the substrate is large.
  • the solar cell output rate is lowered because it largely reflects most of the light reaching the upper surface of the flat ribbon wire 100.
  • the flat ribbon wire 100 has a large contact area with the solar cell 1 substrate and insufficient flexibility as described above, the flat ribbon wire 100 has a different thermal expansion coefficient between the ribbon wire 10 and the substrate. Cracking of the substrate is more serious.
  • An object of the present invention is to provide a stranded conductor wire for a solar cell module that can improve the output rate of the solar cell.
  • an object of the present invention is to provide a stranded conductor wire for a solar cell module that is excellent in flexibility and can suppress cracking of the substrate of the solar cell module.
  • an object of the present invention is to provide a stranded conductor wire for a solar cell module which is excellent in flex resistance and can improve workability and the like.
  • a twisted pair conductor wire for a solar cell module wherein a plurality of stranded conductors are formed by being twisted with each other at a constant pitch, the pitch being 4 to 52 times the total outer diameter of the twisted pair conductor wire.
  • the plurality of element conductors include one element conductor disposed at the center and other element conductors surrounding the circumference thereof to form a circumferential layer, and the total number N of the element conductors and the total number of the circumferential layers ( n) satisfies the relationship of Equation 1 below,
  • N 3n (n + 1) +1
  • the diameter (d) of one of the stranded conductors and the diameter (D) of the entire stranded conductor wire satisfy the relationship of Equation 2 below, to provide a stranded conductor wire.
  • the strand conductor is provided with a stranded conductor wire, characterized in that the diameter of 65 to 210 ⁇ m.
  • a nominal cross-sectional area of the stranded conductor wire is 0.01 to 0.3 mm 2, providing a stranded conductor wire.
  • the wire conductors are made of tough pitch copper (TPC), oxygen-free copper (OFC), phosphorous deoxidized copper, low oxygen copper, or high purity copper of 99.9999% or more purity.
  • TPC tough pitch copper
  • OFC oxygen-free copper
  • phosphorous deoxidized copper low oxygen copper
  • high purity copper 99.9999% or more purity.
  • a stranded conductor wire characterized in that a plating layer comprising at least one metal selected from the group consisting of tin (Sn), zinc (Zn), and aluminum (Al) is formed on each or all of the plurality of elementary conductors.
  • a plating layer comprising at least one metal selected from the group consisting of tin (Sn), zinc (Zn), and aluminum (Al) is formed on each or all of the plurality of elementary conductors.
  • a stranded conductor wire is provided, wherein a solder plating layer containing tin (Sn) as a main component is formed on each or all of the plurality of elementary conductors.
  • the solder plating layer is mainly composed of tin (Sn), lead (Pb), silver (Ag), indium (In), bismuth (Bi), antimony (Sb), zinc (Zn), nickel (Ni), Provided with a stranded conductor wire, characterized in that it may further comprise at least one element of 0.1% by weight or more in the group consisting of Cu (copper), the melting point is 175 to 230 °C, the thickness is 4 to 100 ⁇ m. do.
  • a solar cell module comprising a plurality of solar cell substrate and the annular wire for the solar cell module connecting the plurality of substrates in series.
  • the stranded conductor wire for a solar cell module according to the present invention exhibits an excellent effect of improving the output rate of the solar cell by causing diffuse reflection of light by the bent surface by the stranded structure of the conductor.
  • the stranded conductor wire for a solar cell module according to the present invention exhibits an excellent effect of suppressing the crack of the substrate of the solar cell module of the substrate due to the flexibility by the stranded conductor.
  • the twisted pair conductor wire for a solar cell module according to the present invention has an excellent effect of improving workability and the like by precisely controlling the twist pitch of the twisted pair conductor to maximize the diffuse reflection of light on the surface and at the same time having excellent bending resistance. Indicates.
  • FIG. 1 schematically shows a conventional solar cell module.
  • FIG. 2 schematically illustrates a cross section of a flat ribbon wire used in the solar cell module shown in FIG. 1.
  • FIG. 3 schematically shows a state in which light is irradiated onto the solar cell having the flat ribbon wire shown in FIG. 2.
  • FIG. 4 is a schematic cross-sectional view of a stranded conductor wire for a solar cell module according to the present invention.
  • FIG. 5 schematically illustrates a state in which light is irradiated onto a solar cell in which the stranded conductor wire for the solar cell module illustrated in FIG. 4 is mounted.
  • the stranded conductor wire for a solar cell module according to the present invention may include a plurality of elementary conductors 10 that are associated by being twisted with each other at a predetermined pitch.
  • the element conductor 10 may be made of copper (Cu), aluminum (Al), silver (Ag), gold (Au), and the like, and for example, when the main component is copper (Cu), tough pitch It may be made of Tough Pitch Copper (TPC), Oxygen-Free Copper (OFC), Phosphrous Deoxidized Copper, Low Oxygen Copper, high purity copper of 99.9999% or more.
  • TPC Tough Pitch Copper
  • OFC Oxygen-Free Copper
  • Phosphrous Deoxidized Copper Low Oxygen Copper, high purity copper of 99.9999% or more.
  • the nominal cross-sectional area of the stranded conductor wire including the plurality of wire conductors 10 may be 0.01 to 0.3 mm 2, and the diameter of one of the wire conductors 10 is inversely proportional to the number of the wire conductors 10.
  • the plurality of element conductors 10 may form a circumferential layer by surrounding other element conductors 10 around one element conductor 10 disposed in the center as shown in FIG. 4A.
  • the total number N of) and the total number n of the circumferential layer may satisfy the relationship of Equation 1 below.
  • N 3n (n + 1) +1
  • the total number n of the circumferential layer, the diameter d of one of the element conductors 10, and the diameter D of the entire stranded conductor wire may satisfy the following Equation 2.
  • the diameter D of the entire stranded conductor is The element conductor 10 may be three times the diameter (d) of one. Further, the diameter (D) of the entire stranded conductor may be 170 to 540 ⁇ m, and the diameter d of one of the element conductors 10 may be 65 to 210 ⁇ m.
  • the solar cell module to which the stranded conductor wire is applied as the resistance (d) of the stranded conductor wire increases when the diameter (d) of the single stranded conductor (10) is less than 65 ⁇ m and the diameter (D) of the entire stranded conductor is less than 170 ⁇ m. While the output power of the stranded conductor 10 is larger than 210 ⁇ m in diameter, and the diameter D of the entire stranded conductor is larger than 540 ⁇ m, the stranded conductor wire is applied. As a crack occurs in the substrate of the battery module, the output may be greatly reduced.
  • the twisted pair conductor wire for a solar cell module according to the present invention adopts a twisted pair conductor in which a plurality of stranded conductors 10 are combined as a conductor, so that the conventional flat conductor wire is fixed to the solar cell substrate as shown in FIG. 5.
