WO2017154507A1 - Metal filling device and metal filling method - Google Patents

Metal filling device and metal filling method Download PDF

Info

Publication number
WO2017154507A1
WO2017154507A1 PCT/JP2017/005737 JP2017005737W WO2017154507A1 WO 2017154507 A1 WO2017154507 A1 WO 2017154507A1 JP 2017005737 W JP2017005737 W JP 2017005737W WO 2017154507 A1 WO2017154507 A1 WO 2017154507A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
chamber
unit
processing chamber
metal
Prior art date
Application number
PCT/JP2017/005737
Other languages
French (fr)
Japanese (ja)
Inventor
山口 征隆
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Publication of WO2017154507A1 publication Critical patent/WO2017154507A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body

Definitions

  • the present invention relates to a metal filling apparatus and a metal filling method, and more particularly to a metal filling apparatus and a metal filling method for filling a molten metal in a minute space formed so as to be open on the surface of an object to be treated.
  • a mounting portion on which a wafer (processing object) is to be mounted a cylindrical housing arranged such that a lower end face faces the mounting portion, and an inner periphery of the housing
  • a metal filling device is disclosed with a piston inserted on the side.
  • the metal filling apparatus can form a processing chamber by the surface of the wafer, the housing and the piston by bringing the lower end surface of the housing into contact with the surface of the wafer on the mounting portion.
  • the molten metal is supplied into the processing chamber from the supply path communicating with the processing chamber from the side surface of the housing, and the molten metal is mechanically pressed by the pressing portion at the tip of the piston by moving the piston to the wafer side. .
  • the molten metal is filled in the minute space on the surface of the wafer.
  • a conductive metal is formed in the minute space.
  • the conductor metal is formed as a through electrode of the wafer.
  • one of the molten metal in a film form on the surface of the processing object (wafer)
  • the part may be partially solidified between the pressing part at the end of the piston and the surface of the object to be treated.
  • the partially solidified material functions like a support column, and even if pressure is applied using a piston, the portion of the liquid phase that is not solidified may not be sufficiently pressurized, which may cause the molten metal to There is a problem that it becomes difficult to maintain pressurization.
  • the present invention has been made to solve the problems as described above, and an object of the present invention is to maintain the pressure on the molten metal in the solidification process, and to be treated. It is an object of the present invention to provide a metal filling apparatus and a metal filling method capable of controlling the ambient atmosphere and pressure of an object to be treated even during loading and unloading.
  • a metal-filling apparatus for filling a molten metal in a minute space formed so as to be open on the surface of an object to be treated.
  • a molten metal supply unit including a mounting portion having a mounting surface on which the mounting surface is mounted, an opposing surface facing the mounting surface, and a molten metal supply port provided on the opposing surface; And an airtight chamber for accommodating the mounting portion, the molten metal supply portion and the seal portion therein, and a gas supply portion for supplying a gas into the chamber.
  • the processing chamber is formed by the surface, the seal portion, and the surface of the processing object, and the molten metal is supplied into the processing chamber through the supply port by the molten metal supply unit, and the molten metal is filled in the minute space.
  • the “fine space” of the present invention mainly includes fine grooves having a width of 100 ⁇ m or less and fine non-through holes having a hole diameter of 100 ⁇ m or less formed in a wafer by etching.
  • an airtight chamber containing the mounting portion, the molten metal supply portion and the seal portion therein, and a gas supply portion for supplying gas into the chamber are provided.
  • a processing chamber is formed by the opposing surface of the molten metal supply portion, the seal portion provided on the opposing surface, and the surface of the processing object, and the molten metal supply portion supplies molten metal into the processing chamber through the supply port.
  • the metal filling apparatus is configured to fill the molten metal in the minute space.
  • the molten metal is supplied into the processing chamber formed by the facing surface, the seal portion, and the surface of the processing object to form a film, and the gas is supplied into the chamber to form the film on the surface of the processing object.
  • the film-like molten metal can be pressurized. In this case, even if the molten metal partially solidifies in the solidification process, the molten portion of the liquid phase other than the solidified portion can be reliably pressurized by the gas pressure. Therefore, the pressurization to the molten metal in the solidification process can be maintained.
  • the processing object the mounting unit on which the processing object is placed
  • the molten metal supply unit, and the seal unit, which constitute the processing chamber are housed in the airtight chamber, the processing chamber is completely opened.
  • control of the atmosphere and pressure in the chamber can be freely performed.
  • the atmosphere and pressure around the object to be treated can be controlled even when carrying in and out the object to be treated. Therefore, according to the first invention, it is possible to maintain the pressurization to the molten metal in the solidification process, and the atmosphere and pressure around the processing object even when carrying in and out the processing object. Control is possible.
  • the molten metal is added by the gas supplied from the gas supply unit in a state where the processing chamber is opened in the chamber. It is configured to be pressed. According to this structure, the molten metal can be easily pressurized by the gas by opening the processing chamber. Further, in the present invention, since the processing chamber is formed by the facing surface of the molten metal supply portion, the seal portion provided on the facing surface, and the surface of the processing object, the volume of the processing chamber can be minimized. It is possible. Therefore, even if the processing chamber is opened after the molten metal is supplied into the processing chamber, it is possible to suppress the molten metal from flowing and protruding to the periphery of the object to be processed.
  • the metal filling apparatus is configured to open the processing chamber in a state in which the inside of the chamber is controlled to a predetermined atmosphere in advance by the gas supplied from the gas supply unit. It is done.
  • the metal filling apparatus unlike the case where the inside of the processing chamber is opened after the processing chamber is opened, pressurization of the molten metal by the gas can be started simultaneously with the opening of the processing chamber. It can be shortened.
  • the state which the pressurization to the molten metal on a process target object runs short when the processing chamber is open
  • the metal filling apparatus controls the inside of the chamber to a predetermined atmosphere in advance by the gas supplied from the gas supply unit, and the pressure in the processing chamber is equal to or higher than the pressure in the chamber.
  • the processing chamber is configured to be opened in the state of According to this structure, the processing chamber can be opened in a state where the pressure inside the processing chamber is equal to or higher than the pressure outside the processing chamber (inside the chamber), so that the processing chamber can be opened easily and smoothly. That is, when the pressure inside the processing chamber is smaller than the pressure outside the processing chamber (inside the chamber), a pressure difference between the inside and the outside of the processing chamber generates a force that hinders the opening operation.
  • the pressure inside and outside the processing chamber is equal or the pressure inside the processing chamber is relatively high, the pressure difference does not prevent the opening operation, and the processing chamber can be opened easily and smoothly.
  • a method of increasing the pressure inside the processing chamber for example, a method of applying a supply pressure by supplying molten metal after being supplied into the processing chamber, a method of feeding a gas for pressurization into the processing chamber, an opposite surface
  • the internal pressure of the processing chamber at the time of release is increased to a generally constant value or slightly equal to the external pressure.
  • the metal filling apparatus is configured such that the processing chamber is opened before solidification of the molten metal in the processing chamber is completed. It is done.
  • the molten metal in the liquid phase on the object to be treated can be solidified in a pressurized state by the gas, so that the occurrence of filling defects such as voids can be effectively suppressed. it can.
  • the molten metal supply unit includes a first heating unit for heating the molten metal, and the metal filling apparatus separates the processing object from the molten metal supply unit and opens the processing chamber. , And the molten metal on the object to be treated is cooled.
  • the metal filling apparatus separates the processing object from the molten metal supply unit and opens the processing chamber. , And the molten metal on the object to be treated is cooled.
  • the placement unit includes a cooling unit for cooling the molten metal on the processing object.
  • the molten metal on the object to be treated is solidified more efficiently by the cooling unit provided in the mounting unit. It can be done.
  • the mounting unit includes a second heating unit for heating the object to be processed on the mounting unit.
  • the second heating unit provided in the mounting unit can quickly advance the processing target on the mounting unit so that the molten metal does not solidify on the processing target when the molten metal is supplied. It can be heated (preheated). Thereby, since supply of molten metal can be started promptly, processing time of a filling process can be shortened.
  • a metal supply pump provided outside the chamber for supplying the molten metal to the molten metal supply, a metal supply pump outside the chamber and the molten metal inside the chamber And a supply pipe connected to the supply unit.
  • the molten metal supply unit is provided inside the molten metal supply unit, and is arranged in the introduction unit of the molten metal connected to the supply port, and in the introduction unit.
  • a valve body configured to be able to open and close the supply port by advancing and retracting toward the mouth.
  • the processing chamber is formed by the facing surface of the molten metal supply portion, the seal portion provided on the facing surface, and the surface of the object to be treated.
  • the processing chamber can be formed limited to the local area where the Therefore, by moving at least one of the molten metal supply unit and the mounting unit in a direction parallel to the mounting surface, it is possible to form a local processing chamber at an arbitrary position on the surface of the processing object. It becomes. Therefore, when metal filling is performed in a local region on the surface of the processing object, the amount of molten metal used is further reduced as compared to the case where the processing chamber is formed almost all over the surface of the processing object. Can.
  • the metal filling apparatus preferably further comprises a pressure reducing section for evacuating and exhausting the inside of the chamber, and the processing chamber is formed in a state where the pressure inside the chamber is reduced by the pressure reducing section. ing.
  • a pressure reducing section for evacuating and exhausting the inside of the chamber
  • the processing chamber is formed in a state where the pressure inside the chamber is reduced by the pressure reducing section.
  • the chamber includes an openable / closable port for taking in and out an object to be treated.
  • an openable / closable port for taking in and out an object to be treated.
  • a metal filling method is a metal filling method for filling a molten metal in a minute space formed to be open on the surface of an object to be treated, and in an airtight chamber, the surface of the object to be treated And an annular seal portion provided on the opposite surface facing the surface to abut the surface, the seal portion and the surface of the object to be treated to form a processing chamber, and molten metal is formed in the processing chamber.
  • Supply the molten metal to the fine space to separate the seal from the object to be treated open the processing chamber after the supply of the molten metal in the chamber, and insert the object to be treated, the opposite surface and the seal inside.
  • the interior of the chamber housed in the chamber is pressurized with gas, and the molten metal on the object to be treated is pressurized with gas.
  • the molten metal is supplied into the processing chamber formed by the facing surface, the seal portion, and the surface of the processing object, and the inside of the chamber is pressurized with gas.
  • the molten pressure of the liquid phase other than the solidified portion is reliably applied by the gas pressure. Can be pressed. Therefore, the pressurization to the molten metal in the solidification process can be maintained.
  • opening the processing chamber in the airtight chamber even when the processing chamber is completely opened, control of the atmosphere and pressure in the chamber can be freely performed. Therefore, according to the second invention, it is possible to maintain the pressurization to the molten metal in the solidification process, and the atmosphere and pressure around the object to be treated even when carrying in and out the object to be treated Control is possible.
  • the inside of the chamber is pressurized in advance, and then the processing chamber is opened in the pressurized chamber.
  • pressurization of the molten metal by the gas can be started simultaneously with the opening of the processing chamber.
  • the molten metal is supplied in a state where the pressure in the processing chamber is equal to or higher than the pressure in the chamber. While opening the treatment room.
  • the processing chamber can be opened in a state where the pressure inside the processing chamber is equal to or higher than the pressure outside the processing chamber (inside the chamber), so that the processing chamber can be opened easily and smoothly.
  • a method of increasing the pressure inside the processing chamber for example, a method of applying a supply pressure by supplying molten metal after being supplied into the processing chamber, a method of feeding a gas for pressurization into the processing chamber, an opposite surface
  • the processing chamber is opened before solidification of the molten metal in the processing chamber is completed.
  • a treatment to improve the wettability to the molten metal of the treatment area including the fine space among the surfaces of the treatment object, or a treatment target At least one of the treatments for reducing the wettability to the molten metal of the surrounding area outside the treated area of the surface of the object is further performed.
  • the wettability is a concept indicating the affinity of the liquid to the solid surface.
  • the process of improving the wettability is, for example, a process of forming a film of a material having higher wettability with the molten metal than the processing object on the surface of the processing object, removing the surface oxide of the processing object by plasma or the like Treatment, and treatment to activate the surface state.
  • the process of reducing the wettability includes, for example, a process of forming a film having a lower wettability with the molten metal than the processing object on the surface of the processing object, and a process of oxidizing the surface of the processing object.
  • the wettability of the processing area can be made relatively high, and the wettability of the surrounding area outside the processing area can be made relatively low.
  • pressurization to the molten metal in the solidification process can be maintained, and the atmosphere around the object to be treated and the atmosphere around the object to be treated are also carried out and carried out. Can control the pressure.
  • FIG. 1 is a schematic view showing a metal filling apparatus according to a first embodiment of the present invention. It is an expanded sectional view of the processing chamber vicinity of the state which formed the processing chamber in FIG. It is a top view of a wafer for explaining the physical relationship of each field on a surface of a wafer at the time of processing room formation, and a seal part. It is sectional drawing of the wafer for demonstrating the positional relationship of each area
  • FIG. 5 is a schematic view showing a metal filling apparatus according to a second embodiment of the present invention.
  • FIG. 7 is a schematic view showing a metal filling apparatus according to a third embodiment of the present invention.
  • FIG. 10 is a schematic view showing a metal filling apparatus according to a fourth embodiment of the present invention. It is the model which showed the molten metal supply part of the metal filling apparatus by 5th Embodiment of this invention. It is a schematic diagram of the horizontal cross section of process chamber vicinity in FIG.
  • the metal filling apparatus 100 As shown in FIG. 1, the metal filling apparatus 100 according to the first embodiment has fine features such as vias formed so as to be opened on the surface 1 a of a semiconductor wafer (hereinafter simply referred to as wafer 1) which is an example of a processing object. It is an apparatus for filling the molten metal 3 in the space 2 (see FIGS. 5 and 6). Through-silicon vias (TSVs) are formed by the conductive metal formed by the solidification of the molten metal 3 filled in the minute space 2.
  • TSVs Through-silicon vias
  • the wafer 1 is made of a general semiconductor material such as silicon.
  • the wafer 1 has a substantially circular shape having a predetermined diameter of, for example, about 200 mm, and can cut out a plurality of semiconductor chips.
  • the wafer 1 is carried into the metal filling apparatus 100 in a state where the plurality of minute spaces 2 (see FIGS. 5 and 6) are formed by the pre-process such as the etching process.
  • the shape and size of the minute space 2 are not particularly limited, and for example, it is a round hole having a diameter of several ⁇ m and a depth of several tens of ⁇ m.
  • the molten metal 3 is, for example, lead-free solder.
  • Lead-free solder is easy to handle because it has a relatively low melting point among the materials used for filling.
  • a metal material used for the molten metal Au, Ag, Cu, Pt, Pd, Ir, Al, Ni, Sn, In, Bi, Zn, or the like depending on the purpose of filling the minute space 2 and the function of the filler metal. These alloys can be adopted, and metal materials other than the above may be used.
  • the metal filling apparatus 100 is provided on the opposite surface 21 with the mounting portion 10 having the mounting surface 11 on which the wafer 1 is to be mounted, the molten metal supply portion 20 including the opposing surface 21 opposing the mounting surface 11, and And an annular seal portion 22.
  • the metal filling apparatus 100 includes an airtight chamber 30 that accommodates the placement unit 10, the molten metal supply unit 20, and the seal unit 22 therein, and a gas supply unit 40 that supplies a gas into the chamber 30.
  • the metal filling apparatus 100 further includes a control unit 50 that controls the operation of the metal filling apparatus 100.
  • the mounting unit 10 is configured as a mounting table (stage) of the wafer 1.
  • the mounting unit 10 has a flat mounting surface 11 on the upper surface, and is configured to support the wafer 1 mounted on the mounting surface 11.
  • the placement surface 11 is substantially horizontal, and is disposed so as to face upward (that is, the placement surface 11 and the opposing surface 21 face in the vertical direction) orthogonal to the horizontal plane.
  • At least one of the mounting unit 10 and the molten metal supply unit 20 is configured to be movable in the up and down direction (directions in which they approach or separate from each other).
  • the metal filling apparatus 100 includes a drive unit 51 that moves the placement unit 10 in the vertical direction to move the placement unit 10 closer to or away from the molten metal supply unit 20.
  • the molten metal supply unit 20 is fixed at an upper position of the mounting unit 10 (a position overlapping the mounting unit 10 in the vertical direction).
  • the surface (lower surface) of the molten metal supply unit 20 on the side of the mounting unit 10 is an opposing surface 21.
  • the opposing surface 21 is a flat surface generally parallel (generally horizontal) to the mounting surface 11.
  • the facing surface 21 may not be flat.
  • a supply port 23 of the molten metal 3 is provided on the facing surface 21.
  • the molten metal supply unit 20 is configured to supply the molten metal 3 into the processing chamber 4 described later via the supply port 23 (see FIG. 2).
  • the seal portion 22 is provided annularly (see FIG. 3) on the opposing surface 21 so as to surround the supply port 23 on the opposing surface 21 of the molten metal supply portion 20. That is, the opposing surface 21 is divided by the seal portion 22 into a region including the supply port 23 inside the annular seal portion 22 and a region outside the seal portion 22.
  • the seal portion 22 is formed of, for example, an elastic body, and is provided so as to protrude from the facing surface 21 to the mounting portion 10 side. In the configuration example of FIGS. 1 to 3, the seal portion 22 has a predetermined diameter along the vicinity of the outer periphery of the circular wafer 1.
  • the processing chamber 4 is formed by the facing surface 21, the seal part 22 and the surface 1 a of the wafer 1, and the molten metal supply part 20
  • the molten metal 3 is supplied into the processing chamber 4 through the supply port 23 so that the molten metal 3 is filled in the minute space 2.
  • the control unit 50 controls the sealing unit 22 and the wafer 1 on the mounting surface 11 to be in contact with each other by the driving unit 51 shown in FIG. 1 to form the processing chamber 4 (see FIG. 2). Is configured as. That is, when the drive unit 51 raises the placement unit 10, the seal unit 22 and the surface 1a of the wafer 1 abut in the vertical direction, and the processing chamber 4 is formed.
  • the processing chamber 4 is surrounded by the seal portion 22 in contact with the surface 1 a of the wafer 1 in a state where the surface 1 a of the wafer 1 and the opposing surface 21 are separated by a slight predetermined distance D. Is sealed to form a sealed filling space.
  • the interval D corresponds to the internal height of the processing chamber 4.
  • the supply port 23 of the facing surface 21 and the minute space 2 of the wafer 1 are disposed inside the sealing portion 22 (in the processing chamber 4).
  • the molten metal 3 is supplied from the supply port 23 into the processing chamber 4, whereby the molten metal 3 is supplied to the surface 1 a of the wafer 1 and enters the minute space 2 opened in the surface 1 a. Molten metal 3 flows in.
  • the processing chamber 4 may not be completely sealed, and there is no problem even if, for example, there is a minute seal leak between the surface 1 a of the wafer 1 and the seal portion 22.
  • the metal filling apparatus 100 is provided outside the chamber 30 and supplies the molten metal 3 to the molten metal supply unit 20, the metal supply pump 52 outside the chamber 30 and the chamber And 30, a supply pipe 53 for connecting the molten metal supply unit 20 inside.
  • the metal supply pump 52 is disposed below the chamber 30 and connected to the molten metal supply unit 20 through a supply pipe 53 penetrating the lower partition 33 of the chamber 30. The space between the lower partition wall 33 and the supply pipe 53 is sealed.
  • the supply pipe 53 is connected to a passage 24 formed in the molten metal supply unit 20 via a connection (not shown) (a pipe joint). Thereby, the molten metal 3 is supplied from the metal supply pump 52 to the molten metal supply unit 20 at a predetermined discharge pressure.
  • the molten metal supply unit 20 includes the introduction unit 25 of the molten metal 3 provided inside the molten metal supply unit 20 and connected to the supply port 23. Further, the molten metal supply unit 20 includes a valve body 26 a disposed in the introduction unit 25 and configured to be able to open and close the supply port 23 by advancing and retreating toward the supply port 23.
  • the introduction portion 25 is formed as an internal space of the molten metal supply portion 20 and is in communication with the passage 24 connected to the metal supply pump 52 and the supply port 23 located at the lower end portion of the introduction portion 25.
  • the valve body 26 a constitutes the filling valve 26 of the molten metal 3 together with the valve body driving portion 26 b.
  • the valve body 26a can be vertically moved by the valve body driving unit 26b between a closed position closing the supply port 23 and an open position spaced apart and open from the supply port 23.
  • the molten metal supply unit 20 can supply the molten metal 3 into the processing chamber 4 at a predetermined supply pressure by the discharge pressure of the metal supply pump 52. Further, the molten metal supply unit 20 applies mechanical pressure to the molten metal 3 by moving the valve body 26 a toward the supply port 23 in the introduction unit 25 when the filling valve 26 is closed. Is possible.
  • the mounting unit 10 may be driven by the drive unit 51 in the direction toward the molten metal supply unit 20 side. In this case, since the wafer 1 on the placement unit 10 is pressed in a direction to approach the facing surface 21, it is possible to apply mechanical pressure to the molten metal 3.
  • the pressurization of the molten metal 3 promotes the filling of the molten metal 3 supplied on the surface 1 a of the wafer 1 into the minute space 2, and voids (voids) and the like remain in the minute space 2. Suppress.
  • the molten metal 3 when the molten metal 3 is supplied into the processing chamber 4, the molten metal 3 is maintained at the liquid phase temperature or more of the metal material. In order to avoid solidification of the molten metal 3 during supply or immediately after the supply onto the surface 1 a of the wafer 1, the molten metal supply unit 20 and the wafer 1 are maintained in advance at the liquidus temperature or more at the time of supply. preferable.
  • the molten metal supply unit 20 includes a heater 27 for heating the molten metal 3.
  • the heater 27 may be built in the molten metal supply unit 20 as shown in FIG. 2 or may be attached to the surface of the molten metal supply unit 20.
  • the placement unit 10 includes the heater 12 for heating the wafer 1 on the placement unit 10.
  • the heater 12 may be built in the placement unit 10 as shown in FIG. 2 or may be attached so as to be exposed on the placement surface 11 of the placement unit 10.
  • the heater 27 and the heater 12 are examples of the “first heating unit” and the “second heating unit” in the claims respectively.
  • the heater 27 and the heater 12 may have any configuration such as a resistance heating element or a lamp heater. Instead of providing the heater 27 and the heater 12, a heater for heating the inside of the chamber 30 may be provided.
  • the heater 27 and the heater 12 are controlled by the control unit 50 to a predetermined heating temperature.
  • the heater 27 is controlled to operate at all times during the operation of the metal filling process so that the molten metal 3 in the introducing unit 25 and in the vicinity of the supply port 23 does not solidify.
  • the heater 12 is operated prior to the supply of the molten metal 3 in order to preheat the wafer 1.
  • the heater 12 operates, for example, after placing the wafer 1 and before forming the processing chamber 4. In the formation state of the processing chamber 4 (in particular, after the supply of the molten metal 3), the heater 27 serves as a heat source, so the heater 12 may not necessarily be operated. Further, after the supply of the molten metal 3, the heater 12 may be stopped at the stage of solidifying the molten metal 3.
  • the chamber 30 accommodates the mounting unit 10, the molten metal supply unit 20, and the seal unit 22 therein.
  • the chamber 30 includes a cylindrical side partition 31 surrounding the periphery of the placement unit 10, the molten metal supply unit 20 and the seal unit 22, and an upper partition 32 closing an upper portion of the side partition 31. , And a lower partition wall 33 closing the lower part of the side partition wall 31.
  • the connection between the side partition 31 and the upper partition 32 and the lower partition 33 is sealed, and the inside of the chamber 30 is a sealed space.
  • the chamber 30 includes an openable / closable gate (gate valve) 34 for loading and unloading the wafer 1.
  • the gate 34 is an example of the “gateway” in the claims.
  • the gate 34 is provided on the side partition wall 31 and configured to locally open and close the inside of the chamber 30. The connection between the gate 34 and the side partition 31 is sealed.
  • the size of the gate 34 can be a minimum that the wafer 1 can be inserted and removed, and it is possible to suppress the flow of gas with the outside even when the gate 34 is open.
  • the chamber 30 is configured such that the wafer 1 can be taken in and out while maintaining the inside in a predetermined atmosphere state.
  • the metal filling apparatus 100 is equipped with the vacuum pump 41 which exhausts the inside of the chamber 30 and pressure-reduces.
  • the vacuum pump 41 is an example of the "pressure reduction unit" in the claims.
  • the vacuum pump 41 is connected to the inside of the chamber 30 via gas pipes 42 a and 42 b penetrating the side partition 31 to the inside.
  • the vacuum pump 41 can exhaust the gas in the chamber 30 to reduce the pressure.
  • a control valve 43 is provided between the vacuum pump 41 and the chamber 30. By controlling the opening and closing of the control valve 43 and the operation of the vacuum pump 41 by the control unit 50, it is possible to reduce the pressure in the chamber 30 to a substantially vacuum state.
  • the metal filling apparatus 100 is configured such that the processing chamber 4 is formed in a state where the inside of the chamber 30 is depressurized by the vacuum pump 41. Depressurization is generally performed to a vacuum state.
  • the gas supply unit 40 and the vacuum pump 41 By providing the gas supply unit 40 and the vacuum pump 41, it is possible to put the inside of the chamber 30 into an inert gas atmosphere or a substantially vacuum reduced state also when the wafer 1 is taken in and out.
  • the transfer path connected to the gate 34 is, for example, under the atmospheric environment, by mixing the inside of the chamber 30 with an inert gas atmosphere at a pressure equal to or higher than the atmospheric pressure, mixing of the air into the chamber 30 is suppressed, and melting is performed. Oxidation of the molten metal 3 or the like remaining on the facing surface 21 of the metal supply unit 20 is suppressed.
  • the transfer path is in a vacuum reduced pressure state, the inside of the chamber 30 is brought into the same reduced pressure state.
  • the gas supply unit 40 is connected to the inside of the chamber 30 via gas pipes 42a and 42c.
  • the gas supply unit 40 can pressurize the inert gas such as nitrogen gas into the chamber 30. Thereby, the inside of the chamber 30 can be pressurized.
  • the opening and closing of the control valve 43 and the operation of the gas supply unit 40 are controlled by the control unit 50 so that the molten metal 3 supplied on the surface 1a of the wafer 1 is pressurized with gas. It is configured.
  • the control unit 50 is configured to perform control to cause the sealing unit 22 and the surface 1 a of the wafer 1 to be separated and to open the processing chamber 4 by lowering the mounting unit 10 by the driving unit 51.
  • the metal filling apparatus 100 is operated by the gas supplied from the gas supply unit 40 in a state where the processing chamber 4 is opened in the chamber 30.
  • the molten metal 3 is configured to be pressurized.
  • the timing to start pressurization in the chamber 30 by the gas supply unit 40 may be before or after the processing chamber 4 is opened, but preferably, the metal filling apparatus 100 uses the gas supplied from the gas supply unit 40.
  • the processing chamber 4 is configured to be opened with the inside of the chamber 30 previously controlled to a predetermined atmosphere. In the first embodiment, the inside of the chamber 30 is maintained pressurized by the gas by the gas supply unit 40 before the processing chamber 4 is opened. In this case, since the processing chamber 4 is sealed, the gas pressure does not act directly on the molten metal 3. Then, at the same time as the processing chamber 4 is opened, pressurization with the gas of the molten metal 3 is started.
  • the metal filling apparatus 100 controls the inside of the chamber 30 to a predetermined atmosphere in advance by the gas supplied from the gas supply unit 40 and sets the pressure in the processing chamber 4 higher than the pressure in the chamber 30. Is configured to be open. As a result, the pressure in the processing chamber 4 becomes equal to or higher than the pressure in the chamber 30 (outside of the processing chamber 4), so that the pressure difference between the inside and outside of the processing chamber 4 prevents the opening operation from being hindered.
  • the pressure in the processing chamber 4 at the time of opening is too low or too high compared to the pressure in the chamber 30 (outside of the processing chamber 4). This is because if the pressure difference is large, the molten metal 3 on the surface 1 a of the wafer 1 may be corrugated or moved by an impact generated with the pressure fluctuation at the time of release. Further, at the time of opening the processing chamber 4, the volume in the processing chamber 4 increases due to the seal portion 22 returning to the natural state from the compression state, etc., so the pressure in the processing chamber 4 decreases with the volume increase. There is a tendency. Therefore, by pressurizing the inside of the processing chamber 4 toward the opening timing of the processing chamber 4, it is possible to compensate for the pressure drop in the processing chamber 4 due to the opening.
  • the internal pressure of the processing chamber 4 at the time of release be increased to a substantially constant value or slightly equal to the external pressure. Thereby, the pressure fluctuation at the time of release of the processing chamber 4 can be suppressed while facilitating the opening of the processing chamber 4.
  • a method of pressurizing the inside of the processing chamber 4 after the molten metal 3 is supplied into the processing chamber 4, a method of applying a supply pressure by supplying (pouring out) the molten metal 3 through the supply port 23 There is.
  • the inside of the processing chamber 4 can also be mechanically pressurized by moving the valve body 26a toward the supply port 23 in the introduction unit 25.
  • a method of feeding a pressurizing gas into the processing chamber 4 may be used (see FIG. 11).
  • a method of mechanically reducing the volume of the processing chamber 4 by deforming or moving a part of the facing surface 21 or the like is possible.
  • the metal filling apparatus 100 is configured such that the processing chamber 4 is opened before solidification of the molten metal 3 in the processing chamber 4 is completed.
  • the processing chamber 4 is released in the state of a complete liquid phase of the molten metal 3 or an incompletely solidified state in which the molten metal 3 is partially (locally) solidified.
  • the metal filling apparatus 100 is configured such that the molten metal 3 on the wafer 1 is cooled based on the opening of the processing chamber 4.
  • Opening of the processing chamber 4 is sufficient if a part of the seal part 22 is separated from the surface 1 a of the wafer 1 to release the air tightness, and a part of the molten metal supply part 20 (facing surface 21) and the wafer 1 It may be in a state in contact with the molten metal 3. However, in a state where the facing surface 21 and the molten metal 3 on the wafer 1 are in contact with each other, the heater 27 of the molten metal supply unit 20 serves as a heat source, and the heat from the heater 27 is also transmitted to the molten metal 3 on the wafer 1. In the present embodiment, for example, when the processing chamber 4 is opened, the wafer 1 and the molten metal 3 are separated from the molten metal supply unit 20.
  • the molten metal 3 on the wafer 1 is cooled based on the fact that the wafer 1 is separated from the molten metal supply unit 20 and the processing chamber 4 is opened. Thereby, since the heat transfer from the heater 27 is suppressed, the cooling (temperature reduction) can be advanced promptly.
  • the placement unit 10 includes a cooling unit 13 (see FIG. 2) for cooling the molten metal 3 on the wafer 1 in order to promote the cooling of the molten metal 3.
  • the cooling unit 13 is built in the mounting unit 10, and is configured by a heat pump using a refrigerant pipe through which a refrigerant flows, a thermoelectric element such as a Peltier element, or the like.
  • the cooling operation of the cooling unit 13 is controlled by the control unit 50.
  • the cooling unit 13 may be attached to the outer surface of the placement unit 10, and may be a heat sink attached to the surface of the placement unit 10, for example.
  • the processing chamber 4 is formed by the facing surface 21, the seal portion 22, and the surface 1 a of the wafer 1, the distance D between the facing surface 21 and the surface 1 a of the wafer 1 is adjusted By adjusting the amount of compression of the seal portion 22, it is possible to minimize the volume of the processing chamber 4 (that is, the amount of the molten metal 3). Therefore, by making the volume of the processing chamber 4 sufficiently small, the molten metal 3 on the surface 1 a of the wafer 1 flows out to the outside of the wafer 1 (on the mounting portion 10) or the like when the processing chamber 4 is opened. Is avoidable.
  • the wettability (affinity) with the molten metal 3 is relatively low at the surface 1 a of the wafer 1
  • the interface of the molten metal 3 is formed at the boundary between the relatively high wettability region (treated region 1b) and the relatively low wettability region (peripheral region 1c). Flow can be suppressed.
  • wetting or high wettability
  • the angle (contact angle) between the liquid surface (the surface of the molten metal 3) and the solid surface (the surface 1a of the wafer 1) is less than 90 degrees.
  • the contact angle is preferably less than 30 degrees.
  • the term “flicking (or low wettability)” refers to a state in which the contact angle is 90 degrees or more.
  • the surrounding area 1c is illustrated with hatching.
  • the processing area 1b is disposed on the inner side of the portion of the surface 1a in contact with the seal portion 22, and the surrounding area 1c is disposed on the outer side of the portion of the surface 1a in contact with the seal portion 22. It is annularly formed to surround the
  • the processing area 1 b disposed inside the seal portion 22 is subjected to a process for improving the wettability with the molten metal 3, whereby the peripheral area 1 c outside the processing area 1 b is The wettability is relatively low.
  • the process of improving the wettability is, for example, a film forming process in which the processing region 1b is coated with a material (for example, Cu, Au, etc.) having higher wettability with the molten metal 3 than the base material (silicon), plasma, etc.
  • These processes include removing the surface oxide of the wafer 1 and activating the surface state.
  • the peripheral area 1 c outside the processing area 1 b may be subjected to a process for reducing the wettability.
  • the process for reducing the wettability is, for example, a film forming process in which the surrounding area 1 c is coated with a material having a lower wettability to the molten metal 3 than the base material, or a process for oxidizing the surface of the wafer 1. Both the process of improving the wettability of the processing area 1b and the process of reducing the wettability of the surrounding area 1c may be performed.
  • the metal filling apparatus 100 performs the process corresponding to step S4 of FIG. Each step is performed by a separate device, and the wafer 1 is transferred between the devices by a transfer robot not shown.
  • step S1 a minute space 2 is formed on the wafer 1 by an etching process or the like.
  • the method of forming a silicon penetration electrode by metal filling with respect to the micro space 2 can be two methods of FIG. 5 and FIG. 6, for example.
  • first formation method of FIG. 5 (A) microspace 2 is formed as a non-penetrating recess from surface 1a of wafer 1, (B) microspace 2 is filled with molten metal 3 and conductor metal 5 is formed. (C) A method of forming the through electrode by removing the opposite surface 1d where the micro space 2 is not opened until the conductor metal 5 is exposed.
  • step S1 the minute space 2 is formed as a non-penetrating recess.
  • the wiring portion 6 connected to the silicon through electrode is formed in advance on the opposite surface 1 d of the wafer 1, and (A) reaches from the surface 1 a of the wafer 1 to the wiring portion 6
  • a minute space 2 is formed as a through hole, and in a state where (B) the opposite surface 1d side is attached to a support substrate 7, the minute space 2 is filled with the molten metal 3 to form a conductor metal 5;
  • the substrate 7 is removed to form a connection structure between the conductor metal 5 and the wiring portion 6.
  • the minute space 2 is formed as a through hole reaching from the surface 1a to the wiring portion 6.
  • step S2 a film forming process of a material (such as Cu) having high wettability with the molten metal 3 is performed on the processing region 1b of the wafer 1 by plating or the like.
  • the peripheral region 1c of the wafer 1 is excluded from the processing and is not deposited.
  • the surface 1a of the wafer 1 is divided into a processing region 1b having relatively high wettability with the molten metal 3 and a surrounding region 1c with low wettability with the molten metal 3 Be done.
  • step S3 the oxide on the surface 1a of the wafer 1 is removed by the cleaning step.
  • the cleaning process is performed when the wafer 1 is transported in the atmosphere. In the case where the wafer 1 is transported in a substantially vacuum continuously from Step S2, the formation and adhesion of the surface oxide are suppressed, and the cleaning step is unnecessary.
  • step S4 the metal filling apparatus 100 performs a filling process of the molten metal 3 in the minute space 2 of the surface 1a of the wafer 1.
  • the contents of the metal filling process (the operation of the metal filling apparatus 100) will be described later.
  • the filled and solidified conductor metal 5 is formed in the part of the minute space 2 of the wafer 1.
  • step S5 the surface 1a of the wafer 1 is polished by mechanical polishing such as CMP (chemical mechanical polishing) or a polisher, and the residue of the molten metal 3 solidified on the surface 1a is removed. Thereafter, in the case of the first formation method of FIG. 5, the opposite surface 1d is removed until the conductive metal 5 is exposed (see FIG. 5C), and a silicon through electrode is formed. In the second method of FIG. 6, through silicon electrodes are already formed, and the support substrate 7 is removed from the wafer 1 (see FIG. 6C).
  • CMP chemical mechanical polishing
  • FIG. 8 shows the flow of processing when the loading and unloading of the wafer 1 into and from the metal filling apparatus 100 is performed under the atmospheric environment. Operation control of the metal filling apparatus 100 is controlled by the control unit 50. In addition, about each part of the metal filling apparatus 100, it shall refer to FIG. 1 and FIG.
  • step S11 the gate 34 is opened under the control of the control unit 50, and the wafer 1 is carried into the chamber 30.
  • the wafer 1 passes through the gate 34 and is mounted on the mounting surface 11 of the mounting unit 10.
  • step S12 the control unit 50 closes the gate 34.
  • the inside of the chamber 30 is airtight.
  • step S13 the control unit 50 controls the vacuum pump 41 and the control valve 43 to evacuate the chamber 30 and reduce the pressure to a substantially vacuum state.
  • step S ⁇ b> 14 the control unit 50 controls the drive unit 51 to form the processing chamber 4. That is, the control unit 50 moves the mounting unit 10 toward the molten metal supply unit 20 and brings the seal unit 22 into contact with the surface 1 a of the wafer 1 to form the processing chamber 4.
  • step S ⁇ b> 15 the control unit 50 opens the filling valve 26 (valve element 26 a) and operates the metal supply pump 52 to supply the molten metal 3 to the processing chamber 4. Thereby, the molten metal 3 is supplied to the minute space 2.
  • the heater 27 of the molten metal supply unit 20 is controlled so as to always operate during the filling process.
  • the heater 12 of the mounting unit 10 is controlled to operate at a predetermined timing between steps S11 to S14, and heats the wafer 1 on the mounting unit 10.
  • step S16 the control unit 50 controls the gas supply unit 40 and the control valve 43 to supply an inert gas into the chamber 30, and pressurize the chamber 30.
  • pressurization by gas is shown as step S16
  • the start timing of pressurization by gas is from step S14 when the processing chamber 4 is formed until the processing chamber 4 is opened (step S18). Any timing may be used.
  • the inside of the chamber 30 is pressurized by the gas supply unit 40 to a predetermined pressure before the processing chamber 4 is opened in step S18.
  • step S17 the control unit 50 closes the filling valve 26 (valve body 26a) to stop the supply of the molten metal 3 to the processing chamber 4.
  • step S ⁇ b> 18 the control unit 50 controls the drive unit 51 to open the processing chamber 4. That is, the control unit 50 moves the mounting unit 10 in a direction away from the molten metal supply unit 20 and separates the seal unit 22 from the front surface 1 a of the wafer 1 to process the molten metal 3 after supply.
  • Chamber 4 is opened in chamber 30.
  • the processing chamber 4 is opened at a predetermined timing before solidification of the molten metal 3 in the processing chamber 4 is completed. As shown in FIG. 4, the molten metal 3 forms an interface between the processing area 1b and the surrounding area 1c and remains in the processing area 1b.
  • the processing chamber 4 is opened, the molten metal 3 is pressurized by the gas supplied in advance from the gas supply unit 40 into the chamber 30.
  • the molten metal 3 is pushed into the minute space 2 by the pressure of the inert gas, and the generation of voids (voids) in the minute space 2 is suppressed.
  • step S19 the control unit 50 operates the cooling unit 13 to start cooling of the molten metal 3.
  • the control unit 50 controls the gas supply unit 40 so as to continue the pressurization of the molten metal 3 by the gas.
  • the molten metal 3 on the wafer 1 has its entire surface exposed in the chamber 30 pressurized with gas. Therefore, even when the molten metal 3 partially (locally) solidifies with cooling, pressure is applied to the solidified portion and the liquid phase portion not solidified, and the micro space 2 is sufficiently filled. Solidification (cooling) proceeds as it is. Thereafter, the control unit 50 stands by until the temperature of the molten metal 3 decreases to the solidus temperature or less, and completes the solidification of the molten metal 3. The cooling operation of the cooling unit 13 is stopped after completion of solidification.
  • step S20 the control unit 50 controls the gas supply unit 40 and the control valve 43 to normalize the pressure in the chamber 30 (a pressure substantially the same as the external environment of the chamber 30). Return to).
  • step S21 the control unit 50 opens the gate 34.
  • the wafer 1 is carried out of the chamber 30.
  • the inside of the chamber 30 is maintained in an inert gas atmosphere, and the pressure is substantially the same as that of the external environment, so that the mixing of the air into the chamber (the oxidation of the metal attached to the facing surface 21) is suppressed.
  • the metal filling processing operation of the metal filling apparatus 100 is performed.
  • the operation involved in the carrying in and out differs from that in FIG. Specifically, the evacuation in step S13 is performed prior to the gate opening in step S11. Similarly, in place of the process of returning the inside of the chamber 30 to the normal pressure in step S20, the same vacuum evacuation process as in step S13 is performed. That is, when the wafer 1 is transferred in and out, the gate 34 is opened in a state where the inside of the chamber 30 is in a substantially vacuum reduced pressure environment equivalent to the outside.
  • the processing chamber 4 is formed by the surface 1 a and the molten metal 3 is supplied into the processing chamber 4 through the supply port 23 by the molten metal supply unit 20 so that the molten metal 3 is filled in the minute space 2.
  • the metal filling apparatus 100 is configured as follows. Thereby, the molten metal 3 is supplied into the processing chamber 4, and the film-like molten metal 3 on the surface 1 a of the wafer 1 can be pressurized by supplying the gas into the chamber 30.
  • the molten portion of the liquid phase other than the solidified portion can be reliably pressurized by the gas pressure. Therefore, pressurization to the molten metal 3 in the solidification process can be maintained.
  • the wafer 1 the mounting unit 10 on which the wafer 1 is mounted
  • the molten metal supply unit 20, and the seal unit 22 constituting the processing chamber 4 are accommodated in the airtight chamber 30, the processing chamber 4 is completely completed. Even when open, control of the atmosphere and pressure in the chamber 30 can be freely performed. As a result, the atmosphere and pressure around the wafer 1 can be controlled even when loading and unloading the wafer 1.
  • the metal filling apparatus 100 of the first embodiment it is possible to maintain the pressurization to the molten metal 3 in the solidification process, and also when the wafer 1 is carried in or out, the periphery of the wafer 1 Control of the atmosphere and pressure of
  • the molten metal 3 wraps around and adheres to the opposite surface 1 d side of the wafer 1 as well. In addition to the above, it is necessary to remove the attached metal on the opposite surface 1d side.
  • the processing chamber 4 is formed using the front surface 1a of the wafer 1, the molten metal 3 is prevented from coming around to the opposite surface (rear surface) 1d side of the wafer 1, The removal process of the adhesion metal on the side 1 d becomes unnecessary.
  • the metal filling apparatus 100 is configured such that the molten metal 3 is pressurized. Thereby, the molten metal 3 can be easily pressurized by the gas only by opening the processing chamber 4. Further, in the first embodiment, the volume of the processing chamber 4 can be minimized by the facing surface 21 of the molten metal supply unit 20, the seal portion 22 provided on the facing surface 21, and the surface 1a of the wafer 1. It is possible. Therefore, even if the molten metal 3 is supplied into the processing chamber 4 and then the processing chamber 4 is opened, it is possible to suppress the molten metal 3 from flowing and leaking to the periphery of the wafer 1.
  • the processing chamber 4 is opened in a state where the inside of the chamber 30 is controlled to a predetermined atmosphere in advance by the gas supplied from the gas supply unit 40 as described above. Configure as.
  • pressurization of the molten metal 3 by the gas can be started simultaneously with the opening of the processing chamber 4. It can be shortened.
  • the metal filling device 100 controls the inside of the chamber 30 to a predetermined atmosphere in advance by the gas supplied from the gas supply unit 40, and the pressure in the processing chamber 4 is a chamber.
  • the processing chamber 4 is configured to be opened in a state in which the pressure is higher than the pressure in 30.
  • the processing chamber 4 can be opened in a state where the pressure inside the processing chamber 4 is equal to or higher than the pressure outside the processing chamber 4 (inside the chamber 30), so the processing chamber 4 can be opened easily and smoothly.
  • the internal pressure of the processing chamber 4 at the time of release is increased by a substantially constant value or slightly equal to the pressure of the outside (chamber 30)
  • the pressure drop accompanying the volume increase in the processing chamber 4 is suppressed. While facilitating the opening of the processing chamber 4, it is possible to suppress pressure fluctuation when the processing chamber 4 is opened.
  • the metal filling apparatus 100 is configured such that the processing chamber 4 is opened before solidification of the molten metal 3 in the processing chamber 4 is completed.
  • the molten metal 3 in the liquid phase on the wafer 1 can be solidified in a pressurized state by the gas, the occurrence of filling defects such as voids can be effectively suppressed.
  • the molten metal supply unit 20 is provided with the heater 27 for heating the molten metal 3. Then, the metal filling apparatus 100 is configured such that the molten metal 3 on the wafer 1 is cooled based on the fact that the wafer 1 is separated from the molten metal supply unit 20 and the processing chamber 4 is opened. Thereby, it can be avoided that the molten metal 3 is solidified on the side of the molten metal supply unit 20 (supply port 23) by the heater 27. Moreover, since the molten metal supply unit 20 (facing surface 21) side serves as a heat source in the state where the processing chamber 4 is formed, the wafer 1 is separated from the molten metal supply unit 20 serving as a heat source when the processing chamber 4 is opened. Thus, the cooling can be performed in a state where the heat capacity on the wafer 1 side is minimized, and the molten metal 3 on the wafer 1 can be solidified efficiently.
  • the mounting unit 10 is provided with the cooling unit 13 for cooling the molten metal 3 on the wafer 1.
  • the molten metal 3 on the wafer 1 is solidified more efficiently by the cooling unit 13 provided in the mounting unit 10.
  • the metal to be supplied is not repeatedly melted and solidified every processing, so that processing time can be shortened and material deterioration can be suppressed.
  • the mounting unit 10 is provided with the heater 12 for heating the wafer 1 on the mounting unit 10.
  • the wafer 12 on the mounting unit 10 is rapidly heated in advance (preheated) by the heater 12 provided on the mounting unit 10 so that the molten metal 3 does not solidify on the wafer 1 )can do.
  • the processing time of the filling process can be shortened.
  • the drive unit 51 that moves at least one of the placement unit 10 and the molten metal supply unit 20 in the direction (vertical direction) to move close to or away from each other
  • a control unit 50 is provided which performs control to cause the processing chamber 4 to be formed by bringing the portion 22 into contact with the wafer 1 on the mounting surface.
  • the molten metal 3 in the processing chamber 4 is mechanically pressurized. Will also be possible. In that case, the occurrence of filling defects such as voids can be effectively suppressed by mechanical pressure.
  • the metal supply pump 52 for supplying the molten metal 3 to the molten metal supply unit 20 is provided outside the chamber 30, and the metal supply pump 52 outside the chamber 30 and the chamber 30 are A supply pipe 53 is further provided to connect with the internal molten metal supply unit 20.
  • the molten metal 3 can be easily sent to the molten metal supply unit 20 in the airtight chamber 30.
  • the supply pressure can be applied to the molten metal 3 supplied from the molten metal supply unit 20 to the processing chamber 4 by the metal supply pump 52 and the supply pipe 53.
  • the minute space 2 can be effectively filled by the supply pressure, the occurrence of the filling defect can be effectively suppressed.
  • the introduction portion 25 of the molten metal 3 connected to the supply port 23 is provided inside the molten metal supply portion 20 and disposed in the introduction portion 25.
  • a valve body 26a configured to be able to open and close the supply port 23 by advancing and retracting.
  • the processing chamber 4 may be opened while the molten metal 3 is supplied to the processing chamber 4, or the mechanical pressure is processed by moving the valve body 26 a toward the supply port 23.
  • the processing chamber 4 may be opened while being applied to the chamber 4 side. In any case, the pressure difference between the inside and outside of the processing chamber 4 can be reduced, and the processing chamber 4 can be opened easily and smoothly.
  • the metal filling apparatus 100 is configured such that the processing chamber 4 is formed in a state in which the inside of the chamber 30 is depressurized by the vacuum pump 41.
  • the inside of the chamber 30 is pressurized by the gas supply unit 40 so that the molten metal 3 can be differentially filled in the minute space 2 It becomes.
  • the vacuum pump 41 can be provided in the chamber 30 outside the processing chamber 4, metal does not come in contact with the exhaust port (valve) as compared with the case where the vacuum exhaust port communicated with the processing chamber 4 is provided. It is possible to avoid the occurrence of air tightness due to biting of metal powder into the valve valve body and the like.
  • the chamber 30 is provided with the openable / closable gate 34 for loading and unloading the wafer 1.
  • the wafer 1 can be easily carried in and out while maintaining the inside of the chamber 30 in a desired atmosphere and pressure.
  • the inside of the chamber 30 to an inert gas atmosphere
  • the remaining portion of the molten metal 3 adhering to the facing surface 21 of the molten metal supply unit 20 when the wafer 1 is carried in and out is exposed to the outside air and oxidized. Etc. can be suppressed.
  • the metal filling apparatus 100 is connected to a vacuum deposition apparatus or the like so as to enable continuous vacuum conveyance, a configuration in which continuous processing is performed without being exposed to the air is also possible.
  • the wettability (affinity) to the molten metal 3 of the processing region 1 b including the minute space 2 in the surface of the wafer 1 is improved prior to the supply of the molten metal 3.
  • At least one of the treatment and the treatment for reducing the wettability of the peripheral region 1c of the surface of the wafer 1 outside the treatment region 1b to the molten metal 3 is performed.
  • the wettability of the processing area 1b can be made relatively high, and the wettability of the surrounding area 1c outside the processing area 1b can be made relatively low.
  • the molten metal 3 can be spread to the processing area 1b without pressing the molten metal 3 into the airtight space, and even when the processing chamber 4 is opened, the processing area 1b and the surrounding area 1c
  • the interface of the molten metal 3 is formed at the boundary of the molten metal 3 to prevent the molten metal 3 in the processing region 1b from spreading to the surrounding region 1c side, and the molten metal 3 can be effectively filled in the minute space 2.
  • the metal filling apparatus 200 by 2nd Embodiment is demonstrated.
  • the molten metal supply unit 20 is An example configured to be movable will be described.
  • the molten metal supply unit 20 is disposed above the mounting unit 10 (overlapping position in the upper and lower directions), and It is configured to be movable in the approaching or separating direction (vertical direction).
  • the metal filling apparatus 200 includes the drive unit 151 that moves the molten metal supply unit 20 in a direction (vertical direction) in which the molten metal supply unit 20 approaches or separates from the mounting unit 10.
  • the control unit 50 controls the drive unit 151 to lower the molten metal supply unit 20 to bring the seal unit 22 into contact with the wafer 1 on the mounting surface 11 to form the processing chamber 4.
  • the control unit 50 performs control to open the processing chamber 4 by raising the molten metal supply unit 20 by the drive unit 151.
  • the placement unit 10 is fixedly installed on the lower partition wall 33 of the chamber 30.
  • the placement unit 10 may be configured to be movable by the drive unit 51 in a direction (up and down direction) close to or away from the molten metal supply unit 20 as in the first embodiment. That is, the metal filling apparatus 200 may be provided with a drive unit 51 and a drive unit 151 for moving both the placement unit 10 and the molten metal supply unit 20 in the vertical direction.
  • the remaining structure of the second embodiment is similar to that of the aforementioned first embodiment.
  • the processing chamber 4 is formed by the facing surface 21, the seal unit 22, and the surface 1 a of the wafer 1.
  • the metal filling device 200 so that the molten metal 3 is supplied into the processing chamber 4 through the supply port 23, the pressurization to the molten metal 3 in the solidification process can be maintained. Also, the atmosphere and pressure around the wafer 1 can be controlled even when the wafer 1 is carried in and out.
  • a metal filling apparatus 300 in addition to the configurations of the first embodiment and the second embodiment, at least one of the molten metal supply unit 20 and the placement unit 10 can be moved in the direction parallel to the placement surface 11
  • An example configured in FIG. about the structure similar to the said 1st Embodiment and 2nd Embodiment among 3rd Embodiment, while attaching
  • the molten metal supply unit 20 and the placement unit 10 is configured to be movable in a direction (horizontal direction) substantially parallel to the placement surface 11.
  • the placement unit 10 is configured to be movable in a direction (horizontal direction) substantially parallel to the placement surface 11.
  • the molten metal supply unit 20 may be movable in a generally horizontal direction, or both the molten metal supply unit 20 and the placement unit 10 may be movable in a generally horizontal direction.
  • the metal filling apparatus 300 includes a drive unit 254 that moves the mounting unit 10 in a direction parallel to the mounting surface 11.
  • the driving unit 254 is configured by, for example, a two-axis moving mechanism that can move in two directions orthogonal to each other in a plane (horizontal plane) parallel to the mounting surface 11. Thereby, it is possible to change arbitrarily the relative position of mounting part 10 and molten metal supply part 20 in the horizontal direction.
  • the driving unit 254 may be a moving mechanism of one axis.
  • the placement unit 10 is movable in the horizontal direction by the drive unit 254, and is configured not to move in the vertical direction.
  • the molten metal supply unit 20 is disposed at a position above the mounting unit 10.
  • the molten metal supply unit 20 is movable in the vertical direction (a direction in which the placement unit 10 and the molten metal supply unit 20 approach or are separated from each other) by the drive unit 151 and is fixed so as not to move in the horizontal direction. Since the mounting unit 10 moves on the lower partition wall 33, the molten metal supply unit 20 and the metal supply pump 52 disposed outside the chamber 30 via the supply pipe 53 passing through the side partition wall 31. It is connected.
  • the diameter (area) of the facing surface 21 and the diameter of the seal portion 22 are formed to be smaller than the placement surface 11 (the wafer 1 placed on the placement surface 11).
  • the metal filling apparatus 300 causes the seal portion 22 to contact the surface 1 a of the wafer 1 at an arbitrary position on the surface 1 a of the wafer 1 by the horizontal movement of the mounting portion 10, and the opposing surface 21 and the seal portion 22
  • the surface 1 a of the wafer 1 is configured to form a local processing chamber 4 in a part of the surface 1 a of the wafer 1. Therefore, assuming that the outer diameter of the wafer 1 is the same as that of the first embodiment, in the third embodiment, the volume of the processing chamber 4 is smaller than that of the first embodiment.
  • the control unit 50 controls the driving unit 254 to horizontally move the mounting unit 10 to arrange the formation position of the minute space 2 on the surface 1 a of the wafer 1 at a position facing the facing surface 21 of the molten metal supply unit 20. I do. Then, the control unit 50 causes the molten metal supply unit 20 to be lowered by the drive unit 151 to bring the seal unit 22 and the wafer 1 on the mounting surface 11 into contact with each other, and a local processing chamber on the surface 1 a of the wafer 1. Control to form 4 is performed. Further, the control unit 50 performs control to open the processing chamber 4 by raising the molten metal supply unit 20 by the drive unit 151.
  • the remaining structure of the third embodiment is similar to that of the aforementioned first embodiment.
  • the processing chamber 4 is formed by the facing surface 21, the seal unit 22, and the surface 1 a of the wafer 1.
  • the metal filling device 300 so that the molten metal 3 is supplied into the processing chamber 4 through the supply port 23, the pressurization to the molten metal 3 in the solidification process can be maintained. Also, the atmosphere and pressure around the wafer 1 can be controlled even when the wafer 1 is carried in and out.
  • the placement unit 10 is configured to be movable in a direction (horizontal direction) parallel to the placement surface 11. As a result, it becomes possible to form a local processing chamber 4 at an arbitrary position on the surface 1 a of the wafer 1 (a position requiring the metal filling processing). As a result, the amount of use of the molten metal 3 can be further reduced as compared with the case where the processing chamber 4 is formed almost all over the surface 1 a of the wafer 1.
  • a metal filling apparatus 400 in addition to the configuration of the first embodiment, a second supply port (gas supply port 327) is provided on the facing surface 21 of the molten metal supply unit 320, and the inside of the processing chamber 4 is filled with gas.
  • a second supply port gas supply port 327
  • gas supply port 327 An example configured to be capable of being pressurized will be described.
  • omitted about the structure similar to the said 1st Embodiment among 4th Embodiment, while attaching
  • the molten metal supply unit 320 is provided on the opposing surface 21 in addition to the supply port 23 of the molten metal 3 provided on the opposing surface 21. It further includes a gas supply port 327 for pressurized gas.
  • the gas supply port 327 is connected to the gas supply unit 40 via a gas pipe 345 penetrating the side partition wall 31.
  • the metal filling apparatus 400 is configured to be able to independently pressurize the inside of the processing chamber 4 with gas via the gas supply port 327 of the molten metal supply unit 320.
  • the gas supply unit 40 is connected to the inside of the chamber 30 via the gas pipes 42 a and 42 c and the control valve 43, and the inside of the molten metal supply unit 320 via the gas pipes 42 c and 345 and the control valve 344. It is connected to (gas supply port 327).
  • the pressurizing gas supply unit 40 in the chamber 30 and the pressurizing gas supply unit 40 in the processing chamber 4 may be separately provided.
  • the gas supply port 327 is also connected to the vacuum pump 41 via the gas pipes 345, 42c and 42b, and the control valves 43 and 344, and the process chamber 4 is evacuated. It is also possible.
  • the molten metal supply unit 320 includes a gas valve 326 that switches between supply and stop of the pressurized gas.
  • the gas valve 326 is configured in the same manner as the filling valve 26 of the molten metal 3. That is, the molten metal supply unit 320 is disposed in the introduction unit 325 of the pressurized gas provided inside the molten metal supply unit 320 and connected to the gas supply port 327, and disposed in the introduction unit 325.
  • a valve body 326a configured to be able to move forward and backward to open and close the gas supply port 327.
  • the valve body 326a, together with the valve body drive portion 326b, constitutes a gas valve 326.
  • the valve body 326a can move vertically between the closed position closing the gas supply port 327 and the open position spaced upward from the gas supply port 327 by the valve drive unit 326b. is there.
  • the control unit 50 controls the gas chamber 326, the control valves 43 and 344, and the gas supply unit 40 (or the vacuum pump 41) to pressurize the inside of the processing chamber 4 with an inert gas, and generally controls the inside of the processing chamber 4 Control to reduce the pressure to a vacuum state.
  • the remaining structure of the fourth embodiment is similar to that of the aforementioned first embodiment.
  • the processing chamber 4 is formed by the facing surface 21, the seal unit 22, and the surface 1 a of the wafer 1.
  • the metal filling device 400 so that the molten metal 3 is supplied into the processing chamber 4 through the supply port 23, the pressurization to the molten metal 3 in the solidification process can be maintained. Also, the atmosphere and pressure around the wafer 1 can be controlled even when the wafer 1 is carried in and out.
  • the gas supply port 327 is provided on the facing surface 21, and the inside of the processing chamber 4 is also independently pressurized by the gas via the gas supply port 327.
  • the filling device 400 is configured.
  • the gas supply unit 40 pressurizes the inside of the processing chamber 4 with the inert gas, thereby more effectively suppressing the occurrence of the filling failure in the minute space 2. can do.
  • the molten metal supply unit 420 is provided to define a distance D between the facing surface 21 and the surface 1 a of the wafer 1.
  • An example in which the spacer portion 428 is provided will be described.
  • the configuration other than the molten metal supply unit 420 is the same as that of the first embodiment, and therefore, the same reference numerals as those of the first embodiment are given and the description thereof is omitted.
  • the molten metal supply portion 420 includes a spacer portion 428 for defining the distance D between the facing surface 21 and the surface 1 a of the wafer 1.
  • the spacer unit 428 is fixedly provided to the molten metal supply unit 420, and in the state where the processing chamber 4 is formed, the mounting unit 10 and the vertical direction (a direction in which the molten metal supply unit 420 and the mounting unit 10 face each other) Is placed in contact with the Specifically, the spacer portion 428 is an arrangement of the wafer 1 on the mounting surface 11 outside the seal portion 22 in the mounting portion 10 side end portion (lower portion) of the molten metal supply portion 420. It is provided in a position outside the position, and is formed in a columnar shape (protrusion shape) that protrudes toward the placement unit 10.
  • a plurality of spacer portions 428 may be provided around the seal portion 22 at equal angular intervals.
  • FIG. 13 shows an example in which three spacer portions 428 are arranged at an interval of about 120 degrees.
  • the amount of protrusion H of the spacer portion 428 to the mounting portion 10 side forms the processing chamber 4 in consideration of the thickness of the wafer 1 and the amount of deformation (amount of displacement) of the seal portion 22 for securing sealing performance.
  • the distance D between the front surface 1a of the wafer 1 and the facing surface 21 in the above state is set to be a predetermined amount.
  • the spacer portions 428 do not necessarily have to be formed to project from the facing surface 21.
  • the spacer portion 428 may be bent toward the mounting portion 10 side.
  • the spacer portion 428 does not have to be in contact with the mounting surface 11 and may be in contact with a dedicated contact surface provided on the mounting portion 10.
  • the spacer 428 may be provided on the mounting unit 10 side. In the case where the spacer portion 428 is provided on the mounting portion 10, as compared with the case where the spacer portion is provided on the molten metal supply portion side, there is an advantage that mold making of the configuration provided with the spacer portion 428 becomes easy and cleaning becomes easy. is there.
  • the remaining structure of the fifth embodiment is similar to that of the aforementioned first embodiment.
  • the molten metal supply portion 420 is provided with the spacer portion 428 for defining the distance D between the facing surface 21 and the surface 1 a of the wafer 1.
  • the configurations disclosed in the first to fifth embodiments may be combined with each other.
  • the molten metal supply part 320 of the fourth embodiment may be provided instead of the molten metal supply part 20.
  • the drive unit 151 of the second embodiment is provided in the metal filling apparatus 400 of the fourth embodiment to move the molten metal supply unit 320 closer to or away from the placement unit 10. It may be configured to move in a direction.
  • the molten metal supply unit 320 may be provided with the spacer unit 428 of the fifth embodiment.
  • the molten metal supply unit 20 is movable in the direction (vertical direction) in which the molten metal supply unit 20 approaches or separates from the mounting unit 10, and the mounting unit 10 is parallel to the mounting surface 11.
  • the present invention is not limited to this.
  • one of the placement unit 10 and the molten metal supply unit 20 may be movable in the horizontal and vertical three axis directions.
  • the molten metal supply unit 320 is provided with the supply port 23 for the molten metal 3 and the gas supply port 327 for the pressurized gas, but the present invention is limited to this. Absent.
  • a plurality of supply ports 23 of the molten metal 3 may be provided in the molten metal supply unit. Then, separate seal portions 22 may be provided so as to surround each supply port 23. In this case, a plurality of processing chambers 4 can be formed simultaneously.
  • the present invention is not limited to this.
  • the molten metal 3 may be supplied with the inside of the processing chamber 4 under a constant pressure of about atmospheric pressure without performing differential pressure filling.
  • the molten metal supply unit may be provided with an exhaust structure for exhausting the gas in the processing chamber 4 along with the supply of the molten metal 3.
  • the cooling unit 13 is operated after the processing chamber 4 is opened (after the wafer 1 is separated from the molten metal supply unit 20), the present invention is limited thereto. I can not. In the present invention, the cooling unit 13 may be operated before the processing chamber 4 is opened.
  • the process chamber 4 was open
  • the inside of the chamber 30 may be pressurized after the processing chamber 4 is opened.
  • the wettability to the molten metal 3 of the processing region 1 b is improved, or the wettability to the molten metal 3 of the outer peripheral region 1 c is reduced.
  • this invention is not limited to this. In the present invention, as long as the molten metal 3 is in a state of being wetted to the processing region 1b, it is not necessary to perform the process of improving or reducing the wettability.
  • the molten metal 3 is repelled and flowed on the surface 1 a or aggregated in an island shape.

