WO2017154669A1 - ステンレス鋼板のレーザ切断加工方法及び装置 - Google Patents

ステンレス鋼板のレーザ切断加工方法及び装置 Download PDF

Info

Publication number
WO2017154669A1
WO2017154669A1 PCT/JP2017/007790 JP2017007790W WO2017154669A1 WO 2017154669 A1 WO2017154669 A1 WO 2017154669A1 JP 2017007790 W JP2017007790 W JP 2017007790W WO 2017154669 A1 WO2017154669 A1 WO 2017154669A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
stainless steel
steel plate
assist gas
laser cutting
Prior art date
Application number
PCT/JP2017/007790
Other languages
English (en)
French (fr)
Inventor
明彦 杉山
宗忠 湧井
祐也 溝口
正人 國廣
絢子 長▲瀬▼
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2017154669A1 publication Critical patent/WO2017154669A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a method and apparatus for laser cutting of a stainless steel plate [laser cutting method and machine for stainless steel sheets], and more specifically, dross-free when laser cutting a stainless steel plate with a fiber laser or a direct diode laser [ dross-free] and laser cutting processing method and apparatus.
  • nitrogen gas is used as an assist gas at the time of laser cutting of a stainless steel plate with a CO 2 laser.
  • nitrogen gas is used as the assist gas, the cut surface of the stainless steel plate as a work piece becomes a glossy cut surface, and dross-free cutting without causing dross at the lower edge of the cut surface is possible.
  • a stainless steel plate (thin plate) as a workpiece is laser-cut by a fiber laser or a direct diode laser, it can be cut at a cutting speed several times the cutting speed by a CO 2 laser. At this time, although the cut surface of the workpiece looks smooth, dross having a height of several microns is attached to the lower edge of the cut surface. Note that using nitrogen gas as an assist gas, when the stainless steel plate were laser cut by a CO 2 laser and the fiber laser in the laser output 4 kW, the relationship between the thickness and the dross height plate, shown in the graph of FIG.
  • the dross height is about 4 ⁇ m or less in the case of a CO 2 laser.
  • the dross height is about 3 ⁇ m when the plate thickness is 1 mm.
  • the plate thickness is 2 mm, it is 6 ⁇ m, and when the plate thickness is 3 mm to 8 mm, the dross height is about 17 ⁇ m to about 170 ⁇ m, and the change is large. Therefore, when the plate thickness is 2 mm or more, it is clearly understood that dross is generated when the cut surface is touched with the thumb.
  • post-processing is necessary to remove dross.
  • an invention for omitting a post-process for removing dross has been studied (see Patent Document 1 below).
  • Patent Document 1 discloses that a mixed gas obtained by mixing oxygen gas and nitrogen gas is used as an assist gas.
  • the material of the workpiece to be cut is aluminum. Further, it is unclear whether the laser oscillator used for laser processing is a CO 2 laser oscillator, a fiber laser oscillator, or a direct diode laser oscillator.
  • the wavelength of the fiber laser is about 1/10 that of the CO 2 laser, and the fiber laser has a smaller spot diameter. Further, the reflectance of the fiber laser with respect to the metal material is smaller than the reflectance of the CO 2 laser. That is, since the processing characteristics of the fiber laser and the CO 2 laser are different from each other, it is difficult to apply the contents disclosed in Patent Document 1 as they are.
  • An object of the present invention is to perform laser-cutting of a stainless steel plate capable of performing dross-free cutting processing without causing dross adhesion of minute dross in micron units when cutting a stainless steel plate with a fiber laser. It is to provide a processing method and apparatus.
  • the first feature of the present invention is a laser cutting method of a stainless steel plate using a fiber laser or a direct diode laser, and the oxygen concentration in the assist gas when a mixed gas of nitrogen gas and air is used as the assist gas.
  • a laser cutting method for a stainless steel sheet is provided in which is adjusted to 0.06% to 0.5%.
  • the thickness of the stainless steel plate is preferably 1 mm to 10 mm.
  • the gas pressure of the assist gas is preferably 1.0 MPa to 2.0 MPa.