  • the area covering the light absorbing surface of the substrate is minimized, thereby improving the output rate of the solar cell. It can be reduced to improve the output rate of the solar cell.
  • the stranded conductor wire for solar cell module according to the present invention has a curved surface by the stranded structure of the conductor, thereby maximizing diffuse reflection when compared to conventional flat conductor wires or annular conductor wires when light is irradiated onto the surface. It shows the excellent effect of remarkably improving the output rate of.
  • the twisted pair conductor wire for a solar cell module according to the present invention has a plurality of twisted pair conductors 10 constituting the twisted conductor wire with a constant pitch, the pitch may be 4 to 52 times the diameter (D) of the entire stranded conductor.
  • the pitch is less than four times the total diameter (D) of the stranded conductor, the contact resistance between the wire and the substrate of the solar cell may increase, so that the output rate of the solar cell may be greatly reduced, while the pitch is the entire stranded conductor.
  • the diameter (D) is greater than 52 times, the surface curvature of the stranded conductor wire for the solar cell module is insufficient, and as a result, the diffuse reflection of the light irradiated onto the surface is insufficient, thereby lowering the output rate of the solar cell as well as the wire.
  • the flexibility of the substrate is fixed to the solar cell substrate, the substrate may be cracked when the substrate is bent, and the bending resistance of the wire is lowered, so that it is easily disconnected in the process of fixing the solar cell substrate. Workability may be degraded.
  • the stranded conductor wire for solar cell module according to the present invention is plated layer 20 is formed on the surface of each of the element conductors 10 as shown in Figure 4b to suppress corrosion or as shown in Figure 4c
  • the plating layer 30 may be formed on the entire surface of the plurality of elementary wire conductors 10, and the plating layers 20 and 30 may include metals such as tin (Sn), zinc (Zn), and aluminum (Al). can do.
  • the thickness of the plating layer (20, 30) may be 0.5 to 100 ⁇ m.
  • the stranded conductor wire for a solar cell module according to the present invention may be fixed to a solar cell substrate by an electrically conductive adhesive, an electrically conductive adhesive film or soldering.
  • the electrically conductive adhesive or the adhesive film may include a thermosetting or photocurable resin, conductive particles, a curing agent, an adhesive aid, and the like, and are dispersed in the resin when pressed between the stranded conductor wire and the solar cell substrate.
  • the said electroconductive particle electrically connects the said stranded conductor wire and the electrode on the said solar cell board
  • the plating layers 20 and 30 may be a solder plating layer, the solder plating layer is mainly composed of tin (Sn), At least one element in the group consisting of lead (Pb), silver (Ag), indium (In), bismuth (Bi), antimony (Sb), zinc (Zn), nickel (Ni) and Cu (copper) is 0.1 It may further comprise at least wt%.
  • the solder plating layer may include 59 to 65 wt% tin (Sn), 33 to 39 wt% lead (Pb), and 1.5 to 2.5 wt% silver (Ag), or 57 to 63 wt% tin (Sn). % And 37 to 43 weight percent lead (Pb).
  • the solder plating layer may have a melting point of 175 to 230 ° C. and a thickness of 4 to 100 ⁇ m by the constituent and the blending ratio, and the substrate may be soldered to the solar cell substrate by the solder plating layer. Adhesion width to 368 to 1084 ⁇ m can be formed uniformly and stably.
  • the stranded conductor wire when the stranded conductor wire is fixed to the solar cell substrate at a high temperature by soldering, cracks may occur in the substrate due to different coefficients of thermal expansion of the stranded conductor wire and the substrate, and thus the stranded conductor wire may be electrically conductive. It is preferable to be fixed to the solar cell substrate by an adhesive.
  • the present invention relates to a solar cell module including a plurality of solar cells including a silicon semiconductor substrate having a PN junction and a stranded conductor wire for the solar cell module connecting the solar cells in series.
  • the number of the stranded conductor wires for the solar cell module may be different according to the intended electromotive force of the solar cell module, and when the stranded conductor wires are fixed to the electrodes of the solar cell substrate by soldering, the electrodes It may be formed by a silver (Ag) paste or the like and the electrode may be further provided with a plurality of silver (Ag) pads having a large area in order to improve the adhesion of the stranded conductor wire and the substrate.
  • the number of the stranded conductor wires may be 12 based on one solar cell substrate, and the width of the electrode of the solar cell substrate is 50.
  • the thickness between the adjacent electrodes is 1.8 mm, the area of the silver pad is 700 ⁇ m 2 and the number may be 500.
  • a solar cell module having a conductor wire for a solar cell module and a 6 inch solar cell according to each of the examples and comparative examples shown in Table 1 below was manufactured. Pitches listed in the table below are described as multiples of the total outer diameter of the stranded conductor wire.
  • the stranded conductor wire according to the present invention maintains significantly increased flexibility and bending resistance compared to the disconnected wire by precisely controlling the twist pitch, the wire diameter, and the total outer diameter of the wire, and is provided with such a wire conductor.
  • the solar cell module was found to have cracks suppressed by the external mechanical load, and in particular, the output was significantly increased.
  • the conductor wire of Comparative Example 1 is not a stranded wire, but the flexibility and bending resistance are greatly reduced, whereby the solar cell substrate provided with the conductor wire is cracked by an external mechanical load, and the output is also inferior. It became.
  • the conductor wires of Comparative Examples 2 and 3 have an excessively short pitch, so that the contact resistance between the conductor wires and the substrate of the solar cell module is increased, thereby reducing the output of the solar cell module significantly.
  • the conductor wires of Comparative Examples 4 to 6 have excessively long pitches, which deteriorate flexibility and bending resistance, and cause cracks in the substrate due to external mechanical load on the solar cell module including the same, and at the same time, some of the conductor wires are disconnected. It was confirmed that the output was significantly reduced.
  • the conductor wires of Comparative Examples 7 to 10 were excessively small in wire diameter and total outer diameter so that the output of the solar cell module was lowered to less than 300 W as resistance increased, whereas the conductor wires of Comparative Example 11 were small wire diameter and total outer diameter. Due to the excessively large size, cracks occurred in the substrate of the solar cell module, and the output was significantly reduced to less than 300 W.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양전지 모듈용 연선 도체 와이어에 관한 것이다. 구체적으로, 본 발명은 태양전지 모듈의 출력을 상승시킬 수 있을 뿐만 아니라, 유연성이 우수하여 기판에 크랙을 억제할 수 있는 동시에, 내굴곡성 등이 우수하여 작업성을 향상시킬 수 있는 태양전지 모듈용 연선 도체 와이어에 관한 것이다.