Abstract

A metal filling device of the present invention is provided with a placing unit (10), a molten metal supply unit (20), a seal unit (22), an airtight chamber (30) housing the placing unit, the molten metal supply unit, and the seal unit therein, and a gas supply unit (40) that supplies a gas to the inside of the chamber. A processing chamber (4) is formed with a facing surface (21), the seal unit, and the surface of the subject (1) to be processed, and a molten metal (3) is supplied to the inside of the processing chamber, and fine spaces (2) are filled with the molten metal.

Description

金属充填装置および金属充填方法Metal filling apparatus and metal filling method
 この発明は、金属充填装置および金属充填方法に関し、特に、処理対象物の表面に開口するように形成された微細空間内に溶融金属を充填する金属充填装置および金属充填方法に関する。 The present invention relates to a metal filling apparatus and a metal filling method, and more particularly to a metal filling apparatus and a metal filling method for filling a molten metal in a minute space formed so as to be open on the surface of an object to be treated.
 従来、処理対象物の表面に開口するように形成された微細空間内に溶融金属を充填する金属充填装置が知られている。このような金属充填装置は、たとえば、特開2013-75330号公報に開示されている。 2. Description of the Related Art Conventionally, there has been known a metal filling apparatus for filling a molten metal in a minute space formed to open on the surface of an object to be treated. Such a metal filling apparatus is disclosed, for example, in Japanese Patent Application Laid-Open No. 2013-75330.
 上記特開2013-75330号公報には、ウェハ(処理対象物)を載置する載置部と、下端面が載置部と対向するように配置された筒状のハウジングと、ハウジングの内周側に挿入されたピストンとを備えた金属充填装置が開示されている。この金属充填装置は、ハウジングの下端面を載置部上のウェハの表面に当接させることにより、ウェハの表面と、ハウジングと、ピストンとにより処理室を形成可能である。そして、ハウジングの側面から処理室内に連通する供給経路から溶融金属が処理室内に供給され、ピストンをウェハ側に移動させることにより、溶融金属がピストンの先端の押付部により機械的に加圧される。これにより、ウェハの表面の微細空間内に溶融金属が充填される。ピストンによる加圧状態を維持したまま溶融金属を凝固させることにより、微細空間内に導体金属が形成される。この導体金属は、ウェハの貫通電極として形成される。 In the above-mentioned JP-A-2013-75330, a mounting portion on which a wafer (processing object) is to be mounted, a cylindrical housing arranged such that a lower end face faces the mounting portion, and an inner periphery of the housing A metal filling device is disclosed with a piston inserted on the side. The metal filling apparatus can form a processing chamber by the surface of the wafer, the housing and the piston by bringing the lower end surface of the housing into contact with the surface of the wafer on the mounting portion. Then, the molten metal is supplied into the processing chamber from the supply path communicating with the processing chamber from the side surface of the housing, and the molten metal is mechanically pressed by the pressing portion at the tip of the piston by moving the piston to the wafer side. . Thereby, the molten metal is filled in the minute space on the surface of the wafer. By solidifying the molten metal while maintaining the pressure applied by the piston, a conductive metal is formed in the minute space. The conductor metal is formed as a through electrode of the wafer.
特開2013-75330号公報JP, 2013-75330, A
 しかしながら、上記特開2013-75330号公報のように、ピストンによる加圧状態を維持したまま溶融金属を凝固させる構成では、処理対象物(ウェハ)の表面上で膜状になった溶融金属の一部がピストン先端の押付部と処理対象物の表面との間に部分的に凝固していく場合がある。この場合、部分的に凝固したものが支持柱のように機能して、ピストンを用いて加圧しても、凝固していない液相の部分が十分に加圧されない場合があり、溶融金属への加圧を維持するのが困難になるという課題がある。 However, as in the above-mentioned JP-A-2013-75330, in the configuration in which the molten metal is solidified while maintaining the pressurized state by the piston, one of the molten metal in a film form on the surface of the processing object (wafer) The part may be partially solidified between the pressing part at the end of the piston and the surface of the object to be treated. In this case, the partially solidified material functions like a support column, and even if pressure is applied using a piston, the portion of the liquid phase that is not solidified may not be sufficiently pressurized, which may cause the molten metal to There is a problem that it becomes difficult to maintain pressurization.
 また、上記特開2013-75330号公報では、ピストン、筒状のハウジングおよび処理対象物(ウェハ)によって形成した処理室を開放する場合には、ピストンおよび筒状部材を載置台から離間させ処理室の全体を完全に開放(上下に分割)する構成となっている。そのため、処理対象物の搬入や搬出の際に処理室を開放した場合に、処理対象物の周囲の雰囲気および圧力の制御が困難になるという課題がある。 Further, in the above-mentioned JP-A-2013-75330, when the processing chamber formed by the piston, the cylindrical housing and the object to be processed (wafer) is opened, the piston and the cylindrical member are separated from the mounting table Is completely open (split up and down). Therefore, when the processing chamber is opened at the time of loading and unloading of the processing object, there is a problem that control of the atmosphere and pressure around the processing object becomes difficult.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、凝固過程での溶融金属への加圧を維持することが可能で、かつ、処理対象物の搬入や搬出の際にも処理対象物の周囲の雰囲気および圧力の制御が可能な金属充填装置および金属充填方法を提供することである。 The present invention has been made to solve the problems as described above, and an object of the present invention is to maintain the pressure on the molten metal in the solidification process, and to be treated. It is an object of the present invention to provide a metal filling apparatus and a metal filling method capable of controlling the ambient atmosphere and pressure of an object to be treated even during loading and unloading.
 上記目的を達成するために、第1の発明による金属充填装置は、処理対象物の表面に開口するように形成された微細空間内に溶融金属を充填する金属充填装置であって、処理対象物が載置される載置面を有する載置部と、載置面と対向する対向面と、対向面に設けられた溶融金属の供給口と、を含む溶融金属供給部と、供給口を取り囲むように対向面に設けられた環状のシール部と、載置部、溶融金属供給部およびシール部を内部に収容する気密のチャンバと、チャンバ内にガスを供給するガス供給部とを備え、対向面と、シール部と、処理対象物の表面とにより処理室が形成され、溶融金属供給部により、供給口を介して処理室内に溶融金属が供給されて微細空間内に溶融金属が充填されるように構成されている。なお、本発明の「微細空間」は、主にエッチング処理によりウェハに形成された100μm以下の幅を有する微細な溝や100μm以下の孔径を有する微細な非貫通穴などを含む。 In order to achieve the above object, a metal-filling apparatus according to the first invention is a metal-filling apparatus for filling a molten metal in a minute space formed so as to be open on the surface of an object to be treated. A molten metal supply unit including a mounting portion having a mounting surface on which the mounting surface is mounted, an opposing surface facing the mounting surface, and a molten metal supply port provided on the opposing surface; And an airtight chamber for accommodating the mounting portion, the molten metal supply portion and the seal portion therein, and a gas supply portion for supplying a gas into the chamber. The processing chamber is formed by the surface, the seal portion, and the surface of the processing object, and the molten metal is supplied into the processing chamber through the supply port by the molten metal supply unit, and the molten metal is filled in the minute space. Is configured as. The “fine space” of the present invention mainly includes fine grooves having a width of 100 μm or less and fine non-through holes having a hole diameter of 100 μm or less formed in a wafer by etching.
 第1の発明による金属充填装置では、上記のように、載置部、溶融金属供給部およびシール部を内部に収容する気密のチャンバと、チャンバ内にガスを供給するガス供給部とを設け、溶融金属供給部の対向面と、対向面に設けられたシール部と、処理対象物の表面とにより処理室が形成され、溶融金属供給部により、供給口を介して処理室内に溶融金属が供給されて微細空間内に溶融金属が充填されるように金属充填装置を構成する。これにより、対向面と、シール部と、処理対象物の表面とにより形成した処理室内に溶融金属を供給して膜形成し、チャンバ内にガスを供給することにより、処理対象物の表面上の膜状の溶融金属を加圧することができる。この場合、凝固過程で溶融金属が部分的に凝固しても、その凝固部分以外の液相の溶融部分をガス圧によって確実に加圧することができる。そのため、凝固過程での溶融金属への加圧を維持することができる。また、処理室を構成する処理対象物(処理対象物が載置される載置部)、溶融金属供給部およびシール部が気密のチャンバ内に収容されるので、処理室を完全に開放した場合でも、チャンバ内の雰囲気および圧力の制御は自由に行うことが可能となる。その結果、処理対象物の搬入や搬出の際にも処理対象物の周囲の雰囲気および圧力の制御ができる。したがって、第1の発明によれば、凝固過程での溶融金属への加圧を維持することが可能で、かつ、処理対象物の搬入や搬出の際にも処理対象物の周囲の雰囲気および圧力の制御が可能である。 In the metal filling apparatus according to the first aspect of the present invention, as described above, an airtight chamber containing the mounting portion, the molten metal supply portion and the seal portion therein, and a gas supply portion for supplying gas into the chamber are provided. A processing chamber is formed by the opposing surface of the molten metal supply portion, the seal portion provided on the opposing surface, and the surface of the processing object, and the molten metal supply portion supplies molten metal into the processing chamber through the supply port. The metal filling apparatus is configured to fill the molten metal in the minute space. Thus, the molten metal is supplied into the processing chamber formed by the facing surface, the seal portion, and the surface of the processing object to form a film, and the gas is supplied into the chamber to form the film on the surface of the processing object. The film-like molten metal can be pressurized. In this case, even if the molten metal partially solidifies in the solidification process, the molten portion of the liquid phase other than the solidified portion can be reliably pressurized by the gas pressure. Therefore, the pressurization to the molten metal in the solidification process can be maintained. In addition, since the processing object (the mounting unit on which the processing object is placed), the molten metal supply unit, and the seal unit, which constitute the processing chamber, are housed in the airtight chamber, the processing chamber is completely opened. However, control of the atmosphere and pressure in the chamber can be freely performed. As a result, the atmosphere and pressure around the object to be treated can be controlled even when carrying in and out the object to be treated. Therefore, according to the first invention, it is possible to maintain the pressurization to the molten metal in the solidification process, and the atmosphere and pressure around the processing object even when carrying in and out the processing object. Control is possible.
 上記第1の発明による金属充填装置において、好ましくは、処理室内に溶融金属が供給された後に、チャンバ内において処理室が開放された状態で、ガス供給部から供給されたガスにより溶融金属が加圧されるように構成されている。このように構成すれば、処理室を開放することで容易に溶融金属をガスにより加圧することができる。また、本発明では、溶融金属供給部の対向面と、対向面に設けられたシール部と、処理対象物の表面とにより処理室が形成されるので、処理室の容積を極力小さくすることが可能である。そのため、処理室内に溶融金属が供給された後で処理室を開放しても、溶融金属が流動して処理対象物の周囲にはみ出すことを抑制することができる。 In the metal filling apparatus according to the first aspect of the invention, preferably, after the molten metal is supplied into the processing chamber, the molten metal is added by the gas supplied from the gas supply unit in a state where the processing chamber is opened in the chamber. It is configured to be pressed. According to this structure, the molten metal can be easily pressurized by the gas by opening the processing chamber. Further, in the present invention, since the processing chamber is formed by the facing surface of the molten metal supply portion, the seal portion provided on the facing surface, and the surface of the processing object, the volume of the processing chamber can be minimized. It is possible. Therefore, even if the processing chamber is opened after the molten metal is supplied into the processing chamber, it is possible to suppress the molten metal from flowing and protruding to the periphery of the object to be processed.
 上記第1の発明による金属充填装置において、好ましくは、金属充填装置は、ガス供給部から供給されたガスによりチャンバ内を予め所定の雰囲気に制御した状態で、処理室が開放されるように構成されている。このように構成すれば、処理室を開放してからチャンバ内を加圧する場合と異なり、処理室の開放と同時にガスによる溶融金属の加圧を開始することができるので、充填処理の処理時間を短縮することができる。また、処理室を開放したときに処理対象物上の溶融金属への加圧が不足する状態を回避することができるので、充填不良の発生を抑制することができる。 In the metal filling apparatus according to the first aspect of the invention, preferably, the metal filling apparatus is configured to open the processing chamber in a state in which the inside of the chamber is controlled to a predetermined atmosphere in advance by the gas supplied from the gas supply unit. It is done. According to this structure, unlike the case where the inside of the processing chamber is opened after the processing chamber is opened, pressurization of the molten metal by the gas can be started simultaneously with the opening of the processing chamber. It can be shortened. Moreover, since the state which the pressurization to the molten metal on a process target object runs short when the processing chamber is open | released, generation | occurrence | production of a filling defect can be suppressed.
 上記第1の発明による金属充填装置において、好ましくは、金属充填装置は、ガス供給部から供給されたガスによりチャンバ内を予め所定の雰囲気に制御するとともに、処理室内の圧力をチャンバ内の圧力以上にした状態で、処理室が開放されるように構成されている。このように構成すれば、処理室の内部の圧力を処理室の外部(チャンバ内)の圧力以上にした状態で処理室を開放できるので、容易かつ円滑に処理室を開放することができる。すなわち、処理室の内部の圧力が処理室の外部(チャンバ内)の圧力よりも小さい場合、処理室内外の圧力差によって開放動作を妨げる力が生じる。これに対し、処理室内外の圧力が同等か処理室内が相対的に高い圧力となる場合には、圧力差によって開放動作が妨げられることがなく、容易かつ円滑に処理室を開放することができる。処理室の内部の圧力を高くする方法としては、たとえば処理室内に溶融金属が供給された後、さらに供給を行うことにより供給圧力を加える方法、処理室内に加圧用のガスを送り込む方法、対向面の一部を変形または移動させて処理室の容積を機械的に縮小させる方法、などが可能である。なお、処理室を開放する時点では(シール部が圧縮状態から自然状態に戻るなどにより)処理室内の容積が増大することになるため、容積増大に伴って処理室内の圧力は低下する。そのため、処理室の開放タイミングに向けて処理室内を加圧してくことにより、開放に伴う処理室内の圧力低下を補うことができる。解放時の処理室の内部圧力は、外部圧力と同等の概ね一定値か僅かに増加させることが好ましい。 In the metal filling apparatus according to the first aspect of the invention, preferably, the metal filling apparatus controls the inside of the chamber to a predetermined atmosphere in advance by the gas supplied from the gas supply unit, and the pressure in the processing chamber is equal to or higher than the pressure in the chamber. The processing chamber is configured to be opened in the state of According to this structure, the processing chamber can be opened in a state where the pressure inside the processing chamber is equal to or higher than the pressure outside the processing chamber (inside the chamber), so that the processing chamber can be opened easily and smoothly. That is, when the pressure inside the processing chamber is smaller than the pressure outside the processing chamber (inside the chamber), a pressure difference between the inside and the outside of the processing chamber generates a force that hinders the opening operation. On the other hand, when the pressure inside and outside the processing chamber is equal or the pressure inside the processing chamber is relatively high, the pressure difference does not prevent the opening operation, and the processing chamber can be opened easily and smoothly. . As a method of increasing the pressure inside the processing chamber, for example, a method of applying a supply pressure by supplying molten metal after being supplied into the processing chamber, a method of feeding a gas for pressurization into the processing chamber, an opposite surface A method of mechanically reducing the volume of the processing chamber by deforming or moving a part of At the time of opening the processing chamber, the volume in the processing chamber increases (for example, due to the seal portion returning from the compressed state to the natural state), and therefore the pressure in the processing chamber decreases as the volume increases. Therefore, by pressurizing the processing chamber toward the opening timing of the processing chamber, it is possible to compensate for the pressure drop in the processing chamber due to the opening. Preferably, the internal pressure of the processing chamber at the time of release is increased to a generally constant value or slightly equal to the external pressure.
 上記処理室内に溶融金属が供給された後に処理室が開放される構成において、好ましくは、金属充填装置は、処理室内の溶融金属の凝固が完了する前に、処理室が開放されるように構成されている。このように構成すれば、処理対象物上の液相の溶融金属をガスにより加圧した状態で凝固させることができるので、空隙(ボイド)などの充填不良の発生を効果的に抑制することができる。 In the configuration in which the processing chamber is opened after the molten metal is supplied into the processing chamber, preferably, the metal filling apparatus is configured such that the processing chamber is opened before solidification of the molten metal in the processing chamber is completed. It is done. According to this structure, the molten metal in the liquid phase on the object to be treated can be solidified in a pressurized state by the gas, so that the occurrence of filling defects such as voids can be effectively suppressed. it can.
 この場合、好ましくは、溶融金属供給部は、溶融金属を加熱するための第1加熱部を含み、金属充填装置は、溶融金属供給部から処理対象物が離間されて処理室が開放されることに基づいて、処理対象物上の溶融金属が冷却されるように構成されている。このように構成すれば、第1加熱部によって、溶融金属供給部(供給口)側で溶融金属が凝固してしまうことを回避することができる。この場合、処理室を形成している状態では溶融金属供給部(対向面)側が熱源となるので、処理対象物を熱源となる溶融金属供給部から離間させて冷却することにより、処理対象物上の溶融金属を効率的に凝固させることができる。 In this case, preferably, the molten metal supply unit includes a first heating unit for heating the molten metal, and the metal filling apparatus separates the processing object from the molten metal supply unit and opens the processing chamber. , And the molten metal on the object to be treated is cooled. According to this structure, it is possible to prevent the molten metal from solidifying on the molten metal supply unit (supply port) side by the first heating unit. In this case, since the molten metal supply portion (opposite surface) side serves as a heat source in the state where the processing chamber is formed, the processing object is separated from the molten metal supply portion serving as the heat source and cooled. Of molten metal can be solidified efficiently.
 上記処理室が開放されることに基づいて処理対象物上の溶融金属が冷却される構成において、好ましくは、載置部は、処理対象物上の溶融金属を冷却するための冷却部を含む。このように構成すれば、処理対象物を熱源(溶融金属供給部)から離間させた状態で、載置部に設けられた冷却部によって、処理対象物上の溶融金属をより一層効率的に凝固させることができる。 In the configuration in which the molten metal on the processing object is cooled based on the fact that the processing chamber is opened, preferably, the placement unit includes a cooling unit for cooling the molten metal on the processing object. According to this structure, in a state where the object to be treated is separated from the heat source (molten metal supply unit), the molten metal on the object to be treated is solidified more efficiently by the cooling unit provided in the mounting unit. It can be done.
 上記溶融金属供給部が第1加熱部を含む構成において、好ましくは、載置部は、載置部上の処理対象物を加熱するための第2加熱部を含む。このように構成すれば、溶融金属を供給する際に処理対象物上で溶融金属が凝固しないように、載置部に設けられた第2加熱部によって載置部上の処理対象物を予め迅速に加熱(予熱)することができる。これにより、迅速に溶融金属の供給を開始することができるので、充填処理の処理時間を短縮することができる。 In the configuration in which the molten metal supply unit includes the first heating unit, preferably, the mounting unit includes a second heating unit for heating the object to be processed on the mounting unit. According to this structure, the second heating unit provided in the mounting unit can quickly advance the processing target on the mounting unit so that the molten metal does not solidify on the processing target when the molten metal is supplied. It can be heated (preheated). Thereby, since supply of molten metal can be started promptly, processing time of a filling process can be shortened.
 上記第1の発明による金属充填装置において、好ましくは、載置部および溶融金属供給部の少なくとも一方を互いに近接または離間させる方向に移動させる駆動部と、駆動部によりシール部と載置面上の処理対象物とを当接させ、処理室を形成させる制御を行う制御部とをさらに備える。このように構成すれば、載置部と溶融金属供給部とを近接する方向に相対移動させる制御を行うことによって、載置面上の処理対象物の表面と溶融金属供給部の対向面との距離を極力小さくした処理室を形成することができるので、溶融金属の使用量を低減することができる。また、溶融金属の供給後に載置部と溶融金属供給部との少なくとも一方を近接する方向に駆動させる制御を行うことにより、処理室内の溶融金属を機械的に加圧することも可能になり、その場合には機械的な圧力によって空隙(ボイド)などの充填不良の発生を効果的に抑制することができる。 In the metal filling apparatus according to the first aspect of the present invention, preferably, a drive unit for moving at least one of the mounting unit and the molten metal supply unit in a direction to move closer to or away from each other; And a control unit that performs control to cause the processing chamber to be in contact with the processing object. According to this structure, by performing control to relatively move the placement unit and the molten metal supply unit in the direction in which the placement unit and the molten metal supply unit approach each other, the surface of the processing object on the placement surface and the opposing surface of the molten metal supply unit Since the processing chamber can be formed with the distance as short as possible, the amount of molten metal used can be reduced. Further, by performing control to drive at least one of the mounting unit and the molten metal supply unit in the direction in which the mounting unit and the molten metal supply unit approach each other after supplying the molten metal, it becomes possible to mechanically pressurize the molten metal in the processing chamber, In some cases, mechanical pressure can effectively suppress the occurrence of filling defects such as voids.
 上記第1の発明による金属充填装置において、好ましくは、チャンバの外部に設けられ、溶融金属供給部に溶融金属を供給する金属供給ポンプと、チャンバの外部の金属供給ポンプとチャンバの内部の溶融金属供給部とを接続する供給管とをさらに備える。このように構成すれば、気密のチャンバ内の溶融金属供給部に、容易に溶融金属を送ることができる。また、金属供給ポンプおよび供給管によって、溶融金属供給部から処理室に供給する溶融金属に供給圧力を付与することができる。その結果、供給圧力によって効果的に微細空間への充填を行うことができるので、充填不良の発生を効果的に抑制することができる。 In the metal filling apparatus according to the first aspect of the invention, preferably, a metal supply pump provided outside the chamber for supplying the molten metal to the molten metal supply, a metal supply pump outside the chamber and the molten metal inside the chamber And a supply pipe connected to the supply unit. With this configuration, the molten metal can be easily sent to the molten metal supply in the airtight chamber. Further, the supply pressure can be applied to the molten metal supplied from the molten metal supply unit to the processing chamber by the metal supply pump and the supply pipe. As a result, since the fine space can be effectively filled by the supply pressure, the occurrence of the filling defect can be effectively suppressed.
 上記第1の発明による金属充填装置において、好ましくは、溶融金属供給部は、溶融金属供給部の内部に設けられ、供給口に接続された溶融金属の導入部と、導入部内に配置され、供給口に向けて進退して供給口を開閉可能に構成された弁体とをさらに含む。このように構成すれば、弁体を移動させることにより、導入部から処理室への溶融金属の供給と供給停止との切替を、処理室4に対してより近い位置で行うことができる。また、供給口を閉じる際に導入部内で弁体を供給口に向けて移動させることにより、弁体の移動に伴う機械的な圧力を処理室側に付与することができる。その結果、開放前の処理室の内部の圧力が処理室の外部(チャンバ内)の圧力よりも低い場合にも、容易かつ円滑に処理室を開放することができる。 In the metal filling apparatus according to the first aspect of the invention, preferably, the molten metal supply unit is provided inside the molten metal supply unit, and is arranged in the introduction unit of the molten metal connected to the supply port, and in the introduction unit. And a valve body configured to be able to open and close the supply port by advancing and retracting toward the mouth. According to this structure, by moving the valve body, switching between the supply of molten metal from the introduction unit to the processing chamber and the supply stop of the molten metal can be performed at a position closer to the processing chamber 4. Further, by moving the valve body toward the supply port in the introduction part when closing the supply port, mechanical pressure accompanying the movement of the valve body can be applied to the processing chamber side. As a result, even when the pressure inside the processing chamber before opening is lower than the pressure outside the processing chamber (inside the chamber), the processing chamber can be opened easily and smoothly.
 上記第1の発明による金属充填装置において、好ましくは、溶融金属供給部および載置部の少なくとも一方は、載置面に平行な方向に移動可能に構成されている。ここで、本発明では、溶融金属供給部の対向面と、対向面に設けられたシール部と、処理対象物の表面とにより処理室を形成するので、たとえば処理対象物の表面のうち微細空間が形成された局所的な領域に限定して処理室を形成することができる。そこで、さらに溶融金属供給部および載置部の少なくとも一方を載置面に平行な方向に移動させることにより、処理対象物の表面上の任意の位置に局所的な処理室を形成することが可能となる。そのため、処理対象物の表面上の局所領域で金属充填を行う場合には、処理対象物の表面上のほぼ全体に処理室を形成する場合と比べて、溶融金属の使用量をさらに低減することができる。 In the metal filling apparatus according to the first aspect of the invention, preferably, at least one of the molten metal supply portion and the mounting portion is configured to be movable in a direction parallel to the mounting surface. Here, in the present invention, the processing chamber is formed by the facing surface of the molten metal supply portion, the seal portion provided on the facing surface, and the surface of the object to be treated. The processing chamber can be formed limited to the local area where the Therefore, by moving at least one of the molten metal supply unit and the mounting unit in a direction parallel to the mounting surface, it is possible to form a local processing chamber at an arbitrary position on the surface of the processing object. It becomes. Therefore, when metal filling is performed in a local region on the surface of the processing object, the amount of molten metal used is further reduced as compared to the case where the processing chamber is formed almost all over the surface of the processing object. Can.
 上記第1の発明による金属充填装置において、好ましくは、チャンバ内を排気して減圧する減圧部をさらに備え、減圧部によりチャンバ内が減圧された状態で、処理室が形成されるように構成されている。このように構成すれば、減圧状態の処理室内に溶融金属を供給した後で、ガス供給部によりチャンバ内を加圧することにより、溶融金属を微細空間内に差圧充填することが可能となる。これにより、より一層効果的に、微細空間への充填不良の発生を抑制することができる。 The metal filling apparatus according to the first aspect of the invention preferably further comprises a pressure reducing section for evacuating and exhausting the inside of the chamber, and the processing chamber is formed in a state where the pressure inside the chamber is reduced by the pressure reducing section. ing. According to this structure, after the molten metal is supplied into the reduced pressure processing chamber, the inside of the chamber is pressurized by the gas supply unit, so that the molten metal can be differentially filled in the fine space. As a result, the occurrence of the filling failure in the fine space can be more effectively suppressed.
 上記第1の発明による金属充填装置において、好ましくは、チャンバは、処理対象物を出し入れするための開閉可能な出入口を含む。このように構成すれば、チャンバ内を所望の雰囲気および圧力状態に維持したまま、容易に処理対象物の搬入や搬出を行うことができるようになる。たとえばチャンバ内を不活性ガス雰囲気にすることにより、処理対象物の搬入出の際に溶融金属供給部の対向面に付着した溶融金属の残存部分が外気に晒されて酸化されることなどを抑制することができる。 In the metal filling apparatus according to the first aspect of the invention, preferably, the chamber includes an openable / closable port for taking in and out an object to be treated. With this configuration, it is possible to easily carry in and out the object to be treated while maintaining the inside of the chamber in a desired atmosphere and pressure. For example, by setting the inside of the chamber to an inert gas atmosphere, it is possible to prevent the remaining portion of the molten metal adhering to the opposite surface of the molten metal supply portion from being exposed to external air and oxidized when loading and unloading the object to be treated can do.
 第2の発明による金属充填方法は、処理対象物の表面に開口するように形成された微細空間内に溶融金属を充填する金属充填方法であって、気密のチャンバ内において、処理対象物の表面と、表面と対向する対向面に設けられた環状のシール部とを当接させて、対向面と、シール部と、処理対象物の表面とにより処理室を形成し、処理室内に溶融金属を供給して微細空間に溶融金属を供給し、シール部と処理対象物とを離間させて、溶融金属の供給後の処理室をチャンバ内において開放し、処理対象物、対向面およびシール部を内部に収容するチャンバ内をガスにより加圧して、処理対象物上の溶融金属をガスにより加圧する。 A metal filling method according to a second aspect of the present invention is a metal filling method for filling a molten metal in a minute space formed to be open on the surface of an object to be treated, and in an airtight chamber, the surface of the object to be treated And an annular seal portion provided on the opposite surface facing the surface to abut the surface, the seal portion and the surface of the object to be treated to form a processing chamber, and molten metal is formed in the processing chamber. Supply the molten metal to the fine space to separate the seal from the object to be treated, open the processing chamber after the supply of the molten metal in the chamber, and insert the object to be treated, the opposite surface and the seal inside. The interior of the chamber housed in the chamber is pressurized with gas, and the molten metal on the object to be treated is pressurized with gas.
