WO2017154836A1 - 電動アクチュエータ - Google Patents

電動アクチュエータ Download PDF

Info

Publication number
WO2017154836A1
WO2017154836A1 PCT/JP2017/008776 JP2017008776W WO2017154836A1 WO 2017154836 A1 WO2017154836 A1 WO 2017154836A1 JP 2017008776 W JP2017008776 W JP 2017008776W WO 2017154836 A1 WO2017154836 A1 WO 2017154836A1
Authority
WO
WIPO (PCT)
Prior art keywords
nut member
rotor
electric actuator
axial direction
peripheral surface
Prior art date
Application number
PCT/JP2017/008776
Other languages
English (en)
French (fr)
Inventor
卓志 松任
池田 良則
悠紀 内藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US16/082,580 priority Critical patent/US20190097492A1/en
Priority to CN201780013917.7A priority patent/CN108702062A/zh
Priority to EP17763176.9A priority patent/EP3429068B1/en
Publication of WO2017154836A1 publication Critical patent/WO2017154836A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • B62D5/0424Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel
    • B62D5/0427Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel the axes being coaxial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2015Means specially adapted for stopping actuators in the end position; Position sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2247Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2285Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with rings engaging the screw shaft with the inner perimeter, e.g. using inner rings of a ball bearing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • H02K7/16Structural association with mechanical loads, e.g. with hand-held machine tools or fans for operation above the critical speed of vibration of the rotating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/581Raceways; Race rings integral with other parts, e.g. with housings or machine elements such as shafts or gear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2075Coaxial drive motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2087Arrangements for driving the actuator using planetary gears

Definitions

  • the present invention relates to an electric actuator.
  • the electric actuator described in Patent Document 1 has a planetary gear speed reducer as a speed reducer, and the output of the motor is transmitted to the nut member of the screw mechanism after being decelerated by the planetary gear speed reducer. Yes.
  • a small motor can be employed, there is an advantage that the electric actuator can be reduced in weight and size as a whole.
  • the motor and the planetary gear speed reducer are arranged in series, and the nut member of the screw mechanism holds the planetary gear of the planetary gear speed reducer so that it can rotate (revolve). Combines the role of a career to take out the revolutionary movements.
  • the nut member is fitted to an end portion of a support pin that rotatably supports the planetary gear in a state of being arranged adjacent to one side in the axial direction of the planetary gear.
  • the main object of the present invention is to make the electric actuator provided with the planetary gear reducer compact in the axial direction, thereby improving the mountability to the equipment used.
  • the present invention which was created to solve the above problems, includes a motor unit that is driven by power supply, and a motion conversion mechanism unit that converts the rotational motion of the motor unit into a linear motion and outputs the motion.
  • a screw shaft disposed coaxially with the rotation center of the rotor of the motor unit, a nut member rotatably fitted on the outer periphery thereof, and a planetary gear reducer that decelerates and outputs the rotation of the rotor;
  • the nut member In the electric actuator in which the screw shaft moves forward in one axial direction or moves backward in the other axial direction according to the rotation direction of the nut member, the nut member is disposed on the inner periphery of the rotor, and the planetary gear reducer
  • the output member is connected to be capable of transmitting torque.
  • the output member includes an inner peripheral surface of the rotor and an outer peripheral surface of the nut member.
  • the rotor of the motor unit may include a rotor core that holds a rotor magnet, and a hollow rotary shaft that has a rotor core mounted on the outer periphery and a nut member disposed on the inner periphery. It can be rotatably supported by rolling bearings arranged at two locations separated from each other.
  • the hollow rotary shaft is provided with the inner raceway surface of one of the two rolling bearings, the hollow rotary shaft and thus the rotor can be made compact in the axial direction. Thereby, the electric actuator can be made more compact in the axial direction.
  • the electric actuator can be made more compact in the axial direction if the inner raceway surface is disposed inside the axial width of the nut member.
  • a thrust bearing may be disposed adjacent to the other axial side of the nut member.
  • the reaction force (thrust load) acting on the nut member as the screw shaft linearly moves (advances) in one axial direction can be directly supported by the thrust bearing. .
  • this thrust bearing is disposed within the axial range between two rolling bearings, it is possible to more effectively suppress the moment load from acting on the screw shaft or the like. If the moment load can be suppressed as described above, the operation accuracy and the durability life of the output member of the electric actuator including the screw shaft can be improved.
  • the nut member can be fitted to the outer periphery of the screw shaft via a plurality of balls. That is, the screw mechanism that constitutes the motion conversion mechanism may be a so-called ball screw mechanism. If it does in this way, the operativity of the output member of the electric actuator constituted including a screw axis can be improved.
  • the electric actuator having the above-described configuration includes a plurality of members coupled in the axial direction, and includes a housing that houses the motor unit and the motion conversion mechanism unit, and a terminal unit that holds a power feeding circuit for supplying power to the motor unit. Further, it can be provided. In this case, the assembling property of the electric actuator can be improved by sandwiching the terminal portion from both sides in the axial direction by the constituent members of the casing.
  • the terminal portion may have an opening for pulling out a lead wire connected to the power feeding circuit to the outer diameter side of the casing on the outer peripheral portion thereof.
  • an electric actuator in which a plurality of electric actuators each having a screw shaft are connected in series and each screw shaft can be individually linearly moved.
  • Such an electric actuator can be mounted on a used device having two or more objects to be operated, for example, a DCT which is a kind of automatic transmission, and can contribute to a reduction in weight and size of the entire used device including the electric actuator.
  • FIG. 1 is a longitudinal sectional view of an electric actuator according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line EE in FIG. 1. It is the longitudinal cross-sectional view which took out the rotor and motion conversion mechanism part of the motor, and was expanded.
  • FIG. 5 is a cross-sectional view taken along line FF in FIG. 1. It is a longitudinal cross-sectional view which shows the state which integrated the ring gear in the casing. It is the longitudinal cross-sectional view which took out the stator and terminal part of the motor, and was expanded.
  • FIG. 2 is a cross-sectional view taken along line GG in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along line HH in FIG. 1.
  • FIG. 10 is a cross-sectional view taken along the line II in FIG. 9. It is a schematic block diagram which shows the control system of the electric actuator of FIG. It is a block diagram which shows the control system of the electric actuator which concerns on other embodiment.
  • FIG. 1 is a longitudinal sectional view of an electric actuator according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along line EE in FIG. 1
  • FIG. The longitudinal cross-sectional view which took out and expanded the mechanism part is shown. 1 and 2 show a state where the screw shaft 33 constituting the output member of the electric actuator is located at the origin.
  • the “state located at the origin” means that the end surface of the screw shaft 33 (the spring mounting collar 36 connected to the end surface of the screw shaft 33) is opposed to the end surface of the cover 29 facing the screw shaft 33 by the spring force of the compression coil spring 48 described later. It is in a state where it is in a mechanical contact position.
  • the electric actuator 1 includes a motor unit A that is driven by the supply of electric power, and a motion conversion mechanism unit B that converts the rotational motion of the motor unit A into a linear motion and outputs the linear motion. , An operation unit C for operating an operation target (not shown), and a terminal unit D, which are accommodated and held in the housing 2.
  • the housing 2 is composed of a plurality of members coupled in the axial direction.
  • the casing 2 of the present embodiment has an end on one side in the axial direction (the right side in FIG. 1 and FIG. 2), and the other side in the axial direction (the left side in FIG. 1 and FIG. 2). )
  • a cover 29 that closes the end opening on the other axial side of the casing 20, and a terminal that is disposed between the casing 20 and the cover 29 and constitutes the terminal portion D It consists of a combination with the main body 50.
  • the cover 29 and the terminal main body 50 are fixedly attached to the casing 20 by assembly bolts 61 shown in FIGS.
  • the motor part A includes a radial gap type motor (in detail, a U-phase, a stator having a stator 23 fixed to the casing 20 and a rotor 24 disposed to face the inner periphery of the stator 23 via a radial gap. 3 phase brushless motor having a V phase and a W phase) 25.
  • the stator 23 includes an insulating bobbin 23b attached to the stator core 23a, and a coil 23c wound around the bobbin 23b.
  • the rotor 24 includes a rotor core 24a, a permanent magnet 24b as a rotor magnet attached to the outer periphery of the rotor core 24a, and a rotor inner 26 as a hollow rotating shaft that is formed in a hollow shape and has the rotor core 24a attached to the outer periphery.
  • the rotor core 24 a is fitted to the outer peripheral surface 26 b of the rotor inner 26 after setting the side plate 65 on the shoulder portion 26 a on one axial side of the rotor inner 26.
  • the permanent magnet 24b (see FIG. 2) is fitted to the outer periphery of the rotor core 24a, the side plate 65 attached to the axially outer side of the other end of the rotor core 24a in the axial direction of the rotor inner 26, and its It is positioned and fixed by a circlip 66 attached to the outside in the axial direction.
  • an inner raceway surface 27 a of the rolling bearing 27 is formed on the outer periphery of one end of the rotor inner 26 in the axial direction, and the outer ring 27 b of the rolling bearing 27 is fixed to the inner peripheral surface of the casing 20.
  • the bearing holder 28 is attached to the inner peripheral surface.
  • a rolling bearing 30 is mounted between the inner peripheral surface of the other end in the axial direction of the rotor inner 26 and the outer peripheral surface of the cylindrical portion 29 a of the cover 29.
  • the motion conversion mechanism section B of the present embodiment includes a ball screw device 31 and a planetary gear speed reducer 10, and the planetary gear speed reducer 10 is arranged in series with the motor section A. (Adjacently arranged on one side of the motor part A in the axial direction).
  • the ball screw device 31 is arranged coaxially with the rotation center of the rotor 24 (rotor inner 26), and can be rotated to the outer periphery of the screw shaft 33 via a screw shaft 33 constituting an output member of the electric actuator 1 and a plurality of balls 34. And a nut member 32 disposed on the inner periphery of the rotor inner 26 so as to be able to transmit torque to the rotor inner 26, and a top 35 as a circulation member. A plurality of balls 34 are loaded between the spiral groove 32a formed on the inner peripheral surface of the nut member 32 and the spiral groove 33a formed on the outer peripheral surface of the screw shaft 33, and the top 35 is incorporated. . With such a configuration, when the screw shaft 33 linearly moves in the axial direction as the nut member 32 rotates, the ball 34 circulates between the spiral grooves 32a and 33a.
  • the screw shaft 33 is formed in a hollow shape having a hole portion 33b extending in the axial direction (in this embodiment, through holes opened on both end surfaces in the axial direction) 33b, and the spring mounting collar 36 is accommodated in the hole portion 33b.
  • the spring mounting collar 36 is made of, for example, a resin material such as PPS, and has a circular solid portion 36a provided at one end in the axial direction and a flange-shaped spring receiver provided at the other end in the axial direction.
  • the part 36b and the cylinder part 36c which connects both parts 36a and 36b are integrally provided.
  • the spring mounting collar 36 housed in the hole 33b of the screw shaft 33 is connected and fixed to the screw shaft 33 by fitting a pin 37 so as to penetrate the circular solid portion 36a and the screw shaft 33 in the radial direction.
  • Both end portions of the pin 37 protrude radially outward from the outer peripheral surface of the screw shaft 33, and a guide collar 38 is rotatably fitted on the protruding portion.
  • the guide collar 38 is formed of a resin material such as PPS, for example, and is fitted into a guide groove 20b (see also FIG. 5) extending in the axial direction provided on the inner periphery of the small diameter cylindrical portion 20a of the casing 20.
  • an actuator head 39 as an operation portion C is detachably attached to one end of the screw shaft 33 in the axial direction.
  • the actuator head 39 of this embodiment is a so-called push type in which the tip surface pressurizes the operation target in the axial direction as the screw shaft 33 linearly moves (advances) in one axial direction.
  • a so-called push-pull type in which the operation target can be operated on both sides in the axial direction can be adopted.
  • the planetary gear speed reducer 10 includes a ring gear 40 fixed to the casing 20, a sun gear 41 press-fitted and fixed to the inner peripheral surface of the step portion of the rotor inner 26, and a ring gear 40 and a sun gear 41.
  • the planetary gear carrier 43 takes out the revolution movement of the planetary gear 42 and outputs it. Therefore, the planetary gear carrier 43 constitutes the output member of the planetary gear reducer referred to in the present invention.
  • the outer periphery of the ring gear 40 is provided with notches 40 a projecting radially outward at a plurality of locations (four locations in the illustrated example) spaced apart in the circumferential direction.
  • the grooves are fitted in axial grooves 20e (see also FIG. 5) provided at a plurality of locations (four locations in the illustrated example) separated in the circumferential direction of the surface 20c.
  • the planetary gear carrier 43 includes a pin-like portion fitted on the inner periphery of the planetary gear 42, a disc-like portion arranged on one side in the axial direction of the planetary gear 42, and a disc A cylindrical portion 43 a that extends from the radially inner end of the shaped portion to the other axial side and is interposed between the inner peripheral surface of the rotor inner 26 and the outer peripheral surface 32 b of the nut member 32 is integrally provided.
  • the planetary gear carrier 43 is rotatable relative to the rotor inner 26, and is connected to the nut member 32 of the ball screw device 31 so as to be integrally rotatable (torque can be transmitted).
  • the outer peripheral surface of the cylindrical portion 43 a faces the inner peripheral surface of the rotor inner 26 (and the inner peripheral surface of the sun gear 41) via a radial gap, and the inner peripheral surface of the cylindrical portion 43 a is the outer periphery of the nut member 32. It is press-fitted and fixed to the surface 32b.
  • the rotation of the rotor 24 (rotor inner 26) of the motor 25 is decelerated by the planetary gear speed reducer 10 having the above configuration and then transmitted to the nut member 32. Thereby, since a rotational torque can be increased, the small motor 25 can be employ
  • a thrust washer 45 is disposed between the end face on one axial side of the nut member 32 and the casing 20, and the thrust attached to the outer periphery of the distal end portion of the cylindrical portion 29 a of the cover 29.
  • a needle roller bearing 47 as a thrust bearing is disposed between the receiving ring 46 and the end surface on the other axial side of the nut member 32.
  • a compression coil spring 48 as an urging member is disposed between the inner peripheral surface 29b of the cylindrical portion 29a of the cover 29 and the outer peripheral surface of the screw shaft 33.
  • One end and the other end in the axial direction of the compression coil spring 48 are in contact with the needle roller bearing 47 and the spring receiving portion 36b of the spring mounting collar 36, respectively. Due to the spring force of the compression coil spring 48 provided in this way, the screw shaft 33 connected to the spring mounting collar 36 is always urged toward the origin. In this way, for example, when the drive power is not properly supplied to the motor unit A (motor 25), the screw shaft 33 is automatically returned to the origin, which adversely affects the operation of the operation target (not shown). The possibility can be reduced as much as possible.
  • FIG. 9 is a left side view of FIG. 1, and FIG. 10 is a cross-sectional view taken along the line II in FIG.
  • the cover 29 is formed of a metal material excellent in workability (mass productivity) and thermal conductivity, for example, an aluminum alloy, a zinc alloy, or a magnesium alloy.
  • a cooling fin for increasing the cooling efficiency of the electric actuator 1 may be provided on the outer surface of the cover 29.
  • a bearing mounting surface 63 on which the rolling bearing 30 is mounted and a fitting surface 64 on which the thrust receiving ring 46 is fitted are provided on the outer peripheral surface of the cylindrical portion 29 a of the cover 29. Yes.
  • a through hole (not shown) through which the assembly bolt 61 of the electric actuator 1 is inserted and a mounting bolt for attaching the electric actuator 1 to a device to be used are inserted into the cover 29.
  • a through hole 62 is provided.
  • FIG. 6 is a longitudinal cross-sectional view in which the stator 23 and the terminal portion D of the motor 25 shown in FIG. 1 are taken out and enlarged
  • FIG. 7 is a cross-sectional view taken along the line GG in FIG. 1, and FIG. It is a HH arrow directional cross-sectional view.
  • the terminal portion D has a short cylindrical portion constituting a part of the housing 2 and a disk-shaped portion extending radially inward from the other axial end of the short cylindrical portion.
  • FIGS. 6 is a longitudinal cross-sectional view in which the stator 23 and the terminal portion D of the motor 25 shown in FIG. 1 are taken out and enlarged
  • FIG. 7 is a cross-sectional view taken along the line GG in FIG. 1, and FIG. It is a HH arrow directional cross-sectional view.
  • the terminal main body 50 (the short cylindrical portion thereof) is provided for attaching the through-hole 50A through which the assembly bolt 61 shown in FIGS. And a through hole 50B through which the bolt is inserted, and is sandwiched between the casing 20 and the cover 29 by the assembly bolt 61 (see FIGS. 1 and 2).
  • the terminal body 50 is formed of a resin material such as PPS, for example.
  • the terminal part D (terminal body 50) holds a power feeding circuit for supplying driving power to the motor 25.
  • the power feeding circuit connects the coils 23c of the stator 23 to the terminals 51a of the bus bar 51 for each of the U phase, the V phase, and the W phase.
  • the terminal 51 b of 51 and the terminal block 50 a of the terminal body 50 are fastened with screws 70.
  • the terminal block 50a has a terminal 50b to which a lead wire (not shown) is connected, and the lead wire is an opening 50c (see FIG. 1) provided in the outer peripheral portion (short cylindrical portion) of the terminal body 50. Is pulled out to the outer diameter side of the housing 2 and connected to the controller 81 (see FIG. 11 or 12) of the control device 80.
  • the electric actuator 1 of this embodiment is equipped with two types of sensors, and these two types of sensors are held in the terminal portion D.
  • one of the two types of sensors is a rotation angle detection sensor 53 used for rotation control of the motor 25, and the other is stroke control (detection of displacement in the axial direction) of the screw shaft 33.
  • This is a stroke detection sensor 55 used for As the rotation angle detection sensor 53 and the stroke detection sensor 55, a Hall sensor which is a kind of magnetic sensor is used.
  • the rotation angle detection sensor 53 is attached to a printed circuit board 52, and via a pulsar ring 54 attached to an end on the other axial side of the rotor inner 26 and an axial clearance. Opposed.
  • the rotation angle detection sensor 53 determines the timing for supplying current to each of the U phase, V phase, and W phase of the motor 25.
  • the stroke detection sensor 55 is attached to a belt-like printed board 56 that extends in the axial direction and has an end on the other side in the axial direction connected to the printed board 52. .
  • the printed circuit board 56 and the stroke detection sensor 55 are disposed on the inner periphery of the hole 33b of the screw shaft 33, more specifically, on the inner periphery of the cylindrical portion 36c of the spring mounting collar 36 housed in the hole 33b.
  • a permanent magnet 57 as a target is attached to the inner periphery of the cylindrical portion 36c of the spring mounting collar 36 so as to face the stroke detection sensor 55 via a radial clearance. Permanent magnets 57 are attached to two locations separated from each other.
  • the stroke detection sensor 55 including a hall sensor detects axial and radial magnetic fields formed around the permanent magnet 57, and calculates the axial displacement of the screw shaft 33 based on the detected axial magnetic field and radial magnetic field. .
  • the signal line of the rotation angle detection sensor 53 and the signal line of the stroke detection sensor 55 are both connected to the housing through the opening 50c (see FIG. 1) of the terminal body 50. 2 is pulled out to the outer diameter side and connected to the control device 80 (see FIG. 11 or FIG. 12).
  • the ring gear 40 is assembled in the casing 20.
  • the rotor 24 of the motor 25 and the subassembly of the motion conversion mechanism B shown in FIG. 3 are inserted into the casing 20.
  • the planetary gear 42 and the ring gear 40 are engaged with each other, the guide collar 38 is fitted into the guide groove 20 b of the casing 20, and the bearing holder 28 is fitted into the inner peripheral surface 20 c of the casing 20.
  • the stator 23 is fitted to the inner periphery of the casing 20 in the subassembly of the stator 23 and the terminal portion D (terminal body 50) of the motor 25 shown in FIG. Are fastened by an assembly bolt 61 (see FIGS. 9 and 10). Thereby, the electric actuator 1 is completed.
  • the nut member 32 of the ball screw device 31 constituting the motion conversion mechanism B is the inner periphery of the rotor 24 (rotor inner 26 as a hollow rotating shaft). And is connected to the planetary gear carrier 43 that is an output member of the planetary gear speed reducer 10 so that torque can be transmitted.
  • the motor, the planetary gear reducer, and the nut member are arranged continuously in the axial direction.
  • the axial dimension L (see FIG. 1) of the housing 2 can be shortened, that is, the electric actuator 1 can be made compact in the axial direction. Therefore, in particular, it is possible to realize the electric actuator 1 that is excellent in mountability with respect to the used equipment in which the axial dimension of the installation space of the electric actuator 1 is limited.
  • the radial dimension M (see FIG. 1) of the housing 2 can be made as small as possible.
  • the output member (planet gear carrier 43) of the planetary gear speed reducer 10 and the nut member 32 are separated, for example, even when the ball screw device 31 having different specifications is adopted, the motor unit A and the motion conversion are used.
  • a part of the mechanism B (the planetary gear reducer 10) can be shared. As a result, the versatility is improved, and it becomes easy to realize a series of electric actuators 1 with a wide variety of deployments in which parts are shared.
  • the rotor inner 26 as a hollow rotating shaft is rotatably supported at one end in the axial direction by a rolling bearing 27 disposed in the vicinity of one end in the axial direction of the rotor core 24a, and the other in the axial direction of the rotor core 24a.
  • the other end portion in the axial direction is rotatably supported by a rolling bearing 30 disposed close to the end portion on the side.
  • the rolling bearings 27 and 30 that support the rotor inner 26 may support a radial load about the weight of the rotor 24.
  • the rotor inner 26 integrally including the inner raceway surface 27a of the rolling bearing 27 does not need to be formed of a high-strength material.
  • the rotor inner 26 may be formed of an inexpensive mild steel material in which heat treatment such as quenching and tempering is omitted. Necessary strength can be ensured.
  • the electric actuator 1 of the present embodiment since the rotational motion of the motor 25 is transmitted to the nut member 32 via the planetary gear speed reducer 10, no radial load is generated, and the linear motion of the screw shaft 33 is not caused.
  • the accompanying reaction force (thrust load) is directly supported by the needle roller bearing 47 disposed adjacent to the other axial side of the nut member 32. Accordingly, since the rolling bearing 27 only needs to have a radial positioning function, the rotor inner 26 integrally including the inner raceway surface 27a of the rolling bearing 27 is sufficient for the material specifications as described above. Thereby, the cost of the electric actuator 1 can be reduced.
  • the thrust load acting on the nut member 32 is directly supported by the needle roller bearing 47, the ball screw device 31 (motion converting mechanism portion B) and further the motor portion A are supported. It is possible to effectively suppress the moment load from acting on the rotor 24.
  • the needle roller bearing 47 is disposed within the axial range between the rolling bearings 27 and 30 that rotatably support the rotor 24 (rotor inner 26) as in this embodiment, the moment load is reduced. The suppression effect can be enhanced. If the moment load can be suppressed in this manner, the operation accuracy and durability of the output member of the electric actuator 1 including the screw shaft 33 can be increased, and a small needle roller bearing 47 can be used. .
  • the needle roller bearing 47 is disposed near the center in the axial direction between the rolling bearings 27 and 30, and in this case, the effect of suppressing the moment load can be further enhanced. . For this reason, the miniaturization of the needle roller bearing 47 can be further promoted. As a result, extremely small ones can be employed as the needle roller bearing 47, the thrust receiving ring 46, and the like, so that the electric actuator 1 can be prevented from being elongated in the axial direction as much as possible.
  • the planetary gear carrier 43 is provided with a cylindrical portion 43 a interposed between the inner peripheral surface of the rotor 24 (rotor inner 26) and the outer peripheral surface 32 b of the nut member 32, and the inner peripheral surface of the cylindrical portion 43 a is used as the nut member 32. Since the planetary gear carrier 43 and the nut member 32 are connected to each other so as to be able to transmit torque by being press-fitted into the outer peripheral surface 32b, the connection workability at the time of assembly is good, and also for high torque after deceleration. Stable torque transmission is possible.
  • the sun gear 41 of the planetary gear speed reducer 10 is press-fitted into the inner peripheral surface of the rotor inner 26, the rotor inner 26 and the sun gear 41 are connected so as to be able to transmit torque. Good properties. Even if such a connection structure is adopted, the sun gear 41 only needs to be able to rotate integrally with the rotor inner 26 before deceleration, and therefore the torque transmission performance required between the two can be sufficiently ensured. Furthermore, since the rotor inner 26 and the sun gear 41 are connected at a position directly below the rolling bearing 27 that supports the rotor inner 26, the rotational accuracy of the sun gear 41 is also good.
  • a plurality of electric actuators 1 (motor unit A, motion conversion mechanism unit B) can be obtained by the sandwich structure described above and a structure in which the lead wire of the power feeding circuit and the signal line of the sensor can be drawn to the outer diameter side of the housing 2. And an electric actuator that can operate a plurality of operation objects individually.
  • the electric actuator 1 of the present embodiment has the characteristic configuration as described above, it is lightweight and compact, and is excellent in mountability with respect to the equipment used, with excellent operation accuracy and durability life, and at low cost. Is also easy.
  • the operation mode of the electric actuator 1 of this embodiment will be briefly described with reference to FIGS. 1 and 11.
  • the ECU calculates a required position command value based on the operation amount.
  • the position command value is sent to the controller 81 of the control device 80, and the controller 81 calculates a motor rotation angle control signal necessary for the position command value and sends this control signal to the motor 25.
  • the screw shaft 33 moves forward while being prevented from rotating. At this time, the screw shaft 33 moves forward to a position based on the control signal of the controller 81, and the actuator head 39 fixed to the end portion on the one axial side of the screw shaft 33 operates (pressurizes) an operation target (not shown).
  • the axial position of the screw shaft 33 (the amount of displacement in the axial direction) is detected by the stroke detection sensor 55 as shown in FIG. 11, and the detection signal is sent to the comparison unit 82 of the control device 80. Then, the comparison unit 82 calculates the difference between the detection value detected by the stroke detection sensor 55 and the position command value, and the controller 81 is based on the calculated value and the signal sent from the rotation angle detection sensor 53. A control signal is sent to the motor 25. In this way, the position of the actuator head 39 is feedback controlled. For this reason, when the electric actuator 1 of this embodiment is applied to, for example, shift-by-wire, the shift position can be reliably controlled.
  • the electric power for driving the motor 25, the sensors 53, 55, etc. is supplied from an external power source (not shown) such as a battery provided on the vehicle side to a power supply circuit held in the control device 80 and the terminal portion D. Via the motor 25 and the like.
  • the nut member 32 is rotatably fitted to the outer periphery of the screw shaft 33 via the plurality of balls 34 (the ball screw device 31 is adopted as the motion conversion mechanism portion B).
  • the present invention can also be applied to an electric actuator in which a screw device in which the ball 34 (and the top 35) is omitted is used for the motion conversion mechanism portion B.
  • a rolling bearing other than the needle roller bearing 47 for example, a cylindrical roller bearing may be employed.
  • the needle roller bearing 47 is preferable in consideration of the thrust load supporting ability and the axial dimension of the bearing.
  • the screw shaft 33 is formed in a hollow shape by providing the screw shaft 33 with an axially extending hole 33b opened only at the other end surface in the axial direction. It is also possible.
  • the compression coil spring 48 is provided as a biasing member that constantly biases the screw shaft 33 toward the origin, but the compression coil spring 48 requires a function of biasing. What is necessary is just to provide according to a use, and when not required, you may abbreviate
  • the stroke detection sensor 55 is used. However, depending on the equipment used, the stroke detection sensor 55 may not be used.
  • FIG. 12 is an example of pressure control, and a pressure sensor 83 is provided on an operation target not shown.
  • the ECU calculates a required pressure command value.
  • the controller 81 calculates a motor rotation angle control signal necessary for the pressure command value and sends this control signal to the motor 25.
  • the screw shaft 33 moves forward to a position based on the control signal of the controller 81, and the actuator head 39 fixed to one end of the screw shaft 33 in the axial direction is provided.
  • An operation target not shown is operated.
  • the operating pressure of the screw shaft 33 (actuator head 39) is detected by a pressure sensor 83 installed outside and feedback-controlled. For this reason, when the electric actuator 1 that does not use the stroke detection sensor 55 is applied to, for example, brake-by-wire, the brake hydraulic pressure can be reliably controlled.
  • a solid screw shaft 33 may be adopted and the spring mounting collar 36 may be omitted.
  • the solid screw shaft 33 is used and the compression coil spring 48 is interposed between the screw shaft 33 and the nut member 32, the screw shaft 33 is the other end in the axial direction. What has a flange part in a part should just be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Transmission Devices (AREA)
  • Retarders (AREA)

Abstract

モータ部Aと、運動変換機構部Bとを備え、運動変換機構部Bが、モータ部Aのロータ24の回転中心と同軸に配置されたねじ軸33、およびその外周に回転可能に嵌合されたナット部材32と、ロータ24の回転を減速して出力する遊星歯車減速機10とを有し、ナット部材32の回転方向に応じて、ねじ軸33が軸方向一方側に前進又は軸方向他方側に後退する電動アクチュエータ1において、ナット部材32を、ロータ24の内周に配置し、遊星歯車減速機10の出力部材である遊星ギヤキャリア43とトルク伝達可能に連結した。

Description

電動アクチュエータ
 本発明は、電動アクチュエータに関する。
 近年、自動車においては、その省力化や低燃費化のために電動化が進展し、例えば、自動変速機、ブレーキおよびステアリング等の操作を電動機(モータ)の力で行うシステムが開発され、市場に投入されている。このようなシステムに使用される電動アクチュエータとして、モータの回転運動を直線運動に変換して出力する運動変換機構にねじ機構を採用したものがある(例えば、特許文献1)。
 特許文献1に記載の電動アクチュエータは、減速機としての遊星歯車減速機を有し、モータの出力は、遊星歯車減速機により減速された上でねじ機構のナット部材に伝達されるようになっている。この場合、小型のモータを採用することができるため、電動アクチュエータを全体として軽量・コンパクト化することができる、という利点がある。
特開2014-231280号公報
 特許文献1に記載の電動アクチュエータにおいては、モータと遊星歯車減速機とが直列に配置され、ねじ機構のナット部材が、遊星歯車減速機の遊星ギヤを回転(公転)可能に保持し、遊星ギヤの公転運動を取り出すキャリアの役割を兼ね備えている。このような構成を実現するため、ナット部材は、遊星ギヤの軸方向一方側に隣接配置された状態で、遊星ギヤを回転可能に支持する支持ピンの端部に嵌合されている。
 しかしながら、上記のような構造を採用した場合、モータや運動変換機構を収容するための筐体、ひいては電動アクチュエータが軸方向に長寸化する。このため、特許文献1に記載の電動アクチュエータは、例えば、電動アクチュエータの設置スペースの軸方向寸法に余裕があるアプリケーションにしか適用(搭載)することができない、という問題がある。
 以上の実情に鑑み、本発明の主な課題は、遊星歯車減速機を備えた電動アクチュエータを軸方向にコンパクト化し、もって使用機器に対する搭載性を向上することにある。
 上記の課題を解決するために創案された本発明は、電力の供給を受けて駆動するモータ部と、モータ部の回転運動を直線運動に変換して出力する運動変換機構部とを備え、運動変換機構部が、モータ部のロータの回転中心と同軸に配置されたねじ軸、およびその外周に回転可能に嵌合されたナット部材と、ロータの回転を減速して出力する遊星歯車減速機とを有し、ナット部材の回転方向に応じて、ねじ軸が軸方向一方側に前進又は軸方向他方側に後退する電動アクチュエータにおいて、ナット部材が、ロータの内周に配置され、遊星歯車減速機の出力部材とトルク伝達可能に連結されていることを特徴とする。
 このような構成によれば、モータ部のロータとナット部材とが半径方向で重畳した構造となるので、モータ、遊星歯車減速機およびナット部材が軸方向に連ねて配置される特許文献1の構成に比べ、電動アクチュエータを軸方向にコンパクト化することができる。
 遊星歯車減速機の出力部材と、ロータの内周に配置されるナット部材とをトルク伝達可能に連結するための具体的な構成として、出力部材に、ロータの内周面とナット部材の外周面との間に介在する円筒部を設け、円筒部の外周面をロータの内周面と半径方向隙間を介して対向させると共に、円筒部の内周面をナット部材の外周面に固定する構成を採用することができる。このとき、圧入により、円筒部の内周面をナット部材の外周面に固定するようにすれば、電動アクチュエータの組立性を向上することができる。
 モータ部のロータは、ロータマグネットを保持したロータコアと、外周にロータコアを装着すると共に、内周にナット部材を配置した中空回転軸とを有するものとすることができ、中空回転軸は、軸方向に離間した二箇所に配置された転がり軸受により回転自在に支持することができる。この場合、中空回転軸に、2つの転がり軸受のうちの一方の転がり軸受の内側軌道面を設ければ、中空回転軸、ひいてはロータを軸方向にコンパクト化することができる。これにより、電動アクチュエータを軸方向に一層コンパクト化することができる。
 中空回転軸に上記の内側軌道面が設けられている場合に、この内側軌道面をナット部材の軸方向幅の内側に配置すれば、電動アクチュエータを軸方向により一層コンパクト化することができる。
 以上の構成において、ナット部材の軸方向他方側にスラスト軸受を隣接配置しても良い。このようにすれば、ねじ軸が軸方向一方側に直線運動(前進)するのに伴ってナット部材に作用する反力(スラスト荷重)を、上記のスラスト軸受で直接的に支持することができる。これにより、ねじ軸やナット部材、さらにはモータ部のロータにモーメント荷重が作用するのを効果的に抑制することができる。特に、このスラスト軸受を、2つの転がり軸受の間の軸方向範囲内に配置しておけば、ねじ軸等にモーメント荷重が作用するのを一層効果的に抑制することができる。上記のようにモーメント荷重を抑制できれば、ねじ軸を含んで構成される電動アクチュエータの出力部材の動作精度および耐久寿命を向上することができる。
 以上の構成において、ナット部材は、複数のボールを介してねじ軸の外周に嵌合することができる。すなわち、運動変換機構部を構成するねじ機構は、いわゆるボールねじ機構としても良い。このようにすれば、ねじ軸を含んで構成される電動アクチュエータの出力部材の作動性を高めることができる。
 上記構成の電動アクチュエータは、軸方向に結合された複数部材からなり、モータ部および運動変換機構部を収容した筐体と、モータ部に電力を供給するための給電回路を保持したターミナル部とをさらに備えるものとすることができる。この場合に、ターミナル部を筐体の構成部材により軸方向両側から挟持するようにすれば、電動アクチュエータの組立性を向上することができる。
 ターミナル部は、その外周部に、給電回路に接続されるリード線を筐体の外径側に引き出すための開口部を有するものとすることができる。このようにすれば、例えば、それぞれがねじ軸を有する複数の電動アクチュエータを直列に接続し、かつ各ねじ軸を個別に直線運動させることができる電動アクチュエータを容易に実現することができる。このような電動アクチュエータは、操作対象が2以上ある使用機器、例えば、自動変速機の一種であるDCTに搭載することができ、電動アクチュエータを含めた使用機器全体の軽量・コンパクト化に貢献できる。
 以上より、本発明によれば、軸方向にコンパクトで、使用機器に対する搭載性に優れた電動アクチュエータを実現することができる。
本発明の一実施形態に電動アクチュエータの縦断面図である。 図1のE-E線矢視断面図である。 モータのロータと運動変換機構部とを取り出して拡大した縦断面図である。 図1のF-F線矢視断面図である。 ケーシングにリングギヤを組み込んだ状態を示す縦断面図である。 モータのステータとターミナル部とを取り出して拡大した縦断面図である。 図1のG-G線矢視断面図である。 図1のH-H線矢視断面図である。 図1に示す電動アクチュエータの左側面図である。 図9のI-I線矢視断面図である。 図1の電動アクチュエータの制御系統を示す概略ブロック図である。 他の実施形態に係る電動アクチュエータの制御系統を示すブロック図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1に、本発明の一実施形態に係る電動アクチュエータの縦断面図を示し、図2に、図1のE-E線矢視断面図を示し、図3に、モータ部のロータと運動変換機構部とを取り出して拡大した縦断面図を示す。なお、図1および図2は、電動アクチュエータの出力部材を構成するねじ軸33が原点に位置した状態を示している。本実施形態における「原点に位置した状態」とは、後述する圧縮コイルばね48のばね力により、ねじ軸33(に連結されたばね取付カラー36)の端面が、これに対向するカバー29の端面と機械的に当接する位置にある状態のことである。図1および図2に示すように、電動アクチュエータ1は、電力の供給を受けて駆動されるモータ部Aと、モータ部Aの回転運動を直線運動に変換して出力する運動変換機構部Bと、図示外の操作対象を操作する操作部Cと、ターミナル部Dとを備え、これらは筐体2に収容・保持されている。
 筐体2は、軸方向に結合された複数部材からなる。本実施形態の筐体2は、軸方向一方側(図1および図2においては紙面右側。以下同様。)の端部および軸方向他方側(図1および図2においては紙面左側。以下同様。)の端部が開口した筒状のケーシング20と、ケーシング20の軸方向他方側の端部開口を閉塞するカバー29と、ケーシング20とカバー29の間に配置され、ターミナル部Dを構成するターミナル本体50との結合体からなる。カバー29およびターミナル本体50は、図9,10に示す組立用ボルト61によりケーシング20に対して取り付け固定されている。
 モータ部Aは、ケーシング20に固定されたステータ23と、径方向隙間を介してステータ23の内周に対向配置されたロータ24とを備えたラジアルギャップ型のモータ(詳細には、U相、V相およびW相を有する三相ブラシレスモータ)25で構成されている。ステータ23は、ステータコア23aに装着された絶縁用のボビン23bと、ボビン23bに巻き回されたコイル23cとを備える。ロータ24は、ロータコア24aと、ロータコア24aの外周に取り付けられたロータマグネットとしての永久磁石24bと、中空状に形成され、ロータコア24aを外周に装着した中空回転軸としてのロータインナ26とを備える。
 図3に示すように、ロータコア24aは、ロータインナ26の軸方向一方側の肩部26aにサイドプレート65をセットした後、ロータインナ26の外周面26bに嵌合される。永久磁石24b(図2参照)は、ロータコア24aの外周に嵌合された後、ロータインナ26のうち、ロータコア24aの軸方向他方側の端部の軸方向外側に取り付けられたサイドプレート65、およびその軸方向外側に取り付けられたサークリップ66により位置決め固定されている。
 図1~図3に示すように、ロータインナ26の軸方向一方側の端部外周には転がり軸受27の内側軌道面27aが形成され、転がり軸受27の外輪27bはケーシング20の内周面に固定された軸受ホルダ28の内周面に装着されている。また、ロータインナ26の軸方向他方側の端部内周面と、カバー29の円筒部29aの外周面との間に転がり軸受30が装着されている。このような構成により、ロータインナ26は、転がり軸受27,30を介して筐体2に対して回転自在に支持されている。
 図1~図3に示すように、本実施形態の運動変換機構部Bは、ボールねじ装置31と、遊星歯車減速機10とを備え、遊星歯車減速機10は、モータ部Aと直列に配置(モータ部Aの軸方向一方側に隣接配置)されている。
 ボールねじ装置31は、ロータ24(ロータインナ26)の回転中心と同軸に配置され、電動アクチュエータ1の出力部材を構成するねじ軸33と、複数のボール34を介してねじ軸33の外周に回転可能に嵌合されると共に、ロータインナ26とトルク伝達可能にロータインナ26の内周に配置されたナット部材32と、循環部材としてのこま35とを備える。ナット部材32の内周面に形成された螺旋状溝32aと、ねじ軸33の外周面に形成された螺旋状溝33aとの間に複数のボール34が装填され、こま35が組み込まれている。このような構成により、ナット部材32が回転するのに伴ってねじ軸33が軸方向に直線運動する際には、両螺旋状溝32a,33aの間でボール34が循環する。
 ねじ軸33は、軸方向に延びた孔部(本実施形態では、軸方向両側の端面に開口した貫通穴)33bを有する中空状に形成され、孔部33bにばね取付カラー36が収容されている。ばね取付カラー36は、例えばPPS等の樹脂材料で形成され、軸方向一方側の端部に設けられた円形中実部36aと、軸方向他方側の端部に設けられたフランジ状のばね受け部36bと、両部36a,36bを接続する筒部36cとを一体に有する。
 ねじ軸33の孔部33bに収容されたばね取付カラー36は、その円形中実部36aとねじ軸33とを径方向に貫通するようにピン37を嵌め込むことによってねじ軸33と連結固定される。ピン37の両端部は、ねじ軸33の外周面から径方向外側に突出しており、この突出部分にガイドカラー38が回転自在に外嵌されている。ガイドカラー38は、例えばPPS等の樹脂材料で形成され、ケーシング20の小径円筒部20aの内周に設けられた軸方向に延びる案内溝20b(図5も併せて参照)に嵌め込まれている。このような構成により、ロータ24の回転に伴ってナット部材32がねじ軸33の軸線回りに回転すると、ねじ軸33は回り止めされた状態で軸方向に直線運動する。なお、ねじ軸33が、軸方向他方側から軸方向一方側に向けて直線運動(前進)するか、あるいは、軸方向一方側から軸方向他方側に向けて直線運動(後退)するかは、基本的には、ロータ24(ナット部材32)の回転方向に応じて決定付けられるが、本実施形態では、圧縮コイルばね48のばね力によってもねじ軸33が後退移動可能となっている(詳細は後述する)。
 図1および図2に示すように、ねじ軸33の軸方向一方側の端部には、操作部Cとしてのアクチュエータヘッド39が着脱可能に装着されている。本実施形態のアクチュエータヘッド39は、ねじ軸33が軸方向一方側に直線運動(前進)するのに伴ってその先端面が操作対象を軸方向に加圧する、いわゆる押しタイプである。なお、アクチュエータヘッド39としては、操作対象を軸方向両側に操作可能な、いわゆる押し引きタイプを採用することもできる。
 遊星歯車減速機10は、図1~図4に示すように、ケーシング20に固定されたリングギヤ40と、ロータインナ26の段部内周面に圧入固定されたサンギヤ41と、リングギヤ40とサンギヤ41の間に配置され、両ギヤ40,41に噛合った複数(本実施形態では4つ)の遊星ギヤ42と、遊星ギヤ42を回転自在に保持した遊星ギヤキャリア43および遊星ギヤホルダ44と、を備え、遊星ギヤキャリア43は、遊星ギヤ42の公転運動を取り出して出力する。従って、遊星ギヤキャリア43が本発明でいう遊星歯車減速機の出力部材を構成する。
 図4に示すように、リングギヤ40の外周には径方向外側に突出したノッチ40aが周方向に離間した複数箇所(図示例では4箇所)に設けられ、各ノッチ40aは、ケーシング20の内周面20cの周方向に離間した複数箇所(図示例では4箇所)に設けられた軸方向溝20e(図5を併せて参照)にそれぞれ嵌合されている。これにより、リングギヤ40は、ケーシング20に対して回り止めされている。
 遊星ギヤキャリア43は、図1~図3に示すように、遊星ギヤ42の内周に嵌合されたピン状部と、遊星ギヤ42の軸方向一方側に配置された円盤状部と、円盤状部の径方向内側の端部から軸方向他方側に延び、ロータインナ26の内周面とナット部材32の外周面32bとの間に介在する円筒部43aとを一体に有する。この遊星ギヤキャリア43は、ロータインナ26に対して相対回転可能である一方、ボールねじ装置31のナット部材32と一体回転可能(トルク伝達可能)に連結されている。本実施形態では、円筒部43aの外周面がロータインナ26の内周面(およびサンギヤ41の内周面)と径方向隙間を介して対向し、円筒部43aの内周面がナット部材32の外周面32bに圧入固定されている。
 以上の構成を有する遊星歯車減速機10により、モータ25のロータ24(ロータインナ26)の回転が減速された上でナット部材32に伝達される。これにより、回転トルクを増加することができるので、小型のモータ25を採用することができる。
 図1~図3に示すように、ナット部材32の軸方向一方側の端面とケーシング20との間にスラストワッシャ45が配設され、カバー29の円筒部29aの先端部外周に取り付けられたスラスト受けリング46とナット部材32の軸方向他方側の端面との間にスラスト軸受としての針状ころ軸受47が配設されている。
 図1および図2に示すように、カバー29の円筒部29aの内周面29bとねじ軸33の外周面との間には、付勢部材としての圧縮コイルばね48が配設されている。圧縮コイルばね48の軸方向一方側および他方側の端部は、それぞれ、針状ころ軸受47およびばね取付カラー36のばね受け部36bに当接している。このように設けられた圧縮コイルばね48のばね力により、ばね取付カラー36と連結されたねじ軸33が常時原点側に付勢される。このようにすれば、例えば、モータ部A(モータ25)に適切に駆動電力が供給されないような場合には、ねじ軸33を自動的に原点復帰させ、図示しない操作対象の作動に悪影響を及ぼす可能性を可及的に低減することができる。
 カバー29の詳細を図9および図10を参照して説明する。図9は、図1の左側面図であり、図10は、図9中に示すI-I線矢視断面図である。カバー29は、加工性(量産性)および熱伝導率に優れた金属材料、例えば、アルミニウム合金、亜鉛合金又はマグネシウム合金で形成される。図示は省略しているが、カバー29の外側表面には、電動アクチュエータ1の冷却効率を高めるための冷却フィンを設けても良い。図10に示すように、カバー29の円筒部29aの外周面には、転がり軸受30が装着された軸受装着面63と、スラスト受けリング46が嵌合された嵌合面64とが設けられている。また、図9に示すように、カバー29には、電動アクチュエータ1の組立用ボルト61が挿通された図示外の貫通穴と、電動アクチュエータ1を使用機器に取り付けるための取付用ボルトが挿通される貫通穴62とが設けられている。
 次に、ターミナル部Dを図1および図6~図8を参照して説明する。図6は、図1に示すモータ25のステータ23とターミナル部Dとを取り出して拡大した縦断面図、図7は、図1のG-G線矢視断面図、図8は、図1のH-H線矢視断面図である。図6に示すように、ターミナル部Dは、筐体2の一部を構成する短筒状部、および短筒状部の軸方向他方側の端部から径方向内側に延びる円盤状部を一体に有するターミナル本体50と、ターミナル本体50(の円盤状部)に対してねじ止めされたバスバー51および円盤状のプリント基板52とを備える。図7および図8に示すように、ターミナル本体50(の短筒状部)は、図9,10に示す組立用ボルト61が挿通される貫通穴50Aと、電動アクチュエータ1を使用機器に取り付けるためのボルトが挿通される貫通穴50Bとを有し、上記の組立用ボルト61により、ケーシング20とカバー29の間で挟持される(図1,2参照)。ターミナル本体50は、例えばPPS等の樹脂材料で形成される。
 ターミナル部D(ターミナル本体50)は、モータ25に駆動電力を供給するための給電回路を保持している。給電回路は、図7および図8に示すように、ステータ23のコイル23cをU相、V相、W相の相別にバスバー51の端子51aに結線し、さらに、図2に示すように、バスバー51の端子51bと、ターミナル本体50の端子台50aとをねじ70で締結することで構成される。端子台50aは、図示外のリード線が接続される端子50bを有し、上記のリード線は、ターミナル本体50の外周部(短筒状部)に設けられた開口部50c(図1参照)を介して筐体2の外径側に引き出され、制御装置80のコントローラ81(図11又は図12参照)に接続される。
 本実施形態の電動アクチュエータ1には2種類のセンサが搭載されており、これら2種類のセンサはターミナル部Dに保持されている。図1等に示すように、2種類のセンサのうちの一方は、モータ25の回転制御に用いる回転角度検出用センサ53であり、他方は、ねじ軸33のストローク制御(軸方向の変位量検出)のために用いるストローク検出用センサ55である。回転角度検出用センサ53およびストローク検出用センサ55としては、何れも、磁気センサの一種であるホールセンサが使用される。
 図1および図8に示すように、回転角度検出用センサ53は、プリント基板52に取り付けられており、ロータインナ26の軸方向他方側の端部に取り付けられたパルサリング54と軸方向隙間を介して対向配置されている。この回転角度検出用センサ53は、モータ25のU相、V相、W相のそれぞれに電流を流すタイミングを決める。
 図2、図7および図8に示すように、ストローク検出用センサ55は、軸方向に延び、軸方向他方側の端部がプリント基板52に接続された帯状のプリント基板56に取り付けられている。プリント基板56およびストローク検出用センサ55は、ねじ軸33の孔部33bの内周、より詳細には、孔部33bに収容されたばね取付カラー36の筒部36c内周に配置されている。また、ばね取付カラー36の筒部36cの内周には、ストローク検出用センサ55と径方向隙間を介して対向するようにターゲットとしての永久磁石57が取り付けられており、本実施形態では軸方向に離間した二箇所に永久磁石57が取り付けられている。そして、ホールセンサからなるストローク検出用センサ55は、永久磁石57の周囲に形成される軸方向および径方向の磁界をそれぞれ検出し、これに基づいてねじ軸33の軸方向の変位量を算出する。
 詳細な図示は省略しているが、回転角度検出用センサ53の信号線およびストローク検出用センサ55の信号線は、何れも、ターミナル本体50の開口部50c(図1参照)を介して筐体2の外径側に引き出され、制御装置80(図11又は図12参照)に接続される。
 以上の構成を有する電動アクチュエータ1の組立手順を簡単に説明する。まず、図5に示すように、リングギヤ40をケーシング20に組み込む。次いで、図3に示すモータ25のロータ24と運動変換機構部Bのサブアセンブリをケーシング20に挿入する。このとき、遊星ギヤ42とリングギヤ40とを噛み合わせ、ガイドカラー38をケーシング20の案内溝20bに嵌合させ、さらに軸受ホルダ28をケーシング20の内周面20cに嵌合させる。その後、図6に示すモータ25のステータ23とターミナル部D(ターミナル本体50)のサブアセンブリのうち、ステータ23をケーシング20の内周に嵌合してから、カバー29およびターミナル本体50をケーシング20に対して組立用ボルト61(図9,10参照)により締結する。これにより、電動アクチュエータ1が完成する。
 以上で説明したように、本実施形態に係る電動アクチュエータ1においては、運動変換機構部Bを構成するボールねじ装置31のナット部材32が、ロータ24(中空回転軸としてのロータインナ26)の内周に配置され、遊星歯車減速機10の出力部材である遊星ギヤキャリア43とトルク伝達可能に連結されている。このような構成によれば、モータ部Aのロータ24とナット部材32とが半径方向で重畳した構造となるので、モータ、遊星歯車減速機およびナット部材が軸方向に連ねて配置される特許文献1の構成に比べ、筐体2の軸方向寸法L(図1参照)を短縮することが、すなわち、電動アクチュエータ1を軸方向にコンパクト化することができる。そのため、特に、電動アクチュエータ1の設置スペースの軸方向寸法に制限があるような使用機器に対する搭載性に優れた電動アクチュエータ1を実現することができる。
 また、遊星歯車減速機10を有することにより実現されるモータ部A(モータ25)の小型化と、ロータインナ26、遊星ギヤキャリア43の円筒部43aおよびナット部材32の半径方向での重畳構造とが相俟って、筐体2の径方向寸法M(図1参照)も極力小さくすることができる。
 また、遊星歯車減速機10の出力部材(遊星ギヤキャリア43)とナット部材32とを別体構造としたので、例えば、仕様が異なるボールねじ装置31を採用する場合でも、モータ部Aおよび運動変換機構部Bの一部(遊星歯車減速機10)を共用化することができる。これにより、汎用性を向上し、部品を共用化した多品種展開による電動アクチュエータ1のシリーズ化を実現することも容易となる。
 また、中空回転軸としてのロータインナ26は、ロータコア24aの軸方向一方側の端部に近接配置された転がり軸受27により軸方向一方側の端部が回転自在に支持され、ロータコア24aの軸方向他方側の端部に近接配置された転がり軸受30により軸方向他方側の端部が回転自在に支持されている。このような構造により、ロータインナ26を軸方向にコンパクト化することができる。これに加えて、転がり軸受27がナット部材32の軸方向幅の内側に配置された構造が相俟って、電動アクチュエータ1を一層軸方向にコンパクト化することができる。
 また、ロータ24の回転バランスが取られていれば、ロータインナ26を支持する転がり軸受27,30は、ロータ24の自重程度のラジアル荷重を支持できれば良い。この場合、転がり軸受27の内側軌道面27aを一体に有するロータインナ26は、高強度の材料で形成する必要がなく、例えば、焼入れ焼戻し等の熱処理が省略された安価な軟鋼材で形成しても必要強度を確保することができる。特に、本実施形態の電動アクチュエータ1では、モータ25の回転運動が遊星歯車減速機10を介してナット部材32に伝達されるためにラジアル荷重の発生はなく、また、ねじ軸33の直線運動に伴って生じる反力(スラスト荷重)は、ナット部材32の軸方向他方側に隣接配置された針状ころ軸受47で直接的に支持される。従って、転がり軸受27は、ラジアル方向の位置決め機能を有していれば足りるため、転がり軸受27の内側軌道面27aを一体に有するロータインナ26は、上記のような材料仕様で足りる。これにより、電動アクチュエータ1を低コスト化することができる。
 また、上記のように、ナット部材32に作用するスラスト荷重を針状ころ軸受47で直接的に支持するようにしておけば、ボールねじ装置31(運動変換機構部B)、さらにはモータ部Aのロータ24にモーメント荷重が作用するのを効果的に抑制することができる。特に、本実施形態のように、針状ころ軸受47を、ロータ24(ロータインナ26)を回転自在に支持する転がり軸受27,30の間の軸方向範囲内に配置しておけば、モーメント荷重の抑制効果を高めることができる。このようにモーメント荷重を抑制できれば、ねじ軸33を含んで構成される電動アクチュエータ1の出力部材の動作精度および耐久寿命を高めることができることに加え、針状ころ軸受47として小型のものを使用できる。
 なお、本実施形態では、針状ころ軸受47を、両転がり軸受27,30の間の軸方向中央付近に配置しており、この場合には、モーメント荷重の抑制効果をより一層高めることができる。このため、針状ころ軸受47の小型化を一層促進できる。その結果、針状ころ軸受47およびスラスト受けリング46等として極めて小型のものを採用することができるため、電動アクチュエータ1が軸方向に長寸化するのを可及的に防止することができる。
 また、遊星ギヤキャリア43に、ロータ24(ロータインナ26)の内周面とナット部材32の外周面32bとの間に介在する円筒部43aを設け、この円筒部43aの内周面をナット部材32の外周面32bに圧入することで遊星ギヤキャリア43とナット部材32とをトルク伝達可能に連結したので、組立時の連結作業性が良好であることに加え、減速後の高トルクに対しても安定したトルク伝達が可能である。
 また、ロータインナ26の内周面に遊星歯車減速機10のサンギヤ41が圧入されることで、ロータインナ26とサンギヤ41とがトルク伝達可能に連結されているので、この点においても組立時の連結作業性が良好である。なお、このような連結構造を採用しても、サンギヤ41は、減速前のロータインナ26と一体回転できれば良いので、両者間で必要とされるトルク伝達性能は十分に確保できる。さらに、ロータインナ26とサンギヤ41とは、ロータインナ26を支持する転がり軸受27の直下位置で連結されているので、サンギヤ41の回転精度も良好である。
 また、給電回路、回転角度検出用センサ53およびストローク検出用センサ55等をターミナル本体50で保持し、このターミナル本体50(ターミナル部D)をケーシング20とカバー29とで軸方向に挟持するサンドイッチ構造を採用したので、組立性を一層高めることができる。さらに、上記のサンドイッチ構造と、給電回路のリード線や上記センサの信号線を筐体2の外径側に引き出し可能な構造とにより、複数の電動アクチュエータ1(モータ部A、運動変換機構部Bおよびターミナル部Dをユニット化したもの)を軸方向に連ねて配置してなり、複数の操作対象を個別に操作可能な電動アクチュエータを実現することもできる。
 本実施形態の電動アクチュエータ1は、以上で説明したような特徴的な構成を有することから、軽量・コンパクトで使用機器に対する搭載性に優れると共に動作精度および耐久寿命に優れ、かつ低コストでシリーズ化も容易である。
 最後に、図1および図11を参照して本実施形態の電動アクチュエータ1の作動態様を簡単に説明する。例えば、図示しない車両上位のECUに操作量が入力されると、この操作量に基づいてECUは要求される位置指令値を演算する。図11に示すように、位置指令値は制御装置80のコントローラ81に送られ、コントローラ81は、位置指令値に必要なモータ回転角の制御信号を演算し、この制御信号をモータ25に送る。
 コントローラ81から送られた制御信号に基づいてロータ24が回転すると、この回転運動が運動変換機構部Bに伝達される。具体的には、ロータ24が回転すると、ロータインナ26に連結された遊星歯車減速機10のサンギヤ41が回転し、これに伴って遊星ギヤ42が公転すると共に遊星ギヤキャリア43が回転する。これにより、ロータ24の回転運動が遊星ギヤキャリア43に連結されたナット部材32に伝達される。このとき、遊星ギヤ42の公転運動により、ロータ24の回転数が減速されるので、ナット部材32に伝達される回転トルクが増加する。
 ロータ24の回転運動を受けてナット部材32が回転すると、ねじ軸33は、回り止めされた状態で前進する。この際、ねじ軸33はコントローラ81の制御信号に基づく位置まで前進し、ねじ軸33の軸方向一方側の端部に固定されたアクチュエータヘッド39が図示しない操作対象を操作(加圧)する。
 ねじ軸33の軸方向位置(軸方向の変位量)は、図11にも示すように、ストローク検出用センサ55により検出され、その検出信号は制御装置80の比較部82に送られる。そして、比較部82は、ストローク検出用センサ55により検出された検出値と位置指令値との差分を算出し、コントローラ81はこの算出値および回転角度検出用センサ53から送られた信号に基づいてモータ25に制御信号を送る。このようにして、アクチュエータヘッド39の位置がフィードバック制御される。このため、本実施形態の電動アクチュエータ1を、例えば、シフト・バイ・ワイヤに適用した場合、シフト位置を確実にコントロールすることができる。なお、モータ25やセンサ53,55等を駆動するための電力は、車両側に設けられたバッテリ等の外部電源(図示せず)から、制御装置80およびターミナル部Dに保持された給電回路を介してモータ25等に供給される。
 以上、本発明の一実施形態に係る電動アクチュエータ1について説明を行ったが、本発明の実施の形態はこれに限られない。
 例えば、以上で説明した実施形態においては、複数のボール34を介してナット部材32をねじ軸33の外周に回転可能に嵌合した(運動変換機構部Bにボールねじ装置31を採用した)が、運動変換機構部Bに、ボール34(およびこま35)を省略したねじ装置が採用される電動アクチュエータにも本発明は適用できる。但し、ねじ軸33(電動アクチュエータ1の出力部材)の作動性等を考慮すると、運動変換機構部Bにボールねじ装置31を採用するのが好ましい。
 また、ナット部材32の軸方向他方側に隣接配置するスラスト軸受としては、針状ころ軸受47以外の転がり軸受、例えば円筒ころ軸受を採用することもできる。但し、スラスト荷重の支持能力や、軸受の軸法寸法を考慮すると、針状ころ軸受47が好ましい。
 また、以上で説明した実施形態においては、ねじ軸33の軸方向の両端面に開口した孔部33b(軸方向の貫通穴)を設けることによって、ねじ軸33を中空状に形成すると共に、ねじ軸33の内周にストローク検出用センサ55を配置したが、ねじ軸33に軸方向他方側の端面のみに開口した軸方向に延びる孔部33bを設けることでねじ軸33を中空状に形成することも可能である。
 また、以上で説明した実施形態においては、ねじ軸33を常時原点側に付勢する付勢部材としての圧縮コイルばね48を設けているが、圧縮コイルばね48は付勢する機能を必要とする用途に応じて設ければよく、必要としない場合は省略しても構わない。
 また、以上で説明した実施形態においては、ストローク検出用センサ55を使用するようにしているが、使用機器によっては、ストローク検出用センサ55を使用しない場合もある。
 図12に基づき、ストローク検出用センサ55を使用しない場合における電動アクチュエータ1の作動態様の一例を説明する。図12は、圧力制御の例であり、図示外の操作対象に圧力センサ83が設けられている。図示外のECUに操作量が入力されると、ECUは要求される圧力指令値を演算する。この圧力指令値が制御装置80のコントローラ81に送られると、コントローラ81は、圧力指令値に必要なモータ回転角の制御信号を演算し、この制御信号をモータ25に送る。そして、図11を参照して説明した場合と同様に、ねじ軸33がコントローラ81の制御信号に基づく位置まで前進し、ねじ軸33の軸方向一方側の端部に固定されたアクチュエータヘッド39が図示外の操作対象を操作する。
 ねじ軸33(アクチュエータヘッド39)の操作圧力は、外部に設置された圧力センサ83により検出され、フィードバック制御される。このため、ストローク検出用センサ55を使用しない電動アクチュエータ1を例えばブレーキバイワイヤに適用した場合、ブレーキの液圧を確実にコントロールすることができる。
 上記のように、ストローク検出用センサ55を使用しない場合、ねじ軸33としては、中実のものを採用し、ばね取付カラー36を省略しても良い。但し、中実のねじ軸33を使用する場合であって、ねじ軸33とナット部材32との間に圧縮コイルばね48を介在させる場合には、ねじ軸33として、その軸方向他方側の端部にフランジ部を有するものを採用すれば良い。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1    電動アクチュエータ
2    筐体
10   遊星歯車減速機
20   ケーシング
24   ロータ
25   モータ
26   ロータインナ(中空回転軸)
29   カバー
31   ボールねじ装置
32   ナット部材
33   ねじ軸
34   ボール
40   リングギヤ
41   サンギヤ
42   遊星ギヤ
43   遊星ギヤキャリア(出力部材)
43a  円筒部
47   針状ころ軸受(スラスト軸受)
48   圧縮コイルばね
50   ターミナル本体
50c  開口部
A    モータ部
B    運動変換機構部
C    操作部
D    ターミナル部
L    筐体の軸方向寸法
M    筐体の径方向寸法

Claims (9)

  1.  電力の供給を受けて駆動するモータ部と、該モータ部の回転運動を直線運動に変換して出力する運動変換機構部とを備え、前記運動変換機構部が、前記モータ部のロータの回転中心と同軸に配置されたねじ軸、およびその外周に回転可能に嵌合されたナット部材と、前記ロータの回転を減速して出力する遊星歯車減速機とを有し、前記ナット部材の回転方向に応じて、前記ねじ軸が軸方向一方側に前進又は軸方向他方側に後退する電動アクチュエータにおいて、
     前記ナット部材が、前記ロータの内周に配置され、前記遊星歯車減速機の出力部材とトルク伝達可能に連結されていることを特徴とする電動アクチュエータ。
  2.  前記出力部材が、前記ロータの内周面と前記ナット部材の外周面との間に介在する円筒部を有し、該円筒部は、その外周面が前記ロータの内周面と半径方向隙間を介して対向すると共に、その内周面が前記ナット部材の外周面に固定されている請求項1に記載の電動アクチュエータ。
  3.  圧入により、前記円筒部の内周面が前記ナット部材の外周面に固定されている請求項2に記載の電動アクチュエータ。
  4.  前記ロータは、ロータマグネットを保持したロータコアと、外周に前記ロータコアを装着すると共に、内周に前記ナット部材を配置した中空回転軸とを有し、
     前記中空回転軸は、軸方向に離間した二箇所に配置された転がり軸受により回転自在に支持され、2つの前記転がり軸受のうち、一方の転がり軸受の内側軌道面を有する請求項1~3の何れか一項に記載の電動アクチュエータ。
  5.  前記内側軌道面が、前記ナット部材の軸方向幅の内側に配置されている請求項4に記載の電動アクチュエータ。
  6.  前記ナット部材の軸方向他方側にスラスト軸受が隣接配置され、該スラスト軸受は、2つの前記転がり軸受の間の軸方向範囲内に配置されている請求項4又は5に記載の電動アクチュエータ。
  7.  前記ナット部材は、複数のボールを介して前記ねじ軸の外周に嵌合されている請求項1~6の何れか一項に記載の電動アクチュエータ。
  8.  軸方向に結合された複数部材からなり、前記モータ部および前記運動変換機構部を収容した筐体と、前記モータ部に前記電力を供給するための給電回路を保持したターミナル部とをさらに備え、
     前記ターミナル部が、前記筐体の構成部材により軸方向両側から挟持されている請求項1~7の何れか一項に記載の電動アクチュエータ。
  9.  前記ターミナル部は、その外周部に、前記給電回路に接続されるリード線を前記筐体の外径側に引き出すための開口部を有する請求項8に記載の電動アクチュエータ。
PCT/JP2017/008776 2016-03-11 2017-03-06 電動アクチュエータ WO2017154836A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/082,580 US20190097492A1 (en) 2016-03-11 2017-03-06 Electrical actuator
CN201780013917.7A CN108702062A (zh) 2016-03-11 2017-03-06 电动致动器
EP17763176.9A EP3429068B1 (en) 2016-03-11 2017-03-06 Electrical actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-048168 2016-03-11
JP2016048168A JP6794121B2 (ja) 2016-03-11 2016-03-11 電動アクチュエータ

Publications (1)

Publication Number Publication Date
WO2017154836A1 true WO2017154836A1 (ja) 2017-09-14

Family

ID=59790386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008776 WO2017154836A1 (ja) 2016-03-11 2017-03-06 電動アクチュエータ

Country Status (5)

Country Link
US (1) US20190097492A1 (ja)
EP (1) EP3429068B1 (ja)
JP (1) JP6794121B2 (ja)
CN (1) CN108702062A (ja)
WO (1) WO2017154836A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765193B2 (ja) * 2016-01-27 2020-10-07 Ntn株式会社 電動アクチュエータ
JP6682316B2 (ja) * 2016-03-29 2020-04-15 Ntn株式会社 電動アクチュエータ
US11152840B2 (en) * 2016-03-30 2021-10-19 Ntn Corporation Electric actuator
JP2019213255A (ja) * 2018-05-31 2019-12-12 セイコーエプソン株式会社 回転直動変換装置
JP2020133761A (ja) * 2019-02-20 2020-08-31 住友重機械工業株式会社 駆動装置
JP7172824B2 (ja) * 2019-04-16 2022-11-16 株式会社デンソー 回転式アクチュエータ
CN113892003B (zh) * 2019-05-29 2024-01-12 水野逸人 滚珠丝杠机构和直线移动装置
CN114301225B (zh) * 2021-11-22 2023-07-07 广东培敏智能科技有限公司 一种低噪音承载强的新型行星滚柱丝杆装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120024616A1 (en) * 2008-12-01 2012-02-02 Thyssenkrupp Presta Ag Electromechanical power steering system with a ball screw drive
JP2015149799A (ja) * 2014-02-05 2015-08-20 トヨタ紡織株式会社 中空モータ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837033B1 (fr) * 2002-03-05 2004-09-24 Moving Magnet Tech Mmt Actionneur lineaire comprenant un moteur electrique polyphase
JP5483217B2 (ja) * 2012-01-26 2014-05-07 株式会社デンソー 回転式アクチュエータ
EP2852517B1 (de) * 2012-04-20 2019-05-15 IPGate AG Lageranordnung in einem axialantrieb
JP2014018007A (ja) * 2012-07-10 2014-01-30 Nsk Ltd 電動アクチュエータ
DE102012222575A1 (de) * 2012-12-07 2014-06-12 Robert Bosch Gmbh Hydropumpenaggregat für eine hydraulische Fahrzeugbremsanlage
DE102014212417A1 (de) * 2014-06-27 2015-12-31 Robert Bosch Gmbh Druckerzeuger für eine hydraulische Fahrzeugbremsanlage
JP6765193B2 (ja) * 2016-01-27 2020-10-07 Ntn株式会社 電動アクチュエータ
JP6647900B2 (ja) * 2016-02-09 2020-02-14 Ntn株式会社 電動アクチュエータ
JP6632909B2 (ja) * 2016-02-18 2020-01-22 Ntn株式会社 電動アクチュエータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120024616A1 (en) * 2008-12-01 2012-02-02 Thyssenkrupp Presta Ag Electromechanical power steering system with a ball screw drive
JP2015149799A (ja) * 2014-02-05 2015-08-20 トヨタ紡織株式会社 中空モータ

Also Published As

Publication number Publication date
JP2017163775A (ja) 2017-09-14
EP3429068A4 (en) 2019-10-23
US20190097492A1 (en) 2019-03-28
JP6794121B2 (ja) 2020-12-02
EP3429068B1 (en) 2023-08-23
CN108702062A (zh) 2018-10-23
EP3429068A1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6647900B2 (ja) 電動アクチュエータ
WO2017154836A1 (ja) 電動アクチュエータ
JP6632909B2 (ja) 電動アクチュエータ
JP6765193B2 (ja) 電動アクチュエータ
CN108886297B (zh) 电动致动器
WO2017169855A1 (ja) 電動アクチュエータ
WO2017169657A1 (ja) 電動アクチュエータ
WO2017169846A1 (ja) 電動アクチュエータ
WO2017145827A1 (ja) 電動アクチュエータ
WO2017169935A1 (ja) 電動アクチュエータ
JP6621687B2 (ja) 電動アクチュエータ
JP6736352B2 (ja) 電動アクチュエータ

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763176

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763176

Country of ref document: EP

Effective date: 20181011

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763176

Country of ref document: EP

Kind code of ref document: A1