Description

태양전지 모듈용 연선 도체 와이어
본 발명은 태양전지 모듈용 연선 도체 와이어에 관한 것이다. 구체적으로, 본 발명은 태양전지 모듈의 출력을 상승시킬 수 있을 뿐만 아니라, 유연성이 우수하여 기판에 크랙을 억제할 수 있는 동시에, 내굴곡성 등이 우수하여 작업성을 향상시킬 수 있는 태양전지 모듈용 연선 도체 와이어에 관한 것이다.
태양전지는 p형 반도체와 n형 반도체를 이용해 빛 에너지를 전기 에너지로 바꾸는 장치로서, 빛을 비출때 내부에 발생하는 전자와 전공이 각각 p극과 n극으로 이동함으로써 p극과 n극 사이에 전위차(광기전력)가 발생하여 전류가 흐르는 광전효과를 원리로 하는 장치이다.
도 1은 종래 태양전지 모듈을 개략적으로 도시한 것이다.
도 1에 도시된 바와 같이, 종래 태양전지 모듈은 전기를 일으키는 최소 단위인 태양전지 셀(solar cell)(1) 복수개가 패널 내에 배열되고, 목적한 기전력을 얻기 위해 상기 태양전지 셀(1)들을 직렬로 연결하는 리본 와이어(100)를 포함한다.
도 2는 종래 태양전지 모듈에서 사용되는 평각형 리본 와이어(100)의 횡단면을 개략적으로 도시한 것이다.
도 2에 도시된 바와 같이, 종래 평각형 리본 와이어(100)는 평각 도체(110)와 그 표면에 태양전지 셀(1)과의 접속을 위해 형성된 땜납 도금층(120)을 포함한다. 그러나, 종래 평각형 리본 와이어(100)는 도 3에 도시된 바와 같이 납땜에 의해 태양전지 셀(1) 기판에 고정될 때 상기 기판과의 접촉면적이 크기 때문에 상기 기판의 흡광면을 가리는 면적이 크고, 상기 평각형 리본 와이어(100)의 상부면에 도달하는 대부분의 빛을 전반사하기 때문에, 태양전지 출력율을 저하시킨다.
또한, 종래 평각형 리본 와이어(100)는 앞서 기술한 바와 같이 태양전지 셀(1) 기판과의 접촉 면적이 크고 유연성이 불충분하기 때문에 상기 리본 와이어(10)와 상기 기판의 상이한 열팽창계수에 의한 상기 기판의 크랙 발생이 더욱 심각하다.
따라서, 태양전지 모듈의 출력을 상승시킬 수 있을 뿐만 아니라, 유연성이 우수하여 기판의 크랙을 억제할 수 있는 동시에, 내굴곡성 등이 우수하여 작업성을 향상시킬 수 있는 태양전지 모듈용 리본 와이어가 절실히 요구되고 있는 실정이다.
본 발명은 태양전지의 출력률을 향상시킬 수 있는 태양전지 모듈용 연선 도체 와이어를 제공하는 것을 목적으로 한다.
또한, 본 발명은 유연성이 우수하여 태양전지 모듈의 기판의 크랙을 억제할 수 있는 태양전지 모듈용 연선 도체 와이어를 제공하는 것을 목적으로 한다.
나아가, 본 발명은 내굴곡성이 우수하여 작업성 등을 향상시킬 수 있는 태양전지 모듈용 연선 도체 와이어를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 본 발명은,
태양전지 모듈용 연선 도체 와이어로서, 복수의 소선 도체가 일정한 피치로 서로 꼬여짐으로써 형성되고, 상기 피치는 상기 연선 도체 와이어의 전체 외경의 4 내지 52배인, 연선 도체 와이어를 제공한다.
여기서, 상기 복수의 소선 도체는 중심에 배치된 하나의 소선 도체 및 이의 둘레를 감싸 둘레층을 형성하는 다른 소선 도체들을 포함하고, 상기 소선 도체의 총 갯수(N)와 상기 둘레층의 총 갯수(n)는 아래 수학식 1의 관계를 만족하고,
[수학식 1]
N=3n(n+1)+1
상기 소선 도체 하나의 직경(d)과 상기 연선 도체 와이어 전체의 직경(D)은 아래 수학식 2의 관계를 만족하는 것을 특징으로 하는, 연선 도체 와이어를 제공한다.
[수학식 2]
D=(1+2n)d
또한, 상기 소선 도체의 직경은 65 내지 210 ㎛인 것을 특징으로 하는, 연선 도체 와이어를 제공한다.
그리고, 상기 연선 도체 와이어의 공칭단면적이 0.01 내지 0.3 ㎟인 것을 특징으로 하는, 연선 도체 와이어를 제공한다.
나아가, 상기 소선 도체는 터프피치동(Tough Pitch Copper; TPC), 무산소동(Oxygen-Free Copper; OFC), 인탈산동(Phosphrous Deoxidized Copper), 저산소동 또는 순도 99.9999% 이상의 고순도 동으로 이루어진 것을 특징으로 하는, 연선 도체 와이어를 제공한다.
또한, 상기 복수의 소선 도체 각각 또는 전체의 표면에 주석(Sn), 아연(Zn) 및 알루미늄(Al)으로 이루어진 그룹으로부터 선택된 1종 이상의 금속을 포함하는 도금층이 형성된 것을 특징으로 하는, 연선 도체 와이어를 제공한다.