 第2の発明による金属充填方法では、上記のように、対向面と、シール部と、処理対象物の表面とにより形成した処理室内に溶融金属を供給し、チャンバ内をガスにより加圧することにより、処理対象物の表面上の膜状の溶融金属を加圧することによって、凝固過程で溶融金属が部分的に凝固しても、その凝固部分以外の液相の溶融部分をガス圧によって確実に加圧することができる。そのため、凝固過程での溶融金属への加圧を維持することができる。また、処理室を気密のチャンバ内において開放することによって、処理室を完全に開放した場合でも、チャンバ内の雰囲気および圧力の制御は自由に行うことが可能となる。したがって、第2の発明によれば、凝固過程での溶融金属への加圧を維持することが可能で、かつ、処理対象物の搬入や搬出の際にも処理対象物の周囲の雰囲気および圧力の制御が可能である。 In the metal filling method according to the second invention, as described above, the molten metal is supplied into the processing chamber formed by the facing surface, the seal portion, and the surface of the processing object, and the inside of the chamber is pressurized with gas. By pressurizing the film-like molten metal on the surface of the object to be treated, even if the molten metal partially solidifies in the solidification process, the molten pressure of the liquid phase other than the solidified portion is reliably applied by the gas pressure. Can be pressed. Therefore, the pressurization to the molten metal in the solidification process can be maintained. Further, by opening the processing chamber in the airtight chamber, even when the processing chamber is completely opened, control of the atmosphere and pressure in the chamber can be freely performed. Therefore, according to the second invention, it is possible to maintain the pressurization to the molten metal in the solidification process, and the atmosphere and pressure around the object to be treated even when carrying in and out the object to be treated Control is possible.
 上記第2の発明による金属充填方法において、好ましくは、チャンバ内を予め加圧した後、加圧状態のチャンバ内において処理室を開放する。このように構成すれば、処理室の開放と同時にガスによる溶融金属の加圧を開始することができる。その結果、処理対象物の表面上の溶融金属に圧力が印加されないかまたは印加される圧力が不足する状態を回避することができるので、充填不良の発生を抑制することができる。また、充填処理の処理時間を短縮することができる。 In the metal filling method according to the second aspect of the invention, preferably, the inside of the chamber is pressurized in advance, and then the processing chamber is opened in the pressurized chamber. According to this structure, pressurization of the molten metal by the gas can be started simultaneously with the opening of the processing chamber. As a result, since no pressure is applied to the molten metal on the surface of the object to be treated or a shortage of applied pressure can be avoided, the occurrence of the filling failure can be suppressed. In addition, the processing time of the filling process can be shortened.
 上記第2の発明による金属充填方法において、好ましくは、チャンバ内を予め加圧した後、加圧状態のチャンバ内において、処理室内の圧力をチャンバ内の圧力以上にした状態で溶融金属を供給しながら処理室を開放する。このように構成すれば、処理室の内部の圧力を処理室の外部(チャンバ内)の圧力以上にした状態で処理室を開放できるので、容易かつ円滑に処理室を開放することができる。処理室の内部の圧力を高くする方法としては、たとえば処理室内に溶融金属が供給された後、さらに供給を行うことにより供給圧力を加える方法、処理室内に加圧用のガスを送り込む方法、対向面の一部を変形または移動させて処理室の容積を機械的に縮小させる方法、などが可能である。 In the metal filling method according to the second aspect of the present invention, preferably, after pre-pressurizing the inside of the chamber, the molten metal is supplied in a state where the pressure in the processing chamber is equal to or higher than the pressure in the chamber. While opening the treatment room. According to this structure, the processing chamber can be opened in a state where the pressure inside the processing chamber is equal to or higher than the pressure outside the processing chamber (inside the chamber), so that the processing chamber can be opened easily and smoothly. As a method of increasing the pressure inside the processing chamber, for example, a method of applying a supply pressure by supplying molten metal after being supplied into the processing chamber, a method of feeding a gas for pressurization into the processing chamber, an opposite surface A method of mechanically reducing the volume of the processing chamber by deforming or moving a part of
 上記第2の発明による金属充填方法において、好ましくは、処理室内の溶融金属の凝固が完了する前に、処理室を開放する。このように構成すれば、処理対象物上の液相の溶融金属をガスにより加圧した状態で凝固させることができるので、効果的に充填不良の発生を抑制することができる。 In the metal filling method according to the second aspect of the invention, preferably, the processing chamber is opened before solidification of the molten metal in the processing chamber is completed. According to this structure, since the molten metal in the liquid phase on the object to be treated can be solidified in a pressurized state by the gas, the occurrence of the filling failure can be effectively suppressed.
 上記第2の発明による金属充填方法において、好ましくは、溶融金属の供給に先立って、処理対象物の表面のうち微細空間を含む処理領域の溶融金属に対する濡れ性を向上させる処理、または、処理対象物の表面のうち処理領域よりも外側の周囲領域の溶融金属に対する濡れ性を低下させる処理の少なくともいずれかをさらに行う。ここで、濡れ性とは、固体表面に対する液体の親和性を示す概念である。濡れ性を向上させる処理は、たとえば、処理対象物よりも溶融金属との濡れ性が高い材料を、処理対象物の表面に成膜する処理や、プラズマ等により処理対象物の表面酸化物を除去する処理、表面状態を活性化させる処理を含む。濡れ性を低下させる処理は、たとえば、処理対象物よりも溶融金属との濡れ性が低い材料を、処理対象物の表面に成膜する処理や、処理対象物の表面を酸化する処理を含む。 In the metal filling method according to the second aspect of the invention, preferably, prior to the supply of the molten metal, a treatment to improve the wettability to the molten metal of the treatment area including the fine space among the surfaces of the treatment object, or a treatment target At least one of the treatments for reducing the wettability to the molten metal of the surrounding area outside the treated area of the surface of the object is further performed. Here, the wettability is a concept indicating the affinity of the liquid to the solid surface. The process of improving the wettability is, for example, a process of forming a film of a material having higher wettability with the molten metal than the processing object on the surface of the processing object, removing the surface oxide of the processing object by plasma or the like Treatment, and treatment to activate the surface state. The process of reducing the wettability includes, for example, a process of forming a film having a lower wettability with the molten metal than the processing object on the surface of the processing object, and a process of oxidizing the surface of the processing object.
 上記のように構成すれば、処理領域の濡れ性を相対的に高くし、処理領域よりも外側の周囲領域の濡れ性を相対的に低い状態にすることができる。これにより、処理室を開放した場合にも、処理領域と周囲領域との境界に溶融金属の界面を形成して、処理領域の溶融金属が周囲領域側に拡がることを抑制し、微細空間内に効果的に溶融金属を充填することができる。 According to the above configuration, the wettability of the processing area can be made relatively high, and the wettability of the surrounding area outside the processing area can be made relatively low. Thereby, even when the processing chamber is opened, an interface of the molten metal is formed at the boundary between the processing area and the surrounding area, and the molten metal in the processing area is prevented from spreading to the surrounding area side, and within the fine space. The molten metal can be effectively filled.
 本発明によれば、上記のように、凝固過程での溶融金属への加圧を維持することが可能で、かつ、処理対象物の搬入や搬出の際にも処理対象物の周囲の雰囲気および圧力の制御ができる。 According to the present invention, as described above, pressurization to the molten metal in the solidification process can be maintained, and the atmosphere around the object to be treated and the atmosphere around the object to be treated are also carried out and carried out. Can control the pressure.
本発明の第1実施形態による金属充填装置を示した模式図である。FIG. 1 is a schematic view showing a metal filling apparatus according to a first embodiment of the present invention. 図1において処理室を形成した状態の処理室近傍の拡大断面図である。It is an expanded sectional view of the processing chamber vicinity of the state which formed the processing chamber in FIG. 処理室形成時のウェハの表面上の各領域とシール部との位置関係を説明するためのウェハの平面図である。It is a top view of a wafer for explaining the physical relationship of each field on a surface of a wafer at the time of processing room formation, and a seal part. 処理室開放後のウェハの表面上の各領域と溶融金属との位置関係を説明するためのウェハの断面図である。It is sectional drawing of the wafer for demonstrating the positional relationship of each area | region on the surface of the wafer after process chamber open | release, and a molten metal. 貫通電極の第1の形成方法における微細空間形成工程(A)、金属充填工程(B)、反対面の除去工程(C)を示した模式図である。It is the schematic diagram which showed the fine space formation process (A), the metal filling process (B), and the removal process (C) of an opposite surface in the 1st formation method of a penetration electrode. 貫通電極の第2の形成方法における微細空間形成工程(A)、金属充填工程(B)、および、支持基板を取り外した状態(C)を示した模式図である。It is the schematic diagram which showed the fine space formation process (A) in the 2nd formation method of a penetration electrode, a metal filling process (B), and the state (C) which removed the support substrate. 本発明の第1実施形態による貫通電極形成処理を説明するためのフロー図である。It is a flowchart for demonstrating the penetration electrode formation process by 1st Embodiment of this invention. 本発明の第1実施形態による金属充填処理を説明するためのフロー図である。It is a flowchart for demonstrating the metal filling process by 1st Embodiment of this invention. 本発明の第2実施形態による金属充填装置を示した模式図である。FIG. 5 is a schematic view showing a metal filling apparatus according to a second embodiment of the present invention. 本発明の第3実施形態による金属充填装置を示した模式図である。FIG. 7 is a schematic view showing a metal filling apparatus according to a third embodiment of the present invention. 本発明の第4実施形態による金属充填装置を示した模式図である。FIG. 10 is a schematic view showing a metal filling apparatus according to a fourth embodiment of the present invention. 本発明の第5実施形態による金属充填装置の溶融金属供給部を示した模式図である。It is the model which showed the molten metal supply part of the metal filling apparatus by 5th Embodiment of this invention. 図12における処理室付近の水平断面の模式図である。It is a schematic diagram of the horizontal cross section of process chamber vicinity in FIG.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
[第1実施形態]
 まず、図1~図6を参照して、第1実施形態による金属充填装置100について説明する。
First Embodiment
First, a metal filling apparatus 100 according to a first embodiment will be described with reference to FIGS. 1 to 6.
(金属充填装置の構成)
 図1に示すように、第1実施形態による金属充填装置100は、処理対象物の一例である半導体ウェハ(以下、単にウェハ1という)の表面1aに開口するように形成されたビアなどの微細空間2(図5および図6参照)内に溶融金属3を充填する装置である。微細空間2に充填された溶融金属3が凝固することにより形成された導体金属により、シリコン貫通電極(Through-silicon via;TSV)が形成される。
(Configuration of metal filling device)
As shown in FIG. 1, the metal filling apparatus 100 according to the first embodiment has fine features such as vias formed so as to be opened on the surface 1 a of a semiconductor wafer (hereinafter simply referred to as wafer 1) which is an example of a processing object. It is an apparatus for filling the molten metal 3 in the space 2 (see FIGS. 5 and 6). Through-silicon vias (TSVs) are formed by the conductive metal formed by the solidification of the molten metal 3 filled in the minute space 2.
 ウェハ1は、一般的なシリコンなどの半導体材料から構成されている。ウェハ1は、たとえば約200mm等の所定の直径を有する略円形状であり、複数の半導体チップを切り出すことが可能である。また、ウェハ1は、エッチング処理などの前工程により複数の微細空間2(図5および図6参照)が形成された状態で、金属充填装置100に搬入される。微細空間2の形状および寸法は特に限定されるものではないが、たとえば直径が数μm、深さが数十μm程度の丸穴である。 The wafer 1 is made of a general semiconductor material such as silicon. The wafer 1 has a substantially circular shape having a predetermined diameter of, for example, about 200 mm, and can cut out a plurality of semiconductor chips. In addition, the wafer 1 is carried into the metal filling apparatus 100 in a state where the plurality of minute spaces 2 (see FIGS. 5 and 6) are formed by the pre-process such as the etching process. The shape and size of the minute space 2 are not particularly limited, and for example, it is a round hole having a diameter of several μm and a depth of several tens of μm.
 溶融金属3は、たとえば、鉛フリー半田である。鉛フリー半田は、充填に用いられる材料の内では比較的低い融点を有するため取り扱いが容易である。溶融金属3に用いる金属材料としては、微細空間2に充填する目的や充填金属の機能に応じて、Au、Ag、Cu、Pt、Pd、Ir、Al、Ni、Sn、In、Bi、Znやこれらの合金を採用することができるし、上記以外の金属材料を用いてもよい。 The molten metal 3 is, for example, lead-free solder. Lead-free solder is easy to handle because it has a relatively low melting point among the materials used for filling. As a metal material used for the molten metal 3, Au, Ag, Cu, Pt, Pd, Ir, Al, Ni, Sn, In, Bi, Zn, or the like depending on the purpose of filling the minute space 2 and the function of the filler metal. These alloys can be adopted, and metal materials other than the above may be used.
 金属充填装置100は、ウェハ1が載置される載置面11を有する載置部10と、載置面11と対向する対向面21を含む溶融金属供給部20と、対向面21に設けられた環状のシール部22と、を備える。また、金属充填装置100は、載置部10、溶融金属供給部20およびシール部22を内部に収容する気密のチャンバ30と、チャンバ30内にガスを供給するガス供給部40とを備えている。図1の構成例では、金属充填装置100は、金属充填装置100の動作を制御する制御部50をさらに備えている。 The metal filling apparatus 100 is provided on the opposite surface 21 with the mounting portion 10 having the mounting surface 11 on which the wafer 1 is to be mounted, the molten metal supply portion 20 including the opposing surface 21 opposing the mounting surface 11, and And an annular seal portion 22. In addition, the metal filling apparatus 100 includes an airtight chamber 30 that accommodates the placement unit 10, the molten metal supply unit 20, and the seal unit 22 therein, and a gas supply unit 40 that supplies a gas into the chamber 30. . In the configuration example of FIG. 1, the metal filling apparatus 100 further includes a control unit 50 that controls the operation of the metal filling apparatus 100.
 載置部10は、ウェハ1の載置台(ステージ)として構成されている。載置部10は、上面に平坦な載置面11を有し、載置面11上に載置されたウェハ1を支持するように構成されている。なお、第1実施形態では、載置面11が概ね水平であり、水平面と直交する上方向を向く(載置面11と対向面21とが上下方向に対向する)ように配置されている。 The mounting unit 10 is configured as a mounting table (stage) of the wafer 1. The mounting unit 10 has a flat mounting surface 11 on the upper surface, and is configured to support the wafer 1 mounted on the mounting surface 11. In the first embodiment, the placement surface 11 is substantially horizontal, and is disposed so as to face upward (that is, the placement surface 11 and the opposing surface 21 face in the vertical direction) orthogonal to the horizontal plane.
 載置部10および溶融金属供給部20の少なくとも一方は、上下方向(互いに近接または離間する方向)に移動可能となるように構成されている。図1の構成例では、金属充填装置100は、載置部10を溶融金属供給部20に対して近接または離間させる上下方向に移動させる駆動部51を備えている。溶融金属供給部20は、載置部10の上方位置(載置部10と上下にオーバラップする位置)で固定されている。 At least one of the mounting unit 10 and the molten metal supply unit 20 is configured to be movable in the up and down direction (directions in which they approach or separate from each other). In the configuration example of FIG. 1, the metal filling apparatus 100 includes a drive unit 51 that moves the placement unit 10 in the vertical direction to move the placement unit 10 closer to or away from the molten metal supply unit 20. The molten metal supply unit 20 is fixed at an upper position of the mounting unit 10 (a position overlapping the mounting unit 10 in the vertical direction).
 溶融金属供給部20は、載置部10側の表面(下面)が対向面21となっている。対向面21は、載置面11と概ね平行な(概ね水平な)平坦面となっている。対向面21は、平坦面でなくてもよい。図2に示すように、対向面21には、溶融金属3の供給口23が設けられている。これにより、溶融金属供給部20は、供給口23(図2参照)を介して、後述する処理室4内に溶融金属3を供給するように構成されている。 The surface (lower surface) of the molten metal supply unit 20 on the side of the mounting unit 10 is an opposing surface 21. The opposing surface 21 is a flat surface generally parallel (generally horizontal) to the mounting surface 11. The facing surface 21 may not be flat. As shown in FIG. 2, a supply port 23 of the molten metal 3 is provided on the facing surface 21. Thereby, the molten metal supply unit 20 is configured to supply the molten metal 3 into the processing chamber 4 described later via the supply port 23 (see FIG. 2).
 シール部22は、溶融金属供給部20の対向面21において、供給口23を取り囲むように対向面21に環状(図3参照)に設けられている。つまり、対向面21は、シール部22によって、環状のシール部22の内側の供給口23を含んだ領域と、シール部22の外側の領域とに区画されている。シール部22は、例えば弾性体により形成され、対向面21から載置部10側に突出するように設けられている。図1~図3の構成例では、シール部22は、円形のウェハ1の外周近傍に沿うように所定の直径を有する。 The seal portion 22 is provided annularly (see FIG. 3) on the opposing surface 21 so as to surround the supply port 23 on the opposing surface 21 of the molten metal supply portion 20. That is, the opposing surface 21 is divided by the seal portion 22 into a region including the supply port 23 inside the annular seal portion 22 and a region outside the seal portion 22. The seal portion 22 is formed of, for example, an elastic body, and is provided so as to protrude from the facing surface 21 to the mounting portion 10 side. In the configuration example of FIGS. 1 to 3, the seal portion 22 has a predetermined diameter along the vicinity of the outer periphery of the circular wafer 1.
 第1実施形態では、図2に示したように、金属充填装置100は、対向面21と、シール部22と、ウェハ1の表面1aとにより処理室4が形成され、溶融金属供給部20により、供給口23を介して処理室4内に溶融金属3が供給されて微細空間2内に溶融金属3が充填されるように構成されている。具体的には、制御部50が、図1に示す駆動部51によりシール部22と載置面11上のウェハ1とを当接させ、処理室4(図2参照)を形成させる制御を行うように構成されている。すなわち、駆動部51が載置部10を上昇させることにより、シール部22とウェハ1の表面1aとが上下方向に当接して、処理室4が形成される。 In the first embodiment, as shown in FIG. 2, in the metal filling apparatus 100, the processing chamber 4 is formed by the facing surface 21, the seal part 22 and the surface 1 a of the wafer 1, and the molten metal supply part 20 The molten metal 3 is supplied into the processing chamber 4 through the supply port 23 so that the molten metal 3 is filled in the minute space 2. Specifically, the control unit 50 controls the sealing unit 22 and the wafer 1 on the mounting surface 11 to be in contact with each other by the driving unit 51 shown in FIG. 1 to form the processing chamber 4 (see FIG. 2). Is configured as. That is, when the drive unit 51 raises the placement unit 10, the seal unit 22 and the surface 1a of the wafer 1 abut in the vertical direction, and the processing chamber 4 is formed.
 図2に示したように、処理室4は、ウェハ1の表面1aと対向面21とが僅かな所定間隔Dを隔てて離間した状態で、ウェハ1の表面1aと当接するシール部22により周囲が封止されることにより、密閉状態の充填空間として形成される。間隔Dは、処理室4の内部高さに相当する。処理室4が形成された状態では、シール部22の内側(処理室4内)に、対向面21の供給口23と、ウェハ1の微細空間2とが配置される。 As shown in FIG. 2, the processing chamber 4 is surrounded by the seal portion 22 in contact with the surface 1 a of the wafer 1 in a state where the surface 1 a of the wafer 1 and the opposing surface 21 are separated by a slight predetermined distance D. Is sealed to form a sealed filling space. The interval D corresponds to the internal height of the processing chamber 4. In the state in which the processing chamber 4 is formed, the supply port 23 of the facing surface 21 and the minute space 2 of the wafer 1 are disposed inside the sealing portion 22 (in the processing chamber 4).
 処理室4の形成状態で、供給口23から処理室4内に溶融金属3が供給されることにより、溶融金属3がウェハ1の表面1aに供給され、表面1aに開口する微細空間2内に溶融金属3が流入する。なお、処理室4は完全な密閉状態でなくてもよく、たとえばウェハ1の表面1aとシール部22との間に微小なシール漏れがあったとしても問題ない。 In the formation state of the processing chamber 4, the molten metal 3 is supplied from the supply port 23 into the processing chamber 4, whereby the molten metal 3 is supplied to the surface 1 a of the wafer 1 and enters the minute space 2 opened in the surface 1 a. Molten metal 3 flows in. The processing chamber 4 may not be completely sealed, and there is no problem even if, for example, there is a minute seal leak between the surface 1 a of the wafer 1 and the seal portion 22.
 図1の構成例では、金属充填装置100は、チャンバ30の外部に設けられ、溶融金属供給部20に溶融金属3を供給する金属供給ポンプ52と、チャンバ30の外部の金属供給ポンプ52とチャンバ30の内部の溶融金属供給部20とを接続する供給管53とを備えている。金属供給ポンプ52は、チャンバ30の下方に配置され、チャンバ30の下部隔壁33を貫通する供給管53を介して溶融金属供給部20に接続されている。下部隔壁33と供給管53との間はシールされている。供給管53は、図示しない接続部(管継手)を介して、溶融金属供給部20に形成された通路24に接続している。これにより、金属供給ポンプ52から、溶融金属3が所定の吐出圧で溶融金属供給部20に供給される。 In the configuration example of FIG. 1, the metal filling apparatus 100 is provided outside the chamber 30 and supplies the molten metal 3 to the molten metal supply unit 20, the metal supply pump 52 outside the chamber 30 and the chamber And 30, a supply pipe 53 for connecting the molten metal supply unit 20 inside. The metal supply pump 52 is disposed below the chamber 30 and connected to the molten metal supply unit 20 through a supply pipe 53 penetrating the lower partition 33 of the chamber 30. The space between the lower partition wall 33 and the supply pipe 53 is sealed. The supply pipe 53 is connected to a passage 24 formed in the molten metal supply unit 20 via a connection (not shown) (a pipe joint). Thereby, the molten metal 3 is supplied from the metal supply pump 52 to the molten metal supply unit 20 at a predetermined discharge pressure.
 第1実施形態では、溶融金属供給部20は、溶融金属供給部20の内部に設けられるとともに供給口23に接続された溶融金属3の導入部25を含んでいる。また、溶融金属供給部20は、導入部25内に配置されるとともに供給口23に向けて進退して供給口23を開閉可能に構成された弁体26aを含んでいる。導入部25は、溶融金属供給部20の内部空間として形成されており、金属供給ポンプ52と接続する通路24と、導入部25の下端部に位置する供給口23とに連通している。弁体26aは、弁体駆動部26bとともに、溶融金属3の充填バルブ26を構成している。弁体26aは、弁体駆動部26bによって、供給口23を塞ぐ閉位置と、供給口23から上方に離間して開放する開位置との間を、上下方向に移動することが可能である。 In the first embodiment, the molten metal supply unit 20 includes the introduction unit 25 of the molten metal 3 provided inside the molten metal supply unit 20 and connected to the supply port 23. Further, the molten metal supply unit 20 includes a valve body 26 a disposed in the introduction unit 25 and configured to be able to open and close the supply port 23 by advancing and retreating toward the supply port 23. The introduction portion 25 is formed as an internal space of the molten metal supply portion 20 and is in communication with the passage 24 connected to the metal supply pump 52 and the supply port 23 located at the lower end portion of the introduction portion 25. The valve body 26 a constitutes the filling valve 26 of the molten metal 3 together with the valve body driving portion 26 b. The valve body 26a can be vertically moved by the valve body driving unit 26b between a closed position closing the supply port 23 and an open position spaced apart and open from the supply port 23.
 このように、第1実施形態では、溶融金属供給部20は、金属供給ポンプ52の吐出圧により、溶融金属3を所定の供給圧力で処理室4内に供給することが可能である。また、溶融金属供給部20は、充填バルブ26を閉じる際に弁体26aが導入部25内で供給口23に向けて移動することにより、溶融金属3に対して機械的な圧力を付与することが可能である。なお、溶融金属3が供給され供給口23が閉鎖された後で、駆動部51により載置部10を溶融金属供給部20側に向けて近接する方向に駆動してもよい。この場合、載置部10上のウェハ1が対向面21に近付く方向に押圧されるので、溶融金属3に対して機械的な圧力を付与することが可能である。これらの溶融金属3の加圧は、ウェハ1の表面1a上に供給された溶融金属3が微細空間2内に充填されるのを促進し、微細空間2内に空隙(ボイド)などが残ることを抑制する。 As described above, in the first embodiment, the molten metal supply unit 20 can supply the molten metal 3 into the processing chamber 4 at a predetermined supply pressure by the discharge pressure of the metal supply pump 52. Further, the molten metal supply unit 20 applies mechanical pressure to the molten metal 3 by moving the valve body 26 a toward the supply port 23 in the introduction unit 25 when the filling valve 26 is closed. Is possible. Alternatively, after the molten metal 3 is supplied and the supply port 23 is closed, the mounting unit 10 may be driven by the drive unit 51 in the direction toward the molten metal supply unit 20 side. In this case, since the wafer 1 on the placement unit 10 is pressed in a direction to approach the facing surface 21, it is possible to apply mechanical pressure to the molten metal 3. The pressurization of the molten metal 3 promotes the filling of the molten metal 3 supplied on the surface 1 a of the wafer 1 into the minute space 2, and voids (voids) and the like remain in the minute space 2. Suppress.
 なお、溶融金属3は、処理室4内に供給される際には、金属材料の液相温度以上の状態に保たれる。供給途中や、ウェハ1の表面1a上への供給直後に溶融金属3が凝固するのを回避するため、溶融金属供給部20やウェハ1が供給時に予め液相温度以上に維持されていることが好ましい。 In addition, when the molten metal 3 is supplied into the processing chamber 4, the molten metal 3 is maintained at the liquid phase temperature or more of the metal material. In order to avoid solidification of the molten metal 3 during supply or immediately after the supply onto the surface 1 a of the wafer 1, the molten metal supply unit 20 and the wafer 1 are maintained in advance at the liquidus temperature or more at the time of supply. preferable.
 そこで、第1実施形態では、図2に示すように、溶融金属供給部20は、溶融金属3を加熱するためのヒータ27を含んでいる。ヒータ27は、図2のように溶融金属供給部20に内蔵されていてもよいし、溶融金属供給部20の表面に取り付けられていてもよい。また、第1実施形態では、載置部10は、載置部10上のウェハ1を加熱するためのヒータ12を含んでいる。ヒータ12は、図2のように載置部10に内蔵されていてもよいし、載置部10の載置面11に露出するように取り付けられていてもよい。ヒータ27およびヒータ12は、それぞれ、特許請求の範囲の「第1加熱部」および「第2加熱部」の一例である。ヒータ27およびヒータ12は、抵抗発熱体や、ランプヒータなど、どのような構成であってもよい。ヒータ27やヒータ12を設ける代わりに、チャンバ30内を加熱するヒータを設けてもよい。 Therefore, in the first embodiment, as shown in FIG. 2, the molten metal supply unit 20 includes a heater 27 for heating the molten metal 3. The heater 27 may be built in the molten metal supply unit 20 as shown in FIG. 2 or may be attached to the surface of the molten metal supply unit 20. Moreover, in the first embodiment, the placement unit 10 includes the heater 12 for heating the wafer 1 on the placement unit 10. The heater 12 may be built in the placement unit 10 as shown in FIG. 2 or may be attached so as to be exposed on the placement surface 11 of the placement unit 10. The heater 27 and the heater 12 are examples of the “first heating unit” and the “second heating unit” in the claims respectively. The heater 27 and the heater 12 may have any configuration such as a resistance heating element or a lamp heater. Instead of providing the heater 27 and the heater 12, a heater for heating the inside of the chamber 30 may be provided.
 ヒータ27およびヒータ12は、制御部50により所定の加熱温度に制御される。導入部25内および供給口23付近の溶融金属3が凝固しないように、ヒータ27は、金属充填処理の動作中は常時作動するように制御される。ヒータ12は、ウェハ1の予熱のため、溶融金属3の供給前に作動される。ヒータ12は、たとえばウェハ1の載置後、処理室4の形成前に作動する。処理室4の形成状態(特に溶融金属3の供給後)では、ヒータ27が熱源となるので、必ずしもヒータ12を作動させなくてもよい。また、溶融金属3の供給後、溶融金属3を凝固させる段階では、ヒータ12は停止してもよい。 The heater 27 and the heater 12 are controlled by the control unit 50 to a predetermined heating temperature. The heater 27 is controlled to operate at all times during the operation of the metal filling process so that the molten metal 3 in the introducing unit 25 and in the vicinity of the supply port 23 does not solidify. The heater 12 is operated prior to the supply of the molten metal 3 in order to preheat the wafer 1. The heater 12 operates, for example, after placing the wafer 1 and before forming the processing chamber 4. In the formation state of the processing chamber 4 (in particular, after the supply of the molten metal 3), the heater 27 serves as a heat source, so the heater 12 may not necessarily be operated. Further, after the supply of the molten metal 3, the heater 12 may be stopped at the stage of solidifying the molten metal 3.
 図1に示すように、チャンバ30は、載置部10、溶融金属供給部20およびシール部22を内部に収容する。図1の構成例では、チャンバ30は、載置部10、溶融金属供給部20およびシール部22の周囲を取り囲む筒状の側部隔壁31と、側部隔壁31の上部を塞ぐ上部隔壁32と、側部隔壁31の下部を塞ぐ下部隔壁33とを含んでいる。側部隔壁31と上部隔壁32および下部隔壁33との接続部はシールされており、チャンバ30の内部が密閉空間となっている。 As shown in FIG. 1, the chamber 30 accommodates the mounting unit 10, the molten metal supply unit 20, and the seal unit 22 therein. In the configuration example of FIG. 1, the chamber 30 includes a cylindrical side partition 31 surrounding the periphery of the placement unit 10, the molten metal supply unit 20 and the seal unit 22, and an upper partition 32 closing an upper portion of the side partition 31. , And a lower partition wall 33 closing the lower part of the side partition wall 31. The connection between the side partition 31 and the upper partition 32 and the lower partition 33 is sealed, and the inside of the chamber 30 is a sealed space.
 処理室4の形成状態では、処理室4からなる第1の空間と、チャンバ30により構成される第2の空間との、二重構造が構成される。このため、溶融金属供給部20と載置部10とを離間させて処理室4を開放した状態でも、ウェハ1および溶融金属3は、チャンバ30内に密閉される。第1実施形態では、チャンバ30は、ウェハ1を出し入れするための開閉可能なゲート(ゲートバルブ)34を含む。ゲート34は、特許請求の範囲の「出入口」の一例である。ゲート34は、側部隔壁31に設けられ、チャンバ30内部を局所的に開閉するように構成されている。ゲート34と側部隔壁31との接続部はシールされている。ゲート34の大きさは、ウェハ1が出し入れ可能な最小限度とすることができ、ゲート34の開放状態でも外部との気体の流通を抑制することが可能である。これにより、チャンバ30は、内部を所定の雰囲気状態に維持したままでウェハ1の出し入れが可能なように構成されている。 In the formation state of the processing chamber 4, a double structure of a first space consisting of the processing chamber 4 and a second space consisting of the chamber 30 is configured. Therefore, the wafer 1 and the molten metal 3 are sealed in the chamber 30 even when the molten metal supply unit 20 and the mounting unit 10 are separated to open the processing chamber 4. In the first embodiment, the chamber 30 includes an openable / closable gate (gate valve) 34 for loading and unloading the wafer 1. The gate 34 is an example of the “gateway” in the claims. The gate 34 is provided on the side partition wall 31 and configured to locally open and close the inside of the chamber 30. The connection between the gate 34 and the side partition 31 is sealed. The size of the gate 34 can be a minimum that the wafer 1 can be inserted and removed, and it is possible to suppress the flow of gas with the outside even when the gate 34 is open. Thus, the chamber 30 is configured such that the wafer 1 can be taken in and out while maintaining the inside in a predetermined atmosphere state.