  • a second feature of the present invention is a laser cutting apparatus for a stainless steel plate, wherein the assist gas is generated when a fiber laser or a direct diode laser laser oscillator is mixed with nitrogen gas and compressed air to generate assist gas.
  • a laser processing head for irradiating a steel plate and jetting the assist gas supplied from the booster to the cutting position of the stainless steel plate, and operations of the laser oscillator, the concentration adjuster, the booster, and the laser processing head
  • a laser cutting apparatus for a stainless steel plate comprising:
  • the concentration adjuster adjusts the oxygen concentration in the assist gas to 0.1% to 0.3%.
  • FIG. 1 is a graph showing the relationship between plate thickness and dross height when a stainless steel plate is cut with a CO 2 laser and a fiber laser.
  • FIG. 2 is a block diagram of the laser cutting apparatus.
  • FIGS. 3A to 3F are enlarged photographs showing the relationship between the nitrogen concentration in the assist gas and the dross adhesion.
  • FIGS. 4A to 4D are enlarged photographs showing the relationship between the nitrogen concentration in the assist gas and the dross adhesion.
  • FIG. 5 is a graph showing the relationship between the thickness of the stainless steel plate, the oxygen concentration, and the dross height.
  • FIG. 6 is a graph showing the relationship between the thickness of the stainless steel plate, the oxygen concentration, and the dross height (a part of FIG.
  • FIG. 7 (a) is an enlarged photograph showing the scattering state of the molten metal particles [melted metal droplets] on the lower surface of the workpiece when nitrogen gas is used as the assist gas.
  • FIG. 7 (b) shows 2000 ppm of oxygen. It is an enlarged photograph which shows the scattering state of the molten metal granular material of the workpiece
  • the laser cutting apparatus 1 cuts a stainless steel plate having a thickness of 1 mm to 10 mm as a workpiece W.
  • the laser cutting device 1 includes a laser oscillator 3 of a fiber laser or a direct diode laser.
  • the laser oscillator 3 can adjust the output between 2 kW and 6 kW.
  • the laser oscillator 3 and the laser processing head 5 are connected to each other by a process fiber 6. Accordingly, the laser beam LB oscillated by the laser oscillator 3 is applied to the workpiece W from the laser processing head 5 to cut the workpiece W.
  • the laser processing head 5 is moved by the servo motor M in the XYZ axis directions.
  • Assist gas supply means [assist gas supplier] 7 for supplying an assist gas to the laser processing head 5 at the time of laser cutting of the workpiece W is provided.
  • the assist gas supply means 7 supplies a mixed gas of nitrogen gas and air as an assist gas. Therefore, the assist gas supply means 7 includes, for example, a nitrogen gas supply means 9 such as a gas cylinder and an air supply means 11 such as an air compressor that compresses air.
  • the assist gas supply means 7 also includes a mixer (mixer) (concentration regulator [concentrationulatorregulator]) 13 that mixes the nitrogen gas supplied from the nitrogen gas supply means 9 and the air supplied from the air supply means 11. Yes.
  • the mixing device 13 adjusts the air concentration in the assist gas by controlling the pressure and flow rate of nitrogen gas supplied from the nitrogen gas supply unit 9 and the pressure and flow rate of air supplied from the air supply unit 11.
  • the oxygen concentration that is, the nitrogen gas concentration
  • the assist gas supply means 7 also includes a pressure booster 15 such as a compressor for boosting the assist gas mixed by the mixing device 13.
  • the pressure increasing device 15 is connected to the laser processing head 5 via a pressure adjusting device [pressure regulator] 17. Accordingly, the assist gas in a state in which nitrogen gas and air are mixed is adjusted to an appropriate pressure (for example, 1.0 MPa to 2.0 MPa) by the pressure adjusting device 17 and supplied to the laser processing head 5.
  • the laser cutting apparatus 1 further includes a controller 19.
  • the control device 19 is composed of, for example, an NC control device, and controls the operations of the laser oscillator 3, the mixing device (concentration adjusting device) 13, the boosting device 15 and the pressure adjusting device 17, and the laser processing head 5. And a function of controlling movement in the XYZ axis directions.