그리고, 상기 복수의 소선 도체 각각 또는 전체의 표면에 주석(Sn)을 주성분으로 하는 땜납 도금층이 형성된 것을 특징으로 하는, 연선 도체 와이어를 제공한다.
여기서, 상기 땜납 도금층은 주석(Sn)을 주성분으로 하고, 납(Pb), 은(Ag), 인듐(In), 비스무스(Bi), 안티몬(Sb), 아연(Zn), 니켈(Ni), Cu(구리)로 구성되는 군에서 적어도 하나의 원소를 0.1 중량% 이상 추가로 포함할 수 있으며, 융점이 175 내지 230℃이고, 두께가 4 내지 100 ㎛인 것을 특징으로 하는, 연선 도체 와이어를 제공한다.
한편, 복수의 태양전지 셀 기판 및 상기 복수의 기판을 직렬로 연결하는 상기 태양전지 모듈용 환형 와이어를 포함하는, 태양전지 모듈을 제공한다.
본 발명에 따른 태양전지 모듈용 연선 도체 와이어는 도체의 연선 구조에 의한 굴곡 표면에 의해 광의 난반사를 유발함으로써 태양전지의 출력률을 향상시키는 우수한 효과를 나타낸다.
또한, 본 발명에 따른 태양전지 모듈용 연선 도체 와이어는 연선 도체에 의한 유연성으로 인해 기판의 태양전지 모듈의 기판의 크랙을 억제할 수 있는 우수한 효과를 나타낸다.
나아가, 본 발명에 따른 태양전지 모듈용 연선 도체 와이어는 연선 도체의 꼬임 피치를 정밀하게 조절하여 표면에서의 광의 난반사를 극대화하는 동시에 우수한 내굴곡성을 보유함으로써 작업성 등을 향상시킬 수 있는 우수한 효과를 나타낸다.
도 1은 종래 태양전지 모듈을 개략적으로 도시한 것이다.
도 2는 도 1에 도시된 태양전지 모듈에서 사용되는 평각형 리본 와이어의 횡단면을 개략적으로 도시한 것이다.
도 3은 도 2에 도시된 평각형 리본 와이어가 장착된 태양전지 셀에 빛이 조사되는 모습을 개략적으로 도시한 것이다.
도 4는 본 발명에 따른 태양전지 모듈용 연선 도체 와이어의 횡단면을 개략적으로 도시한 것이다.
도 5는 도 4에 도시된 태양전지 모듈용 연선 도체 와이어가 장착된 태양전지 셀에 빛이 조사되는 모습을 개략적으로 도시한 것이다.
이하, 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 4는 본 발명에 따른 태양전지 모듈용 연선 도체 와이어의 단면을 개략적으로 도시한 것이다. 도 4a에 도시된 바와 같이, 본 발명에 따른 태양전지 모듈용 연선 도체 와이어는 일정 피치로 서로 꼬여짐으로써 연합되는 복수개의 소선 도체(10)를 포함할 수 있다.
여기서, 상기 소선 도체(10)는 구리(Cu), 알루미늄(Al), 은(Ag) 및 금(Au) 등으로 이루어질 수 있으며, 구리(Cu)를 주성분으로 하는 경우, 예를 들어, 터프피치동(Tough Pitch Copper; TPC), 무산소동(Oxygen-Free Copper; OFC), 인탈산동(Phosphrous Deoxidized Copper), 저산소동, 순도 99.9999% 이상의 고순도 동 등으로 이루어질 수 있다.
또한, 상기 복수개의 소선 도체(10)를 포함하는 연선 도체 와이어의 공칭단면적은 0.01 내지 0.3 ㎟일 수 있고, 상기 소선 도체(10) 하나의 직경은 상기 소선 도체(10)의 갯수에 반비례한다. 상기 복수개의 소선 도체(10)는 도 4a에 도시된 바와 같이 중심에 배치된 하나의 소선 도체(10) 둘레를 다른 소선 도체(10)들이 감싸서 둘레층을 형성할 수 있는데, 상기 소선 도체(10)의 총 갯수(N)와 상기 둘레층의 총 갯수(n)는 아래 수학식 1의 관계를 만족시킬 수 있다.
[수학식 1]
N=3n(n+1)+1
또한, 상기 둘레층의 총 갯수(n)와 상기 소선 도체(10) 하나의 직경(d) 및 연선 도체 와이어 전체의 직경(D)은 아래 수학식 2의 관계를 만족시킬 수 있다.
[수학식 2]
D=(1+2n)d
예를 들어, 도 4a에 도시된 바와 같이, 상기 둘레층의 총 갯수(n)가 1인 경우 상기 소선 도체(10)의 총 갯수(N)는 7개이고, 연선 도체 전체의 직경(D)은 상기 소선 도체(10) 하나의 직경(d)의 3배일 수 있다. 나아가, 상기 연선 도체 전체의 직경(D)은 170 내지 540 ㎛이고, 상기 소선 도체(10) 하나의 직경(d)은 65 내지 210 ㎛일 수 있다.
상기 소선 도체(10) 하나의 직경(d)이 65 ㎛ 미만이고, 상기 연선 도체 전체의 직경(D)이 170 ㎛ 미만인 경우 상기 연선 도체 와이어의 저항 증가에 따라 상기 연선 도체 와이어가 적용된 태양전지 모듈의 출력이 크게 저하될 수 있는 반면, 상기 소선 도체(10) 하나의 직경(d)이 210 ㎛ 초과이고, 상기 연선 도체 전체의 직경(D)이 540 ㎛ 초과인 경우 상기 연선 도체 와이어가 적용된 태양전지 모듈의 기판에 크랙이 발생함으로써 출력이 크게 저하될 수 있다.