 また、図1の構成例では、金属充填装置100は、チャンバ30内を排気して減圧する真空ポンプ41を備えている。真空ポンプ41は、特許請求の範囲の「減圧部」の一例である。真空ポンプ41は、側部隔壁31を内側まで貫通するガス配管42aおよび42bを介して、チャンバ30の内部に接続されている。真空ポンプ41は、チャンバ30内の気体を排気して減圧することが可能である。また、真空ポンプ41とチャンバ30との間には、制御弁43が設けられている。制御弁43の開閉と真空ポンプ41の動作とが制御部50により制御されることによって、チャンバ30内を概ね真空状態まで減圧することが可能である。金属充填装置100は、真空ポンプ41によりチャンバ30内が減圧された状態で、処理室4が形成されるように構成されている。減圧は、概ね真空状態まで行われる。 Moreover, in the structural example of FIG. 1, the metal filling apparatus 100 is equipped with the vacuum pump 41 which exhausts the inside of the chamber 30 and pressure-reduces. The vacuum pump 41 is an example of the "pressure reduction unit" in the claims. The vacuum pump 41 is connected to the inside of the chamber 30 via gas pipes 42 a and 42 b penetrating the side partition 31 to the inside. The vacuum pump 41 can exhaust the gas in the chamber 30 to reduce the pressure. Further, a control valve 43 is provided between the vacuum pump 41 and the chamber 30. By controlling the opening and closing of the control valve 43 and the operation of the vacuum pump 41 by the control unit 50, it is possible to reduce the pressure in the chamber 30 to a substantially vacuum state. The metal filling apparatus 100 is configured such that the processing chamber 4 is formed in a state where the inside of the chamber 30 is depressurized by the vacuum pump 41. Depressurization is generally performed to a vacuum state.
 ガス供給部40と真空ポンプ41とを備えることによって、ウェハ1の出し入れの際にも、チャンバ30内を不活性ガス雰囲気や概ね真空の減圧状態にすることが可能である。ゲート34と接続された搬送経路がたとえば大気環境下となる場合、チャンバ30内を大気圧と同等以上の圧力の不活性ガス雰囲気とすることにより、チャンバ30内への大気混入が抑制され、溶融金属供給部20の対向面21に残留した溶融金属3などの酸化が抑制される。搬送経路が概ね真空の減圧状態となる場合、チャンバ30内は同等の減圧状態とされる。 By providing the gas supply unit 40 and the vacuum pump 41, it is possible to put the inside of the chamber 30 into an inert gas atmosphere or a substantially vacuum reduced state also when the wafer 1 is taken in and out. When the transfer path connected to the gate 34 is, for example, under the atmospheric environment, by mixing the inside of the chamber 30 with an inert gas atmosphere at a pressure equal to or higher than the atmospheric pressure, mixing of the air into the chamber 30 is suppressed, and melting is performed. Oxidation of the molten metal 3 or the like remaining on the facing surface 21 of the metal supply unit 20 is suppressed. When the transfer path is in a vacuum reduced pressure state, the inside of the chamber 30 is brought into the same reduced pressure state.
 ガス供給部40は、ガス配管42aおよび42cを介してチャンバ30の内部に接続されている。ガス供給部40は、窒素ガスなどの不活性ガスをチャンバ30内に加圧供給することが可能である。これにより、チャンバ30の内部を加圧することができる。金属充填装置100は、制御弁43の開閉とガス供給部40の動作とが制御部50により制御されることによって、ウェハ1の表面1a上に供給された溶融金属3をガスにより加圧するように構成されている。 The gas supply unit 40 is connected to the inside of the chamber 30 via gas pipes 42a and 42c. The gas supply unit 40 can pressurize the inert gas such as nitrogen gas into the chamber 30. Thereby, the inside of the chamber 30 can be pressurized. In the metal filling apparatus 100, the opening and closing of the control valve 43 and the operation of the gas supply unit 40 are controlled by the control unit 50 so that the molten metal 3 supplied on the surface 1a of the wafer 1 is pressurized with gas. It is configured.
 制御部50は、駆動部51により載置部10を下降させることにより、シール部22とウェハ1の表面1aとを離間させて処理室4を開放させる制御を行うように構成されている。第1実施形態では、金属充填装置100は、処理室4内に溶融金属3が供給された後に、チャンバ30内において処理室4が開放された状態で、ガス供給部40から供給されるガスによって溶融金属3が加圧されるように構成されている。 The control unit 50 is configured to perform control to cause the sealing unit 22 and the surface 1 a of the wafer 1 to be separated and to open the processing chamber 4 by lowering the mounting unit 10 by the driving unit 51. In the first embodiment, after the molten metal 3 is supplied into the processing chamber 4, the metal filling apparatus 100 is operated by the gas supplied from the gas supply unit 40 in a state where the processing chamber 4 is opened in the chamber 30. The molten metal 3 is configured to be pressurized.
 ガス供給部40によりチャンバ30内の加圧を開始するタイミングは、処理室4が開放される前でも後でもよいが、好ましくは、金属充填装置100は、ガス供給部40から供給されたガスによりチャンバ30内を予め所定の雰囲気に制御した状態で、処理室4が開放されるように構成されている。第1実施形態では、処理室4が開放される前に、ガス供給部40によりチャンバ30内がガスにより加圧状態に維持される。この場合、処理室4が密閉されているので、ガス圧は溶融金属3に直接的には作用しない。そして、処理室4が開放されると同時に、溶融金属3のガスによる加圧が開始される。 The timing to start pressurization in the chamber 30 by the gas supply unit 40 may be before or after the processing chamber 4 is opened, but preferably, the metal filling apparatus 100 uses the gas supplied from the gas supply unit 40. The processing chamber 4 is configured to be opened with the inside of the chamber 30 previously controlled to a predetermined atmosphere. In the first embodiment, the inside of the chamber 30 is maintained pressurized by the gas by the gas supply unit 40 before the processing chamber 4 is opened. In this case, since the processing chamber 4 is sealed, the gas pressure does not act directly on the molten metal 3. Then, at the same time as the processing chamber 4 is opened, pressurization with the gas of the molten metal 3 is started.
 金属充填装置100は、ガス供給部40から供給されたガスによりチャンバ30内を予め所定の雰囲気に制御するとともに、処理室4内の圧力をチャンバ30内の圧力以上にした状態で、処理室4が開放されるように構成されている。これにより、処理室4内の圧力がチャンバ30(処理室4の外部)の圧力以上となるため、処理室4の内外の圧力差によって開放動作が妨げられることが抑制される。 The metal filling apparatus 100 controls the inside of the chamber 30 to a predetermined atmosphere in advance by the gas supplied from the gas supply unit 40 and sets the pressure in the processing chamber 4 higher than the pressure in the chamber 30. Is configured to be open. As a result, the pressure in the processing chamber 4 becomes equal to or higher than the pressure in the chamber 30 (outside of the processing chamber 4), so that the pressure difference between the inside and outside of the processing chamber 4 prevents the opening operation from being hindered.
 開放時の処理室4内の圧力は、チャンバ30(処理室4の外部)の圧力と比べて低すぎても高すぎても好ましくない。圧力差が大きいと、解放時の圧力変動に伴って発生する衝撃によってウェハ1の表面1a上の溶融金属3が波打ったり、移動したりする可能性があるためである。また、処理室4を開放する時点では、シール部22が圧縮状態から自然状態に戻るなどにより、処理室4内の容積が増大するため、容積増大に伴って処理室4内の圧力は低下する傾向にある。そこで、処理室4の開放タイミングに向けて処理室4内を加圧してくことにより、開放に伴う処理室4内の圧力低下を補うことができる。解放時の処理室4の内部圧力は、外部圧力と同等の概ね一定値か僅かに増加させることが好ましい。これにより、処理室4の開放を容易にしつつ、処理室4の解放時の圧力変動を抑制できる。 It is not preferable that the pressure in the processing chamber 4 at the time of opening is too low or too high compared to the pressure in the chamber 30 (outside of the processing chamber 4). This is because if the pressure difference is large, the molten metal 3 on the surface 1 a of the wafer 1 may be corrugated or moved by an impact generated with the pressure fluctuation at the time of release. Further, at the time of opening the processing chamber 4, the volume in the processing chamber 4 increases due to the seal portion 22 returning to the natural state from the compression state, etc., so the pressure in the processing chamber 4 decreases with the volume increase. There is a tendency. Therefore, by pressurizing the inside of the processing chamber 4 toward the opening timing of the processing chamber 4, it is possible to compensate for the pressure drop in the processing chamber 4 due to the opening. It is preferable that the internal pressure of the processing chamber 4 at the time of release be increased to a substantially constant value or slightly equal to the external pressure. Thereby, the pressure fluctuation at the time of release of the processing chamber 4 can be suppressed while facilitating the opening of the processing chamber 4.
 処理室4内を加圧する方法としては、処理室4内に溶融金属3が供給された後、さらに供給口23を介して溶融金属3を供給すること(注ぎ足すこと)により供給圧力を加える方法がある。溶融金属供給部20の充填バルブ26を閉じる際、弁体26aを導入部25内で供給口23に向けて移動させる動作によっても、処理室4内を機械的に加圧することが可能である。また、後述する構成例のように、処理室4内に加圧用のガスを送り込む方法(図11参照)であってもよい。この他、対向面21の一部を変形または移動させて処理室4の容積を機械的に縮小させる方法などが可能である。 As a method of pressurizing the inside of the processing chamber 4, after the molten metal 3 is supplied into the processing chamber 4, a method of applying a supply pressure by supplying (pouring out) the molten metal 3 through the supply port 23 There is. When closing the filling valve 26 of the molten metal supply unit 20, the inside of the processing chamber 4 can also be mechanically pressurized by moving the valve body 26a toward the supply port 23 in the introduction unit 25. In addition, as in the configuration example described later, a method of feeding a pressurizing gas into the processing chamber 4 may be used (see FIG. 11). Besides, a method of mechanically reducing the volume of the processing chamber 4 by deforming or moving a part of the facing surface 21 or the like is possible.
 また、金属充填装置100は、処理室4内の溶融金属3の凝固が完了する前に、処理室4が開放されるように構成されている。処理室4は、溶融金属3が完全な液相の状態、または、溶融金属3が部分的に(局所的に)凝固している不完全凝固状態のうちに開放される。具体的には、金属充填装置100は、処理室4が開放されることに基づいて、ウェハ1上の溶融金属3が冷却されるように構成されている。 Further, the metal filling apparatus 100 is configured such that the processing chamber 4 is opened before solidification of the molten metal 3 in the processing chamber 4 is completed. The processing chamber 4 is released in the state of a complete liquid phase of the molten metal 3 or an incompletely solidified state in which the molten metal 3 is partially (locally) solidified. Specifically, the metal filling apparatus 100 is configured such that the molten metal 3 on the wafer 1 is cooled based on the opening of the processing chamber 4.
 処理室4の開放は、シール部22の一部がウェハ1の表面1aから離れて気密が解除されれば十分であり、溶融金属供給部20の一部(対向面21)とウェハ1上の溶融金属3とが接触した状態であってもよい。ただし、対向面21とウェハ1上の溶融金属3とが接触した状態では、溶融金属供給部20のヒータ27が熱源となり、ウェハ1上の溶融金属3にもヒータ27からの熱が伝達する。本実施形態では、たとえば、処理室4を開放する際に、溶融金属供給部20からウェハ1および溶融金属3を離間させる。この場合、溶融金属供給部20からウェハ1が離間されて処理室4が開放されることに基づいて、ウェハ1上の溶融金属3が冷却される。これにより、ヒータ27からの熱伝達が抑制されるため、速やかに冷却(温度低下)を進行させることができる。 Opening of the processing chamber 4 is sufficient if a part of the seal part 22 is separated from the surface 1 a of the wafer 1 to release the air tightness, and a part of the molten metal supply part 20 (facing surface 21) and the wafer 1 It may be in a state in contact with the molten metal 3. However, in a state where the facing surface 21 and the molten metal 3 on the wafer 1 are in contact with each other, the heater 27 of the molten metal supply unit 20 serves as a heat source, and the heat from the heater 27 is also transmitted to the molten metal 3 on the wafer 1. In the present embodiment, for example, when the processing chamber 4 is opened, the wafer 1 and the molten metal 3 are separated from the molten metal supply unit 20. In this case, the molten metal 3 on the wafer 1 is cooled based on the fact that the wafer 1 is separated from the molten metal supply unit 20 and the processing chamber 4 is opened. Thereby, since the heat transfer from the heater 27 is suppressed, the cooling (temperature reduction) can be advanced promptly.
 溶融金属3の冷却を促進するため、第1実施形態では、載置部10は、ウェハ1上の溶融金属3を冷却するための冷却部13(図2参照)を含む。図2の構成例では、冷却部13は、載置部10内に内蔵されており、冷媒が流通する冷媒管やペルチェ素子などの熱電素子などを用いたヒートポンプにより構成される。冷却部13の冷却動作は、制御部50によって制御される。冷却部13としては、載置部10の外表面に取り付けられていてもよく、たとえば載置部10の表面に取り付けられたヒートシンクであってもよい。 In the first embodiment, the placement unit 10 includes a cooling unit 13 (see FIG. 2) for cooling the molten metal 3 on the wafer 1 in order to promote the cooling of the molten metal 3. In the configuration example of FIG. 2, the cooling unit 13 is built in the mounting unit 10, and is configured by a heat pump using a refrigerant pipe through which a refrigerant flows, a thermoelectric element such as a Peltier element, or the like. The cooling operation of the cooling unit 13 is controlled by the control unit 50. The cooling unit 13 may be attached to the outer surface of the placement unit 10, and may be a heat sink attached to the surface of the placement unit 10, for example.
 なお、上記の通り、対向面21と、シール部22と、ウェハ1の表面1aとにより処理室4が形成されるため、対向面21とウェハ1の表面1aとの間の間隔Dを調節(シール部22の圧縮量を調節)することにより、処理室4の容積(すなわち、溶融金属3の量)を必要最小限にすることが可能である。そのため、処理室4の容積を十分に小さくすることにより、処理室4が開放される際にウェハ1の表面1a上の溶融金属3がウェハ1の外部(載置部10上)などに流れ出すことが回避可能である。 As described above, since the processing chamber 4 is formed by the facing surface 21, the seal portion 22, and the surface 1 a of the wafer 1, the distance D between the facing surface 21 and the surface 1 a of the wafer 1 is adjusted By adjusting the amount of compression of the seal portion 22, it is possible to minimize the volume of the processing chamber 4 (that is, the amount of the molten metal 3). Therefore, by making the volume of the processing chamber 4 sufficiently small, the molten metal 3 on the surface 1 a of the wafer 1 flows out to the outside of the wafer 1 (on the mounting portion 10) or the like when the processing chamber 4 is opened. Is avoidable.
 処理室4が開放された状態でのウェハ1上における溶融金属3の流動をさらに抑制するためには、ウェハ1の表面1aにおいて、溶融金属3との濡れ性(親和性)が相対的に低い領域を処理領域の周囲に形成しておくことが好ましい。すなわち、溶融金属3の供給に先立って、ウェハ1の表面1aのうち微細空間2を含む処理領域1b(図3参照)の溶融金属3に対する濡れ性を向上させる処理、または、ウェハ1の表面1aのうち処理領域1bよりも外側の周囲領域1c(図3参照)の溶融金属3に対する濡れ性を低下させる処理の少なくともいずれかを行っておくことが好ましい。これにより、図4に示すように、濡れ性が相対的に高い領域(処理領域1b)と、濡れ性が相対的に低い領域(周囲領域1c)との境界で、溶融金属3の界面を形成し流動を抑制することが可能である。 In order to further suppress the flow of the molten metal 3 on the wafer 1 in the state where the processing chamber 4 is opened, the wettability (affinity) with the molten metal 3 is relatively low at the surface 1 a of the wafer 1 It is preferable to form the area around the processing area. That is, prior to the supply of the molten metal 3, a process of improving the wettability of the processing region 1b (see FIG. 3) including the minute space 2 in the surface 1a of the wafer 1 to the molten metal 3 or the surface 1a of the wafer 1 It is preferable to perform at least one of the processes for reducing the wettability to the molten metal 3 of the surrounding area 1c (see FIG. 3) outside the process area 1b. Thereby, as shown in FIG. 4, the interface of the molten metal 3 is formed at the boundary between the relatively high wettability region (treated region 1b) and the relatively low wettability region (peripheral region 1c). Flow can be suppressed.
 なお、本明細書において「濡れる(あるいは、濡れ性が高い)」とは、液体面(溶融金属3の表面)が固体表面(ウェハ1の表面1a)となす角度(接触角)が90度未満の状態を指し、好ましくは接触角が30度未満である。「弾く(あるいは、濡れ性が低い)」とは、接触角が90度以上の状態を指す。図3では、便宜的に、周囲領域1cにハッチングを付して図示している。処理領域1bは、表面1aのうち、シール部22と当接する部分よりも内側に配置され、周囲領域1cは、表面1aのうち、シール部22と当接する部分よりも外側に配置され処理領域1bを取り囲むように環状に形成される。 In the present specification, “wetting (or high wettability)” means that the angle (contact angle) between the liquid surface (the surface of the molten metal 3) and the solid surface (the surface 1a of the wafer 1) is less than 90 degrees. The contact angle is preferably less than 30 degrees. The term "flicking (or low wettability)" refers to a state in which the contact angle is 90 degrees or more. In FIG. 3, for convenience, the surrounding area 1c is illustrated with hatching. The processing area 1b is disposed on the inner side of the portion of the surface 1a in contact with the seal portion 22, and the surrounding area 1c is disposed on the outer side of the portion of the surface 1a in contact with the seal portion 22. It is annularly formed to surround the
 処理対象物がシリコンウェハ1の場合、一般に半田などの溶融金属3との濡れ性が高くない。そのため、図3に示したように、シール部22の内側に配置される処理領域1bに溶融金属3との濡れ性を向上させる処理を施すことにより、処理領域1bよりも外側の周囲領域1cの濡れ性が相対的に低くなる。濡れ性を向上させる処理は、たとえば、母材(シリコン)よりも溶融金属3との濡れ性が高い材料(たとえば、CuやAuなど)により処理領域1bをコーティングする成膜処理や、プラズマ等によりウェハ1の表面酸化物を除去する処理、表面状態を活性化させる処理などである。 When the object to be treated is a silicon wafer 1, the wettability with the molten metal 3 such as solder is generally not high. Therefore, as shown in FIG. 3, the processing area 1 b disposed inside the seal portion 22 is subjected to a process for improving the wettability with the molten metal 3, whereby the peripheral area 1 c outside the processing area 1 b is The wettability is relatively low. The process of improving the wettability is, for example, a film forming process in which the processing region 1b is coated with a material (for example, Cu, Au, etc.) having higher wettability with the molten metal 3 than the base material (silicon), plasma, etc. These processes include removing the surface oxide of the wafer 1 and activating the surface state.
 なお、溶融金属3との濡れ性が高い処理対象物(母材)の場合には、処理領域1bよりも外側の周囲領域1cに、濡れ性を低下させる処理を施せばよい。濡れ性を低下させる処理は、たとえば、母材よりも溶融金属3との濡れ性が低い材料により周囲領域1cをコーティングする成膜処理や、ウェハ1の表面を酸化する処理などである。処理領域1bの濡れ性を向上させる処理と、周囲領域1cの濡れ性を低下させる処理との両方を実施してもよい。 In the case of a processing target (base material) having high wettability with the molten metal 3, the peripheral area 1 c outside the processing area 1 b may be subjected to a process for reducing the wettability. The process for reducing the wettability is, for example, a film forming process in which the surrounding area 1 c is coated with a material having a lower wettability to the molten metal 3 than the base material, or a process for oxidizing the surface of the wafer 1. Both the process of improving the wettability of the processing area 1b and the process of reducing the wettability of the surrounding area 1c may be performed.
 (貫通電極形成処理の流れ)
 図7を参照して、貫通電極形成処理の流れを説明する。金属充填装置100は、図7のステップS4に相当する処理を実施する。各ステップは、それぞれ別々の装置により実施され、ウェハ1は、図示しない搬送ロボットにより各装置間を搬送される。
(Flow of through electrode formation process)
The flow of the through electrode forming process will be described with reference to FIG. The metal filling apparatus 100 performs the process corresponding to step S4 of FIG. Each step is performed by a separate device, and the wafer 1 is transferred between the devices by a transfer robot not shown.
 ステップS1において、エッチング処理などにより、ウェハ1に対して微細空間2が形成される。 In step S1, a minute space 2 is formed on the wafer 1 by an etching process or the like.
 なお、微細空間2に対する金属充填によりシリコン貫通電極を形成する方法は、たとえば図5および図6の2通りが可能である。図5の第1の形成方法は、(A)ウェハ1の表面1aから非貫通の凹部として微細空間2を形成し、(B)微細空間2内に溶融金属3を充填して導体金属5を形成し、(C)微細空間2が開口していない反対面1dを導体金属5が露出するまで除去して貫通電極を形成する方法である。第1の方法の場合、ステップS1では、非貫通の凹部として微細空間2が形成される。 In addition, the method of forming a silicon penetration electrode by metal filling with respect to the micro space 2 can be two methods of FIG. 5 and FIG. 6, for example. In the first formation method of FIG. 5, (A) microspace 2 is formed as a non-penetrating recess from surface 1a of wafer 1, (B) microspace 2 is filled with molten metal 3 and conductor metal 5 is formed. (C) A method of forming the through electrode by removing the opposite surface 1d where the micro space 2 is not opened until the conductor metal 5 is exposed. In the case of the first method, in step S1, the minute space 2 is formed as a non-penetrating recess.
 図6の第2の形成方法は、予めウェハ1の反対面1dに、シリコン貫通電極と接続される配線部6を形成しておき、(A)ウェハ1の表面1aから配線部6まで到達する貫通孔として微細空間2を形成し、(B)反対面1d側を支持基板7に貼り付けた状態で、微細空間2に溶融金属3を充填して導体金属5を形成し、(C)支持基板7を取り除いて導体金属5と配線部6との接続構造を形成する方法である。第2の方法の場合、ステップS1では、表面1aから配線部6まで到達する貫通孔として微細空間2が形成される。 In the second formation method of FIG. 6, the wiring portion 6 connected to the silicon through electrode is formed in advance on the opposite surface 1 d of the wafer 1, and (A) reaches from the surface 1 a of the wafer 1 to the wiring portion 6 A minute space 2 is formed as a through hole, and in a state where (B) the opposite surface 1d side is attached to a support substrate 7, the minute space 2 is filled with the molten metal 3 to form a conductor metal 5; In this method, the substrate 7 is removed to form a connection structure between the conductor metal 5 and the wiring portion 6. In the case of the second method, in step S1, the minute space 2 is formed as a through hole reaching from the surface 1a to the wiring portion 6.
 ステップS2において、めっき処理などにより、ウェハ1の処理領域1bに対して、溶融金属3との濡れ性が高い材料(Cuなど)の成膜処理が行われる。この際、ウェハ1の周囲領域1cは処理から除外され成膜されない。その結果、図3に示したように、ウェハ1の表面1aが、相対的に溶融金属3との濡れ性が高い処理領域1bと、溶融金属3との濡れ性が低い周囲領域1cとに区画される。 In step S2, a film forming process of a material (such as Cu) having high wettability with the molten metal 3 is performed on the processing region 1b of the wafer 1 by plating or the like. At this time, the peripheral region 1c of the wafer 1 is excluded from the processing and is not deposited. As a result, as shown in FIG. 3, the surface 1a of the wafer 1 is divided into a processing region 1b having relatively high wettability with the molten metal 3 and a surrounding region 1c with low wettability with the molten metal 3 Be done.
 ステップS3では、洗浄工程により、ウェハ1の表面1aの酸化物が除去される。洗浄工程は、ウェハ1が大気中で搬送される場合に行われる。ウェハ1が、ステップS2から連続して概ね真空中で搬送される場合には、表面酸化物の形成や付着が抑制されるので、洗浄工程は不要である。 In step S3, the oxide on the surface 1a of the wafer 1 is removed by the cleaning step. The cleaning process is performed when the wafer 1 is transported in the atmosphere. In the case where the wafer 1 is transported in a substantially vacuum continuously from Step S2, the formation and adhesion of the surface oxide are suppressed, and the cleaning step is unnecessary.
 ステップS4において、金属充填装置100により、ウェハ1の表面1aの微細空間2への溶融金属3の充填処理が実施される。金属充填処理の内容(金属充填装置100の動作)は、後述する。これにより、ウェハ1の微細空間2の部分に、充填され凝固した導体金属5が形成される。 In step S4, the metal filling apparatus 100 performs a filling process of the molten metal 3 in the minute space 2 of the surface 1a of the wafer 1. The contents of the metal filling process (the operation of the metal filling apparatus 100) will be described later. Thereby, the filled and solidified conductor metal 5 is formed in the part of the minute space 2 of the wafer 1.
 金属充填処理後、ステップS5において、CMP(化学機械研磨)やポリッシャーなどの機械研磨によってウェハ1の表面1aが研磨され、表面1aで凝固した溶融金属3の残渣が取り除かれる。その後、図5の第1の形成方法の場合、導体金属5が露出するまで反対面1dが除去され(図5(C)参照)、シリコン貫通電極が形成される。図6の第2の方法では、シリコン貫通電極が形成済みであり、ウェハ1から支持基板7が取り除かれる(図6(C)参照)。 After the metal filling process, in step S5, the surface 1a of the wafer 1 is polished by mechanical polishing such as CMP (chemical mechanical polishing) or a polisher, and the residue of the molten metal 3 solidified on the surface 1a is removed. Thereafter, in the case of the first formation method of FIG. 5, the opposite surface 1d is removed until the conductive metal 5 is exposed (see FIG. 5C), and a silicon through electrode is formed. In the second method of FIG. 6, through silicon electrodes are already formed, and the support substrate 7 is removed from the wafer 1 (see FIG. 6C).
(金属充填処理)
 次に、図8を参照して、金属充填装置100による金属充填処理を説明する。図8は、金属充填装置100へのウェハ1の搬入出が大気環境下で行われる場合の処理の流れを示している。金属充填装置100の動作制御は、制御部50により制御される。なお、金属充填装置100の各部については、図1および図2を参照するものとする。
(Metal filling process)
Next, with reference to FIG. 8, the metal filling process by the metal filling apparatus 100 will be described. FIG. 8 shows the flow of processing when the loading and unloading of the wafer 1 into and from the metal filling apparatus 100 is performed under the atmospheric environment. Operation control of the metal filling apparatus 100 is controlled by the control unit 50. In addition, about each part of the metal filling apparatus 100, it shall refer to FIG. 1 and FIG.
 ステップS11において、制御部50の制御によりゲート34が開放され、チャンバ30内にウェハ1が搬入される。ウェハ1は、ゲート34を通過して載置部10の載置面11上に載置される。 In step S11, the gate 34 is opened under the control of the control unit 50, and the wafer 1 is carried into the chamber 30. The wafer 1 passes through the gate 34 and is mounted on the mounting surface 11 of the mounting unit 10.
 ステップS12において、制御部50は、ゲート34を閉鎖させる。チャンバ30の内部は気密状態となる。ステップS13において、制御部50は、真空ポンプ41および制御弁43を制御して、チャンバ30内を排気し、概ね真空状態まで減圧する。ステップS14において、制御部50は、駆動部51を制御して処理室4を形成する。すなわち、制御部50は、載置部10を溶融金属供給部20側に向けて移動させ、シール部22をウェハ1の表面1aと当接させることにより、処理室4を形成させる。 In step S12, the control unit 50 closes the gate 34. The inside of the chamber 30 is airtight. In step S13, the control unit 50 controls the vacuum pump 41 and the control valve 43 to evacuate the chamber 30 and reduce the pressure to a substantially vacuum state. In step S <b> 14, the control unit 50 controls the drive unit 51 to form the processing chamber 4. That is, the control unit 50 moves the mounting unit 10 toward the molten metal supply unit 20 and brings the seal unit 22 into contact with the surface 1 a of the wafer 1 to form the processing chamber 4.
 ステップS15において、制御部50は、充填バルブ26(弁体26a)を開放するとともに金属供給ポンプ52を作動させ、処理室4に溶融金属3を供給する。これにより、微細空間2に溶融金属3が供給される。なお、溶融金属供給部20のヒータ27は、充填処理中は常時作動するように制御される。載置部10のヒータ12は、ステップS11~S14の間の所定のタイミングで作動するように制御され、載置部10上のウェハ1を加熱しておく。 In step S <b> 15, the control unit 50 opens the filling valve 26 (valve element 26 a) and operates the metal supply pump 52 to supply the molten metal 3 to the processing chamber 4. Thereby, the molten metal 3 is supplied to the minute space 2. The heater 27 of the molten metal supply unit 20 is controlled so as to always operate during the filling process. The heater 12 of the mounting unit 10 is controlled to operate at a predetermined timing between steps S11 to S14, and heats the wafer 1 on the mounting unit 10.
 ステップS16において、制御部50は、ガス供給部40および制御弁43を制御して、チャンバ30内に不活性ガスを供給し、チャンバ30内を加圧状態にする。なお、ガスによる加圧をステップS16として示しているが、ガスによる加圧の開始タイミングは、処理室4が形成されるステップS14以降、処理室4が開放されるまで(ステップS18)であれば、どのタイミングでもよい。チャンバ30内は、ステップS18において処理室4が開放されるまでに、所定の圧力となるようにガス供給部40によって加圧される。 In step S16, the control unit 50 controls the gas supply unit 40 and the control valve 43 to supply an inert gas into the chamber 30, and pressurize the chamber 30. Although pressurization by gas is shown as step S16, the start timing of pressurization by gas is from step S14 when the processing chamber 4 is formed until the processing chamber 4 is opened (step S18). Any timing may be used. The inside of the chamber 30 is pressurized by the gas supply unit 40 to a predetermined pressure before the processing chamber 4 is opened in step S18.
 ステップS17において、制御部50は、充填バルブ26(弁体26a)を閉鎖させて、処理室4への溶融金属3の供給を停止する。ステップS18において、制御部50は、駆動部51を制御して処理室4を開放する。すなわち、制御部50は、載置部10を溶融金属供給部20から離間する方向に向けて移動させ、シール部22をウェハ1の表面1aから離間させることにより、溶融金属3の供給後の処理室4をチャンバ30内において開放させる。処理室4は、処理室4内の溶融金属3の凝固が完了する前の所定のタイミングで開放される。図4に示したように、溶融金属3は処理領域1bと周囲領域1cとの間で界面を形成し処理領域1bに留まる。 In step S17, the control unit 50 closes the filling valve 26 (valve body 26a) to stop the supply of the molten metal 3 to the processing chamber 4. In step S <b> 18, the control unit 50 controls the drive unit 51 to open the processing chamber 4. That is, the control unit 50 moves the mounting unit 10 in a direction away from the molten metal supply unit 20 and separates the seal unit 22 from the front surface 1 a of the wafer 1 to process the molten metal 3 after supply. Chamber 4 is opened in chamber 30. The processing chamber 4 is opened at a predetermined timing before solidification of the molten metal 3 in the processing chamber 4 is completed. As shown in FIG. 4, the molten metal 3 forms an interface between the processing area 1b and the surrounding area 1c and remains in the processing area 1b.
