JP2011068532A - Device for filling molten metal - Google Patents

Device for filling molten metal Download PDF

Info

Publication number
JP2011068532A
JP2011068532A JP2009222838A JP2009222838A JP2011068532A JP 2011068532 A JP2011068532 A JP 2011068532A JP 2009222838 A JP2009222838 A JP 2009222838A JP 2009222838 A JP2009222838 A JP 2009222838A JP 2011068532 A JP2011068532 A JP 2011068532A
Authority
JP
Japan
Prior art keywords
hole
filling
molten metal
solder
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009222838A
Other languages
Japanese (ja)
Inventor
Motomichi Ito
元通 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009222838A priority Critical patent/JP2011068532A/en
Publication of JP2011068532A publication Critical patent/JP2011068532A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved filling device for filling a molten metal into a through-hole pierced in a body to be filled, such as a glass substrate or a ceramic substrate. <P>SOLUTION: The filling device for filling a molten metal into a through-hole pierced in a body to be filled has a filling means with a filling tube which has, at one end, a melting surface with which a solid low melting point metal material comes into contact and melts to generate a molten metal and an inflow port in which the molten metal generated on the melting surface flows, and, at the other end, an outflow port which is placed opposite to one opening of the through-hole and from which the molten metal flows out, and in which a passage is formed so that the molten metal generated on the melting surface flows from the inflow port to the outflow port, wherein the area of the inflow port of the filling tube is smaller than the area of the low melting point metal material which comes into contact with the melting surface. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばガラス基板、セラミックス基板その他被充填体に設けられた貫通孔に溶融金属を充填する充填装置に係わる発明である。   The present invention relates to a filling apparatus for filling molten metal into, for example, a glass substrate, a ceramic substrate, and other through holes provided in an object to be filled.

例えば複層ガラス(いわゆるペアガラス)や画像表示装置を構成するガラスパネルは、(1)2枚のガラス基板を準備し一方のガラス基板に貫通孔を形成する、(2)ガラス基板の外周縁に沿い封止部材を配置する、(3)封止部材を介してガラス基板同士を接合しガラス基板及び封止部材とで区切られた気密室を形成する、(4)一方のガラス基板に形成された貫通孔を通じて気体を排気し気密室を真空雰囲気としたり、必要な場合にはその後所定のガスを導入して気密室をガス雰囲気とする、(5)貫通孔を封止する、以上の工程を経て製造される。そして、従来、上記(4)の工程は、上記(1)〜(3)の工程で形成されたガラスパネル中間体の貫通孔にチップ管と称されるガラス管を気密に挿着し、チップ管を通じて行われ、(5)の工程はチップ管の中間部を加熱し縮径し、チップ管自身を封止する(チップオフ又は封止切りと称される。)ことで行われていた。なお、以下、従来技術について、ガラスパネルの貫通孔の封止技術を一例として説明するが、本発明の適用対象を限定するものではない。   For example, a glass panel constituting a multi-layer glass (so-called pair glass) or an image display device is (1) preparing two glass substrates and forming a through hole in one glass substrate, (2) outer peripheral edge of the glass substrate (3) Join the glass substrates together via the sealing member to form an airtight chamber separated by the glass substrate and the sealing member, (4) Form on one glass substrate The gas is exhausted through the formed through hole to make the hermetic chamber a vacuum atmosphere, or if necessary, a predetermined gas is introduced thereafter to make the hermetic chamber a gas atmosphere. (5) The through hole is sealed. It is manufactured through a process. Conventionally, in the step (4), a glass tube called a chip tube is hermetically inserted into the through hole of the glass panel intermediate formed in the steps (1) to (3). The step (5) was performed by heating and reducing the diameter of the middle portion of the tip tube and sealing the tip tube itself (referred to as chip-off or sealing-off). In the following, the conventional technique will be described by taking as an example a sealing technique for a through hole of a glass panel, but the application target of the present invention is not limited thereto.

ここで、上記従来のチップ管を用い貫通孔を封止する封止方法自身の構造上及びコスト上の欠点、及びその方法により製造されたガラスパネルの美観や部品としての実装性などの欠点を克服する技術が下記特許文献1〜6に開示されている。   Here, the structural method and the cost disadvantage of the sealing method itself for sealing the through-hole using the above-described conventional tip tube, and the disadvantages such as the aesthetics of the glass panel manufactured by the method and the mountability as a part. Techniques to overcome are disclosed in Patent Documents 1 to 6 below.

特許文献1には、貫通孔に封止材料を供給し、封止材料を溶融して貫通孔を封止する封止栓を形成するにあたり、溶融した封止材料から蒸発したガスが気密室へ混在することを防止するため、「高真空に気密封止される容器を備えた真空表示器において、前記容器の一部に設けてある突出しない排気孔を通じて排気したのち該排気孔を封止する際に、前記排気孔を塞ぐようにソルダーを通電リボンで挟み、その通電リボンの上方から加圧して超音波振動を与えると同時に、該リボンに通電して前記ソルダーを予備加熱することにより、該ソルダーを融点直前の温度で封着せしめ、しかる後前記リボンの不要部を切断するようにしたことを特徴とする真空表示器の封止方法」を要旨とする発明が記載されている。   In Patent Document 1, when a sealing material is supplied to a through-hole and the sealing material is melted to form a sealing plug that seals the through-hole, the gas evaporated from the molten sealing material enters the hermetic chamber. In order to prevent mixing, “in a vacuum display having a container hermetically sealed in a high vacuum, after exhausting through a non-projecting exhaust hole provided in a part of the container, the exhaust hole is sealed. In this case, the solder is sandwiched between energizing ribbons so as to close the exhaust holes, and the ultrasonic vibration is applied by applying pressure from above the energizing ribbon, and at the same time, the ribbon is energized to preheat the solder, The invention described in the gist is a sealing method for a vacuum display characterized in that the solder is sealed at a temperature just before the melting point, and then the unnecessary portion of the ribbon is cut.

特許文献2には、気密室の排気時間の短縮と、排気および閉塞のための工程数削減とができるようにした複層ガラスの製造方法およびその装置を提供することを目的とし、「周囲が封止されて内部に中間層が形成された平行な1対のガラス板の一方に穿設された孔に、中間層内の空気を外部から吸引可能に窯体用ハンダにて形成した低融点閉塞部材を設け、中間層内の空気の吸引により所定の真空度を達成した後、前記低融点閉塞部材の端部を加熱熔融させて前記孔を閉塞することを特徴とする複層ガラスの製造方法」を要旨とする発明が記載されている。   Patent Document 2 aims to provide a method of manufacturing a double-glazed glass and an apparatus therefor that can shorten the exhaust time of the hermetic chamber and reduce the number of steps for exhausting and closing. Low melting point formed by furnace body solder in a hole drilled in one of a pair of parallel glass plates sealed and formed with an intermediate layer inside so that the air in the intermediate layer can be sucked from the outside Producing a double-glazed glass characterized in that a blocking member is provided, a predetermined degree of vacuum is achieved by suction of air in the intermediate layer, and then the end of the low melting point blocking member is heated and melted to close the hole. The invention having the gist of “method” is described.

特許文献3には、気密室の真空度が高く、且つ、最終製品の組立てに際して立体的な制約が少なく、薄型化を図ることができる封止パネル装置を優れた量産性をもって製造する方法を提供することを目的とし、「第1パネルと第2パネルとが真空空間を挟んで対向配置され、第1パネル、第2パネル及びシール部材の少なくとも1つに設けられた開口部が低融点金属材料から成る密栓部材によって閉鎖された構造を有する封止パネル装置の製造方法であって、(イ)対向配置された第1パネルの周縁部と第2パネルの周縁部とを、シール部材を用いて接着する工程、及び(ロ)真空雰囲気中で、低融点金属材料から成る密栓部材によって開口部を閉鎖する工程、から成ることを特徴とする封止パネル装置の製造方法」を要旨とする発明が記載されている。   Patent Document 3 provides a method for manufacturing a sealing panel device with excellent mass productivity that has a high degree of vacuum in the hermetic chamber, has few three-dimensional restrictions when assembling the final product, and can be thinned. "The first panel and the second panel are arranged opposite to each other with the vacuum space interposed therebetween, and the opening provided in at least one of the first panel, the second panel, and the seal member is a low melting point metal material. A sealing panel device manufacturing method having a structure closed by a sealing plug member comprising: (a) a peripheral edge portion of a first panel and a peripheral edge portion of a second panel that are arranged opposite to each other using a sealing member; An invention having the gist of a manufacturing method of a sealing panel device comprising: a bonding step, and (b) a step of closing an opening with a sealing member made of a low melting point metal material in a vacuum atmosphere. Description It has been.