본 발명에 따른 태양전지 모듈용 연선 도체 와이어는 도체로서 복수개의 소선 도체(10)가 연합된 연선 도체를 채택함으로써, 도 5에 도시된 바와 같이 태양전지 셀 기판에 고정시, 종래의 평각 도체 와이어에 비해 상기 기판의 흡광면을 가리는 면적이 최소화되어 태양전지의 출력률을 향상시킬 수 있고, 또한 종래의 환형 도체 와이어에 비해 상기 기판과의 접촉 면적이 증가하여 구조적으로 안정될 뿐만 아니라 접촉 저항이 감소하여 태양전지의 출력률을 향상시킬 수 있다.
나아가, 본 발명에 따른 태양전지 모듈용 연선 도체 와이어는 도체의 연선 구조에 의한 굴곡 표면을 갖고, 이로써 빛이 상기 표면에 조사되는 경우 종래 평각 도체 와이어 또는 환형 도체 와이어에 비해 난반사를 극대화하여 태양전지의 출력률을 현저히 향상시키는 우수한 효과를 나타낸다.
본 발명에 따른 태양전지 모듈용 연선 도체 와이어는 이를 구성하는 복수개의 소선 도체(10)들이 일정한 피치로 서로 꼬여지는데, 상기 피치는 상기 연선 도체 전체의 직경(D)의 4 내지 52배일 수 있다.
상기 피치가 상기 연선 도체 전체 직경(D)의 4배 미만인 경우 상기 와이어와 태양전지 셀 기판 사이의 접촉 저항이 증가하여 태양전지의 출력률이 크게 저하될 수 있는 반면, 상기 피치가 상기 연선 도체 전체 직경(D)의 52배 초과인 경우 상기 태양전지 모듈용 연선 도체 와이어의 표면 굴곡이 불충분해 결과적으로 상기 표면에 조사된 빛의 난반사가 불충분하고 이로써 태양전지의 출력률이 저하될 뿐만 아니라 상기 와이어의 유연성이 저하되어 태양전지 셀 기판에 고정된 상태에서 상기 기판의 굴곡시 상기 기판에 크랙을 유발할 수 있으며 또한 상기 와이어의 내굴곡성이 저하되어 태양전지 셀 기판에 고정하는 과정에서 용이하게 단선되는 등 작업성이 저하될 수 있다.
한편, 본 발명에 따른 태양전지 모듈용 연선 도체 와이어는 부식을 억제하기 위해 도 4b에 도시된 바와 같이 소선 도체(10) 각각의 표면에 도금층(20)이 형성되거나 도 4c에 도시된 바와 같이 연합된 복수개의 소선 도체(10)들 전체의 표면에 도금층(30)을 형성될 수 있고, 상기 도금층(20,30)은 주석(Sn), 아연(Zn), 알루미늄(Al) 등의 금속을 포함할 수 있다. 여기서, 상기 도금층(20,30)의 두께는 0.5 내지 100 ㎛일 수 있다.
상기 본 발명에 따른 태양전지 모듈용 연선 도체 와이어는 전기전도성 접착제(Electric conductive adhesive)나 전기전도성 접착 필름 또는 납땜에 의해 태양전지 셀 기판에 고정될 수 있다. 여기서, 상기 전기전도성 접착제 또는 접착 필름은 열경화형 또는 광경화형 수지, 도전성 입자, 경화제, 접착 보조제 등을 포함할 수 있고, 상기 연선 도체 와이어와 상기 태양전지 셀 기판 사이에서 압착될 때 상기 수지 내에 분산된 상기 도전성 입자가 상기 연선 도체 와이어와 상기 태양전지 셀 기판 상의 전극을 전기적으로 접속시킨다.
한편, 상기 태양전지 모듈용 연선 도체 와이어는 납땜에 의해 태양전지 셀 기판에 고정될 때, 상기 도금층(20,30)은 땜납 도금층일 수 있고, 상기 땜납 도금층은 주석(Sn)을 주성분으로 하고, 납(Pb), 은(Ag), 인듐(In), 비스무스(Bi), 안티몬(Sb), 아연(Zn), 니켈(Ni), Cu(구리)로 구성되는 군에서 적어도 하나의 원소를 0.1 중량% 이상 추가로 포함할 수 있다. 예를 들어, 상기 땜납 도금층은 주석(Sn) 59 내지 65 중량%, 납(Pb) 33 내지 39 중량%, 및 은(Ag) 1.5 내지 2.5 중량%를 포함하거나, 주석(Sn) 57 내지 63 중량% 및 납(Pb) 37 내지 43 중량%를 포함할 수 있다. 상기 땜납 도금층은 상기 구성성분 및 배합비에 의해 융점이 175 내지 230℃일 수 있고, 두께는 4 내지 100 ㎛일 수 있으며, 상기 땜납 도금층에 의해 상기 연선 도체 와이어를 태양전지 셀 기판에 납땜시 상기 기판에 대한 부착폭이 368 내지 1084 ㎛로 균일하고 안정적으로 형성될 수 있다.
다만, 납땜에 의해 고온 하에서 상기 연선 도체 와이어를 태양전지 셀 기판에 고정시키는 경우 상기 연선 도체 와이어와 상기 기판의 상이한 열팽창계수에 의해 상기 기판에 크랙이 발생할 수 있으므로, 상기 연선 도체 와이어는 상기 전기전도성 접착제에 의해 태양전지 셀 기판에 고정되는 것이 바람직하다.