 また、処理室4の開放に伴って、ガス供給部40からチャンバ30内に予め供給されたガスによって溶融金属3が加圧される。不活性ガスの圧力により溶融金属3が微細空間2内に押し込まれ、微細空間2内での空隙(ボイド)の発生が抑制される。 Further, as the processing chamber 4 is opened, the molten metal 3 is pressurized by the gas supplied in advance from the gas supply unit 40 into the chamber 30. The molten metal 3 is pushed into the minute space 2 by the pressure of the inert gas, and the generation of voids (voids) in the minute space 2 is suppressed.
 ステップS19において、制御部50は、冷却部13を作動させて溶融金属3の冷却を開始する。冷却中、制御部50は、ガスによる溶融金属3の加圧を継続するようにガス供給部40を制御する。ウェハ1上の溶融金属3は、チャンバ30内に露出している全表面がガスによって加圧される。そのため、冷却に伴って溶融金属3が部分的(局所的)に凝固した場合でも、凝固部分にも、凝固していない液相部分にも圧力が付与され、微細空間2内に十分に充填されたまま凝固(冷却)が進行する。その後、制御部50は、溶融金属3の温度が固相温度以下まで低下するまで待機し、溶融金属3の凝固を完了させる。冷却部13の冷却動作は凝固完了後に停止される。 In step S19, the control unit 50 operates the cooling unit 13 to start cooling of the molten metal 3. During the cooling, the control unit 50 controls the gas supply unit 40 so as to continue the pressurization of the molten metal 3 by the gas. The molten metal 3 on the wafer 1 has its entire surface exposed in the chamber 30 pressurized with gas. Therefore, even when the molten metal 3 partially (locally) solidifies with cooling, pressure is applied to the solidified portion and the liquid phase portion not solidified, and the micro space 2 is sufficiently filled. Solidification (cooling) proceeds as it is. Thereafter, the control unit 50 stands by until the temperature of the molten metal 3 decreases to the solidus temperature or less, and completes the solidification of the molten metal 3. The cooling operation of the cooling unit 13 is stopped after completion of solidification.
 溶融金属3の凝固が完了した後、ステップS20において、制御部50は、ガス供給部40および制御弁43を制御して、チャンバ30内の圧力を常圧(チャンバ30の外部環境と略同じ圧力)に戻す。ステップS21において、制御部50は、ゲート34を開放させる。これによりチャンバ30内から、ウェハ1が搬出される。チャンバ30内は不活性ガス雰囲気に維持されており、外部環境と略同じ圧力となっているので、チャンバ内への大気混入(対向面21に付着した金属の酸化)が抑制される。 After solidification of the molten metal 3 is completed, in step S20, the control unit 50 controls the gas supply unit 40 and the control valve 43 to normalize the pressure in the chamber 30 (a pressure substantially the same as the external environment of the chamber 30). Return to). In step S21, the control unit 50 opens the gate 34. Thus, the wafer 1 is carried out of the chamber 30. The inside of the chamber 30 is maintained in an inert gas atmosphere, and the pressure is substantially the same as that of the external environment, so that the mixing of the air into the chamber (the oxidation of the metal attached to the facing surface 21) is suppressed.
 以上により、金属充填装置100の金属充填処理動作が行われる。 Thus, the metal filling processing operation of the metal filling apparatus 100 is performed.
 なお、概ね真空状態の減圧環境下でウェハ1が搬入出される場合は、搬入出に伴う動作が図8とは異なる。具体的には、ステップS13の真空排気が、ステップS11のゲート開放に先立って行われる。同様に、ステップS20が、チャンバ30内を常圧に戻す処理に代えて、ステップS13と同じ真空排気処理となる。すなわち、ウェハ1の搬入出の際に、チャンバ30内を外部と同等の概ね真空状態の減圧環境にした状態で、ゲート34が開放される。 In the case where the wafer 1 is carried in and out under a substantially vacuum pressure-reduced environment, the operation involved in the carrying in and out differs from that in FIG. Specifically, the evacuation in step S13 is performed prior to the gate opening in step S11. Similarly, in place of the process of returning the inside of the chamber 30 to the normal pressure in step S20, the same vacuum evacuation process as in step S13 is performed. That is, when the wafer 1 is transferred in and out, the gate 34 is opened in a state where the inside of the chamber 30 is in a substantially vacuum reduced pressure environment equivalent to the outside.
(第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
(Effect of the first embodiment)
In the first embodiment, the following effects can be obtained.
 第1実施形態では、上記のように、ガス供給部40を備えた気密のチャンバ30内で、溶融金属供給部20の対向面21と、対向面21に設けられたシール部22と、ウェハ1の表面1aとにより処理室4が形成され、溶融金属供給部20により、供給口23を介して処理室4内に溶融金属3が供給されて微細空間2内に溶融金属3が充填されるように金属充填装置100を構成する。これにより、処理室4内に溶融金属3を供給し、チャンバ30内にガスを供給することにより、ウェハ1の表面1a上の膜状の溶融金属3を加圧することができる。この場合、凝固過程で溶融金属3が部分的に凝固しても、その凝固部分以外の液相の溶融部分をガス圧によって確実に加圧することができる。そのため、凝固過程での溶融金属3への加圧を維持することができる。また、処理室4を構成するウェハ1(ウェハ1が載置される載置部10)、溶融金属供給部20およびシール部22が気密のチャンバ30内に収容されるので、処理室4を完全に開放した場合でも、チャンバ30内の雰囲気および圧力の制御は自由に行うことが可能となる。その結果、ウェハ1の搬入や搬出の際にもウェハ1の周囲の雰囲気および圧力の制御ができる。したがって、第1実施形態の金属充填装置100によれば、凝固過程での溶融金属3への加圧を維持することが可能で、かつ、ウェハ1の搬入や搬出の際にもウェハ1の周囲の雰囲気および圧力の制御が可能である。 In the first embodiment, as described above, in the airtight chamber 30 provided with the gas supply unit 40, the opposing surface 21 of the molten metal supply unit 20, the seal unit 22 provided on the opposing surface 21, and the wafer 1 The processing chamber 4 is formed by the surface 1 a and the molten metal 3 is supplied into the processing chamber 4 through the supply port 23 by the molten metal supply unit 20 so that the molten metal 3 is filled in the minute space 2. The metal filling apparatus 100 is configured as follows. Thereby, the molten metal 3 is supplied into the processing chamber 4, and the film-like molten metal 3 on the surface 1 a of the wafer 1 can be pressurized by supplying the gas into the chamber 30. In this case, even if the molten metal 3 is partially solidified in the solidification process, the molten portion of the liquid phase other than the solidified portion can be reliably pressurized by the gas pressure. Therefore, pressurization to the molten metal 3 in the solidification process can be maintained. In addition, since the wafer 1 (the mounting unit 10 on which the wafer 1 is mounted), the molten metal supply unit 20, and the seal unit 22 constituting the processing chamber 4 are accommodated in the airtight chamber 30, the processing chamber 4 is completely completed. Even when open, control of the atmosphere and pressure in the chamber 30 can be freely performed. As a result, the atmosphere and pressure around the wafer 1 can be controlled even when loading and unloading the wafer 1. Therefore, according to the metal filling apparatus 100 of the first embodiment, it is possible to maintain the pressurization to the molten metal 3 in the solidification process, and also when the wafer 1 is carried in or out, the periphery of the wafer 1 Control of the atmosphere and pressure of
 また、ウェハ1の全体が収納される大きな処理室を形成する構成の金属充填装置の場合、溶融金属3がウェハ1の反対面1d側にも回り込んで付着してしまい、表面残渣の除去処理に加えて反対面1d側の付着金属の除去処理が必要となる。これに対して、第1実施形態では、ウェハ1の表面1aを用いて処理室4が形成されるので、ウェハ1の反対面(裏面)1d側に溶融金属3が回り込むことが抑制され、反対面1d側の付着金属の除去処理が不要となる。 Further, in the case of a metal filling apparatus having a configuration forming a large processing chamber in which the entire wafer 1 is accommodated, the molten metal 3 wraps around and adheres to the opposite surface 1 d side of the wafer 1 as well. In addition to the above, it is necessary to remove the attached metal on the opposite surface 1d side. On the other hand, in the first embodiment, since the processing chamber 4 is formed using the front surface 1a of the wafer 1, the molten metal 3 is prevented from coming around to the opposite surface (rear surface) 1d side of the wafer 1, The removal process of the adhesion metal on the side 1 d becomes unnecessary.
 また、第1実施形態では、上記のように、処理室4内に溶融金属3が供給された後に、チャンバ30内において処理室4が開放された状態で、ガス供給部40から供給されるガスにより溶融金属3が加圧されるように金属充填装置100を構成する。これにより、処理室4を開放するだけで容易に溶融金属3をガスにより加圧することができる。また、第1実施形態では、溶融金属供給部20の対向面21と、対向面21に設けられたシール部22と、ウェハ1の表面1aとにより、処理室4の容積を極力小さくすることが可能である。そのため、処理室4内に溶融金属3が供給された後で処理室4を開放しても、溶融金属3が流動してウェハ1の周囲にはみ出すことを抑制することができる。 In the first embodiment, as described above, after the molten metal 3 is supplied into the processing chamber 4, the gas supplied from the gas supply unit 40 in the state where the processing chamber 4 is opened in the chamber 30. The metal filling apparatus 100 is configured such that the molten metal 3 is pressurized. Thereby, the molten metal 3 can be easily pressurized by the gas only by opening the processing chamber 4. Further, in the first embodiment, the volume of the processing chamber 4 can be minimized by the facing surface 21 of the molten metal supply unit 20, the seal portion 22 provided on the facing surface 21, and the surface 1a of the wafer 1. It is possible. Therefore, even if the molten metal 3 is supplied into the processing chamber 4 and then the processing chamber 4 is opened, it is possible to suppress the molten metal 3 from flowing and leaking to the periphery of the wafer 1.
 また、第1実施形態では、上記のように、金属充填装置100を、ガス供給部40から供給されたガスによりチャンバ30内を予め所定の雰囲気に制御した状態で、処理室4が開放されるように構成する。これにより、処理室4を開放してからチャンバ30内を加圧する場合と異なり、処理室4の開放と同時にガスによる溶融金属3の加圧を開始することができるので、充填処理の処理時間を短縮することができる。また、処理室4を開放したときにウェハ1上の溶融金属3への加圧が不足する状態を回避することができるので、充填不良の発生を抑制することができる。 In the first embodiment, as described above, the processing chamber 4 is opened in a state where the inside of the chamber 30 is controlled to a predetermined atmosphere in advance by the gas supplied from the gas supply unit 40 as described above. Configure as. Thus, unlike the case of pressurizing the inside of the chamber 30 after opening the processing chamber 4, pressurization of the molten metal 3 by the gas can be started simultaneously with the opening of the processing chamber 4. It can be shortened. In addition, since it is possible to avoid an insufficient pressure on the molten metal 3 on the wafer 1 when the processing chamber 4 is opened, it is possible to suppress the occurrence of the filling failure.
 また、第1実施形態では、上記のように、金属充填装置100を、ガス供給部40から供給されたガスによりチャンバ30内を予め所定の雰囲気に制御するとともに、処理室4内の圧力をチャンバ30内の圧力以上にした状態で、処理室4が開放されるように構成する。これにより、処理室4の内部の圧力を処理室4の外部(チャンバ30内)の圧力以上にした状態で処理室4を開放できるので、容易かつ円滑に処理室4を開放することができる。特に、解放時の処理室4の内部圧力を、外部(チャンバ30)の圧力と同等の概ね一定値か僅かに増加させる場合には、処理室4内の容積増大に伴う圧力低下を抑制し、処理室4の開放を容易にしつつ、処理室4の解放時の圧力変動を抑制できる。 In the first embodiment, as described above, the metal filling device 100 controls the inside of the chamber 30 to a predetermined atmosphere in advance by the gas supplied from the gas supply unit 40, and the pressure in the processing chamber 4 is a chamber. The processing chamber 4 is configured to be opened in a state in which the pressure is higher than the pressure in 30. Thus, the processing chamber 4 can be opened in a state where the pressure inside the processing chamber 4 is equal to or higher than the pressure outside the processing chamber 4 (inside the chamber 30), so the processing chamber 4 can be opened easily and smoothly. In particular, in the case where the internal pressure of the processing chamber 4 at the time of release is increased by a substantially constant value or slightly equal to the pressure of the outside (chamber 30), the pressure drop accompanying the volume increase in the processing chamber 4 is suppressed. While facilitating the opening of the processing chamber 4, it is possible to suppress pressure fluctuation when the processing chamber 4 is opened.
 また、第1実施形態では、上記のように、金属充填装置100を、処理室4内の溶融金属3の凝固が完了する前に、処理室4が開放されるように構成する。これにより、ウェハ1上の液相の溶融金属3をガスによって加圧した状態で凝固させることができるので、空隙(ボイド)などの充填不良の発生を効果的に抑制することができる。また、溶融金属供給部20とウェハ1とが溶融金属3を介して張り付く(一体的になる)ことも回避できる。 In the first embodiment, as described above, the metal filling apparatus 100 is configured such that the processing chamber 4 is opened before solidification of the molten metal 3 in the processing chamber 4 is completed. As a result, since the molten metal 3 in the liquid phase on the wafer 1 can be solidified in a pressurized state by the gas, the occurrence of filling defects such as voids can be effectively suppressed. In addition, it is possible to prevent the molten metal supply unit 20 and the wafer 1 from being stuck (integrated) via the molten metal 3.
 また、第1実施形態では、上記のように、溶融金属供給部20に、溶融金属3を加熱するためのヒータ27を設ける。そして、溶融金属供給部20からウェハ1が離間されて処理室4が開放されることに基づいて、ウェハ1上の溶融金属3が冷却されるように金属充填装置100を構成する。これにより、ヒータ27によって、溶融金属供給部20(供給口23)側で溶融金属3が凝固してしまうことを回避することができる。また、処理室4を形成している状態では溶融金属供給部20(対向面21)側が熱源となるので、処理室4を開放する際にウェハ1を熱源となる溶融金属供給部20から離間させることにより、ウェハ1側の熱容量が極小化された状態での冷却となって、ウェハ1上の溶融金属3を効率的に凝固させることができる。 In the first embodiment, as described above, the molten metal supply unit 20 is provided with the heater 27 for heating the molten metal 3. Then, the metal filling apparatus 100 is configured such that the molten metal 3 on the wafer 1 is cooled based on the fact that the wafer 1 is separated from the molten metal supply unit 20 and the processing chamber 4 is opened. Thereby, it can be avoided that the molten metal 3 is solidified on the side of the molten metal supply unit 20 (supply port 23) by the heater 27. Moreover, since the molten metal supply unit 20 (facing surface 21) side serves as a heat source in the state where the processing chamber 4 is formed, the wafer 1 is separated from the molten metal supply unit 20 serving as a heat source when the processing chamber 4 is opened. Thus, the cooling can be performed in a state where the heat capacity on the wafer 1 side is minimized, and the molten metal 3 on the wafer 1 can be solidified efficiently.
 また、第1実施形態では、上記のように、載置部10に、ウェハ1上の溶融金属3を冷却するための冷却部13を設ける。これにより、ウェハ1を熱源(溶融金属供給部20)から離間させた状態で、載置部10に設けられた冷却部13によって、ウェハ1上の溶融金属3をより一層効率的に凝固させることができる。また、対向面21側を処理毎に冷却する必要が無く、加熱冷却を繰り返す無駄なエネルギーと処理時間を削減できる。さらに、供給する金属が処理毎に溶融と凝固を繰り返されることが無く、処理時間短縮、材料劣化を抑制できる。 In the first embodiment, as described above, the mounting unit 10 is provided with the cooling unit 13 for cooling the molten metal 3 on the wafer 1. Thus, in a state where the wafer 1 is separated from the heat source (the molten metal supply unit 20), the molten metal 3 on the wafer 1 is solidified more efficiently by the cooling unit 13 provided in the mounting unit 10. Can. Moreover, it is not necessary to cool the opposing surface 21 side for each process, and it is possible to reduce unnecessary energy and process time for repeating heating and cooling. Furthermore, the metal to be supplied is not repeatedly melted and solidified every processing, so that processing time can be shortened and material deterioration can be suppressed.
 また、第1実施形態では、上記のように、載置部10に、載置部10上のウェハ1を加熱するためのヒータ12を設ける。これにより、溶融金属3を供給する際にウェハ1上で溶融金属3が凝固しないように、載置部10に設けられたヒータ12によって載置部10上のウェハ1を予め迅速に加熱(予熱)することができる。その結果、迅速に溶融金属3の供給を開始することができるので、充填処理の処理時間を短縮することができる。 In the first embodiment, as described above, the mounting unit 10 is provided with the heater 12 for heating the wafer 1 on the mounting unit 10. As a result, when the molten metal 3 is supplied, the wafer 12 on the mounting unit 10 is rapidly heated in advance (preheated) by the heater 12 provided on the mounting unit 10 so that the molten metal 3 does not solidify on the wafer 1 )can do. As a result, since the supply of the molten metal 3 can be started promptly, the processing time of the filling process can be shortened.
 また、第1実施形態では、上記のように、載置部10および溶融金属供給部20の少なくとも一方を互いに近接または離間させる方向(上下方向)に移動させる駆動部51と、駆動部51によりシール部22と載置面上のウェハ1とを当接させ、処理室4を形成させる制御を行う制御部50とを設ける。これにより、載置部10と溶融金属供給部20とを近接する方向に相対移動させる制御を行うことによって、載置面11上のウェハ1の表面1aと溶融金属供給部20の対向面21との距離を極力小さくした処理室4を形成することができるので、溶融金属3の使用量を低減することができる。また、溶融金属3の供給後に載置部10と溶融金属供給部20との少なくとも一方を近接する方向に駆動させる制御を行うことにより、処理室4内の溶融金属3を機械的に加圧することも可能になる。その場合には機械的な圧力によって空隙(ボイド)などの充填不良の発生を効果的に抑制することができる。 Further, in the first embodiment, as described above, the drive unit 51 that moves at least one of the placement unit 10 and the molten metal supply unit 20 in the direction (vertical direction) to move close to or away from each other A control unit 50 is provided which performs control to cause the processing chamber 4 to be formed by bringing the portion 22 into contact with the wafer 1 on the mounting surface. Thus, by performing control to relatively move the mounting unit 10 and the molten metal supply unit 20 in the direction in which the mounting unit 10 and the molten metal supply unit 20 approach each other, the surface 1 a of the wafer 1 on the mounting surface 11 and the opposing surface 21 of the molten metal supply unit 20 Since the processing chamber 4 can be formed with the distance as short as possible, the amount of use of the molten metal 3 can be reduced. In addition, by performing control to drive at least one of the mounting unit 10 and the molten metal supply unit 20 in the direction in which the mounting unit 10 and the molten metal supply unit 20 approach after the supply of the molten metal 3, the molten metal 3 in the processing chamber 4 is mechanically pressurized. Will also be possible. In that case, the occurrence of filling defects such as voids can be effectively suppressed by mechanical pressure.
 また、第1実施形態では、上記のように、溶融金属供給部20に溶融金属3を供給する金属供給ポンプ52をチャンバ30の外部に設け、チャンバ30の外部の金属供給ポンプ52とチャンバ30の内部の溶融金属供給部20とを接続する供給管53をさらに設ける。これにより、気密のチャンバ30内の溶融金属供給部20に、容易に溶融金属3を送ることができる。また、金属供給ポンプ52および供給管53によって、溶融金属供給部20から処理室4に供給する溶融金属3に供給圧力を付与することができる。その結果、供給圧力によって効果的に微細空間2への充填を行うことができるので、充填不良の発生を効果的に抑制することができる。 In the first embodiment, as described above, the metal supply pump 52 for supplying the molten metal 3 to the molten metal supply unit 20 is provided outside the chamber 30, and the metal supply pump 52 outside the chamber 30 and the chamber 30 are A supply pipe 53 is further provided to connect with the internal molten metal supply unit 20. Thereby, the molten metal 3 can be easily sent to the molten metal supply unit 20 in the airtight chamber 30. Further, the supply pressure can be applied to the molten metal 3 supplied from the molten metal supply unit 20 to the processing chamber 4 by the metal supply pump 52 and the supply pipe 53. As a result, since the minute space 2 can be effectively filled by the supply pressure, the occurrence of the filling defect can be effectively suppressed.
 また、第1実施形態では、上記のように、供給口23に接続された溶融金属3の導入部25を溶融金属供給部20の内部に設け、導入部25内に配置され、供給口23に向けて進退して供給口23を開閉可能に構成された弁体26aをさらに設ける。これにより、弁体26aを移動させることにより、導入部25から処理室4への溶融金属3の供給と供給停止との切替を、処理室4に対してより近い位置で行うことができる。また、供給口23を閉じる際に導入部25内で弁体26aを供給口23に向けて移動させることにより、弁体26aの移動に伴う機械的な圧力を処理室4側に付与することができる。その結果、開放前の処理室4の内部の圧力が処理室4の外部(チャンバ30内)の圧力よりも低い場合にも、容易かつ円滑に処理室4を開放することができる。 Further, in the first embodiment, as described above, the introduction portion 25 of the molten metal 3 connected to the supply port 23 is provided inside the molten metal supply portion 20 and disposed in the introduction portion 25. There is further provided a valve body 26a configured to be able to open and close the supply port 23 by advancing and retracting. Thus, by moving the valve body 26 a, switching between the supply of molten metal 3 from the introduction unit 25 to the processing chamber 4 and the supply stop of the molten metal 3 can be performed at a position closer to the processing chamber 4. Also, by moving the valve body 26a toward the supply port 23 in the introduction unit 25 when the supply port 23 is closed, the mechanical pressure associated with the movement of the valve body 26a can be applied to the processing chamber 4 side. it can. As a result, even when the pressure inside the processing chamber 4 before opening is lower than the pressure outside the processing chamber 4 (inside the chamber 30), the processing chamber 4 can be opened easily and smoothly.
 なお、第1実施形態では、処理室4に溶融金属3を供給しながら処理室4を開放してもよいし、弁体26aを供給口23に向けて移動させることにより機械的な圧力を処理室4側に付与しながら処理室4を開放してもよい。いずれの場合でも処理室4の内外の圧力差を低減して、容易かつ円滑に処理室4を開放することができる。 In the first embodiment, the processing chamber 4 may be opened while the molten metal 3 is supplied to the processing chamber 4, or the mechanical pressure is processed by moving the valve body 26 a toward the supply port 23. The processing chamber 4 may be opened while being applied to the chamber 4 side. In any case, the pressure difference between the inside and outside of the processing chamber 4 can be reduced, and the processing chamber 4 can be opened easily and smoothly.
 また、第1実施形態では、上記のように、真空ポンプ41によりチャンバ30内が減圧された状態で、処理室4が形成されるように金属充填装置100を構成する。これにより、減圧状態の処理室4内に溶融金属3を供給した後で、ガス供給部40によりチャンバ30内を加圧することにより、溶融金属3を微細空間2内に差圧充填することが可能となる。これにより、より一層効果的に微細空間2への充填不良の発生を抑制することができる。また、処理室4の外部のチャンバ30に真空ポンプ41を設けることができるので、処理室4に連通した真空排気口を設ける場合と比較して、排気口(バルブ)に金属が触れることが無く、バルブ弁体への金属粉の噛み込み等による気密不良の発生を回避できる。 In the first embodiment, as described above, the metal filling apparatus 100 is configured such that the processing chamber 4 is formed in a state in which the inside of the chamber 30 is depressurized by the vacuum pump 41. As a result, after the molten metal 3 is supplied into the processing chamber 4 in a depressurized state, the inside of the chamber 30 is pressurized by the gas supply unit 40 so that the molten metal 3 can be differentially filled in the minute space 2 It becomes. Thereby, the occurrence of the filling failure in the minute space 2 can be more effectively suppressed. Further, since the vacuum pump 41 can be provided in the chamber 30 outside the processing chamber 4, metal does not come in contact with the exhaust port (valve) as compared with the case where the vacuum exhaust port communicated with the processing chamber 4 is provided. It is possible to avoid the occurrence of air tightness due to biting of metal powder into the valve valve body and the like.
 また、第1実施形態では、上記のように、チャンバ30に、ウェハ1を出し入れするための開閉可能なゲート34を設ける。これにより、チャンバ30内を所望の雰囲気および圧力状態に維持したまま、容易にウェハ1の搬入や搬出を行うことができるようになる。たとえばチャンバ30内を不活性ガス雰囲気にすることにより、ウェハ1の搬入出の際に溶融金属供給部20の対向面21に付着した溶融金属3の残存部分が外気に晒されて酸化されることなどを抑制することができる。また、金属充填装置100を真空成膜装置などと真空連続搬送が可能なように接続する場合には、大気に触れることなく連続処理する構成も可能である。 In the first embodiment, as described above, the chamber 30 is provided with the openable / closable gate 34 for loading and unloading the wafer 1. As a result, the wafer 1 can be easily carried in and out while maintaining the inside of the chamber 30 in a desired atmosphere and pressure. For example, by setting the inside of the chamber 30 to an inert gas atmosphere, the remaining portion of the molten metal 3 adhering to the facing surface 21 of the molten metal supply unit 20 when the wafer 1 is carried in and out is exposed to the outside air and oxidized. Etc. can be suppressed. In addition, when the metal filling apparatus 100 is connected to a vacuum deposition apparatus or the like so as to enable continuous vacuum conveyance, a configuration in which continuous processing is performed without being exposed to the air is also possible.
 また、第1実施形態では、上記のように、溶融金属3の供給に先立って、ウェハ1の表面のうち微細空間2を含む処理領域1bの溶融金属3に対する濡れ性(親和性)を向上させる処理、または、ウェハ1の表面のうち処理領域1bよりも外側の周囲領域1cの溶融金属3に対する濡れ性を低下させる処理の少なくともいずれかを行う。これにより、処理領域1bの濡れ性を相対的に高くし、処理領域1bよりも外側の周囲領域1cの濡れ性を相対的に低い状態にすることができる。その結果、気密空間に溶融金属3を押し込めた状態としなくても、処理領域1bに溶融金属3を行き渡らせることができ、処理室4を開放した場合にも、処理領域1bと周囲領域1cとの境界に溶融金属3の界面を形成して、処理領域1bの溶融金属3が周囲領域1c側に拡がることを抑制し、微細空間2内に効果的に溶融金属3を充填することができる。 In the first embodiment, as described above, the wettability (affinity) to the molten metal 3 of the processing region 1 b including the minute space 2 in the surface of the wafer 1 is improved prior to the supply of the molten metal 3. At least one of the treatment and the treatment for reducing the wettability of the peripheral region 1c of the surface of the wafer 1 outside the treatment region 1b to the molten metal 3 is performed. As a result, the wettability of the processing area 1b can be made relatively high, and the wettability of the surrounding area 1c outside the processing area 1b can be made relatively low. As a result, the molten metal 3 can be spread to the processing area 1b without pressing the molten metal 3 into the airtight space, and even when the processing chamber 4 is opened, the processing area 1b and the surrounding area 1c The interface of the molten metal 3 is formed at the boundary of the molten metal 3 to prevent the molten metal 3 in the processing region 1b from spreading to the surrounding region 1c side, and the molten metal 3 can be effectively filled in the minute space 2.
[第2実施形態]
 次に、図9を参照して、第2実施形態による金属充填装置200について説明する。この金属充填装置200では、載置部10を溶融金属供給部20に対して近接または離間する方向(上下方向)に移動可能に構成した上記第1実施形態とは異なり、溶融金属供給部20を移動可能に構成した例について説明する。なお、第2実施形態のうち、上記第1実施形態と同様の構成については、上記第1実施形態と同一の符号を付すとともに説明を省略する。
Second Embodiment
Next, with reference to FIG. 9, the metal filling apparatus 200 by 2nd Embodiment is demonstrated. Unlike the first embodiment in which the mounting unit 10 is movable in the direction (vertical direction) in which the mounting unit 10 moves closer to or away from the molten metal supply unit 20 in the metal filling apparatus 200, the molten metal supply unit 20 is An example configured to be movable will be described. In addition, about the structure similar to the said 1st Embodiment among 2nd Embodiment, while attaching | subjecting the code | symbol same as the said 1st Embodiment, description is abbreviate | omitted.
 第2実施形態による金属充填装置200では、図9に示すように、溶融金属供給部20は、載置部10の上方(上下にオーバラップする位置)に配置され、載置部10に対して近接または離間する方向(上下方向)に移動可能に構成されている。 In the metal filling apparatus 200 according to the second embodiment, as shown in FIG. 9, the molten metal supply unit 20 is disposed above the mounting unit 10 (overlapping position in the upper and lower directions), and It is configured to be movable in the approaching or separating direction (vertical direction).
 すなわち、金属充填装置200が、溶融金属供給部20を載置部10に対して近接または離間させる方向(上下方向)に移動させる駆動部151を備えている。制御部50は、駆動部151により溶融金属供給部20を下降させてシール部22と載置面11上のウェハ1とを当接させ、処理室4を形成させる制御を行う。制御部50は、駆動部151により溶融金属供給部20を上昇させることにより、処理室4を開放させる制御を行う。 That is, the metal filling apparatus 200 includes the drive unit 151 that moves the molten metal supply unit 20 in a direction (vertical direction) in which the molten metal supply unit 20 approaches or separates from the mounting unit 10. The control unit 50 controls the drive unit 151 to lower the molten metal supply unit 20 to bring the seal unit 22 into contact with the wafer 1 on the mounting surface 11 to form the processing chamber 4. The control unit 50 performs control to open the processing chamber 4 by raising the molten metal supply unit 20 by the drive unit 151.
 第2実施形態では、載置部10は、チャンバ30の下部隔壁33上に固定的に設置されている。載置部10は、上記第1実施形態と同様に、駆動部51によって溶融金属供給部20に対して近接または離間する方向(上下方向)に移動可能に構成されていてもよい。すなわち、載置部10および溶融金属供給部20の両方をそれぞれ上下方向に移動させるための駆動部51および駆動部151を金属充填装置200に設けてもよい。 In the second embodiment, the placement unit 10 is fixedly installed on the lower partition wall 33 of the chamber 30. The placement unit 10 may be configured to be movable by the drive unit 51 in a direction (up and down direction) close to or away from the molten metal supply unit 20 as in the first embodiment. That is, the metal filling apparatus 200 may be provided with a drive unit 51 and a drive unit 151 for moving both the placement unit 10 and the molten metal supply unit 20 in the vertical direction.
 第2実施形態のその他の構成は、上記第1実施形態と同様である。 The remaining structure of the second embodiment is similar to that of the aforementioned first embodiment.
 (第2実施形態の効果)
 第2実施形態では、上記第1実施形態と同様に、ガス供給部40を設けた気密のチャンバ30内で、対向面21と、シール部22と、ウェハ1の表面1aとにより処理室4が形成され、供給口23を介して処理室4内に溶融金属3が供給されるように金属充填装置200を構成することによって、凝固過程での溶融金属3への加圧を維持することが可能で、かつ、ウェハ1の搬入や搬出の際にもウェハ1の周囲の雰囲気および圧力の制御が可能となる。
(Effect of the second embodiment)
In the second embodiment, as in the first embodiment, in the airtight chamber 30 provided with the gas supply unit 40, the processing chamber 4 is formed by the facing surface 21, the seal unit 22, and the surface 1 a of the wafer 1. By forming the metal filling device 200 so that the molten metal 3 is supplied into the processing chamber 4 through the supply port 23, the pressurization to the molten metal 3 in the solidification process can be maintained. Also, the atmosphere and pressure around the wafer 1 can be controlled even when the wafer 1 is carried in and out.