特許文献4及び5には、ガラス基板の表面からの突出量が小さくて美観的に優れ、かつ、他物との接当による損傷を抑制することができるとともに、比較的簡易な方法で確実に貫通孔を封止できるガラスパネルの製造方法を提供することを目的とし、「一対の板ガラス間に多数のスペーサを介在させ、かつ、その両板ガラスの外周部間を外周密閉部で密閉して両板ガラス間に空隙部を形成し、前記両板ガラスのうちの一方の板ガラスに前記空隙部を減圧するための吸引孔を設け、その吸引孔から前記空隙部の気体を吸引した後、前記吸引孔を封止してあるガラスパネルの製造方法であって、前記吸引孔を封止する封止材として金属はんだを使用し、その金属はんだ片を前記吸引孔の近傍で加熱溶融し、その溶融状態にある金属はんだ片表面の酸化皮膜を破って中身の金属はんだを流出させ、その流出した金属はんだを前記一方の板ガラスに直接接触させて冷却固化させて前記吸引孔を封止するガラスパネルの製造方法」を要旨とする発明が記載されている。   In Patent Documents 4 and 5, the amount of protrusion from the surface of the glass substrate is small and excellent in aesthetics, and it is possible to suppress damage caused by contact with other objects, and reliably with a relatively simple method. An object of the present invention is to provide a method for producing a glass panel capable of sealing a through-hole, and “both a plurality of spacers are interposed between a pair of plate glasses and the outer peripheral portions of both plate glasses are sealed with outer peripheral sealing portions. A void portion is formed between the plate glasses, and a suction hole for decompressing the void portion is provided in one of the plate glasses, and after the gas in the void portion is sucked from the suction hole, the suction hole is A method for producing a sealed glass panel, wherein metal solder is used as a sealing material for sealing the suction hole, the metal solder piece is heated and melted in the vicinity of the suction hole, and the molten state is obtained. Some metal solder piece surface An invention having the gist of `` a manufacturing method of a glass panel that breaks the chemical film and causes the metal solder of the contents to flow out, directly contacts the flowed metal solder to the one plate glass, and solidifies by cooling and seals the suction holes '' Is described.

特許文献6には、比較的低温で貫通孔の封止作業を行うことができる封止方法を提供することを目的とし、「ガラス材料に形成されるガラス孔を封止するガラス孔の封止方法であって、前記ガラス孔を封止する封止材として、互いに融点の異なる第一金属はんだと第二金属はんだとを使用し、予め、前記ガラス孔のまわり全周を取り囲むように、メタライジングにより融点の高い方の第一金属はんだからなる周壁部を形成する周壁部形成ステップと、前記周壁部に固形の前記第二金属はんだを載置する載置ステップとを備える準備工程を行った後、前記周壁部に載置してある第二金属はんだを加熱溶融して、溶融状態にある第二金属はんだを、前記ガラス孔側へ流入させる加熱溶融ステップと、溶融状態で前記周壁部に接触している状態の第二金属はんだに、運動エネルギーを付与して、前記周壁部との接触界面を活性化させる界面活性化ステップと、溶融状態にある第二金属はんだを、前記周壁部の内周側において少なくとも全周と密着し且つ前記ガラス孔を冠着する状態で、冷却固化させて、前記ガラス孔を封止する冷却固化ステップとを備える封止工程を行うガラス孔の封止方法」を要旨とする発明が記載されている。   Patent Document 6 aims to provide a sealing method capable of performing a sealing operation of a through-hole at a relatively low temperature, and “seal a glass hole for sealing a glass hole formed in a glass material”. In this method, a first metal solder and a second metal solder having different melting points are used as a sealing material for sealing the glass hole, and the metal hole is surrounded in advance so as to surround the entire circumference of the glass hole. A preparatory process including a peripheral wall portion forming step of forming a peripheral wall portion made of the first metal solder having a higher melting point by rising and a mounting step of mounting the solid second metal solder on the peripheral wall portion was performed. Thereafter, the second metal solder placed on the peripheral wall portion is heated and melted, and the second metal solder in a molten state is flown into the glass hole side, and the peripheral wall portion is melted to the peripheral wall portion. In contact An interface activation step for imparting kinetic energy to the metal solder to activate the contact interface with the peripheral wall, and a second metal solder in a molten state at least on the inner peripheral side of the peripheral wall An invention having a gist of a sealing method of a glass hole that includes a cooling and solidification step of cooling and solidifying in close contact with the glass hole and sealing the glass hole is described. Has been.

特開昭59−189534号JP 59-189534 特開平11−240739号JP-A-11-240739 特開2000−208031号JP 2000-208031 特開2001−180985号JP 2001-180985 A 特開2002−137940号JP 2002-137940 A 特開2002−187743号JP 2002-187743 A

本発明は、上記従来技術を鑑みてなされたものであり、ガラス基板、セラミックス基板その他被充填体に設けられた貫通孔に溶融金属を充填する改善された充填装置を提供することを目的としている。   The present invention has been made in view of the above prior art, and an object of the present invention is to provide an improved filling apparatus that fills a molten hole into a through-hole provided in a filling substrate such as a glass substrate, a ceramic substrate, or the like. .

上記目的を達成する本発明の一態様は、被充填体に設けられた貫通孔に溶融金属を充填する充填装置であって、固相の低融点金属素材が当接し溶融して溶融金属が生成される溶融面と前記溶融面で生成した溶融金属が流入する流入口とを一方端面に、前記貫通孔の一方開口に相対して配置され前記溶融金属が流出する流出口を他方端面に有するとともに前記溶融面で生成した溶融金属が前記流入口から前記流出口へ流動する流路が形成された充填筒を備えた充填手段を有し、前記充填筒の流入口の面積は前記溶融面に当接する低融点金属素材の面積未満であることを特徴とする充填装置である。   One aspect of the present invention that achieves the above object is a filling device that fills a through-hole provided in an object to be filled with molten metal, and a low-melting-point metal material in a solid phase contacts and melts to generate molten metal. The molten surface generated at the molten surface and an inflow port through which the molten metal generated at the molten surface flows in at one end surface, and an outflow port disposed at one end surface of the through hole through which the molten metal flows out is disposed at the other end surface. And a filling means having a filling cylinder formed with a flow path through which the molten metal generated at the melting surface flows from the inlet to the outlet, and the area of the inlet of the filling cylinder corresponds to the melting surface. It is a filling apparatus characterized by being less than the area of the low melting metal material which contacts.

かかる態様の供給部材は以下の作用を奏する。すなわち、固相の低融点金属素材が充填筒の溶融面に当接し溶融し、溶融金属が生成される。溶融金属は、溶融面と同一端面に形成されている流入口から流入し、流路を流動し、流出口から流出する。流出した溶融金属は、流出口と相対して配置された一方開口から供給され、貫通孔に充填される。ここで流入口の面積は低融点金属素材が溶融面に当接している面積未満であるので、流入口を閉塞するように溶融部へ低融点金属素材を当接することで、溶融金属は流路の中を充満しながら流通する。その結果、溶融金属の供給過程において溶融金属は大気と触れることがなく酸化物の生成が抑制され、溶融金属への酸化物の混入が回避される。さらに、低融点金属素材が溶融部に当接している面積は流入口を超える面積であるので、その越える部分、すなわち低融点金属素材の表面に付着している酸化物の流通通路への進入は流入口の周囲の非開口部(すなわち充填筒の一方端面)で阻止される。その結果、固相の低融点金属素材の表面に既に存在していた酸化物が溶融金属へ混入することが抑制される。以上により、酸化物の混入量が極めて少ない清浄な溶融金属が貫通孔に充填され、溶融金属に混入した酸化物に起因する接合不良や強度不良等を回避することができる。なお、本明細書における「低融点金属」とは、例えばSn、In、Zn、Ga等で例示される概ね400℃以下の比較的低い温度で溶融する金属のことを言う。   The supply member of this aspect has the following effects. That is, the low-melting-point metal material in the solid phase comes into contact with the melting surface of the filling cylinder and melts to generate molten metal. Molten metal flows in from the inflow port formed on the same end surface as the melting surface, flows through the flow path, and flows out from the outflow port. The molten metal that has flowed out is supplied from one opening disposed opposite to the outlet and is filled in the through hole. Here, since the area of the inlet is less than the area where the low melting point metal material is in contact with the melting surface, the molten metal flows into the flow path by bringing the low melting point metal material into contact with the melting part so as to close the inlet. Circulate while filling the inside. As a result, in the process of supplying the molten metal, the molten metal does not come into contact with the atmosphere, and the generation of oxide is suppressed, and mixing of the oxide into the molten metal is avoided. Furthermore, since the area where the low melting point metal material is in contact with the melted part is an area exceeding the inflow port, the entry of the oxide adhering to the excess part, that is, the surface of the low melting point metal material, into the passage It is blocked by a non-opening around the inlet (that is, one end face of the filling cylinder). As a result, it is possible to suppress the oxide already existing on the surface of the low-melting-point metal material in the solid phase from being mixed into the molten metal. As described above, a clean molten metal with a very small amount of oxide mixed is filled in the through-holes, and it is possible to avoid poor bonding and poor strength due to the oxide mixed in the molten metal. Note that the “low melting point metal” in this specification refers to a metal that melts at a relatively low temperature of approximately 400 ° C. or less, exemplified by Sn, In, Zn, Ga, and the like.

上記充填装置において、貫通孔に溶融金属を円滑に供給し、さらに余剰な溶融金属が貫通孔の他方開口から漏れ被充填体に付着することを防止するためには、前記充填手段は、前記流出口に基端が含まれる状態で前記充填筒の他方端面から突起し、前記貫通孔に挿入可能な突起部を備え、前記突起部は、前記貫通孔の一方開口に相対した位置に前記充填筒の流出口が配置された状態において前記貫通孔の他方開口近傍に先端が達する突起高さを有することが望ましい。かかる好ましい態様の充填装置によれば、流出口から流出した溶融金属は、貫通孔に挿入された突起部で案内されながら貫通孔に円滑に供給され、貫通孔の他方開口の近傍に位置する突起部の先端により溶融金属の流動は規制され、溶融金属の流動端は他方開口近傍に留まる。その後、貫通孔の一方開口から流入口が離れる方向に充填筒を移動させると、突起部の存在していた部分にも溶融金属が補充され、貫通孔は溶融金属で満たされる。   In the above filling device, in order to smoothly supply the molten metal to the through hole, and to prevent surplus molten metal from adhering to the leakage filler from the other opening of the through hole, the filling means includes the flow A protrusion that protrudes from the other end surface of the filling cylinder in a state in which the base end is included in the outlet and that can be inserted into the through hole is provided, and the protrusion is located at a position facing one opening of the through hole. It is desirable to have a protrusion height that reaches the tip in the vicinity of the other opening of the through hole in a state where the outlet is disposed. According to such a preferred embodiment of the filling device, the molten metal flowing out from the outlet is smoothly supplied to the through hole while being guided by the protrusion inserted into the through hole, and the protrusion located near the other opening of the through hole. The flow of the molten metal is regulated by the tip of the part, and the flow end of the molten metal remains in the vicinity of the other opening. Thereafter, when the filling cylinder is moved in a direction in which the inlet is separated from the one opening of the through hole, the molten metal is also replenished to the portion where the protrusion is present, and the through hole is filled with the molten metal.

なお、例えば粘性が低く溶融金属が流動しやすい場合には、貫通孔の周壁と溶融金属との濡れを利用して溶融金属の流動を規制して貫通孔の中に留めるため、上記好ましい態様における突起部は、前記貫通孔の周壁に接触する接触部を有し、かかる接触部を通じて溶融金属を貫通孔の周壁に誘導する構成とすることが望ましい。   For example, when the molten metal has a low viscosity and easily flows, the flow of the molten metal is restricted and retained in the through hole by utilizing the wetness between the peripheral wall of the through hole and the molten metal. It is desirable that the protrusion has a contact portion that contacts the peripheral wall of the through hole and guides the molten metal to the peripheral wall of the through hole through the contact portion.

さらに、貫通孔への溶融金属の供給を円滑に行うためには、前記突起部には溶融金属を案内する案内溝が形成されていることが望ましく、加えて前記流出口の大きさは前記貫通孔の一方開口の大きさ以上であることが望ましい。   Further, in order to smoothly supply the molten metal to the through hole, it is desirable that a guide groove for guiding the molten metal is formed in the projection, and in addition, the size of the outlet is the through hole. It is desirable that it is larger than the size of the one opening of the hole.

さらに加えて、上記のように充填筒の一方端面で生成され、流入口から流入しない酸化物を含む溶融金属が被充填体に付着することを回避するためには、前記充填手段は、前記充填筒を囲むように設けられ前記充填筒の一方端面から溢れた溶融金属を貯留する貯留部を有し、充填筒の一方端面から漏れた酸化物を含む溶融金属を貯留部で受ける構成とすることが望ましい。   In addition, in order to avoid the molten metal containing oxide generated at one end surface of the filling cylinder and not flowing in from the inlet as described above from adhering to the object to be filled, the filling means includes the filling A storage part is provided so as to surround the cylinder and stores molten metal overflowing from one end face of the filling cylinder, and the storage part receives molten metal containing oxide leaked from one end face of the filling cylinder. Is desirable.

本発明に係わる溶融金属の充填装置によれば、上記説明した作用効果を奏することができる。   According to the molten metal filling apparatus of the present invention, the above-described operational effects can be achieved.

本発明に係わる充填装置の概略構成図である。It is a schematic block diagram of the filling apparatus concerning this invention. 図1の充填装置に組み込まれた充填手段の構成図である。It is a block diagram of the filling means integrated in the filling apparatus of FIG. 図2の充填手段の変形例を示す部分拡大断面図である。It is a partial expanded sectional view which shows the modification of the filling means of FIG. 図1の充填装置の動作を説明する図である。It is a figure explaining operation | movement of the filling apparatus of FIG. 図1の充填装置で溶融金属が充填される貫通孔を含むガラスパネルの構成を示す図である。It is a figure which shows the structure of the glass panel containing the through-hole with which a molten metal is filled with the filling apparatus of FIG.

以下、本発明についてその実施態様に基づき上記図1〜5を参照しつつ説明する。なお、以下の実施態様の説明では、低融点金属であるSnAgAl系合金を素材を溶融した溶融金属をガラス基板の貫通孔に充填する場合を例として具体的に説明するが、ガラス基板を、金属基板またはセラミックス基板などと代えた場合においても、同様な作用・効果を奏することができる。さらに、本願発明はこれら実施態様に限定されることなく、本願発明と同一性の範囲において変形実施することができ、充填装置の構成要素は、本発明の趣旨に反しない限り単独に又は適宜組み合わせて実施することができる。   Hereinafter, the present invention will be described with reference to FIGS. In the following description of the embodiments, a case where a molten metal obtained by melting a raw material of a SnAgAl-based alloy, which is a low melting point metal, is filled in a through hole of a glass substrate will be specifically described as an example. Even when the substrate or the ceramic substrate is used, similar actions and effects can be obtained. Further, the present invention is not limited to these embodiments, and can be modified within the scope of the sameness as the present invention, and the components of the filling device can be used alone or in appropriate combination as long as they do not contradict the gist of the present invention. Can be implemented.

まず、図5を参照してガラスパネルPの構造を説明する。図5において、符合G1は第1のガラス基板(以下第1基板と略称する。)、符号G2は第2のガラス基板(以下第2基板と略称する。)であり、球状の間隙維持部材Bで形成された所定の間隙gを介し各々の主面S1・S2(下記接合部材mが接合される面)が対向配置されている。そして、第1基板G1には略円柱形状の貫通孔Hが形成されており、この貫通孔Hは、低融点金属であるはんだ、具体的には質量%でAgが8.5%、Alが0.35%、残部Snからなるガラス基板との接合性に優れたSnAgAl系合金で構成された封止栓Mで封止されている。   First, the structure of the glass panel P will be described with reference to FIG. In FIG. 5, reference numeral G1 is a first glass substrate (hereinafter abbreviated as a first substrate), reference numeral G2 is a second glass substrate (hereinafter abbreviated as a second substrate), and a spherical gap maintaining member B. The main surfaces S1 and S2 (surfaces to which the following bonding member m is bonded) are arranged to face each other via the predetermined gap g formed in (1). A substantially cylindrical through hole H is formed in the first substrate G1, and this through hole H is a low melting point metal solder, specifically, Ag is 8.5% by mass and Al is Al. It is sealed with a sealing plug M made of SnAgAl-based alloy excellent in bondability with a glass substrate made of 0.35% and the remaining Sn.