본 발명은 PN접합을 갖는 실리콘 반도체 기판을 포함하는 복수의 태양전지 셀 및 상기 태양전지 셀들을 직렬로 연결하는 상기 태양전지 모듈용 연선 도체 와이어를 포함하는 태양전지 모듈에 관한 것이다.
여기서, 상기 태양전지 모듈용 연선 도체 와이어의 개수는 상기 태양전지 모듈의 목적한 기전력에 따라 상이할 수 있고, 또한 상기 연선 도체 와이어가 납땜에 의해 태양전지 셀 기판의 전극에 고정되는 경우 상기 전극은 은(Ag) 페이스트 등에 의해 형성될 수 있고 상기 전극에는 상기 연선 도체 와이어와 상기 기판의 부착력을 향상시키기 위해 면적이 넓은 복수의 은(Ag) 패드가 추가로 구비될 수 있다.
예를 들어, 상기 태양전지 셀 기판의 크기가 6 인치인 경우, 상기 태양전지 셀 기판 하나를 기준으로, 상기 연선 도체 와이어의 개수는 12개일 수 있고, 상기 태양전지 셀 기판의 전극의 폭은 50 ㎛이고 인접한 전극간 간격은 1.8 mm이며, 은(Ag) 패드의 면적은 700 ㎛2이고 개수는 500개일 수 있다.
<실시예>
1. 제조예
아래 표 1에 나타난 실시예 및 비교예 각각에 따른 태양전지 모듈용 도체 와이어 및 6 인치 태양전지 셀을 구비한 태양전지 모듈을 제작하였다. 아래 표에 기재된 피치는 연선 도체 와이어 전체 외경의 배수로 기재했다.
Figure PCTKR2017001824-appb-T000001
2. 물성 평가
1) 내굴곡성 평가
실시예 및 비교예 각각에 따른 도체 와이어 1 m 시편 2개씩 준비하고 내굴곡성 시험기를 이용하여 상기 도체 와이어 시편의 내굴곡성 평가를 수행하였다. 구체적으로, 상기 도체 와이어 하단에 200 g의 하중을 인가한 상태에서 상기 도체 와이어 중간 지점을 기준으로 좌우 90°왕복운동을 30회/분의 속도로 수행할 때 단선되는 순간의 왕복운동 횟수를 측정하고, 시편 2개에 대한 측정값의 평균값을 계산했다.
2) 크랙 평가
실시예 및 비교예 각각에 따른 도체 와이어 및 6 인치 태양전지 셀을 구비한 태양전지 모듈의 전면(front side) 전체에 균일하게 6,000 Pa의 하중이 1시간 동안 인가되도록 한 후 후면(back side) 전체에 균일하게 5,400 Pa의 하중이 1시간 동안 인가되도록 하고, 이를 총 3회 반복했다. 이렇게 기계적 하중을 인가하는 시험 후 상기 기판에 크랙이 발생하는지 여부를 확인했다.
3) 태양전지 출력 평가
실시예 및 비교예 각각에 따른 도체 와이어 및 6 인치 태양전지 셀을 구비한 태양전지 모듈에 대해 상기 2) 크랙 평가를 수행한 후 태양광 시뮬레이터를 이용하여 상기 모듈에 태양광과 유사하게 빛을 순간적으로 인가하여 최대출력을 측정했다.
상기 물성의 평가 결과는 아래 표 2에 나타난 바와 같다.
Figure PCTKR2017001824-appb-T000002
상기 표 2에 나타난 바와 같이, 본 발명에 따른 연선 도체 와이어는 소선의 꼬임 피치와 소선경 및 전체외경을 정밀하게 제어함으로써 단선 대비 현저히 상승한 유연성 및 내굴곡성을 보유하는 동시에, 이러한 연선 도체 와이어가 구비된 태양전지 모듈은 외부의 기계적 하중에 의해 크랙이 억제되고 특히 출력이 현저히 상승된 것으로 확인되었다.
반면, 비교예 1의 도체 와이어는 연선이 아닌 단선으로서 유연성 및 내굴곡성이 크게 저하되고, 이로써 상기 도체 와이어가 구비된 태양전지 기판은 외부의 기계적 하중에 의해 크랙이 발생하며, 출력도 열등한 것으로 확인되었다.
또한, 비교예 2 및 3의 도체 와이어는 피치가 과도하게 짧아 상기 도체 와이어와 태양전지 모듈의 기판 사이의 접촉저항이 증가하게 되고 이로써 태양전지 모듈의 출력이 현저히 저하된 것으로 확인되었다.
그리고, 비교예 4 내지 6의 도체 와이어는 피치가 과도하게 길어 유연성 및 내굴곡성이 저하되고 이를 구비한 태양전지 모듈에 대한 외부의 기계적 하중에 의해 기판에 크랙이 발생하는 동시에 일부 도체 와이어가 단선됨으로써 출력이 현저히 저하된 것으로 확인되었다.
나아가, 비교예 7 내지 10의 도체 와이어는 소선경 및 전체외경이 과도하게 작아 저항증가에 따라 태양전지 모듈의 출력이 300 W 미만으로 저하된 반면, 비교예 11의 도체 와이어는 소선경 및 전체외경이 과도하게 크기 때문에 태양전지 모듈의 기판에 크랙이 발생하여 출력이 300 W 미만으로 크게 저하된 것으로 확인되었다.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (9)