 第2実施形態のその他の効果は、上記第1実施形態と同様である。 The other effects of the second embodiment are the same as those of the first embodiment.
[第3実施形態]
 次に、図10を参照して、第3実施形態による金属充填装置300について説明する。この金属充填装置300では、上記第1実施形態および第2実施形態の構成に追加して、溶融金属供給部20および載置部10の少なくとも一方を、載置面11に平行な方向に移動可能に構成する例について説明する。なお、第3実施形態のうち、上記第1実施形態および第2実施形態と同様の構成については、上記第1実施形態と同一の符号を付すとともに説明を省略する。
Third Embodiment
Next, a metal filling apparatus 300 according to a third embodiment will be described with reference to FIG. In this metal filling apparatus 300, in addition to the configurations of the first embodiment and the second embodiment, at least one of the molten metal supply unit 20 and the placement unit 10 can be moved in the direction parallel to the placement surface 11 An example configured in FIG. In addition, about the structure similar to the said 1st Embodiment and 2nd Embodiment among 3rd Embodiment, while attaching | subjecting the code | symbol same as the said 1st Embodiment, description is abbreviate | omitted.
 第3実施形態による金属充填装置300では、溶融金属供給部20および載置部10の少なくとも一方が、載置面11に概ね平行な方向(水平方向)に移動可能に構成されている。図10では、溶融金属供給部20および載置部10のうち、載置部10が載置面11に概ね平行な方向(水平方向)に移動可能に構成されている。第3実施形態では、溶融金属供給部20が概ね水平方向に移動可能であってもよいし、溶融金属供給部20および載置部10の両方が概ね水平方向に移動可能であってもよい。 In the metal filling apparatus 300 according to the third embodiment, at least one of the molten metal supply unit 20 and the placement unit 10 is configured to be movable in a direction (horizontal direction) substantially parallel to the placement surface 11. In FIG. 10, of the molten metal supply unit 20 and the placement unit 10, the placement unit 10 is configured to be movable in a direction (horizontal direction) substantially parallel to the placement surface 11. In the third embodiment, the molten metal supply unit 20 may be movable in a generally horizontal direction, or both the molten metal supply unit 20 and the placement unit 10 may be movable in a generally horizontal direction.
 図10の構成例では、金属充填装置300は、載置部10を、載置面11に平行な方向に移動させる駆動部254を備えている。駆動部254は、たとえば、載置面11に平行な面(水平面)内で直交する2方向に移動可能な2軸移動機構により構成される。これにより、水平方向における載置部10と溶融金属供給部20との相対位置を、任意に変更することが可能である。駆動部254は、1軸の移動機構であってもよい。載置部10は、駆動部254により水平方向に移動可能であり、上下方向には移動しないように構成されている。 In the configuration example of FIG. 10, the metal filling apparatus 300 includes a drive unit 254 that moves the mounting unit 10 in a direction parallel to the mounting surface 11. The driving unit 254 is configured by, for example, a two-axis moving mechanism that can move in two directions orthogonal to each other in a plane (horizontal plane) parallel to the mounting surface 11. Thereby, it is possible to change arbitrarily the relative position of mounting part 10 and molten metal supply part 20 in the horizontal direction. The driving unit 254 may be a moving mechanism of one axis. The placement unit 10 is movable in the horizontal direction by the drive unit 254, and is configured not to move in the vertical direction.
 溶融金属供給部20は、載置部10よりも上方の位置に配置されている。溶融金属供給部20は、駆動部151により上下方向(載置部10および溶融金属供給部20が互いに近接または離間する方向)に移動可能で、水平方向には移動しないように固定されている。なお、載置部10が下部隔壁33上で移動するので、溶融金属供給部20は、側部隔壁31を貫通する供給管53を介して、チャンバ30の外側に配置された金属供給ポンプ52と接続されている。 The molten metal supply unit 20 is disposed at a position above the mounting unit 10. The molten metal supply unit 20 is movable in the vertical direction (a direction in which the placement unit 10 and the molten metal supply unit 20 approach or are separated from each other) by the drive unit 151 and is fixed so as not to move in the horizontal direction. Since the mounting unit 10 moves on the lower partition wall 33, the molten metal supply unit 20 and the metal supply pump 52 disposed outside the chamber 30 via the supply pipe 53 passing through the side partition wall 31. It is connected.
 第3実施形態では、対向面21の直径(面積)およびシール部22の直径が、載置面11(載置面11上に載置されるウェハ1)と比べて小さくなるように形成されている。すなわち、金属充填装置300は、載置部10の水平移動によって、ウェハ1の表面1aの任意の位置でシール部22をウェハ1の表面1aに当接させ、対向面21と、シール部22と、ウェハ1の表面1aとにより、ウェハ1の表面1aの一部に局所的な処理室4を形成するように構成されている。このため、ウェハ1の外径が上記第1実施形態と同一であると仮定した場合、第3実施形態では、処理室4の容積が第1実施形態よりもさらに小さくなる。 In the third embodiment, the diameter (area) of the facing surface 21 and the diameter of the seal portion 22 are formed to be smaller than the placement surface 11 (the wafer 1 placed on the placement surface 11). There is. That is, the metal filling apparatus 300 causes the seal portion 22 to contact the surface 1 a of the wafer 1 at an arbitrary position on the surface 1 a of the wafer 1 by the horizontal movement of the mounting portion 10, and the opposing surface 21 and the seal portion 22 The surface 1 a of the wafer 1 is configured to form a local processing chamber 4 in a part of the surface 1 a of the wafer 1. Therefore, assuming that the outer diameter of the wafer 1 is the same as that of the first embodiment, in the third embodiment, the volume of the processing chamber 4 is smaller than that of the first embodiment.
 制御部50は、駆動部254により載置部10を水平移動させて、ウェハ1の表面1a上における微細空間2の形成位置を、溶融金属供給部20の対向面21と向かい合う位置に配置する制御を行う。そして、制御部50は、駆動部151により溶融金属供給部20を下降させてシール部22と載置面11上のウェハ1とを当接させ、ウェハ1の表面1a上に局所的な処理室4を形成させる制御を行う。また、制御部50は、駆動部151により溶融金属供給部20を上昇させることにより、処理室4を開放させる制御を行う。 The control unit 50 controls the driving unit 254 to horizontally move the mounting unit 10 to arrange the formation position of the minute space 2 on the surface 1 a of the wafer 1 at a position facing the facing surface 21 of the molten metal supply unit 20. I do. Then, the control unit 50 causes the molten metal supply unit 20 to be lowered by the drive unit 151 to bring the seal unit 22 and the wafer 1 on the mounting surface 11 into contact with each other, and a local processing chamber on the surface 1 a of the wafer 1. Control to form 4 is performed. Further, the control unit 50 performs control to open the processing chamber 4 by raising the molten metal supply unit 20 by the drive unit 151.
 第3実施形態のその他の構成は、上記第1実施形態と同様である。 The remaining structure of the third embodiment is similar to that of the aforementioned first embodiment.
 (第3実施形態の効果)
 第3実施形態では、上記第1実施形態と同様に、ガス供給部40を設けた気密のチャンバ30内で、対向面21と、シール部22と、ウェハ1の表面1aとにより処理室4が形成され、供給口23を介して処理室4内に溶融金属3が供給されるように金属充填装置300を構成することによって、凝固過程での溶融金属3への加圧を維持することが可能で、かつ、ウェハ1の搬入や搬出の際にもウェハ1の周囲の雰囲気および圧力の制御が可能となる。
(Effect of the third embodiment)
In the third embodiment, as in the first embodiment, in the airtight chamber 30 provided with the gas supply unit 40, the processing chamber 4 is formed by the facing surface 21, the seal unit 22, and the surface 1 a of the wafer 1. By forming the metal filling device 300 so that the molten metal 3 is supplied into the processing chamber 4 through the supply port 23, the pressurization to the molten metal 3 in the solidification process can be maintained. Also, the atmosphere and pressure around the wafer 1 can be controlled even when the wafer 1 is carried in and out.
 また、第3実施形態では、上記のように、載置部10を、載置面11に平行な方向(水平方向)に移動可能に構成する。これにより、ウェハ1の表面1a上の任意の位置(金属充填処理が必要な位置)に局所的な処理室4を形成することが可能となる。その結果、ウェハ1の表面1a上のほぼ全体に処理室4を形成する場合と比べて、溶融金属3の使用量をさらに低減することができる。 In the third embodiment, as described above, the placement unit 10 is configured to be movable in a direction (horizontal direction) parallel to the placement surface 11. As a result, it becomes possible to form a local processing chamber 4 at an arbitrary position on the surface 1 a of the wafer 1 (a position requiring the metal filling processing). As a result, the amount of use of the molten metal 3 can be further reduced as compared with the case where the processing chamber 4 is formed almost all over the surface 1 a of the wafer 1.
 第3実施形態のその他の効果は、上記第1実施形態と同様である。 The other effects of the third embodiment are the same as those of the first embodiment.
[第4実施形態]
 次に、図11を参照して、第4実施形態による金属充填装置400について説明する。この金属充填装置400では、上記第1実施形態の構成に追加して、溶融金属供給部320の対向面21に第2の供給口(ガス供給口327)を設けて、処理室4内をガスによって加圧可能に構成した例について説明する。なお、第4実施形態のうち、上記第1実施形態と同様の構成については、上記第1実施形態と同一の符号を付すとともに説明を省略する。
Fourth Embodiment
Next, a metal filling apparatus 400 according to a fourth embodiment will be described with reference to FIG. In the metal filling apparatus 400, in addition to the configuration of the first embodiment, a second supply port (gas supply port 327) is provided on the facing surface 21 of the molten metal supply unit 320, and the inside of the processing chamber 4 is filled with gas. An example configured to be capable of being pressurized will be described. In addition, about the structure similar to the said 1st Embodiment among 4th Embodiment, while attaching | subjecting the code | symbol same as the said 1st Embodiment, description is abbreviate | omitted.
 第4実施形態による金属充填装置400では、図11に示すように、溶融金属供給部320は、対向面21に設けられた溶融金属3の供給口23に加えて、対向面21に設けられた加圧ガスのガス供給口327をさらに含んでいる。 In the metal filling apparatus 400 according to the fourth embodiment, as shown in FIG. 11, the molten metal supply unit 320 is provided on the opposing surface 21 in addition to the supply port 23 of the molten metal 3 provided on the opposing surface 21. It further includes a gas supply port 327 for pressurized gas.
 ガス供給口327は、側部隔壁31を貫通するガス配管345を介して、ガス供給部40と接続されている。これにより、金属充填装置400は、溶融金属供給部320のガス供給口327を介して、処理室4の内部もガスにより独立して加圧を行うことが可能なように構成されている。なお、ガス供給部40は、ガス配管42aおよび42cと制御弁43とを介してチャンバ30の内部に接続され、ガス配管42cおよび345と、制御弁344とを介して溶融金属供給部320の内部(ガス供給口327)に接続されている。チャンバ30内の加圧用のガス供給部40と、処理室4内の加圧用のガス供給部40とを別々に設けてもよい。なお、図11の構成例では、ガス供給口327が、ガス配管345、42cおよび42bと、制御弁43および344とを介して真空ポンプ41とも接続されており、処理室4内を真空排気することも可能である。 The gas supply port 327 is connected to the gas supply unit 40 via a gas pipe 345 penetrating the side partition wall 31. Thus, the metal filling apparatus 400 is configured to be able to independently pressurize the inside of the processing chamber 4 with gas via the gas supply port 327 of the molten metal supply unit 320. The gas supply unit 40 is connected to the inside of the chamber 30 via the gas pipes 42 a and 42 c and the control valve 43, and the inside of the molten metal supply unit 320 via the gas pipes 42 c and 345 and the control valve 344. It is connected to (gas supply port 327). The pressurizing gas supply unit 40 in the chamber 30 and the pressurizing gas supply unit 40 in the processing chamber 4 may be separately provided. In the configuration example of FIG. 11, the gas supply port 327 is also connected to the vacuum pump 41 via the gas pipes 345, 42c and 42b, and the control valves 43 and 344, and the process chamber 4 is evacuated. It is also possible.
 図11の構成例では、溶融金属供給部320は、加圧ガスの供給と供給停止とを切り替えるガスバルブ326を含む。この構成例では、ガスバルブ326は、溶融金属3の充填バルブ26と同様に構成している。すなわち、溶融金属供給部320は、溶融金属供給部320の内部に設けられるとともにガス供給口327に接続された加圧ガスの導入部325と、導入部325内に配置され、ガス供給口327に向けて進退してガス供給口327を開閉可能に構成された弁体326aとを含んでいる。弁体326aは、弁体駆動部326bとともに、ガスバルブ326を構成している。弁体326aは、弁体駆動部326bによって、ガス供給口327を塞ぐ閉位置と、ガス供給口327から上方に離間して開放する開位置との間を、上下方向に移動することが可能である。 In the configuration example of FIG. 11, the molten metal supply unit 320 includes a gas valve 326 that switches between supply and stop of the pressurized gas. In this configuration example, the gas valve 326 is configured in the same manner as the filling valve 26 of the molten metal 3. That is, the molten metal supply unit 320 is disposed in the introduction unit 325 of the pressurized gas provided inside the molten metal supply unit 320 and connected to the gas supply port 327, and disposed in the introduction unit 325. And a valve body 326a configured to be able to move forward and backward to open and close the gas supply port 327. The valve body 326a, together with the valve body drive portion 326b, constitutes a gas valve 326. The valve body 326a can move vertically between the closed position closing the gas supply port 327 and the open position spaced upward from the gas supply port 327 by the valve drive unit 326b. is there.
 制御部50は、ガスバルブ326、制御弁43および344、ガス供給部40(または真空ポンプ41)を制御することにより、処理室4内を不活性ガスにより加圧する制御や、処理室4内を概ね真空状態になるまで減圧する制御を行う。 The control unit 50 controls the gas chamber 326, the control valves 43 and 344, and the gas supply unit 40 (or the vacuum pump 41) to pressurize the inside of the processing chamber 4 with an inert gas, and generally controls the inside of the processing chamber 4 Control to reduce the pressure to a vacuum state.
 第4実施形態のその他の構成は、上記第1実施形態と同様である。 The remaining structure of the fourth embodiment is similar to that of the aforementioned first embodiment.
 (第4実施形態の効果)
 第4実施形態では、上記第1実施形態と同様に、ガス供給部40を設けた気密のチャンバ30内で、対向面21と、シール部22と、ウェハ1の表面1aとにより処理室4が形成され、供給口23を介して処理室4内に溶融金属3が供給されるように金属充填装置400を構成することによって、凝固過程での溶融金属3への加圧を維持することが可能で、かつ、ウェハ1の搬入や搬出の際にもウェハ1の周囲の雰囲気および圧力の制御が可能となる。
(Effect of the fourth embodiment)
In the fourth embodiment, as in the first embodiment, in the airtight chamber 30 provided with the gas supply unit 40, the processing chamber 4 is formed by the facing surface 21, the seal unit 22, and the surface 1 a of the wafer 1. By forming the metal filling device 400 so that the molten metal 3 is supplied into the processing chamber 4 through the supply port 23, the pressurization to the molten metal 3 in the solidification process can be maintained. Also, the atmosphere and pressure around the wafer 1 can be controlled even when the wafer 1 is carried in and out.
 また、第4実施形態では、上記のように、対向面21にガス供給口327を設け、ガス供給口327を介して、処理室4の内部もガスにより独立して加圧を行うように金属充填装置400を構成する。これにより、処理室4内に溶融金属3を供給した後、ガス供給部40によって処理室4内を不活性ガスにより加圧することにより、微細空間2への充填不良の発生をより効果的に抑制することができる。 Further, in the fourth embodiment, as described above, the gas supply port 327 is provided on the facing surface 21, and the inside of the processing chamber 4 is also independently pressurized by the gas via the gas supply port 327. The filling device 400 is configured. Thus, after supplying the molten metal 3 into the processing chamber 4, the gas supply unit 40 pressurizes the inside of the processing chamber 4 with the inert gas, thereby more effectively suppressing the occurrence of the filling failure in the minute space 2. can do.
 第4実施形態のその他の効果は、上記第1実施形態と同様である。 The other effects of the fourth embodiment are the same as those of the first embodiment.
[第5実施形態]
 次に、図12および図13を参照して、第5実施形態について説明する。第5実施形態では、上記第1実施形態ならびに第2実施形態の構成に追加して、溶融金属供給部420に、対向面21とウェハ1の表面1aとの間の間隔Dを規定するためのスペーサ部428を設ける例について説明する。なお、第5実施形態のうち、溶融金属供給部420以外の構成は上記第1実施形態と同様であるので、上記第1実施形態と同一の符号を付すとともに説明を省略する。
Fifth Embodiment
A fifth embodiment will now be described with reference to FIGS. 12 and 13. In the fifth embodiment, in addition to the configurations of the first embodiment and the second embodiment, the molten metal supply unit 420 is provided to define a distance D between the facing surface 21 and the surface 1 a of the wafer 1. An example in which the spacer portion 428 is provided will be described. In the fifth embodiment, the configuration other than the molten metal supply unit 420 is the same as that of the first embodiment, and therefore, the same reference numerals as those of the first embodiment are given and the description thereof is omitted.
 第5実施形態では、図12に示すように、溶融金属供給部420は、対向面21とウェハ1の表面1aとの間の間隔Dを規定するためのスペーサ部428を備えている。スペーサ部428は、溶融金属供給部420に固定的に設けられ、処理室4が形成された状態で、載置部10と上下方向(溶融金属供給部420と載置部10とが対向する方向)に当接する位置に配置されている。具体的には、スペーサ部428は、溶融金属供給部420の載置部10側端部(下部)のうちで、シール部22よりも外側で、かつ、載置面11上のウェハ1の配置位置よりも外側の位置に設けられ、載置部10に向けて突出する柱状(突起状)に形成されている。 In the fifth embodiment, as shown in FIG. 12, the molten metal supply portion 420 includes a spacer portion 428 for defining the distance D between the facing surface 21 and the surface 1 a of the wafer 1. The spacer unit 428 is fixedly provided to the molten metal supply unit 420, and in the state where the processing chamber 4 is formed, the mounting unit 10 and the vertical direction (a direction in which the molten metal supply unit 420 and the mounting unit 10 face each other) Is placed in contact with the Specifically, the spacer portion 428 is an arrangement of the wafer 1 on the mounting surface 11 outside the seal portion 22 in the mounting portion 10 side end portion (lower portion) of the molten metal supply portion 420. It is provided in a position outside the position, and is formed in a columnar shape (protrusion shape) that protrudes toward the placement unit 10.
 スペーサ部428は、たとえば図13に示したように、シール部22の周囲に、等角度間隔で複数設ければよい。図13では、3つのスペーサ部428を約120度間隔で配置した例を示した。スペーサ部428の載置部10側への突出量Hは、ウェハ1の厚みと、シール性を確保するためのシール部22の変形量(ツブシ量)を考慮した上で、処理室4を形成した状態でのウェハ1の表面1aと対向面21との間隔Dが所定の一定量となるように設定される。この結果、スペーサ部428が載置部10と当接した状態では、溶融金属供給部420と載置部10とがそれ以上近接することができなくなり、ウェハ1の表面1aと対向面21との間隔Dがさらに小さくなることが回避される。 For example, as shown in FIG. 13, a plurality of spacer portions 428 may be provided around the seal portion 22 at equal angular intervals. FIG. 13 shows an example in which three spacer portions 428 are arranged at an interval of about 120 degrees. The amount of protrusion H of the spacer portion 428 to the mounting portion 10 side forms the processing chamber 4 in consideration of the thickness of the wafer 1 and the amount of deformation (amount of displacement) of the seal portion 22 for securing sealing performance. The distance D between the front surface 1a of the wafer 1 and the facing surface 21 in the above state is set to be a predetermined amount. As a result, in the state where spacer portion 428 is in contact with mounting portion 10, molten metal supply portion 420 and mounting portion 10 can not be brought closer to each other, and surface 1a of wafer 1 and opposing surface 21 A smaller distance D is avoided.
 スペーサ部428は、必ずしも対向面21から突出するように形成する必要はない。たとえば、スペーサ部428は、溶融金属供給部420の下部側面から側方に延びた後、載置部10側に折れ曲がるような形状でもよい。スペーサ部428は、必ずしも載置面11と当接する必要はなく、載置部10に設けられた専用の当接面と接触するようにしてもよい。また、スペーサ部428は、載置部10側に設けられてもよい。スペーサ部428を載置部10に設ける場合、溶融金属供給部側にスペーサ部を設ける場合よりも、スペーサ部428を備える構成の金型作成が容易になるとともに、清掃が容易になるという利点がある。 The spacer portions 428 do not necessarily have to be formed to project from the facing surface 21. For example, after the spacer portion 428 extends laterally from the lower side surface of the molten metal supply portion 420, the spacer portion 428 may be bent toward the mounting portion 10 side. The spacer portion 428 does not have to be in contact with the mounting surface 11 and may be in contact with a dedicated contact surface provided on the mounting portion 10. Also, the spacer 428 may be provided on the mounting unit 10 side. In the case where the spacer portion 428 is provided on the mounting portion 10, as compared with the case where the spacer portion is provided on the molten metal supply portion side, there is an advantage that mold making of the configuration provided with the spacer portion 428 becomes easy and cleaning becomes easy. is there.
 第5実施形態のその他の構成は、上記第1実施形態と同様である。 The remaining structure of the fifth embodiment is similar to that of the aforementioned first embodiment.
 (第5実施形態の効果)
 第5実施形態では、上記第1実施形態と同様に、凝固過程での溶融金属3への加圧を維持することが可能で、かつ、ウェハ1の搬入や搬出の際にもウェハ1の周囲の雰囲気および圧力の制御が可能となる。
(Effects of the fifth embodiment)
In the fifth embodiment, as in the first embodiment, the pressurization to the molten metal 3 in the solidification process can be maintained, and the periphery of the wafer 1 can be also transferred in and out of the wafer 1. Control of the atmosphere and pressure of the
 また、第5実施形態では、上記のように、対向面21とウェハ1の表面1aとの間の間隔Dを規定するためのスペーサ部428を溶融金属供給部420に設ける。これにより、処理室4を形成する際に、容易に処理室4の容積を一定にすることができ、溶融金属3の供給量を一定にすることができる。また、スペーサ部428によって、処理室4を形成した状態でのシール部22の変形量を一定にすることができる。これにより、シール部22を過度に変形させて劣化させたり、シール部22の変形量がばらついて処理室4のシール性能がばらつくことを抑制することができる。 Further, in the fifth embodiment, as described above, the molten metal supply portion 420 is provided with the spacer portion 428 for defining the distance D between the facing surface 21 and the surface 1 a of the wafer 1. Thereby, when forming the processing chamber 4, the volume of the processing chamber 4 can be easily made constant, and the supply amount of the molten metal 3 can be made constant. Further, the amount of deformation of the seal portion 22 in a state in which the processing chamber 4 is formed can be made constant by the spacer portion 428. As a result, it is possible to suppress the seal portion 22 from being deformed excessively and to deteriorate, or the amount of deformation of the seal portion 22 to vary and the seal performance of the processing chamber 4 to vary.
 第5実施形態のその他の効果は、概ね上記第1実施形態と同様である。 The other effects of the fifth embodiment are substantially the same as those of the first embodiment.
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is indicated not by the description of the embodiments described above but by the claims, and further includes all modifications (modifications) within the meaning and scope equivalent to the claims.
 たとえば、上記第1~第5実施形態で開示した各構成は、互いに組み合わせてもよい。たとえば、第3実施形態の金属充填装置300において、溶融金属供給部20に代えて、第4実施形態(金属充填装置400)の溶融金属供給部320を設けてもよい。また、たとえば、第4実施形態の金属充填装置400に、第2実施形態(金属充填装置200)の駆動部151を設けて、溶融金属供給部320を載置部10に対して近接または離間する方向に移動するように構成してもよい。さらに、溶融金属供給部320に、第5実施形態のスペーサ部428を設けたりしてもよい。 For example, the configurations disclosed in the first to fifth embodiments may be combined with each other. For example, in the metal filling apparatus 300 of the third embodiment, the molten metal supply part 320 of the fourth embodiment (metal filling apparatus 400) may be provided instead of the molten metal supply part 20. Further, for example, the drive unit 151 of the second embodiment (metal filling apparatus 200) is provided in the metal filling apparatus 400 of the fourth embodiment to move the molten metal supply unit 320 closer to or away from the placement unit 10. It may be configured to move in a direction. Furthermore, the molten metal supply unit 320 may be provided with the spacer unit 428 of the fifth embodiment.
 また、上記第3実施形態では、溶融金属供給部20が載置部10に対して近接または離間する方向(上下方向)に移動可能であり、載置部10が載置面11と平行な方向(水平方向)に移動可能である構成例を示したが、本発明はこれに限られない。たとえば、載置部10および溶融金属供給部20のうち一方が、水平方向および上下方向の3軸方向に移動可能であってもよい。 In the third embodiment, the molten metal supply unit 20 is movable in the direction (vertical direction) in which the molten metal supply unit 20 approaches or separates from the mounting unit 10, and the mounting unit 10 is parallel to the mounting surface 11. Although the example of composition which can move (horizontally) was shown, the present invention is not limited to this. For example, one of the placement unit 10 and the molten metal supply unit 20 may be movable in the horizontal and vertical three axis directions.
 また、上記第4実施形態では、溶融金属供給部320に、溶融金属3の供給口23と、加圧ガスのガス供給口327とを設けた例を示したが、本発明はこれに限られない。本発明では、たとえば、溶融金属供給部に溶融金属3の供給口23を複数設けてもよい。そして、それぞれの供給口23を取り囲むように、別々のシール部22を設けてもよい。この場合、複数の処理室4を同時に形成可能である。 In the fourth embodiment, the molten metal supply unit 320 is provided with the supply port 23 for the molten metal 3 and the gas supply port 327 for the pressurized gas, but the present invention is limited to this. Absent. In the present invention, for example, a plurality of supply ports 23 of the molten metal 3 may be provided in the molten metal supply unit. Then, separate seal portions 22 may be provided so as to surround each supply port 23. In this case, a plurality of processing chambers 4 can be formed simultaneously.
 また、上記第1実施形態では、概ね真空の減圧状態で溶融金属3を処理室4に供給することにより、差圧充填を行う例を示したが、本発明はこれに限られない。本発明では、差圧充填を行うことなく、処理室4内を大気圧程度の一定圧力下にして溶融金属3を供給してもよい。この場合、溶融金属3の供給に伴って処理室4内のガスを排気するための排気構造を溶融金属供給部に設けてもよい。 Further, in the first embodiment, the example in which the differential pressure filling is performed by supplying the molten metal 3 to the processing chamber 4 in a substantially reduced pressure state has been described, but the present invention is not limited to this. In the present invention, the molten metal 3 may be supplied with the inside of the processing chamber 4 under a constant pressure of about atmospheric pressure without performing differential pressure filling. In this case, the molten metal supply unit may be provided with an exhaust structure for exhausting the gas in the processing chamber 4 along with the supply of the molten metal 3.
 また、上記第1実施形態では、処理室4の開放後(ウェハ1が溶融金属供給部20側から離間した後)に、冷却部13を作動させる例を示したが、本発明はこれに限られない。本発明では、処理室4の開放前に冷却部13を作動させてもよい。 In the first embodiment, although the cooling unit 13 is operated after the processing chamber 4 is opened (after the wafer 1 is separated from the molten metal supply unit 20), the present invention is limited thereto. I can not. In the present invention, the cooling unit 13 may be operated before the processing chamber 4 is opened.
 また、上記第1実施形態では、チャンバ30内を予め加圧した状態で処理室4が開放され例を示したが、本発明はこれに限られない。本発明では、処理室4の開放後にチャンバ30内を加圧してもよい。 Moreover, in the said 1st Embodiment, the process chamber 4 was open | released and the example was shown in the state which pressurized the inside of the chamber 30 previously, but this invention is not limited to this. In the present invention, the inside of the chamber 30 may be pressurized after the processing chamber 4 is opened.
 また、上記第1実施形態では、溶融金属3の供給に先立って、処理領域1bの溶融金属3に対する濡れ性を向上させる処理、または、外側の周囲領域1cの溶融金属3に対する濡れ性を低下させる処理の少なくともいずれかを行う例(図7の成膜処理)を示したが、本発明はこれに限られない。本発明では、溶融金属3が処理領域1bに濡れる状態であれば、濡れ性を向上または低下させる処理を行わなくてもよい。本発明では、処理室4の容積を極力小さくすることが可能であるため、表面1a上で溶融金属3が弾かれて流動したり、島状に凝集することがなければ、そのような表面処理を行わなくてもよい。対向面21の少なくとも溶融金属と接触する面が、溶融金属に対して濡れない(溶融金属を弾きやすい)ように修飾されている、或いは、濡れにくい材質で構成されている、ことが望ましい。このように構成することで対向面21とウェハ上の溶融金属を容易に離間することができる。 Further, in the first embodiment, prior to the supply of the molten metal 3, the wettability to the molten metal 3 of the processing region 1 b is improved, or the wettability to the molten metal 3 of the outer peripheral region 1 c is reduced. Although the example (film-forming process of FIG. 7) which performs at least one of a process was shown, this invention is not limited to this. In the present invention, as long as the molten metal 3 is in a state of being wetted to the processing region 1b, it is not necessary to perform the process of improving or reducing the wettability. In the present invention, since it is possible to minimize the volume of the processing chamber 4, such surface treatment is possible unless the molten metal 3 is repelled and flowed on the surface 1 a or aggregated in an island shape. You do not have to It is desirable that at least the surface of the facing surface 21 in contact with the molten metal be modified so as not to get wet with the molten metal (it is easy to repel the molten metal) or be made of a material that is difficult to wet. With this configuration, the facing surface 21 and the molten metal on the wafer can be easily separated.
 1 ウェハ(処理対象物)
 1a 表面
 1b 処理領域
 1c 周囲領域
 2 微細空間
 3 溶融金属
 4 処理室
 10 載置部
 11 載置面
 12 ヒータ(第2加熱部)
 13 冷却部
 20、320、420 溶融金属供給部
 21 対向面
 22 シール部
 23 供給口
 25 導入部
 26a 弁体
 27 ヒータ(第1加熱部)
 30 チャンバ
 34 ゲート(出入口)
 40 ガス供給部
 41 真空ポンプ(減圧部)
 50 制御部
 51 駆動部
 52 金属供給ポンプ
 53 供給管
 100、200、300、400 金属充填装置
1 Wafer (processing object)
DESCRIPTION OF SYMBOLS 1a surface 1b treatment area 1c surrounding area 2 minute space 3 molten metal 4 process chamber 10 mounting part 11 mounting surface 12 heater (second heating part)
13 Cooling part 20, 320, 420 Molten metal supply part 21 Opposite surface 22 Seal part 23 Supply port 25 Introduction part 26a Valve body 27 Heater (1st heating part)
30 chamber 34 gate (port)
40 gas supply unit 41 vacuum pump (decompression unit)
DESCRIPTION OF SYMBOLS 50 Control part 51 Drive part 52 Metal supply pump 53 Supply pipe 100, 200, 300, 400 Metal filling apparatus