符号mは第1基板G1・第2基板G2の外周縁部、具体的には夫々の外周縁よりやや内側寄りに枠状に設けられ、夫々の主面S1・S2に直接接合し、後述する気密室を気密封止する接合部材である。なお、本態様のガラスパネルPの接合部材mは封止栓Mと同様にガラス基板との接合性に優れたSnAgAl系合金を使用し構成されているが、用途により例えばインジュームやZn系はんだ、ガラスフリット等を使用してもよい。また、後述するように貫通孔Hに溶融した低融点金属を充填する際には、低融点金属の融点程度の温度に第1基板を加熱する必要があるので、封止部材mは封止栓Mより融点が高い材料で構成されていることが望ましい。   A symbol m is provided in a frame shape on the outer peripheral edge portions of the first substrate G1 and the second substrate G2, specifically, slightly inward of the respective outer peripheral edges, and is directly bonded to the respective main surfaces S1 and S2, which will be described later. It is a joining member that hermetically seals the hermetic chamber. In addition, although the joining member m of the glass panel P of this aspect is comprised using the SnAgAl type | system | group alloy excellent in the bondability with a glass substrate similarly to the sealing plug M, for example, an indium or Zn type solder is used. Glass frit or the like may be used. In addition, when filling the through hole H with a low melting point metal as will be described later, it is necessary to heat the first substrate to a temperature about the melting point of the low melting point metal. It is desirable to be made of a material having a melting point higher than M.

符合kは、第1基板G1、第2基板G2及び接合部材mにより画成された空間である気密室である。この気密室kは、後述するように貫通孔Hを介して真空雰囲気とされ、その後封止栓Mで貫通孔Hが封止されて気密が保持される。   The symbol k is an airtight chamber that is a space defined by the first substrate G1, the second substrate G2, and the bonding member m. As will be described later, the hermetic chamber k is evacuated through a through hole H, and then the through hole H is sealed with a sealing plug M so that the hermeticity is maintained.

かかるガラスパネルPは、以下の工程を経て製造される。すなわち、(1)第1基板G1及び第2基板G2を用意し、第1基板G1の所定位置に貫通孔Hを形成する(貫通孔形成工程)、(2)所定の間隙が主面S1・S2間に形成されるよう間隙保持部材Bを介して第1基板G1と第2基板G2を対向配置し、溶融させたSnAgAl系合金を第1基板G1・第2基板G2の外周間隙gに所定の幅だけ充填し、冷却・固化させて封止部材mを形成する(基板接合工程)、(3)貫通孔形成工程及び基板接合工程を経て貫通孔Hが封止栓Mで封止される前のガラスパネル中間体の第1基板G1、第2基板G2及び接合部材mにより画成された気密室kの中の大気を第1基板G1に形成された貫通孔Hを通じて排気し気密室Kを真空雰囲気にする(排気工程)、(4)溶融させたSnAgAl系合金(以下溶融はんだという。)をガラスパネル中間体の貫通孔Hに充填する(貫通孔充填工程)、(5)貫通孔Hに充填された溶融はんだを冷却・固化して封止栓Mを形成し、貫通孔Hを封止する(貫通孔封止工程)。本発明に係わる溶融金属の充填装置は、上記貫通孔充填工程で使用される装置である。   Such a glass panel P is manufactured through the following steps. That is, (1) a first substrate G1 and a second substrate G2 are prepared, and a through hole H is formed at a predetermined position of the first substrate G1 (through hole forming step). (2) A predetermined gap is formed on the main surface S1. The first substrate G1 and the second substrate G2 are arranged to face each other via the gap holding member B so as to be formed between S2, and the melted SnAgAl-based alloy is predetermined in the outer peripheral gap g of the first substrate G1 and the second substrate G2. , The sealing member m is formed by cooling and solidifying (substrate bonding step), (3) the through hole H is sealed with the sealing plug M through the through hole forming step and the substrate bonding step. The air in the airtight chamber k defined by the first substrate G1, the second substrate G2, and the joining member m of the previous glass panel intermediate is exhausted through the through-hole H formed in the first substrate G1, and the airtight chamber K is exhausted. To a vacuum atmosphere (exhaust process), (4) molten SnAgAl alloy ( Filling the through hole H of the glass panel intermediate (through hole filling step), (5) forming the sealing plug M by cooling and solidifying the molten solder filled in the through hole H. The through hole H is sealed (through hole sealing step). The molten metal filling apparatus according to the present invention is an apparatus used in the through-hole filling process.

本発明の一実施態様に係わる充填装置について図1及び図2を参照し説明する。図1に示すように、充填装置10は、糸はんだ供給手段11、加熱供給手段12、移動手段14、上記各手段を内包する気密室15、上記各手段の動作を制御する制御手段16、気密室15の雰囲気を制御する雰囲気制御手段17とで構成されている。以下、各構成要素について説明する。   A filling apparatus according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the filling device 10 includes a thread solder supply means 11, a heating supply means 12, a moving means 14, an airtight chamber 15 containing each of the above means, a control means 16 for controlling the operation of each of the above means, It is comprised with the atmosphere control means 17 which controls the atmosphere of the closed room 15. FIG. Hereinafter, each component will be described.

[糸はんだ供給手段]
符号11aは、低融点金属素材であるSnAgAl系合金からなるワイヤー状の糸はんだMを巻回するボビン状の糸はんだ送出部であり、図示しないモータ等で回転され定量的に糸はんだMを送り出す。符号11cは、糸はんだMが挿通可能な案内通路である貫通孔を有する両端開口の略管状の糸はんだ案内部である。充填装置10では、2mm程度の直径に成形した糸はんだMを用いており、初期状態において、糸はんだ送出部11aに巻回された糸はんだMの先端部分は糸はんだ送出部11aから引き出され、糸はんだ案内部11cの上方端部の開口から案内通路に挿入され下方端部の開口から突出した状態にセットされている。
[Thread solder supply means]
Reference numeral 11a is a bobbin-shaped thread solder sending section for winding wire-shaped thread solder M made of a SnAgAl alloy, which is a low-melting-point metal material. . Reference numeral 11c denotes a substantially tubular thread solder guide portion having both ends open and having a through hole which is a guide passage through which the thread solder M can be inserted. In the filling device 10, the thread solder M formed to have a diameter of about 2 mm is used, and in the initial state, the tip portion of the thread solder M wound around the thread solder delivery part 11a is drawn out from the thread solder delivery part 11a. The yarn solder guide portion 11c is set in a state of being inserted into the guide passage from the upper end opening and protruding from the lower end opening.

符合11bは、加熱供給手段12で溶融された糸はんだ(以下溶融はんだと言う。)M1を介して溶融はんだM1とガラス基板w1の表面Sとの接触界面に超音波を照射する超音波印加部である。なお、充填装置10では装置構成の便宜のため、超音波印加部11bは加熱供給手段12に組み込まれており、加熱供給手段12の充填手段12aを通じて貫通孔Hに充填された溶融金属M1へ超音波を印加するよう構成されている(図2参照)。   Reference numeral 11b denotes an ultrasonic wave application unit that irradiates ultrasonic waves to the contact interface between the molten solder M1 and the surface S of the glass substrate w1 via the thread solder (hereinafter referred to as molten solder) M1 melted by the heating supply means 12. It is. In the filling apparatus 10, the ultrasonic application unit 11 b is incorporated in the heating supply means 12 for the convenience of the apparatus configuration, and the superposition of the molten metal M1 filled in the through hole H through the filling means 12 a of the heating supply means 12 is performed. It is comprised so that a sound wave may be applied (refer FIG. 2).

[加熱溶融手段]
加熱溶融手段12において符合12aは、糸はんだ供給手段11から供給された糸はんだMを加熱溶融してなる溶融はんだM1を貫通孔Hに充填する充填手段である。図2(a)に示すように、中央に充填筒12bを有する充填手段12aは略碗形状であり、熱伝導率の高いステンレス等で形成されている。符号12cは、充填手段12aの外周に巻回されたヒータであり、充填手段12aを糸はんだMの融点以上の温度に加熱する。符合12zは充填手段12aが固定されるとともにヒータ12cの発熱回路等が組み込まれた本体部である。なお、上記のとおり超音波印加部11bの超音波発生装置や制御回路等は本体部12zに内蔵されている。
[Heating and melting means]
In the heating and melting means 12, reference numeral 12a is a filling means for filling the through hole H with molten solder M1 obtained by heating and melting the thread solder M supplied from the thread solder supply means 11. As shown in FIG. 2 (a), the filling means 12a having a filling cylinder 12b at the center has a substantially bowl shape and is made of stainless steel having a high thermal conductivity. Reference numeral 12c is a heater wound around the outer periphery of the filling means 12a, and heats the filling means 12a to a temperature equal to or higher than the melting point of the thread solder M. Reference numeral 12z denotes a main body portion in which the filling means 12a is fixed and a heating circuit of the heater 12c is incorporated. As described above, the ultrasonic generator, the control circuit, and the like of the ultrasonic application unit 11b are built in the main body 12z.

充填手段12aの平面図である図2(c)のa−a断面図である図2(a)に示すように、充填手段12aの中央部に設けられた円筒形状の充填筒12bは、上部端面が糸はんだMが当接し溶融はんだM1を生成する溶融面12g、上部端面の開口が流入口12e、流入口12eと同一径の底部端面の開口が流出口12f、流入口12eと流出口12fを結ぶ密閉された管路が流路12dを構成しており、溶融面12gで生成された溶融はんだM1は、流入口12eから流路12dへ流入し、流路12dを流下し、貫通孔Hの上部開口H1と相対して配置された流出口12fから流出する。なお、図2(a)では、貫通孔Hの上部開口H1と流出口2fとが密着する状態となるよう充填手段12aは配置されているが、上下方向においてこれらの間に所定の間隙が形成されるよう配置してもよい。   As shown in FIG. 2 (a), which is a plan view of the filling means 12a, taken along the line aa of FIG. 2 (c), the cylindrical filling cylinder 12b provided at the center of the filling means 12a is 12 g of the melt surface where the end surface contacts the thread solder M to generate the molten solder M1, the opening of the upper end surface is the inlet 12e, the opening of the bottom end surface having the same diameter as the inlet 12e is the outlet 12f, the inlet 12e and the outlet 12f. The sealed pipe line connecting the two forms a flow path 12d, and the molten solder M1 generated at the melting surface 12g flows into the flow path 12d from the inlet 12e, flows down the flow path 12d, and passes through the through hole H. It flows out from the outflow port 12f arrange | positioned facing the upper opening H1. In FIG. 2A, the filling means 12a is arranged so that the upper opening H1 of the through hole H and the outlet 2f are in close contact with each other, but a predetermined gap is formed between them in the vertical direction. May be arranged.

ここで、本態様の充填筒12bにおいて、流出口12fの直径ΦBは、貫通孔Hの上部開口H1の直径ΦC以上である。このように流出口12fの大きさを設定することにより、流出口12fから供給された溶融はんだM1は流入口H1において貫通孔Hの周壁にすぐさま接触し、濡れにより周壁に付着しつつ流下するので、貫通孔Hから溶融はんだM1が下方に垂れ漏れ出ることを防止することができる。   Here, in the filling cylinder 12b of this aspect, the diameter ΦB of the outlet 12f is equal to or larger than the diameter ΦC of the upper opening H1 of the through hole H. By setting the size of the outlet 12f in this way, the molten solder M1 supplied from the outlet 12f immediately contacts the peripheral wall of the through hole H at the inlet H1 and flows down while adhering to the peripheral wall due to wetting. It is possible to prevent the molten solder M1 from dripping downward from the through hole H and leaking out.

上記溶融面12g及び流路12dには、円滑に溶融はんだM1を流動させるための好ましい構成として、その表面に溶融はんだM1との濡れ性を高めるためCr層が形成されている。なお、Cr層に代えてAl、Mo、W、V、Nb、Taからなる層を設けてもよい。さらに、本態様の流路12dは、その表面が溶融はんだM1から喰われ難いように溶出防止処理としての窒化処理が施されており、上記Cr層は窒化処理された表面上に形成されている。上記濡れ性を高める処理及び溶出防止処理は対象とする溶融金属により適宜選択すればよい。   As a preferable configuration for smoothly flowing the molten solder M1 on the melting surface 12g and the flow path 12d, a Cr layer is formed on the surface in order to improve wettability with the molten solder M1. A layer made of Al, Mo, W, V, Nb, Ta may be provided instead of the Cr layer. Further, the flow path 12d of this aspect is subjected to nitriding treatment as an elution preventing treatment so that the surface thereof is hardly eroded from the molten solder M1, and the Cr layer is formed on the nitrided surface. . What is necessary is just to select suitably the process which improves the said wettability, and the elution prevention process with the molten metal made into object.

ここで、上記糸はんだ案内部11cは、その下方端部が、上記充填筒12bの上部端面に開口した流入口12eへ向かう姿勢で、移動手段14の固定部材14eに位置決め固定されている。そして、充填装置10の稼動時には、糸はんだ送出部11aから定量的に送り出された糸はんだMは、糸はんだ案内部11cの案内通路で導かれて下方端部の開口から繰り出され、その端面が流入口12eを閉塞する姿勢で溶融面12gに当接する。なお、加熱溶融手段12は、糸はんだ供給部12cから繰り出される糸はんだMと溶融面12gとの上記位置関係が保持可能されるよう移動手段14の固定部材14eに位置決め固定されている。   Here, the yarn solder guide portion 11c is positioned and fixed to the fixing member 14e of the moving means 14 with the lower end thereof directed toward the inlet 12e opened at the upper end surface of the filling cylinder 12b. When the filling device 10 is in operation, the thread solder M sent quantitatively from the thread solder delivery section 11a is guided through the guide passage of the thread solder guide section 11c and fed out from the opening at the lower end, and the end face thereof is It abuts on the melting surface 12g in a posture to close the inflow port 12e. The heating and melting means 12 is positioned and fixed to the fixing member 14e of the moving means 14 so that the positional relationship between the thread solder M fed from the thread solder supply portion 12c and the melting surface 12g can be maintained.

上記構成の糸はんだ案内部11cの下方端部の開口から繰り出された糸はんだMは、ヒータ12cで加熱された溶融面12gに当接し溶融はんだM1となる。ここで、図2(a)に示すように、流入口12eの直径ΦBは溶融面12gと当接する糸はんだMの端面の直径ΦA未満である。しかして、糸はんだMの外周面に酸化物E1が生成している場合であっても、酸化物E1の流路12dへの流入は流入口12eの外周の非開口部、すなわち溶融面12gにより阻止され、酸化物E1が混入しない清浄な溶融はんだM1のみが流路12dへ流入する。さらに、流路12dは密閉された非酸化雰囲気であるので、供給過程における溶融はんだM1の酸化の進行も抑制される。なお、大気中で保管された糸はんだMの表面に生成している酸化物E1の層の厚さは通常数十μm程度であるので、糸はんだMと流入口12eの直径の差、すなわちΦA−ΦBは1mm前後としておけば十分であるが、供給対象の低融点金属素材によりその寸法は適宜定めればよい。   The thread solder M fed out from the opening at the lower end of the thread solder guide portion 11c having the above configuration abuts on the molten surface 12g heated by the heater 12c and becomes the molten solder M1. Here, as shown in FIG. 2A, the diameter ΦB of the inflow port 12e is less than the diameter ΦA of the end surface of the thread solder M in contact with the melt surface 12g. Even when the oxide E1 is generated on the outer peripheral surface of the thread solder M, the inflow of the oxide E1 into the flow path 12d is caused by the non-opening portion on the outer periphery of the inlet 12e, that is, the molten surface 12g. Only the clean molten solder M1 that is blocked and not mixed with the oxide E1 flows into the flow path 12d. Furthermore, since the flow path 12d is a sealed non-oxidizing atmosphere, the progress of oxidation of the molten solder M1 during the supply process is also suppressed. Since the thickness of the layer of the oxide E1 generated on the surface of the thread solder M stored in the atmosphere is usually about several tens of μm, the difference in diameter between the thread solder M and the inlet 12e, that is, ΦA It is sufficient to set −ΦB around 1 mm, but the dimensions may be appropriately determined depending on the low melting point metal material to be supplied.

図2において符号12iは、上記のように流路12dへの流入が阻止された酸化物E1を含む溶融はんだM1が第1基板G1に誤って付着することを回避するため、充填筒の先端から漏れた溶融はんだを受け、貯留する貯留部12iである。本態様の貯留部12iは、充填筒12bの外周面と、充填筒12bを囲むように同軸に配置された外筒12hの内周面と、充填筒12b及び外筒12hとの底部端を接続する環状板の上面とで画された環状溝である。貯留部12iに貯留された溶融はんだは吸引等の適宜な手段で回収すればよい。   In FIG. 2, reference numeral 12i indicates that the molten solder M1 containing the oxide E1 that has been prevented from flowing into the flow path 12d as described above is not attached to the first substrate G1 by mistake. It is the storage part 12i which receives and stores the leaked molten solder. The storage part 12i of this aspect connects the outer peripheral surface of the filling cylinder 12b, the inner peripheral surface of the outer cylinder 12h arranged coaxially so as to surround the filling cylinder 12b, and the bottom ends of the filling cylinder 12b and the outer cylinder 12h. An annular groove defined by the upper surface of the annular plate. The molten solder stored in the storage unit 12i may be recovered by appropriate means such as suction.

図2において符号12jは、流路12dの軸芯に沿い下方に伸びた略平板状の突起部である。図2(c)のb−b断面図である図2(b)に示すように、貫通孔Hに挿入可能な突起部12jは、充填筒12bの底部端を横断するように形成された支持梁を介しその基端が流出口12fに含まれる状態で充填筒12bの底部端面から図示hの突起高さで突起している。この突起高さhは、溶融はんだM1を貫通孔Hへ充填するため充填手段12aを所定位置に位置決めし、貫通孔Hの上部開口H1に相対して流出口12fが配置された状態において、貫通孔Hの底部開口の近傍に突起部12jの下端が達する高さとなるよう設定されている。また、充填手段12aの平面図である図2(c)に示すように、流出口12fから流出する溶融はんだM1の流動を阻害しないよう、突起部12jと流出口12fとの間には溶融はんだM1が流通可能な隙間が形成されている。なお、溶融はんだM1を円滑に流動させるためには、突起部12jの表面に溶融はんだM1との濡れ性を高める処理がなされていることが好ましい。   In FIG. 2, reference numeral 12j denotes a substantially flat projection extending downward along the axis of the flow path 12d. As shown in FIG. 2B, which is a bb cross-sectional view of FIG. 2C, the protrusion 12j that can be inserted into the through hole H is formed so as to cross the bottom end of the filling cylinder 12b. The base end protrudes from the bottom end face of the filling cylinder 12b with the protrusion height shown in the drawing h in a state where the base end is included in the outflow port 12f. This protrusion height h is determined so that the filling means 12a is positioned at a predetermined position to fill the through hole H with the molten solder M1 and the outflow port 12f is disposed opposite to the upper opening H1 of the through hole H. The height is set so that the lower end of the protrusion 12j reaches the vicinity of the bottom opening of the hole H. Further, as shown in FIG. 2C, which is a plan view of the filling means 12a, a molten solder is provided between the protrusion 12j and the outlet 12f so as not to hinder the flow of the molten solder M1 flowing out from the outlet 12f. A gap through which M1 can flow is formed. In addition, in order to make the molten solder M1 flow smoothly, it is preferable that the surface of the protrusion 12j is subjected to a process for improving wettability with the molten solder M1.

突起部12jは上記構成に限らず、例えば図3(a)に示す充填手段22aのように、貫通孔Hに挿入可能な筒状の突起部22jを流出口12fの下方に設けてもよく、また図示しないが柱状や針状の突起部を設けてもよい。また、溶融金属の粘性が高く流動性が低い場合や、貫通孔Hの直径に対する深さの比が高い場合には、貫通孔Hの周壁と溶融金属の濡れにより溶融金属は貫通孔Hの内部に留まるので必ずしも突起部を設けなくてもよい。   The protruding portion 12j is not limited to the above configuration, and a cylindrical protruding portion 22j that can be inserted into the through hole H may be provided below the outflow port 12f, for example, as a filling unit 22a illustrated in FIG. Although not shown, a columnar or needle-like protrusion may be provided. In addition, when the molten metal has a high viscosity and low fluidity, or when the ratio of the depth to the diameter of the through hole H is high, the molten metal is inside the through hole H due to the wetting of the peripheral wall of the through hole H and the molten metal. Therefore, the protrusions are not necessarily provided.

突起部12jにおいて符号12kは貫通孔Hの周壁と接触する接触部である。本態様の突起部12jでは、図2(b)に示すように、突起部12jを貫通孔Hに挿入した状態においてその側面が貫通孔Hの周壁と接触可能なように、突起部12jの幅Tを貫通孔Hの直径ΦCとほぼ同じ大きさとし、突起部12jの側面が接触部12kとなるよう構成している。なお、接触部12kは図示するように貫通孔Hの軸芯方向において周壁の全体に接触する必要はなく、図3(b)に示す充填手段32aの接触部32kように、貫通孔Hの周壁の一部のみに接触するよう構成してもよく、この場合には図示するように突起部32jの下端部に接触部32kを形成しておくことが望ましい。   Reference numeral 12k in the protrusion 12j is a contact portion that comes into contact with the peripheral wall of the through hole H. In the protrusion 12j of this aspect, as shown in FIG. 2 (b), the width of the protrusion 12j is such that the side surface can come into contact with the peripheral wall of the through-hole H when the protrusion 12j is inserted into the through-hole H. T is set to be approximately the same size as the diameter ΦC of the through hole H, and the side surface of the protrusion 12j is configured to be the contact portion 12k. Note that the contact portion 12k does not need to contact the entire peripheral wall in the axial direction of the through hole H as shown in the drawing, and the peripheral wall of the through hole H like the contact portion 32k of the filling means 32a shown in FIG. In this case, it is desirable to form a contact portion 32k at the lower end of the projection 32j as shown in the drawing.

[移動手段]
図1に示すように、駆動手段14は、門型の支持体14a、支持体14aの上辺部に固定された昇降部14b、支持体14aの両側辺部の間に設けられ紙面に対し垂直及び水平方向に移動可能な水平移動部14c、貫通孔Hが形成された第1基板G1を上側にした水平な姿勢でガラスパネル中間体P1を載置する水平移動部14cに設けられたテーブル14dとで構成されている。そして、上記したように糸はんだ供給部11c及び加熱溶融手段12は固定部材14eを介して昇降部14bの下端部に接続されている。なお、以下、図1に示すように、昇降部14bの昇降方向をZ軸方向、水平移動部14cの移動方向であって紙面に平行な方向をX軸方向、垂直な方向をY軸方向という。
[transportation]
As shown in FIG. 1, the driving means 14 includes a gate-shaped support 14a, an elevating part 14b fixed to the upper side of the support 14a, and provided between both sides of the support 14a. A horizontal moving portion 14c that can move in the horizontal direction; a table 14d provided in the horizontal moving portion 14c for placing the glass panel intermediate P1 in a horizontal posture with the first substrate G1 in which the through holes H are formed facing upward; It consists of As described above, the thread solder supply part 11c and the heating and melting means 12 are connected to the lower end of the elevating part 14b via the fixing member 14e. In the following, as shown in FIG. 1, the ascending / descending direction of the ascending / descending portion 14b is referred to as the Z-axis direction, the moving direction of the horizontal moving portion 14c and the direction parallel to the paper surface as the X-axis direction, and the perpendicular direction as the Y-axis direction. .

なお、テーブル14dには、第1基板G1を加熱可能なパネル状の発熱体を設けてもよい。この発熱体により第1基板G1を溶融はんだM1の溶融温度程度に加熱することにより、溶融はんだM1と第1基板G1との温度差で生じる応力による第1基板G1の破損を防止することができ、また溶融はんだM1と第1基板G1との濡れ性が高まるので貫通孔Hの封止性を向上させることができる。   The table 14d may be provided with a panel-like heating element that can heat the first substrate G1. By heating the first substrate G1 to about the melting temperature of the molten solder M1 with this heating element, it is possible to prevent damage to the first substrate G1 due to the stress caused by the temperature difference between the molten solder M1 and the first substrate G1. Moreover, since the wettability between the molten solder M1 and the first substrate G1 is increased, the sealing performance of the through hole H can be improved.

[制御手段]
図1に示すように、制御手段16は、電気通信回線16aを介して充填装置10の上記各構成要素と接続された制御部16bで構成されており、各構成要素の動作を制御する。具体的には、制御部16bはコンピュータで構成されており、その記憶部(メモリー)に格納された動作プログラム及び指令データを演算部(CPU)が読み出し適宜演算することにより、糸はんだ送出部11aに組み込まれたモータに指令して糸はんだMの供給量を制御し、ヒータ12cに指令して発熱温度を制御し、移動手段14を構成する昇降部14b及び水平移動部14cに指令してその移動経路や移動速度を制御するよう構成されている。
[Control means]
As shown in FIG. 1, the control means 16 is comprised by the control part 16b connected with the said each component of the filling apparatus 10 via the telecommunication line 16a, and controls operation | movement of each component. Specifically, the control unit 16b is configured by a computer, and a calculation unit (CPU) reads out an operation program and command data stored in the storage unit (memory) and appropriately calculates them, whereby the yarn solder sending unit 11a. To control the supply amount of the thread solder M, to control the heat generation temperature by instructing to the heater 12c, to instruct the elevator 14b and the horizontal moving part 14c constituting the moving means 14 to It is configured to control the movement route and movement speed.

[気密室]
気密室15は、充填装置10の上記各構成要素を内包する気密空間15bを形成する筐体15aで形成されている。なお、筐体15aには、ガラスパネルPの搬入及び搬出のための不図示の開口部が設けられており、当該開口部には気密空間15bの気密性を確保するため気密扉が設けられている。
[Airtight room]
The airtight chamber 15 is formed by a housing 15 a that forms an airtight space 15 b that encloses each of the components of the filling device 10. The housing 15a is provided with an opening (not shown) for loading and unloading the glass panel P, and the opening is provided with an airtight door for ensuring the airtightness of the airtight space 15b. Yes.

[雰囲気制御手段]
雰囲気制御手段17は、供給ポンプを備え収納された所定のガスを所定圧力で供給可能なガス供給部17bと、気密室15の気密空間15bを真空状態とする真空ポンプ17cと、ガス供給部17bと真空ポンプ17cとを気密空間15bに接続する供給配管17aとで構成されており、気密空間15bを所定の雰囲気に制御する。ここで、ガス供給部17bには、第1基板G1の用途等に応じて適用する複数種のガス、例えば不活性ガスであるアルゴンガス・窒素ガス、還元性ガスである水素ガス・一酸化炭素ガス、酸化性ガスである酸素ガスを分離して収納することが可能であり、更にガス供給部17bに備える混合弁によりこれらのガスを所定割合で混合して気密空間15bに供給することもできる。
[Atmosphere control means]
The atmosphere control means 17 includes a supply pump, a gas supply unit 17b that can supply a predetermined gas stored therein at a predetermined pressure, a vacuum pump 17c that evacuates the hermetic space 15b of the hermetic chamber 15, and a gas supply unit 17b. And a supply pipe 17a that connects the vacuum pump 17c to the airtight space 15b, and controls the airtight space 15b to a predetermined atmosphere. Here, the gas supply unit 17b includes a plurality of types of gases applied according to the use of the first substrate G1, for example, an inert gas such as argon gas and nitrogen gas, and a reducing gas such as hydrogen gas and carbon monoxide. It is possible to separate and store gas and oxygen gas, which is an oxidizing gas, and further, these gases can be mixed at a predetermined ratio and supplied to the airtight space 15b by a mixing valve provided in the gas supply unit 17b. .

上記構成の充填装置10の動作について図1・4を参照して説明する。
図1に示すように、既に説明した貫通孔形成工程及び基板接合工程を経て形成されたガラスパネル中間体P1を第1基板G1が上側となるようテーブル14dに載置した後に充填装置10を起動する。充填装置10は、気密空間15bが所定濃度の酸素雰囲気に置換されるよう、真空ポンプ17cを動作させて気密空間15bから空気を脱気した後にガス供給部17bから酸素ガスを供給する。また、充填装置10は、テーブル12dに内蔵された発熱体を発熱させ、溶融はんだM1の融点程度の温度となるよう第1基板G1を加熱する。
The operation of the filling apparatus 10 having the above configuration will be described with reference to FIGS.
As shown in FIG. 1, after the glass panel intermediate P1 formed through the through-hole forming step and the substrate bonding step already described is placed on the table 14d so that the first substrate G1 is on the upper side, the filling device 10 is started. To do. The filling device 10 supplies the oxygen gas from the gas supply unit 17b after operating the vacuum pump 17c to deaerate air from the airtight space 15b so that the airtight space 15b is replaced with an oxygen atmosphere having a predetermined concentration. Further, the filling device 10 generates heat from the heating element built in the table 12d, and heats the first substrate G1 so that the temperature becomes about the melting point of the molten solder M1.

図4(a)に示すように、充填装置10は、第1基板G1の貫通孔Hと充填筒12bの軸心が一致するよう水平移動部14cをX・Y軸方向に水平移動させ、貫通孔Hの上部開口H1に対し流出口12fが相対する位置に充填手段12aを配置する。その後、図4(b)に示すように、充填装置10は、充填筒12bの突起部12jが貫通孔Hに挿入された状態となるよう昇降部14bを下降させて充填手段12aをZ軸方向に位置決めする。この時、図2(b)に示すように、突起部12jの下端は貫通孔Hの下方開口の近傍に位置し、さらに突起部12jの接触部12kは貫通孔Hの周壁に接触する状態となっている。   As shown in FIG. 4A, the filling apparatus 10 horizontally moves the horizontal moving portion 14c in the X and Y axis directions so that the through hole H of the first substrate G1 and the axis of the filling cylinder 12b coincide with each other. The filling means 12a is arranged at a position where the outlet 12f faces the upper opening H1 of the hole H. Thereafter, as shown in FIG. 4B, the filling device 10 lowers the elevating part 14b so that the protruding part 12j of the filling cylinder 12b is inserted into the through hole H, and moves the filling means 12a in the Z-axis direction. Position to. At this time, as shown in FIG. 2B, the lower end of the protrusion 12j is positioned in the vicinity of the lower opening of the through hole H, and the contact portion 12k of the protrusion 12j is in contact with the peripheral wall of the through hole H. It has become.

その後、充填装置10は、糸はんだ送出部11aのモータを駆動し、糸はんだ案内部11cから糸はんだMを繰り出す。繰り出された糸はんだMは、図4(c)に示すように、ヒータ12cで加熱された溶融面12gに当接し溶融はんだM1が生成される。そして、上記説明のとおり糸はんだMの外周面に形成された酸化物E1は溶融面12g(充填筒12bの上部端面)で分離され、酸化物E1が混入しない清浄な溶融はんだM1のみが流入口12eから流路12dへ流入し、流出口12fから流出し、貫通孔Hへ供給される。また、分離された酸化物E1を含む溶融はんだM1は充填筒12bの上部端面から溢れて流下し、貯留部12iで受け止め、貯留される。   Thereafter, the filling device 10 drives the motor of the yarn solder delivery unit 11a and feeds the yarn solder M from the yarn solder guide unit 11c. As shown in FIG. 4C, the fed-out solder Y is brought into contact with the molten surface 12g heated by the heater 12c to generate molten solder M1. As described above, the oxide E1 formed on the outer peripheral surface of the thread solder M is separated by the molten surface 12g (the upper end surface of the filling cylinder 12b), and only the clean molten solder M1 into which the oxide E1 is not mixed is introduced into the inlet. 12e flows into the flow path 12d, flows out from the outflow port 12f, and is supplied to the through hole H. Further, the molten solder M1 containing the separated oxide E1 overflows from the upper end surface of the filling cylinder 12b, and is received and stored in the storage unit 12i.

貫通孔Hに供給された溶融はんだM1は濡れにより貫通孔Hの周壁に接して貫通孔Hに充填されつつ下方に流動する。そして、図4(d)に示すように、貫通孔Hに挿入された突起部12jの下端に溶融はんだM1が到達すると、溶融はんだM1の突起部12jの下方端より下方への流動は突起部12jとの濡れにより規制される。充填装置10は、突起部12jの下端に溶融はんだM1が到達した時点で糸はんだMの供給を停止し、その後充填手段12を上昇させる。すると、突起部12jの存在していた部分にも溶融はんだM1が充填され、貫通孔Hは溶融はんだM1で満たされる。   The molten solder M <b> 1 supplied to the through-hole H flows downward while contacting the peripheral wall of the through-hole H due to wetting and filling the through-hole H. As shown in FIG. 4D, when the molten solder M1 reaches the lower end of the protruding portion 12j inserted into the through hole H, the downward flow of the molten solder M1 from the lower end of the protruding portion 12j causes the protruding portion to flow. Regulated by wetting with 12j. The filling device 10 stops the supply of the thread solder M when the molten solder M1 reaches the lower end of the protrusion 12j, and then raises the filling means 12. Then, the molten solder M1 is also filled in the portion where the protrusion 12j was present, and the through hole H is filled with the molten solder M1.

その後、発熱体による第1基板G1の加熱を停止し、貫通孔Hに充填された溶融はんだM1を冷却・固化して封止栓Mを形成し、貫通孔Hを封止する。   Thereafter, heating of the first substrate G1 by the heating element is stopped, the molten solder M1 filled in the through hole H is cooled and solidified to form a sealing plug M, and the through hole H is sealed.

10 充填装置
11 糸はんだ供給手段
12 加熱供給手段
12a 充填手段
12b 充填筒
14 移動手段
15 気密室
16 制御手段
17 雰囲気制御手段
P ガラスパネル
H 貫通孔
M 糸はんだ
M1 溶融はんだ
DESCRIPTION OF SYMBOLS 10 Filling device 11 Yarn solder supply means 12 Heat supply means 12a Filling means 12b Filling cylinder 14 Moving means 15 Airtight chamber 16 Control means 17 Atmosphere control means P Glass panel H Through hole M Yarn solder M1 Molten solder

Claims (6)

被充填体に設けられた貫通孔に溶融金属を充填する充填装置であって、固相の低融点金属素材が当接し溶融して溶融金属が生成される溶融面と前記溶融面で生成した溶融金属が流入する流入口とを一方端面に、前記貫通孔の一方開口に相対して配置され前記溶融金属が流出する流出口を他方端面に有するとともに前記溶融面で生成した溶融金属が前記流入口から前記流出口へ流動する流路が形成された充填筒を備えた充填手段を有し、前記充填筒の流入口の面積は前記溶融面に当接する低融点金属素材の面積未満であることを特徴とする充填装置。   A filling device that fills a through-hole provided in an object to be filled with molten metal, where a low-melting-point metal material in a solid phase contacts and melts to generate a molten metal, and a melting generated on the melting surface An inflow port through which the metal flows is provided at one end surface, and an outflow port is provided at the other end surface that is disposed opposite to the one opening of the through hole, and the molten metal generated at the melting surface is provided at the inflow port. A filling means provided with a filling cylinder in which a flow path flowing from the outlet to the outlet is formed, and the area of the inlet of the filling cylinder is less than the area of the low melting point metal material in contact with the melting surface Characteristic filling device. 前記充填手段は、前記流出口に基端が含まれる状態で前記充填筒の他方端面から突起し、前記貫通孔に挿入可能な突起部を備え、前記突起部は、前記貫通孔の一方開口に相対した位置に前記充填筒の流出口が配置された状態において前記貫通孔の他方開口近傍に先端が達する突起高さを有する請求項1に記載の充填装置。   The filling means includes a protrusion that protrudes from the other end surface of the filling cylinder in a state in which a base end is included in the outlet and can be inserted into the through hole, and the protrusion is formed in one opening of the through hole. The filling device according to claim 1, wherein the filling device has a protrusion height that reaches a tip near the other opening of the through hole in a state where the outlet of the filling cylinder is disposed at an opposed position. 前記突起部は、前記貫通孔の周壁に接触する接触部を有する請求項2に記載の充填装置。   The filling device according to claim 2, wherein the protrusion has a contact portion that contacts a peripheral wall of the through hole. 前記突起部には溶融金属を案内する案内溝が形成されている請求項2又は3のいずれかに記載の充填装置。   The filling device according to claim 2, wherein a guide groove for guiding the molten metal is formed in the protrusion. 前記流出口の大きさは前記貫通孔の一方開口の大きさ以上である請求項1乃至4のいずれかに記載の充填装置。   The filling device according to any one of claims 1 to 4, wherein a size of the outlet is equal to or larger than a size of one opening of the through hole. 前記充填手段は、前記充填筒を囲むように設けられ前記充填筒の一方端面から溢れた溶融金属を貯留する貯留部を有する請求項1乃至5のいずれかに記載の充填装置。   The filling device according to any one of claims 1 to 5, wherein the filling unit includes a storage portion that is provided so as to surround the filling tube and stores molten metal overflowing from one end surface of the filling tube.
JP2009222838A 2009-09-28 2009-09-28 Device for filling molten metal Pending JP2011068532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222838A JP2011068532A (en) 2009-09-28 2009-09-28 Device for filling molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222838A JP2011068532A (en) 2009-09-28 2009-09-28 Device for filling molten metal

Publications (1)

Publication Number Publication Date
JP2011068532A true JP2011068532A (en) 2011-04-07

Family

ID=44014197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222838A Pending JP2011068532A (en) 2009-09-28 2009-09-28 Device for filling molten metal

Country Status (1)

Country Link
JP (1) JP2011068532A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093319A1 (en) * 2017-11-10 2019-05-16 日本板硝子株式会社 Glass panel
WO2019093321A1 (en) * 2017-11-10 2019-05-16 日本板硝子株式会社 Glass panel
WO2019093320A1 (en) * 2017-11-10 2019-05-16 日本板硝子株式会社 Glass panel
CN114406387A (en) * 2022-01-04 2022-04-29 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Brazing device and method for motor stator cooling water pipe

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019093321A1 (en) * 2017-11-10 2020-12-17 日本板硝子株式会社 Glass panel
CN111315702A (en) * 2017-11-10 2020-06-19 日本板硝子株式会社 Glass panel
WO2019093319A1 (en) * 2017-11-10 2019-05-16 日本板硝子株式会社 Glass panel
CN111315703A (en) * 2017-11-10 2020-06-19 日本板硝子株式会社 Glass panel
EP3708550A4 (en) * 2017-11-10 2021-06-16 Nippon Sheet Glass Company, Limited Glass panel
KR20200073287A (en) * 2017-11-10 2020-06-23 니혼 이타가라스 가부시키가이샤 Glass panel
KR20200075878A (en) * 2017-11-10 2020-06-26 니혼 이타가라스 가부시키가이샤 Glass panel
EP3708552A4 (en) * 2017-11-10 2021-06-16 Nippon Sheet Glass Company, Limited Glass panel
WO2019093320A1 (en) * 2017-11-10 2019-05-16 日本板硝子株式会社 Glass panel
WO2019093321A1 (en) * 2017-11-10 2019-05-16 日本板硝子株式会社 Glass panel
JPWO2019093319A1 (en) * 2017-11-10 2020-11-26 日本板硝子株式会社 Glass panel
US11105145B2 (en) 2017-11-10 2021-08-31 Nippon Sheet Glass Company, Limited Glass panel
JP7041163B2 (en) 2017-11-10 2022-03-23 日本板硝子株式会社 Glass panel
KR102391704B1 (en) * 2017-11-10 2022-04-27 니혼 이타가라스 가부시키가이샤 glass panel
KR102391705B1 (en) 2017-11-10 2022-04-27 니혼 이타가라스 가부시키가이샤 glass panel
JP7309016B2 (en) 2017-11-10 2023-07-14 日本板硝子株式会社 Method of defining glass panels and suction holes in glass panels
CN114406387A (en) * 2022-01-04 2022-04-29 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Brazing device and method for motor stator cooling water pipe

Similar Documents

Publication Publication Date Title
EP3317484B1 (en) Vacuum insulating glass (vig) unit with pump-out port sealed using metal solder seal, and/or method of making the same
JP2011068532A (en) Device for filling molten metal
US7828193B2 (en) Method of mounting an electronic component and mounting apparatus
JP4247919B2 (en) Conductive material supply apparatus and method
TW201332027A (en) Chip engagement device and chip engagement method
JP6554788B2 (en) Manufacturing method of semiconductor device
US8622261B2 (en) Molten metal supply cylinder, molten metal supply apparatus incorporating such a supply cylinder and molten metal supply method
WO2010018674A1 (en) Molten metal supply pipe, molten metal supply apparatus in which the supply pipe is incorporated, and molten metal supply method
US11876007B2 (en) Hermetically sealed housing with a semiconductor component and method for manufacturing thereof
JP5257749B2 (en) Low melting point metal supply equipment
JPH1140584A (en) Die bonding equipment
JP2002009577A (en) Piezoelectric device
JP5376298B2 (en) Molten metal filler and glass substrate bonding apparatus provided with the same
JP5376303B2 (en) Molten metal supply member, molten metal coating apparatus using the same, joining apparatus for joining materials, and joining method for joining materials
JP2001257238A (en) Chip packaging method and device
KR100627211B1 (en) Method of manufacturing airtight container and method of manufacturing image display apparatus
JP2009136920A (en) Soldering iron tip member of heating iron, and heating iron using the same
WO2017154507A1 (en) Metal filling device and metal filling method
JP5376299B2 (en) Molten metal filling tool and molten metal filling apparatus provided with the same
JP2010150102A (en) Method for manufacturing glass panel
JP2013207246A (en) Die bonder and die bonding method
JP5327607B2 (en) Molten metal filler and joining apparatus provided therewith
JP2004351480A (en) Method and apparatus for brazing
JPH10295560A (en) Method for sealing vacuum structure body and its structure
JP2009090332A (en) Apparatus and method for manufacturing joined body