  1. 태양전지 모듈용 연선 도체 와이어로서,
    복수의 소선 도체가 일정한 피치로 서로 꼬여짐으로써 형성되고,
    상기 피치는 상기 연선 도체 와이어의 전체 외경의 4 내지 52배인,
    연선 도체 와이어.
  2. 제1항에 있어서,
    상기 복수의 소선 도체는 중심에 배치된 하나의 소선 도체 및 이의 둘레를 감싸 둘레층을 형성하는 다른 소선 도체들을 포함하고,
    상기 소선 도체의 총 갯수(N)와 상기 둘레층의 총 갯수(n)는 아래 수학식 1의 관계를 만족하고,
    [수학식 1]
    N=3n(n+1)+1
    상기 소선 도체 하나의 직경(d)과 상기 연선 도체 와이어 전체의 직경(D)은 아래 수학식 2의 관계를 만족하는 것을 특징으로 하는, 연선 도체 와이어.
    [수학식 2]
    D=(1+2n)d
  3. 제1항 또는 제2항에 있어서,
    상기 소선 도체의 직경은 65 내지 210 ㎛인 것을 특징으로 하는, 연선 도체 와이어.
  4. 제1항 또는 제2항에 있어서,
    상기 연선 도체 와이어의 공칭단면적이 0.01 내지 0.3 ㎟인 것을 특징으로 하는, 연선 도체 와이어.
  5. 제1항 또는 제2항에 있어서,
    상기 소선 도체는 터프피치동(Tough Pitch Copper; TPC), 무산소동(Oxygen-Free Copper; OFC), 인탈산동(Phosphrous Deoxidized Copper), 저산소동 또는 순도 99.9999% 이상의 고순도 동으로 이루어진 것을 특징으로 하는, 연선 도체 와이어.
  6. 제1항 또는 제2항에 있어서,
    상기 복수의 소선 도체 각각 또는 전체의 표면에 주석(Sn), 아연(Zn) 및 알루미늄(Al)으로 이루어진 그룹으로부터 선택된 1종 이상의 금속을 포함하는 도금층이 형성된 것을 특징으로 하는, 연선 도체 와이어.
  7. 제1항 또는 제2항에 있어서,
    상기 복수의 소선 도체 각각 또는 전체의 표면에 주석(Sn)을 주성분으로 하는 땜납 도금층이 형성된 것을 특징으로 하는, 연선 도체 와이어.
  8. 제7항에 있어서,
    상기 땜납 도금층은 주석(Sn)을 주성분으로 하고, 납(Pb), 은(Ag), 인듐(In), 비스무스(Bi), 안티몬(Sb), 아연(Zn), 니켈(Ni), Cu(구리)로 구성되는 군에서 적어도 하나의 원소를 0.1 중량% 이상 추가로 포함할 수 있으며, 융점이 175 내지 230℃이고, 두께가 4 내지 100 ㎛인 것을 특징으로 하는, 연선 도체 와이어.
  9. 복수의 태양전지 셀 기판 및 상기 복수의 기판을 직렬로 연결하는 제1항 또는 제2항의 태양전지 모듈용 환형 와이어를 포함하는, 태양전지 모듈.
PCT/KR2017/001824 2016-03-08 2017-02-20 태양전지 모듈용 연선 도체 와이어 WO2017155224A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160027604 2016-03-08
KR10-2016-0027604 2016-03-08
KR10-2016-0075009 2016-06-16
KR1020160075009A KR101721667B1 (ko) 2016-03-08 2016-06-16 태양전지 모듈용 연선 도체 와이어

Publications (1)

Publication Number Publication Date
WO2017155224A1 true WO2017155224A1 (ko) 2017-09-14

Family

ID=58581297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001824 WO2017155224A1 (ko) 2016-03-08 2017-02-20 태양전지 모듈용 연선 도체 와이어

Country Status (2)

Country Link
KR (1) KR101721667B1 (ko)
WO (1) WO2017155224A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921640A (zh) * 2021-10-14 2022-01-11 云上新能源开发(杭州)有限公司 一种互联材料及电池串的串焊工艺
CN117080313A (zh) * 2023-10-12 2023-11-17 金阳(泉州)新能源科技有限公司 一种减小背接触电池弯曲程度的串焊方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230072131A (ko) * 2021-11-17 2023-05-24 엘에스전선 주식회사 스피커 케이블용 도체 및 이를 포함하는 스피커 케이블

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336044A (ja) * 1994-06-08 1995-12-22 At & T Corp 回路相互接続用ハンダ媒体
JP2003123542A (ja) * 2001-10-11 2003-04-25 Fujikura Ltd 架空絶縁電線
KR20130011328A (ko) * 2011-07-21 2013-01-30 엘지전자 주식회사 리본 및 이를 구비한 태양전지 모듈
KR101283114B1 (ko) * 2011-10-27 2013-07-05 엘지이노텍 주식회사 태양전지 모듈 및 이의 제조방법
KR20130119640A (ko) * 2012-04-24 2013-11-01 주식회사 산코코리아 비정상 α-상 억제 기능을 지닌 태양광 리본의 제조방법 및 이에 의해 제조된 태양광 리본

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336044A (ja) * 1994-06-08 1995-12-22 At & T Corp 回路相互接続用ハンダ媒体
JP2003123542A (ja) * 2001-10-11 2003-04-25 Fujikura Ltd 架空絶縁電線
KR20130011328A (ko) * 2011-07-21 2013-01-30 엘지전자 주식회사 리본 및 이를 구비한 태양전지 모듈
KR101283114B1 (ko) * 2011-10-27 2013-07-05 엘지이노텍 주식회사 태양전지 모듈 및 이의 제조방법
KR20130119640A (ko) * 2012-04-24 2013-11-01 주식회사 산코코리아 비정상 α-상 억제 기능을 지닌 태양광 리본의 제조방법 및 이에 의해 제조된 태양광 리본

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921640A (zh) * 2021-10-14 2022-01-11 云上新能源开发(杭州)有限公司 一种互联材料及电池串的串焊工艺
CN117080313A (zh) * 2023-10-12 2023-11-17 金阳(泉州)新能源科技有限公司 一种减小背接触电池弯曲程度的串焊方法
CN117080313B (zh) * 2023-10-12 2024-01-09 金阳(泉州)新能源科技有限公司 一种减小背接触电池弯曲程度的串焊方法

Also Published As

Publication number Publication date
KR101721667B1 (ko) 2017-04-10

Similar Documents

Publication Publication Date Title
JP5820278B2 (ja) 太陽電池及び太陽電池の製造方法
US20100096014A1 (en) Conductive paste for solar cell
WO2017155224A1 (ko) 태양전지 모듈용 연선 도체 와이어
US20090288709A1 (en) Conductive paste for forming of electrode of crystalline silicon substrate
US10770601B2 (en) Electro-conductive paste, solar cell and method for producing solar cell
WO2009148259A2 (ko) 전극형성용 금속 페이스트 조성물 및 이를 이용한 은-탄소 복합체 전극과 실리콘 태양전지
US20200098943A1 (en) Solar cell module and manufacturing method thereof
WO2019088526A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
EP3235012B1 (en) Method for interconnecting back-contact photovoltaic cells
WO2018080094A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2019088525A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2012015108A1 (en) Solar cell panel
WO2011052875A2 (en) Solar cell, method of manufacturing the same, and solar cell module
WO2020111900A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2013105750A1 (ko) 전도성 페이스트를 전극으로 사용하는 실리콘 태양전지 모듈 및 그 제조 방법
WO2018070724A1 (ko) 태양전지 모듈
WO2018004179A1 (ko) 태양전지 모듈
WO2018084509A1 (ko) 태양전지 모듈의 환형 와이어용 땜납 조성물 및 이로부터 형성된 땜납 도금층을 포함하는 태양전지 모듈의 환형 와이어
WO2011132962A2 (ko) 태양전지용 전극 페이스트 및 이를 사용하여 제조된 태양전지
WO2019088520A2 (ko) 태양전지 전극용 도전성 페이스트 및 이에 포함되는 유리 프릿, 그리고 태양 전지
WO2020138599A1 (ko) 태양광 모듈용 용융 땜납, 이를 포함하는 태양광 모듈용 전극 선재, 및 태양광 모듈
WO2013058522A1 (en) Solar cell apparatus and method of fabricating the same
WO2016190602A1 (ko) 태양전지 모듈용 환형 와이어
KR101708556B1 (ko) 태양전지 모듈용 환형 와이어
KR101381816B1 (ko) 버스바가 없는 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763487

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763487

Country of ref document: EP

Kind code of ref document: A1