Claims (19)

  1.  処理対象物の表面に開口するように形成された微細空間内に溶融金属を充填する金属充填装置であって、
     前記処理対象物が載置される載置面を有する載置部と、
     前記載置面と対向する対向面と、前記対向面に設けられた溶融金属の供給口と、を含む溶融金属供給部と、
     前記供給口を取り囲むように前記対向面に設けられた環状のシール部と、
     前記載置部、前記溶融金属供給部および前記シール部を内部に収容する気密のチャンバと、
     前記チャンバ内にガスを供給するガス供給部とを備え、
     前記対向面と、前記シール部と、前記処理対象物の表面とにより処理室が形成され、前記溶融金属供給部により、前記供給口を介して前記処理室内に溶融金属が供給されて前記微細空間内に溶融金属が充填されるように構成されている、金属充填装置。
    A metal-filling apparatus for filling a molten metal in a minute space formed to open on the surface of a processing object, comprising:
    A placement unit having a placement surface on which the processing object is placed;
    A molten metal supply unit including: an opposing surface facing the mounting surface; and a molten metal supply port provided on the opposing surface;
    An annular seal portion provided on the opposite surface so as to surround the supply port;
    An airtight chamber that accommodates the placement portion, the molten metal supply portion, and the seal portion therein;
    A gas supply unit for supplying a gas into the chamber;
    A processing chamber is formed by the opposing surface, the seal portion, and the surface of the processing object, and the molten metal is supplied into the processing chamber through the supply port by the molten metal supply portion to form the minute space. A metal filling device, which is configured to be filled with molten metal.
  2.  前記処理室内に溶融金属が供給された後に、前記チャンバ内において前記処理室が開放された状態で、前記ガス供給部から供給されたガスにより溶融金属が加圧されるように構成されている、請求項1に記載の金属充填装置。 After the molten metal is supplied into the processing chamber, the molten metal is pressurized by the gas supplied from the gas supply unit in a state where the processing chamber is opened in the chamber. The metal filling apparatus according to claim 1.
  3.  前記ガス供給部から供給されたガスにより前記チャンバ内を予め所定の雰囲気に制御した状態で、前記処理室が開放されるように構成されている、請求項1または2に記載の金属充填装置。 The metal filling apparatus according to claim 1, wherein the processing chamber is configured to be opened in a state where the inside of the chamber is controlled to a predetermined atmosphere in advance by the gas supplied from the gas supply unit.
  4.  前記ガス供給部から供給されたガスにより前記チャンバ内を予め所定の雰囲気に制御するとともに、前記処理室内の圧力を前記チャンバ内の圧力以上にした状態で、前記処理室が開放されるように構成されている、請求項1または2に記載の金属充填装置。 The inside of the chamber is previously controlled to a predetermined atmosphere by the gas supplied from the gas supply unit, and the processing chamber is opened in a state where the pressure in the processing chamber is equal to or higher than the pressure in the chamber. The metal filling apparatus according to claim 1 or 2, wherein
  5.  前記処理室内の溶融金属の凝固が完了する前に、前記処理室が開放されるように構成されている、請求項2~4のいずれか1項に記載の金属充填装置。 The metal filling apparatus according to any one of claims 2 to 4, wherein the processing chamber is configured to be opened before solidification of the molten metal in the processing chamber is completed.
  6.  前記溶融金属供給部は、溶融金属を加熱するための第1加熱部を含み、
     前記溶融金属供給部から前記処理対象物が離間されて前記処理室が開放されることに基づいて、前記処理対象物上の溶融金属が冷却されるように構成されている、請求項1~5のいずれか1項に記載の金属充填装置。
    The molten metal supply unit includes a first heating unit for heating the molten metal,
    The molten metal on the object to be treated is cooled based on the fact that the object to be treated is separated from the molten metal supply section and the treatment chamber is opened. The metal filling apparatus according to any one of the above.
  7.  前記載置部は、前記処理対象物上の溶融金属を冷却するための冷却部を含む、請求項1~6のいずれか1項に記載の金属充填装置。 The metal filling apparatus according to any one of claims 1 to 6, wherein the placement unit includes a cooling unit for cooling the molten metal on the processing object.
  8.  前記載置部は、前記載置部上の前記処理対象物を加熱するための第2加熱部を含む、請求項6または7に記載の金属充填装置。 The metal filling apparatus according to claim 6, wherein the placement unit includes a second heating unit for heating the processing object on the placement unit.
  9.  前記載置部および前記溶融金属供給部の少なくとも一方を互いに近接または離間させる方向に移動させる駆動部と、
     前記駆動部により前記シール部と前記載置面上の前記処理対象物とを当接させ、前記処理室を形成させる制御を行う制御部とをさらに備える、請求項1~8のいずれか1項に記載の金属充填装置。
    A driving unit for moving at least one of the mounting unit and the molten metal supply unit in a direction to move the mounting unit and the molten metal supply unit closer to or away from each other;
    9. The control unit according to any one of claims 1 to 8, further comprising: a control unit configured to cause the drive unit to abut the seal unit and the processing object on the mounting surface to form the processing chamber. The metal filling apparatus as described in.
  10.  前記チャンバの外部に設けられ、前記溶融金属供給部に溶融金属を供給する金属供給ポンプと、
     前記チャンバの外部の前記金属供給ポンプと前記チャンバの内部の前記溶融金属供給部とを接続する供給管とをさらに備える、請求項1~9のいずれか1項に記載の金属充填装置。
    A metal supply pump provided outside the chamber for supplying molten metal to the molten metal supply unit;
    The metal filling apparatus according to any one of claims 1 to 9, further comprising a supply pipe connecting the metal supply pump outside the chamber and the molten metal supply inside the chamber.
  11.  前記溶融金属供給部は、
     前記溶融金属供給部の内部に設けられ、前記供給口に接続された溶融金属の導入部と、
     前記導入部内に配置され、前記供給口に向けて進退して前記供給口を開閉可能に構成された弁体とをさらに含む、請求項1~10のいずれか1項に記載の金属充填装置。
    The molten metal supply unit
    An introduction part of the molten metal provided inside the molten metal supply part and connected to the supply port;
    The metal filling apparatus according to any one of claims 1 to 10, further comprising: a valve body disposed in the introduction portion and configured to be able to open and close the supply port by advancing and retracting toward the supply port.
  12.  前記溶融金属供給部および前記載置部の少なくとも一方は、前記載置面に平行な方向に移動可能に構成されている、請求項1~11のいずれか1項に記載の金属充填装置。 The metal filling apparatus according to any one of claims 1 to 11, wherein at least one of the molten metal supply unit and the placement unit is configured to be movable in a direction parallel to the placement surface.
  13.  前記チャンバ内を排気して減圧する減圧部をさらに備え、
     前記減圧部により前記チャンバ内が減圧された状態で、前記処理室が形成されるように構成されている、請求項1~12のいずれか1項に記載の金属充填装置。
    The pressure chamber further includes a pressure reducing unit that exhausts the pressure in the chamber and reduces the pressure.
    The metal filling apparatus according to any one of claims 1 to 12, wherein the processing chamber is formed in a state where the inside of the chamber is decompressed by the decompressing unit.
  14.  前記チャンバは、前記処理対象物を出し入れするための開閉可能な出入口を含む、請求項1~13のいずれか1項に記載の金属充填装置。 The metal filling apparatus according to any one of claims 1 to 13, wherein the chamber includes an openable / closable port for taking in and out the object to be treated.
  15.  処理対象物の表面に開口するように形成された微細空間内に溶融金属を充填する金属充填方法であって、
     気密のチャンバ内において、前記処理対象物の表面と、前記表面と対向する対向面に設けられた環状のシール部とを当接させて、前記対向面と、前記シール部と、前記処理対象物の表面とにより処理室を形成し、
     前記処理室内に溶融金属を供給して前記微細空間に溶融金属を供給し、
     前記シール部と前記処理対象物とを離間させて、溶融金属の供給後の前記処理室を前記チャンバ内において開放し、
     前記処理対象物、前記対向面および前記シール部を内部に収容する前記チャンバ内をガスにより加圧して、前記処理対象物上の溶融金属を加圧する、金属充填方法。
    A metal filling method for filling a molten metal in a minute space formed so as to open on the surface of a processing object, comprising:
    In the air-tight chamber, the surface of the object to be treated is brought into contact with an annular seal portion provided on the opposite surface facing the surface, so that the opposite surface, the seal portion, and the object to be treated Form a processing chamber with the surface of the
    The molten metal is supplied into the processing chamber to supply the molten metal to the fine space;
    Separating the sealing portion and the processing object to open the processing chamber after the supply of molten metal in the chamber;
    A metal filling method, wherein the inside of the chamber containing the object to be treated, the opposite surface and the seal portion is pressurized with a gas to pressurize molten metal on the object to be treated.
  16.  前記チャンバ内を予め加圧した後、加圧状態の前記チャンバ内において前記処理室を開放する、請求項15に記載の金属充填方法。 The metal filling method according to claim 15, wherein the processing chamber is opened in the pressurized chamber after pre-pressurizing the inside of the chamber.
  17.  前記チャンバ内を予め加圧した後、加圧状態の前記チャンバ内において、前記処理室内の圧力を前記チャンバ内の圧力以上にした状態で前記処理室を開放する、請求項15に記載の金属充填方法。 The metal filling according to claim 15, wherein after pre-pressurizing the inside of the chamber, the process chamber is opened in the pressurized chamber while the pressure in the process chamber is equal to or higher than the pressure in the chamber. Method.
  18.  前記処理室内の溶融金属の凝固が完了する前に、前記処理室を開放する、請求項16または17に記載の金属充填方法。 The metal filling method according to claim 16, wherein the processing chamber is opened before solidification of the molten metal in the processing chamber is completed.
  19.  溶融金属の供給に先立って、前記処理対象物の表面のうち前記微細空間を含む処理領域の溶融金属に対する濡れ性を向上させる処理、または、前記処理対象物の表面のうち前記処理領域よりも外側の周囲領域の溶融金属に対する濡れ性を低下させる処理の少なくともいずれかをさらに行う、請求項15~18のいずれか1項に記載の金属充填方法。 Prior to the supply of the molten metal, the treatment to improve the wettability to the molten metal of the treatment area including the fine space among the surfaces of the treatment object, or the surface of the treatment object outside the treatment region The metal filling method according to any one of claims 15 to 18, further performing at least one of treatment for reducing the wettability to the molten metal in the surrounding area of
PCT/JP2017/005737 2016-03-10 2017-02-16 Metal filling device and metal filling method WO2017154507A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016046919 2016-03-10
JP2016-046919 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154507A1 true WO2017154507A1 (en) 2017-09-14