  • the nitrogen concentration and Various oxygen concentrations can be adjusted.
  • Various amounts of mixing of the air supplied from the air supply means 11 to the nitrogen gas (concentration 100%) supplied from the nitrogen gas supply means 9 were changed to produce mixed gases (assist gas) having various nitrogen concentrations.
  • the assist gas of various nitrogen concentration was used when cut
  • the cutting conditions were a lens focal length of 190 mm, a nozzle diameter of 4.0 mm, Fp-1.0, a cutting speed of 4500 mm / min, an output of 4 kW, cw (continuous wave), and a gas pressure of 1.4 MPa.
  • the oxygen concentration is desirably 0.5% or less.
  • the oxygen concentration is about 600 ppm (0.06%)
  • the dross height is about 19 ⁇ m for a workpiece having a thickness of 5 mm.
  • work of thickness 6mm dross height becomes high with 80 micrometers. Therefore, when an assist gas in which nitrogen gas and air are mixed is used, the oxygen concentration is preferably in the range of 0.06% to 0.5% in consideration of workpieces having a thickness of 3 mm and 4 mm.
  • a particularly desirable range in which the dross height is small is from 0.1% (1000 ppm) to an oxygen concentration. It is in the range of 0.3% (3000 ppm).
  • the data shows the relationship between the workpiece thickness, oxygen concentration, and dross height shown in FIGS. Therefore, when the thickness of the workpiece to be cut is input from the input means 21 when cutting the stainless steel plate by the laser cutting apparatus 1, the oxygen concentration in the assist gas is 0.06% to 0.5%. Adjusted to. Therefore, when cutting a thin stainless steel plate with a fiber laser or a direct diode, a dross-free laser cutting process can be performed.
  • the dross height is about 15 ⁇ m or less when the oxygen concentration is in the range of 0.06% to 0.5%. Therefore, the cutting conditions were the same, and the workpiece was cut with a fiber laser when the assist gas was 100% nitrogen and when oxygen was 2000 ppm (0.2%). A high-speed camera was used to capture the state of the molten metal particles scattered under the workpiece during cutting when the laser beam moves from right to left.
  • FIG. 7A and FIG. 7B show the imaging results.
  • the scattering angle (scattering width) of the molten metal particles when nitrogen gas 100% is used as the assist gas is such that the oxygen concentration in the assist gas is 2000 ppm. It is larger than the scattering angle in the case of (0.2%).
  • the molten metal ejected downward from the lower surface of the workpiece by laser cutting (the white portion extending vertically) is thinner than in FIG. 7B.
  • the oxygen amount in the assist gas is 0.2% (in the case of FIG. 7B)
  • the molten metal (a portion extending white and up and down) ejected downward from the lower surface of the workpiece by laser cutting is thick.
  • the scattering width (scattering angle) of the molten metal particles is smaller in FIG. 7B.
  • the oxygen concentration in the assist gas is 0.06% to It is desirable to perform laser cutting processing by adjusting to 0.5%, particularly 0.1% to 0.3%. If it does in this way, molten metal will flow out well from the cutting groove at the time of laser cutting (complete discharge), and dross-free laser cutting processing can be performed.
  • the oxygen concentration in the assist gas is 0.06% to 0%. It is desirable to adjust to 5%.
  • laser cutting of a stainless steel plate having a laser output of 4 kW and a thickness of 6 mm or less is possible.
  • the plate thickness is 1 mm to 4 mm, laser cutting is possible even with a laser output of 2 kW.
  • the oxygen concentration in the assist gas was adjusted to 0.06% to 0.5%, and a 10 mm thick stainless steel plate was laser cut.
  • the laser output was adjusted to 6 kW.
  • the oxygen concentration in the assist gas is adjusted to 0.06% to 0.5%, the laser output is increased (for example, 6 kW) corresponding to the plate thickness (for example, 10 mm), and the gas pressure of the assist gas is increased.
  • it high for example, 2.0 MPa
  • a stainless steel plate having a thickness of 10 mm can be laser-cut.
  • the laser output is preferably 2 kW to 6 kW and the gas pressure is preferably 1.0 MPa to 2.0 MPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

ファイバーレーザ又はダイレクトダイオードレーザによるステンレス鋼板のレーザ切断加工方法では、アシストガスとして窒素ガスと空気との混合ガスを使用する際に前記アシストガス中の酸素濃度を0.06%~0.5%に調整する。より好ましくは、前記アシストガス中の酸素濃度を0.1%~0.3%に調整する。前記アシストガス中の酸素濃度を上記のように調整することで、ドロスフリーなレーザ切断加工を実現できる。

Description

ステンレス鋼板のレーザ切断加工方法及び装置
 本発明は、ステンレス鋼板のレーザ切断加工方法及び装置[laser cutting method and machine for stainless steel sheets]に係り、さらに詳細には、ファイバーレーザ又はダイレクトダイオードレーザによってステンレス鋼板をレーザ切断する際のドロスフリー[dross-free]やレーザ切断加工方法及び装置に関する。
 従来、COレーザによるステンレス鋼板のレーザ切断時には、アシストガスとして窒素ガスが使用されている。アシストガスとして窒素ガスを使用すると、ワーク[workpiece]としてのステンレス鋼板の切断面は光沢感のある切断面となり、切断面の下縁にドロスが生じないドロスフリーの切断が可能である。
 しかし、ファイバーレーザやダイレクトダイオードレーザによって、ワークとしてのステンレス鋼板(薄板)をレーザ切断すると、COレーザによる切断速度の数倍の切断速度で切断できる。この際、ワークの切断面は滑らかに見えるものの、切断面の下縁には高さ数ミクロンオーダのドロスが付着する。なお、アシストガスとして窒素ガスを使用して、レーザ出力4kWにおいてステンレス鋼板をCOレーザとファイバーレーザとによってレーザ切断したときの、板厚とドロス高さとの関係を、図1のグラフに示す。
 図1のグラフから分かるように、ワーク(ステンレス鋼板)の板厚が1mm~8mmに変化するとき、COレーザの場合は、ドロス高さは約4μm以下である。それに対して、ファイバーレーザの場合には、板厚1mmの場合にドロス高さが約3μmである。そして、板厚が2mmのときには6μmであり、板厚3mm~8mmのときは、ドロス高さは約17μm~約170μmで変化が大きい。従って、板厚2mm以上では親指で切断面に触れると、ドロスが生じていることがはっきりと分かる。高精度の製品が要求される場合にはドロスを除去する後加工が必要である。また、ドロス除去のための後工程を省くための発明も検討されている(下記特許文献1参照)。
日本国特許第4869640号公報
 特許文献1は、酸素ガスと窒素ガスとを混合した混合ガスをアシストガスとして使用することを開示している。しかし、切断されるワークの材質はアルミニウムである。また、レーザ加工に使用するレーザ発振器は、COレーザ発振器なのか、ファイバーレーザ発振器なのか、あるいは、ダイレクトダイオードレーザ発振器なのか不明である。
 ファイバーレーザの波長はCOレーザの波長の約1/10であり、ファイバーレーザは、より小さなスポット径を有する。また、ファイバーレーザの金属材料に対する反射率は、COレーザの反射率よりも小さい。即ち、ファイバーレーザ及びCOレーザに関しては互いに加工特性が異なるので、特許文献1に開示された内容をそのまま適用することは難しい。
 本発明の目的は、ステンレス鋼板をファイバーレーザで切断するときに、ドロス高さがミクロン単位の微小なドロスの付着を生じることのない、ドロスフリーの切断加工を行うことのできるステンレス鋼板のレーザ切断加工方法及び装置を提供することである。
 本発明の第1の特徴は、 ファイバーレーザ又はダイレクトダイオードレーザによるステンレス鋼板のレーザ切断加工方法であって、アシストガスとして窒素ガスと空気との混合ガスを使用する際に前記アシストガス中の酸素濃度を0.06%~0.5%に調整する、ステンレス鋼板のレーザ切断加工方法を提供する。
 前記アシストガス中の酸素濃度を0.1%~0.3%に調整する、ことが特に好ましい。
 前記ステンレス鋼板の厚さが1mm~10mmであることが好ましい。
 また、前記アシストガスのガス圧が1.0MPa~2.0MPaであることが好ましい。
 本発明の第2の特徴は、ステンレス鋼板のレーザ切断加工装置であって、ファイバーレーザ又はダイレクトダイオードレーザのレーザ発振器と、窒素ガスと圧縮空気とを混合してアシストガスを生成する際に前記アシストガス中の酸素濃度を0.06%~0.5%に調整する濃度調整器と、前記アシストガスの圧力を昇圧する昇圧装置と、前記レーザ発振器によって発振されたレーザ光を導入して前記ステンレス鋼板に照射すると共に、前記昇圧装置から供給された前記アシストガスを前記ステンレス鋼板の切断位置に噴出するレーザ加工ヘッドと、前記レーザ発振器、前記濃度調整器、前記昇圧装置及び前記レーザ加工ヘッドの動作を制御する制御装置とを備えている、ステンレス鋼板のレーザ切断加工装置を提供する。
 前記濃度調整器が、前記アシストガス中の酸素濃度を0.1%~0.3%に調整する、ことが特に好ましい。
図1は、ステンレス鋼板をCOレーザ及びファイバーレーザによって切断した際の、板厚とドロス高さとの関係を示すグラフである。 図2は、レーザ切断加工装置のブロック図である。 図3(a)~(f)は、アシストガス中の窒素濃度とドロス付着との関係を示す拡大写真である。 図4(a)~(d)も、アシストガス中の窒素濃度とドロス付着との関係を示す拡大写真である。 図5は、ステンレス鋼板の厚さと酸素濃度とドロス高さとの関係を示すグラフである。 図6は、ステンレス鋼板の厚さと酸素濃度とドロス高さとの関係を示すグラフである(図5の一部を縮尺拡大)。 図7(a)は、アシストガスとして窒素ガスを使用した場合のワーク下面の溶融金属粒体[melted metal droplets]の飛散状態を示す拡大写真であり、図7(b)は、2000ppmの酸素を含んだアシストガスを使用した場合のワーク下面の溶融金属粒体の飛散状態を示す拡大写真である。
 図2に示されるように、本実施形態に係るレーザ切断加工装置1は、ワークWとして厚さ1mm~10mmのステンレス鋼板を切断する。レーザ切断加工装置1は、ファイバーレーザ又はダイレクトダイオードレーザのレーザ発振器3を備えている。レーザ発振器3は、出力を2kW~6kWの間で調節自在である。レーザ発振器3とレーザ加工ヘッド5とは、プロセスファイバー6によって互いに接続されている。従って、レーザ発振器3で発振されたレーザ光LBは、レーザ加工ヘッド5からワークWに照射されて、ワークWを切断する。なお、ワークWのレーザ切断に際しては、レーザ加工ヘッド5は、サーボモータMによってXYZ軸方向に移動される。
 ワークWのレーザ切断の際にレーザ加工ヘッド5にアシストガスを供給するアシストガス供給手段[assist gas supplier]7が備えられている。アシストガス供給手段7は、窒素ガスと空気との混合ガスをアシストガスとして供給する。従って、アシストガス供給手段7は、例えば、ガスボンベなどのような窒素ガス供給手段9と、空気を圧縮するエアーコンプレッサなどのような空気供給手段11とを備えている。
 アシストガス供給手段7は、窒素ガス供給手段9から供給された窒素ガスと空気供給手段11から供給された空気とを混合する混合装置[mixer](濃度調整装置[concentration regulator])13も備えている。混合装置13は、窒素ガス供給手段9から供給される窒素ガスの圧力及び流量と空気供給手段11から供給される空気の圧力及び流量とを制御することで、アシストガス中の空気濃度を調整して酸素濃度(即ち、窒素ガス濃度)を所望濃度に制御する。
 また、アシストガス供給手段7は、混合装置13で混合されたアシストガスを昇圧するコンプレッサ等の昇圧装置[pressure booster]15も備えている。昇圧装置15は、圧力調整装置[pressure regulator]17を介して、レーザ加工ヘッド5に接続されている。従って、窒素ガスと空気とが混合された状態のアシストガスは、圧力調整装置17によって適正な圧力(例えば、1.0MPa~2.0MPa)に調整されて、レーザ加工ヘッド5に供給される。
 レーザ切断加工装置1は、制御装置[controller]19をさらに備えている。制御装置19は、例えば、NC制御装置で構成されており、レーザ発振器3、混合装置(濃度調整装置)13、昇圧装置15及び圧力調整装置17の動作を制御する機能と、レーザ加工ヘッド5をXYZ軸方向への移動を制御する機能とを有している。
 窒素ガス供給手段9から供給された窒素ガスと空気供給手段11から供給された空気とを混合装置13によって混合した混合ガスをアシストガスとして使用するとき、窒素混合割合を増減することによって窒素濃度及び酸素濃度を種々調整できる。空気供給手段11から供給された空気の窒素ガス供給手段9から供給された窒素ガス(濃度100%)への混合量を種々変更して、種々の窒素濃度の混合ガス(アシストガス)を製造した。そして、ワーク(厚さ5mmのステンレス鋼板)をファイバーレーザで切断するときに種々の窒素濃度のアシストガスを使用したところ、図3及び図4の拡大写真に示される結果が得られた。なお、切断条件は、レンズの焦点距離190mm、ノズル径4.0mm、Fp-1.0、切断速度4500mm/min、出力4kW、cw(continuous wave)、ガス圧1.4MPaであった。
 図3及び図4から明らかなように、窒素濃度98%及び99%の場合には、ワークの下部(下面)に比較的大きな玉状のドロスが付着したが見られた。そして、窒素濃度99.5%~99.9%の場合には、ドロスは付着しなかった(即ち、ドロスフリーのレーザ切断加工)。しかし、窒素濃度99.94%~99.999%においては、ミクロン単位の小さな玉状のドロスが付着した。
 図3及び図4に示された結果によれば、厚さ5mm以下の薄いステンレス鋼板(ワーク)をファイバーレーザによって切断するとき、アシストガス中の窒素ガスの濃度を適正値に保持することによってミクロン単位の小さなドロスを付着させることのないドロスフリーのレーザ切断加工を行うことができる。なお、レーザ出力4kWで厚さ5mmのステンレス鋼板をレーザ切断できたので、厚さ5mm未満のステンレス鋼板をレーザ切断することは当然可能である。
 空気中には、窒素が78%、酸素が21%、アルゴンが1%、二酸化炭素が約0.03%存在する。しかし、ワークとしてのステンレス鋼板をレーザ切断する際にドロスが発生するか否かは、酸素濃度が大きく影響する。そこで、図3及び図4に示された結果を参考にして、厚さt3=3mm,t4=4mm,t5=5mm及びt6=6mmのステンレス鋼板をレーザ出力4kWのファイバーレーザで切断する際に窒素濃度を増減させて(即ち、アシストガス中の酸素濃度を種々変更して)ドロス高さを測定した。測定結果を図5及び図6(図5の一部を縮尺拡大)に示す。なお、各種厚さのステンレス鋼板のレーザ切断するに際して、厚さに応じてレーザ出力を適正な出力に調整するとともに、アシストガスのガス圧を適正な圧力に調節することが望ましい。
 図5及び図6に示される結果によれば、酸素濃度が5000ppm(0.5%)を超えると、厚さ6mmのワークではドロス高さが急激に高くなる。従って、酸素濃度は0.5%以下が望ましい。また、酸素濃度が約600ppm(0.06%)であると、厚さ5mmのワークではドロス高さは約19μmとなる。そして、厚さ6mmのワークではドロス高さは80μmと高くなる。よって、窒素ガスと空気とを混合したアシストガスを使用する場合には、厚さ3mm及び4mmのワークの場合も考慮すると、酸素濃度は0.06%~0.5%の範囲が望ましい。また、図5及び図6に示される結果によれば、ドロス高さが小さな特に望ましい範囲(厚さ5mm以下のワークでドロス高さが15μm以下)は、酸素濃度0.1%(1000ppm)~0.3%(3000ppm)の範囲である。
 図5及び図6示されたワークの厚さと酸素濃度とドロス高さとの関係を示すデータは、上述したレーザ切断加工装置1の制御装置19内のデータテーブル(図示省略)に格納されている。従って、レーザ切断加工装置1によってステンレス鋼板を切断するとき、入力手段[input device]21から切断するワークの厚さを入力すると、アシストガス中の酸素濃度は、0.06%~0.5%に調節される。従って、ファイバーレーザ又はダイレクトダイオードによって薄いステンレス鋼板を切断するとき、ドロスフリーのレーザ切断加工を行うことができる。
 何故、酸素濃度が0.06%~0.5%の範囲ではドロス高さが約15μm以下になるのか明らかでない。そこで、切断条件を同一にして、アシストガスが窒素100%の場合と酸素2000ppm(0.2%)の場合とで、ファイバーレーザによってワークを切断した。レーザ光が右から左に移動する切断時のワーク下方への溶融金属粒体の飛散状態を高速度カメラで撮影した。図7(a)及び図7(b)に撮影結果を示す。
 図7(a)及び図7(b)から明らかなように、アシストガスとして窒素ガス100%を使用した場合の溶融金属粒体の飛散角(飛散幅)は、アシストガス中の酸素濃度が2000ppm(0.2%)の場合の飛散角よりも大きい。また、窒素ガス100%の場合(図7(a))には、レーザ切断によってワーク下面から下方に噴出される溶融金属(白く上下に延びる部分)は、図7(b)の場合よりも細い。逆に、アシストガス中の酸素量が0.2%の場合(図7(b)の場合)には、レーザ切断によってワーク下面から下方に噴出される溶融金属(白く上下に延びる部分)は太い。そして、上述したように、溶融金属粒体の飛散幅(飛散角)は、図7(b)の方が小さい。
 上述した飛散幅(飛散角)及び溶融金属の太さ(量)に基づいて考察するに、アシストガス中の酸素濃度が0.2%の場合には溶融金属の流れが向上し、溶融金属が、切断溝からワークの下面に流出した位置で固まることなく、アシストガスによって効果的に吹き飛ばされるものと思われる。
 従って、ファイバーレーザ又はダイレクトダイオードレーザによって、厚さ1mm~10mmのステンレス鋼板のレーザ切断時に窒素ガスと空気との混合ガスをアシストガスとして使用するに際して、アシストガス中の酸素濃度を0.06%~0.5%、特に0.1%~0.3%に調整してレーザ切断加工を行うことが望ましい。このようにすれば、レーザ切断時の切断溝から溶融金属が良好に流出(完全に排出)され、ドロスフリーのレーザ切断加工を行うことができる。
 また、図6に示される結果によれば、ファイバーレーザによってステンレス鋼板を切断する際のアシストガスとして窒素ガス及び空気の混合ガスを使用する場合、アシストガス中の酸素濃度を0.06%~0.5%に調節することが望ましい。そして、図1,図3及び図4の実験結果から明らかなように、レーザ出力4kWで厚さ6mm以下のステンレス鋼板のレーザ切断が可能である。なお、板厚が1mm~4mmの場合には、レーザ出力2kWでもレーザ切断が可能である。
 ここで、アシストガス中の酸素濃度を0.06%~0.5%に調節して、厚さ10mmのステンレス鋼板をレーザ切断した。この場合、板厚が10mmと厚くなったので、レーザ出力は6kWに調節した。アシストガスのガス圧を2.0MPaに調節してレーザ切断を行ったところ、ドロスフリーのレーザ切断が可能であった。即ち、アシストガス中の酸素濃度を0.06%~0.5%に調節し、板厚(例えば10mm)に対応してレーザ出力を大きく(例えば6kW)し、かつ、アシストガスのガス圧を高く(例えば、2.0MPa)調節することで、厚さ10mmのステンレス鋼板をレーザ切断することができる。
 なお、アシストガスのガス圧も板厚に対応して調節することが望ましい。この場合、切断するステンレス鋼板の厚さが1mm~10mmである場合には、レーザ出力は2kW~6kW、ガス圧は1.0MPa~2.0MPaであることが望ましい。
 日本国特許出願第2016-44451号(2016年3月8日出願)の全ての内容は、ここに参照されることで本明細書に援用される。本発明の実施形態を参照することで上述のように本発明が説明されたが、本発明は上述した実施形態に限定されるものではない。本発明の範囲は、請求の範囲に照らして決定される。

Claims (6)

  1.  ファイバーレーザ又はダイレクトダイオードレーザによるステンレス鋼板のレーザ切断加工方法であって、
     アシストガスとして窒素ガスと空気との混合ガスを使用する際に前記アシストガス中の酸素濃度を0.06%~0.5%に調整する、ステンレス鋼板のレーザ切断加工方法。
  2.  請求項1に記載のステンレス鋼板のレーザ切断加工方法であって、
     前記アシストガス中の酸素濃度を0.1%~0.3%に調整する、ステンレス鋼板のレーザ切断加工方法。
  3.  請求項1又は2に記載のステンレス鋼板のレーザ切断加工方法であって、
     切断する前記ステンレス鋼板の厚さが1mm~10mmである、ステンレス鋼板のレーザ切断加工方法。
  4.  請求項1~3の何れか一項に記載のステンレス鋼板のレーザ切断加工方法であって、
     前記アシストガスのガス圧が1.0MPa~2.0MPaである、ステンレス鋼板のレーザ切断加工方法。
  5.  ステンレス鋼板のレーザ切断加工装置であって、
     ファイバーレーザ又はダイレクトダイオードレーザのレーザ発振器と、
     窒素ガスと圧縮空気とを混合してアシストガスを生成する際に前記アシストガス中の酸素濃度を0.06%~0.5%に調整する濃度調整器と、
     前記アシストガスの圧力を昇圧する昇圧装置と、
     前記レーザ発振器によって発振されたレーザ光を導入して前記ステンレス鋼板に照射すると共に、前記昇圧装置から供給された前記アシストガスを前記ステンレス鋼板の切断位置に噴出するレーザ加工ヘッドと、
     前記レーザ発振器、前記濃度調整器、前記昇圧装置及び前記レーザ加工ヘッドの動作を制御する制御装置とを備えている、ステンレス鋼板のレーザ切断加工装置。
  6.  請求項5に記載のステンレス鋼板のレーザ切断加工装置であって、
     前記濃度調整器が、前記アシストガス中の酸素濃度を0.1%~0.3%に調整する、ステンレス鋼板のレーザ切断加工装置。
PCT/JP2017/007790 2016-03-08 2017-02-28 ステンレス鋼板のレーザ切断加工方法及び装置 WO2017154669A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-044451 2016-03-08
JP2016044451A JP6236106B2 (ja) 2016-03-08 2016-03-08 ステンレスのレーザ切断加工方法及びレーザ切断加工装置

Publications (1)

Publication Number Publication Date
WO2017154669A1 true WO2017154669A1 (ja) 2017-09-14

Family

ID=59790700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007790 WO2017154669A1 (ja) 2016-03-08 2017-02-28 ステンレス鋼板のレーザ切断加工方法及び装置

Country Status (2)

Country Link
JP (1) JP6236106B2 (ja)
WO (1) WO2017154669A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109702361A (zh) * 2019-03-27 2019-05-03 佛山市宏石激光技术有限公司 一种激光坡口切割方法及激光切割机
CN112846533A (zh) * 2020-12-31 2021-05-28 武汉华工激光工程有限责任公司 一种用于5g连接器的铍铜合金材料的激光切割方法
EP4299234A1 (de) * 2022-06-29 2024-01-03 Bystronic Laser AG Vorrichtung und verfahren zur laserbearbeitung eines werkstücks

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110653505A (zh) * 2019-09-30 2020-01-07 吕鸿惠 一种激光切割机膜制氮机氮气供气方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346737A (ja) * 2005-06-20 2006-12-28 Mitsubishi Electric Corp レーザ加工装置およびレーザ加工方法
JP2007313545A (ja) * 2006-05-26 2007-12-06 Tg Showa Kk レーザー加工装置用アシストガス供給方法およびレーザー加工機用アシストガス混合装置。
WO2014065256A1 (ja) * 2012-10-26 2014-05-01 コマツ産機株式会社 レーザ加工機のアシストガス発生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346737A (ja) * 2005-06-20 2006-12-28 Mitsubishi Electric Corp レーザ加工装置およびレーザ加工方法
JP2007313545A (ja) * 2006-05-26 2007-12-06 Tg Showa Kk レーザー加工装置用アシストガス供給方法およびレーザー加工機用アシストガス混合装置。
WO2014065256A1 (ja) * 2012-10-26 2014-05-01 コマツ産機株式会社 レーザ加工機のアシストガス発生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109702361A (zh) * 2019-03-27 2019-05-03 佛山市宏石激光技术有限公司 一种激光坡口切割方法及激光切割机
CN112846533A (zh) * 2020-12-31 2021-05-28 武汉华工激光工程有限责任公司 一种用于5g连接器的铍铜合金材料的激光切割方法
EP4299234A1 (de) * 2022-06-29 2024-01-03 Bystronic Laser AG Vorrichtung und verfahren zur laserbearbeitung eines werkstücks

Also Published As

Publication number Publication date
JP6236106B2 (ja) 2017-11-22
JP2017159309A (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
WO2017154669A1 (ja) ステンレス鋼板のレーザ切断加工方法及び装置
WO2013065484A1 (ja) レーザ切断方法及びレーザ切断装置
US20220410315A1 (en) Multi-axis machine tool, methods of controlling the same and related arrangements
JP2013027907A (ja) ピアシングを行うレーザ加工方法及びレーザ加工装置
US10576584B2 (en) Laser processing machine and laser processing method
US20090127239A1 (en) Laser piercing method and processing apparatus
WO2017043460A1 (ja) セルフバーニングの発生を抑制するレーザ加工方法およびレーザ加工装置
US20120160818A1 (en) Laser machining apparatus and laser machining method
CN111163897B (zh) 镀敷钢板的激光切断加工方法
JP2023133443A (ja) レーザ加工機
JP2006346737A (ja) レーザ加工装置およびレーザ加工方法
TW201233649A (en) Method of cutting brittle workpiece and cutting device
JP6202504B1 (ja) めっき鋼板のレーザ切断加工方法及びレーザ切断加工装置
JP6809345B2 (ja) レーザ加工装置及びレーザ加工方法
JP2012035306A (ja) レーザ加工方法とその装置
JP2020073284A (ja) めっき鋼板のレーザ切断加工方法
WO2020008780A1 (ja) 切削加工機及び切削加工方法
KR102349328B1 (ko) 레이저 보조 미세가공 시스템 및 이를 이용한 미세가공 방법
JPH05123885A (ja) レーザ加工方法
WO2020008778A1 (ja) 切削加工機及び切削加工方法
WO2019176292A1 (ja) レーザ加工機及びレーザ加工方法
CN117999147A (zh) 激光加工方法及激光加工机
JPH10230380A (ja) レーザー切断方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763009

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763009

Country of ref document: EP

Kind code of ref document: A1