Family

ID=59789272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005737 WO2017154507A1 (en) 2016-03-10 2017-02-16 Metal filling device and metal filling method

Country Status (2)

Country Link
TW (1) TW201732906A (en)
WO (1) WO2017154507A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543527B (en) * 2021-07-09 2022-12-30 广东工业大学 Filling substrate type selection method for carrier plate hole filling process and carrier plate hole filling process
CN116487293B (en) * 2023-04-24 2024-04-12 湖北通格微电路科技有限公司 Micropore filling device and micropore filling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081202A1 (en) * 2009-12-29 2011-07-07 キヤノンアネルバ株式会社 Method for manufacturing an electronic component, electronic component, plasma treatment device, control program, and recording medium
JP2013075330A (en) * 2011-09-14 2013-04-25 Sumitomo Precision Prod Co Ltd Metal filling apparatus
JP2013201163A (en) * 2012-03-23 2013-10-03 Sumitomo Precision Prod Co Ltd Metal filling apparatus and metal filling method
JP2014157863A (en) * 2013-02-14 2014-08-28 Tokyo Electron Ltd Metallic paste filling method and metallic paste filling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081202A1 (en) * 2009-12-29 2011-07-07 キヤノンアネルバ株式会社 Method for manufacturing an electronic component, electronic component, plasma treatment device, control program, and recording medium
JP2013075330A (en) * 2011-09-14 2013-04-25 Sumitomo Precision Prod Co Ltd Metal filling apparatus
JP2013201163A (en) * 2012-03-23 2013-10-03 Sumitomo Precision Prod Co Ltd Metal filling apparatus and metal filling method
JP2014157863A (en) * 2013-02-14 2014-08-28 Tokyo Electron Ltd Metallic paste filling method and metallic paste filling device

Also Published As

Publication number Publication date
TW201732906A (en) 2017-09-16

Similar Documents

Publication Publication Date Title
US9199303B2 (en) Metal filling apparatus
US11854795B2 (en) Integrate rinse module in hybrid bonding platform
JP5571988B2 (en) Joining method
RU2536076C2 (en) Method of connection, sealed structure made thereby and system of sealed structures
WO2017154507A1 (en) Metal filling device and metal filling method
US9305866B2 (en) Intermetallic compound filled vias
TWI567913B (en) Device for filling metal
JPH1140584A (en) Die bonding equipment
WO2020241047A1 (en) Joining method and structure
JP4800013B2 (en) Metal filling apparatus and metal filling method
JP5952778B2 (en) Metal filling equipment
JP6466735B2 (en) Filling equipment
JP2013010117A (en) Reflow soldering method and reflow soldering apparatus
JP2011068532A (en) Device for filling molten metal
JP5950648B2 (en) Metal filling apparatus and metal filling method
KR20090075942A (en) Nozzle for injecting melted solder into cavities of template and apparatus having the same
JP5914076B2 (en) Metal sheet for filling, metal filling method using metal sheet for filling, and method for producing metal sheet for filling
JP6145317B2 (en) Metal filling equipment
JP2004351480A (en) Method and apparatus for brazing
TWI630048B (en) Bonding device, bonding system, bonding method, and computer memory medium
JP5859162B1 (en) Metal filling apparatus and metal filling method
JP2018152562A (en) Metal filling device and metal filling processing method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762850

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP