WO2017152541A1 - 一种生物医用复合植入材料及其制备方法 - Google Patents

一种生物医用复合植入材料及其制备方法 Download PDF

Info

Publication number
WO2017152541A1
WO2017152541A1 PCT/CN2016/086964 CN2016086964W WO2017152541A1 WO 2017152541 A1 WO2017152541 A1 WO 2017152541A1 CN 2016086964 W CN2016086964 W CN 2016086964W WO 2017152541 A1 WO2017152541 A1 WO 2017152541A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
powder
implant
implant material
biomedical
Prior art date
Application number
PCT/CN2016/086964
Other languages
English (en)
French (fr)
Inventor
陈悦昶
郑增
朱俊
韩李松
王士学
Original Assignee
安徽拓宝增材制造科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽拓宝增材制造科技有限公司 filed Critical 安徽拓宝增材制造科技有限公司
Publication of WO2017152541A1 publication Critical patent/WO2017152541A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of biomedical materials, relates to a biomedical composite implant material and a preparation method thereof, and particularly relates to a rapid preparation of biomedical 316L stainless steel and calcium silicate composite implant material by using agitating ball mill and selective laser melting technology. And its method.
  • Selective laser melting technology is a new laser additive manufacturing technology. Based on the principle of layered superposition, the metal powder is completely melted by a high-energy laser beam, thereby realizing three-dimensional free forming of parts.
  • the technology is a rapid melting and solidification process.
  • the formed parts have fine crystal grains and excellent comprehensive performance, and have significant advantages in forming fine and complex structures.
  • selective laser melting technology also has the advantage of saving materials. Based on the above advantages, this technology has been applied in many fields such as aerospace, bio-manufacturing and military. Especially in terms of bio-manufacturing, this technology is very suitable for the manufacture of human body-bearing bodies due to its high precision, high customization and the ability to form complex internal structures.
  • Biomedical materials are materials used to diagnose, treat, repair or replace a diseased tissue, organ, or function.
  • the world's biomaterials industry is growing rapidly every year. It is estimated that there will be 300,000 joint replacement operations per year in the United States; there are about 500,000 hip-ultrasound operations per year worldwide, and this number is increasing at a rate of 100,000/year.
  • the UK alone 18% of hip replacement surgery is performed every year.
  • the jaw there are millions of patients with bone defects every year, but in clinical applications of bioimplants, it is limited to the jaw.
  • Facial such as nasal bone, clavicle, humerus, etc.
  • the hard tissue of the bearing site such as the joint bone, is also the most vulnerable part
  • the construction of reliable and durable artificial hard tissue repair and replacement of biological materials has great practical significance, and it is imperative to actively carry out relevant research work.
  • Stainless steel is one of the earliest types of biological materials, and it has been more than half a century old. Among medical stainless steel materials, austenitic stainless steel is widely used due to its good mechanical properties, corrosion resistance and low price. Medical stainless steel has the following main problems: (1) low surface hardness, poor wear resistance, sensitivity to pitting in the body fluid environment of the human body, and corrosion will change the PH value of human tissue through the reaction of cells to current It releases Ni, Cr, Mo and other metal ions harmful to the human body, causing local tissue allergies and pain, and even induces cancer; (2) The elastic modulus is quite different from that of human bone tissue, which is easy to produce stress shielding, loosening the prosthesis and producing bone.
  • Hydroxyapatite, calcium phosphate, calcium silicate and similar ceramics which are close to natural bone components, are ideal materials for bone implants.
  • calcium silicate powder or ceramic has good biological activity and the ability to induce the deposition of bone-like hydroxyapatite layer in vitro.
  • the formation of hydroxyapatite layer is beneficial to promote bone conduction and bone regeneration of materials. Promotes the formation of chemical bonds with soft/hard tissues.
  • bioceramics have poor mechanical properties and are limited in the application of load-bearing bone and large-sized bone tissue repair. Therefore, the preparation of biocomposites from metal materials and bioceramic materials has attracted more and more attention from scholars from all over the world and has become a hot research topic.
  • an object of the present invention is to provide a method for preparing a biomedical composite implant material, which can solve the existing preparation method of the biomedical 316L stainless steel and calcium silicate composite implant material.
  • the bottleneck of the implant with complex structure in the technology can more accurately control the size of the implant, achieve one-shot molding of the implant, and have better biocompatibility than the pure metal implant.
  • Another object of the present invention is to provide a biomedical 316L stainless steel and calcium silicate composite implant material with comprehensive mechanical properties close to human bone, which can effectively avoid stress shielding, prevent implant loosening and improve implant after implantation in human body. Material stability.
  • the present invention provides a composite material comprising, by volume percent, the following components:
  • the composite material by volume percent, comprises the following components:
  • the calcium silicate powder was 10 vol%.
  • the stainless steel powder is a 316L stainless steel powder.
  • the 316L stainless steel powder has an average particle diameter of 40 to 60 ⁇ m.
  • the 316L stainless steel powder has an average particle diameter of 50 ⁇ m.
  • the calcium silicate powder has an average particle diameter of 5 to 15 ⁇ m.
  • the calcium silicate powder has an average particle diameter of 10 ⁇ m.
  • the invention further provides the use of a composite material as a biomedical composite implant material.
  • the invention still further provides a method for preparing a biomedical composite implant material, comprising the following steps:
  • the stainless steel powder and the calcium silicate powder are added in an amount of 85 to 95 vol% and 5 to 15 vol%, respectively, in terms of volume percent.
  • the stainless steel powder and the calcium silicate powder are added in an amount of 90 vol% and 10 vol%, respectively, in terms of volume percent.
  • the stainless steel powder is a 316L stainless steel powder.
  • the 316L stainless steel powder has an average particle diameter of 40 to 60 ⁇ m.
  • the 316L stainless steel powder has an average particle diameter of 50 ⁇ m.
  • the calcium silicate powder has an average particle diameter of 5 to 15 ⁇ m.
  • the calcium silicate powder has an average particle diameter of 10 ⁇ m.
  • the agitating ball milling process employs a ball mill for grinding.
  • the grinding balls used in the ball mill are cemented carbide balls having a diameter of 5 ⁇ 0.1 mm.
  • the material of the cemented carbide ball is YG6 tungsten-cobalt type hard alloy.
  • the ball mass ratio of the grinding ball to the composite powder used in the ball mill is 9-11:1.
  • the ball mass ratio of the grinding ball to the composite powder is 10:1.
  • the grinding conditions of the ball mill are: rotation speed of the stirring arm: 200-300 rpm; ball milling time: 10-15 hours.
  • the two-dimensional cross section is calculated by the slicing process, and the two-dimensional cross-section information is transmitted to the control unit of the selective laser melting molding apparatus;
  • the three-dimensional model of the human implant is constructed using three-dimensional drawing software.
  • 3D drawing software it is necessary to design and build an actual 3D model according to the actual structure of the implant material required, and save the 3D model information as an STL format file.
  • the three-dimensional drawing software is selected from one of engineering drawing software of CAD, Solidworks, UG, ProE.
  • the slicing process is to import the three-dimensional model information into the layered software, slice the layer by layer software, calculate the two-dimensional cross section, and save the two-dimensional cross-section information as an SLM format file.
  • the layered software is Autofab software.
  • the Autofab software can discretize a three-dimensional (3D) model in a certain direction (Z-axis) into a series of two-dimensional layers, and obtain a series of two-dimensional plane information, and the thickness of the two-dimensional plane can be controlled to be 0.1-0.01 mm.
  • the selective laser melt forming apparatus refers to a molding apparatus designed and manufactured according to Selective Laser Melting.
  • control unit of the selective laser melt forming apparatus refers to a computer control system of a selective laser melt forming apparatus.
  • control unit as described above can be implemented by using a computer, an integrated circuit module, a programmable logic device, other hardware or an existing software module in the prior art.
  • the Selective Laser Melting is an advanced additive manufacturing technology that does not require a mold, and the principle of completely melting each layer of powder by "layering" of the powder material, through a computer-aided design data model, fast Create precise and controllable construction of complex 3D solid models.
  • the substrate is a substrate plate that is secured to a table of a selective laser melting apparatus with a nut.
  • the substrate has a gauge size of 300 mm ⁇ 300 mm ⁇ 20 mm (length ⁇ width ⁇ height).
  • the substrate needs to be preheated prior to initial lamination.
  • the preheating is performed by adjusting the substrate to a laser focus point.
  • the substrate functions as a component to fix and dissipate heat during processing.
  • the preheating conditions are: preheating temperature: 600-800 ° C; preheating time: 3-5 min.
  • the layer is coated with a layer of composite powder and laid by a powder laying device.
  • the spreading device is a spreading roller.
  • the composite powder has a thickness of 0.02 ⁇ 0.01 mm.
  • the laser beam scanning conditions are: laser power: 120-180 W; scanning pitch: 0.07 ⁇ 0.01 mm; scanning speed: 350-500 mm/s.
  • the laser beam scanning conditions are: laser power 140-160 W; scanning pitch 0.07 mm; scanning speed: 400 mm/s.
  • the processing environment within the cavity of the selective laser melt forming apparatus needs to be adjusted prior to scanning of the laser beam.
  • the chamber of the selective laser melt forming apparatus requires evacuation.
  • the vacuuming is performed by a mechanical pump, and the degree of vacuum is not more than -1 MPa.
  • the chamber of the selective laser melt forming apparatus is filled with high purity argon gas as a shielding gas.
  • concentration of the high purity argon gas in the cavity is not less than 99.99 vol%.
  • the concentration of oxygen in the chamber of the selective laser melt forming apparatus is less than 0.01 vol%. The oxidation of the metal powder in the cavity of the selective laser melting molding apparatus is avoided, which affects the preparation of the implant material.
  • the layer thickness of the descending composite powder is equal to the layer thickness of the composite powder laid on the substrate.
  • the two-dimensional cross-sectional lowering is precisely adjusted by the servo motor to adjust the height of the table of the selective laser melting device, so that the height of the table is accurately lowered, thereby driving the height of the substrate fixed on the table to be accurately lowered, thereby forming the substrate.
  • the height of the two-dimensional cross section drops precisely.
  • the layer thickness of the reduced composite powder is 0.02 ⁇ 0.01 mm.
  • the cooling is to room temperature.
  • the room temperature is 20-25 °C.
  • the blasting treatment is powered by compressed air to form a high-speed jet beam to spray quartz sand at a high speed onto the surface of the workpiece to be treated to remove powder residue on the surface of the workpiece.
  • the blasting process is a way of conventionally processing the model.
  • the present invention further provides a biomedical composite implant material obtained by the above preparation method.
  • the present invention provides a biomedical composite implant material and a preparation method thereof, and a biomedical 316L stainless steel and calcium silicate composite implant material is prepared, and the implant material body is selectively laser melted and composited. It is made by powder technology, which is prepared by stirring ball milled 316L stainless steel powder and calcium silicate powder.
  • the invention provides a preparation method of a biomedical 316L stainless steel and a calcium silicate composite implant material, and integrally prepares the biomedical implant material, which does not require subsequent processing, and has a simple process.
  • the preparation method solves the bottleneck of preparing the implant with complicated structure in the prior art, can more accurately control the forming size of the implant, and realizes effective control of the mechanical properties of the material.
  • the performance of the composite implant material prepared by the preparation method is close to that of the human bone, and after implantation into the human body, the stress shielding is effectively avoided, the implant is prevented from loosening, the stability of the implant material is improved, and the implant is better than the pure metal implant.
  • Better biocompatibility its biocompatibility is conducive to the growth of osteoblasts, meeting the body's various needs for implant materials.
  • Figure 1 shows the stress-strain curve of a composite sample at a scanning speed of 400 mm/s and a laser power of 120-180 W.
  • Figure 2 shows the composite material test at a scanning speed of 350-500 mm/s and a laser power of 140 W. Sample stress and strain curve.
  • Figure 3 shows the polarization curves of the composite samples at different laser scanning speeds of 350-500 mm/s.
  • Figure 4 shows the polarization curves of the composite samples at different laser powers of 120-180W.
  • one or more of the method steps recited in the present invention are not exclusive of other method steps that may be present before or after the combination step, or that other method steps can be inserted between the steps specifically mentioned, unless otherwise It should be understood that the combined connection relationship between one or more devices/devices referred to in the present invention does not exclude that other devices/devices may exist before or after the combined device/device or Other devices/devices can also be inserted between the two devices/devices unless otherwise stated.
  • each method step is merely a convenient means of identifying the various method steps, and is not intended to limit the order of the various method steps or to limit the scope of the invention, the relative In the case where the technical content is not substantially changed, it is considered to be a scope in which the present invention can be implemented.
  • AXT-S series vertical lifting and stirring ball mill (Jiangsu Minghai Machinery); HRPM-II SLM system selective laser melting forming equipment (Huazhong University of Science and Technology and Shanghai Aerospace Equipment Manufacturing Plant jointly developed).
  • (1) 90 vol% 316L stainless steel powder having an average particle diameter of 50 ⁇ m and 10 vol% calcium silicate powder having an average particle diameter of 10 ⁇ m were mixed and ground by a ball mill, and the grinding balls used in the ball mill were cemented carbide balls, and the grinding balls were The diameter is 5 mm, and the diameter deviation of the grinding balls is ⁇ 0.1 mm.
  • the ratio of the ball to the composite powder used in the ball mill was 10:1.
  • the stirring arm was rotated at 200 rpm and the ball milling time was 10 h.
  • the laser beam is used to scan the corresponding cross-sectional area and melt the composite powder in the cross-sectional area to form a two-dimensional cross section of the implant.
  • the laser beam scanning conditions are: laser power: 120-180 W; scanning pitch: 0.07 mm; scanning speed: 350-500 mm/s.
  • the two-dimensional cross section formed above was lowered by a layer thickness of 0.02 mm of the composite powder.
  • Steps (3) and (4) are repeated until the final two-dimensional cross-section of the three-dimensional model of the implant is reached, thereby shaping the three-dimensional model of the implant.
  • the formed three-dimensional model is cooled to room temperature and then blasted to obtain a biomedical composite implant material sample 1#.
  • the working chamber Prior to scanning the laser beam of the selective laser melting apparatus, it is necessary to adjust the processing environment within the chamber of the selective laser melting apparatus.
  • the working chamber is evacuated to -1 MPa using a mechanical pump.
  • the high-purity argon gas is slowly introduced as a shielding gas, and the concentration of oxygen in the working chamber is less than 0.01% to avoid oxidation of the metal powder and affect the preparation of the implant material.
  • (1) 85-95 vol% 316L stainless steel powder having an average particle diameter of 40-60 ⁇ m and 5-15 vol% calcium silicate powder having an average particle diameter of 5-15 ⁇ m are mixed and ground by a ball mill, and the grinding ball used in the ball mill is hard.
  • the alloy ball has a diameter of 5 mm and a diameter deviation of the grinding ball ⁇ 0.1 mm.
  • the ratio of the ball to the composite powder used in the ball mill is 9-11:1.
  • the stirring arm was rotated at 300 rpm and the ball milling time was 15 h.
  • the STL format file is imported into the Autofab layered software, and sliced layer by layer, then the 2D cross section is calculated, and the 2D cross section information is saved as an SLM format file.
  • Autofab software can discretize the 3D model along the Z axis into a series of 2D planes, and obtain a series of 2D plane information.
  • the 2D plane thickness can be controlled to 0.1-0.01mm.
  • the SLM format file is then transferred to a computer controlled system of a selective laser melting apparatus.
  • the laser beam is used to scan the corresponding cross-sectional area and melt the composite powder in the cross-sectional area to form a two-dimensional cross section of the implant.
  • the laser beam scanning conditions are: laser power: 120-180 W; scanning pitch: 0.07 ⁇ 0.01 mm; scanning speed: 350-500 mm/s.
  • the two-dimensional cross section formed above was lowered by a layer thickness of 0.02 ⁇ 0.01 mm of the composite powder.
  • Steps (3) and (4) are repeated until the final two-dimensional cross-section of the three-dimensional model of the implant is reached, thereby shaping the three-dimensional model of the implant.
  • the molded 3D model is cooled to room temperature Sandblasting treatment, that is, biomedical composite implant material sample 2#.
  • the working chamber Prior to scanning the laser beam of the selective laser melting apparatus, it is necessary to adjust the processing environment within the chamber of the selective laser melting apparatus.
  • the working chamber is evacuated to -1 MPa by a mechanical pump, and high-purity argon gas is slowly introduced as a shielding gas, and the concentration of oxygen in the working chamber is less than 0.01% to avoid oxidation of the metal powder, affecting the implant Preparation of materials.
  • the biomedical composite implant material sample 1# prepared in Example 1 was measured to have a density of 6.25-6.89 g/cm 3 by an electron densitometer, which is closest to the human bone density.
  • the elastic modulus was measured by a Hall sensor method Young's modulus tester. The specific results are shown in Table 1. It can be seen from Table 1 that the laser scanning speed is selected between 350-500 mm/s, and the average elastic modulus obtained is 160.4-181.2 GPa, which is the closest to the human bone elastic modulus. The results show that it meets the requirements of the implant material.
  • the biomedical composite implant material sample 1# was scanned by laser beam to obtain the stress-strain curve of the corresponding composite material sample.
  • the specific result was obtained. see picture 1.
  • the biomedical composite implant material sample 1# was scanned by laser beam to obtain the corresponding composite material.
  • the stress and strain curves of the sample the specific results are shown in Figure 2. According to the stress-strain curve of the composite material sample in Figure 1-2, it is shown that by adjusting the process parameters, samples with different mechanical properties can be prepared, and in the experiment, experimental samples satisfying the requirements of human body-bearing bone are obtained.
  • the scanning speeds are 350mm/s, 400mm/s, 450mm/s, and 500mm/s.
  • a laser beam scanning is performed on the biomedical composite implant material sample 1#, and the polarization curve of the corresponding composite material sample is obtained.
  • the specific result is shown in FIG.
  • the laser beam scanning was performed on the biomedical composite implant material sample 1# under the conditions of laser power of 120W, 140W, 160W and 180W, respectively, and the polarization curves of the corresponding composite samples were obtained.
  • the specific results are shown in Fig. 4.
  • the sample has excellent corrosion resistance in human simulated liquid, which can effectively reduce the corrosion probability of the implant and reduce the possibility of toxic ion release after being implanted into the human body. Increase the life of the implant and improve biocompatibility.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.
  • the invention provides a composite material, and further provides the use of the composite material as a biomedical composite implant material and a preparation method thereof, which can effectively control the mechanical properties and biocompatibility of the material, and meet the human body's respective materials for the implant material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种复合材料,其制备方法及其作为生物医用复合植入材料的用途。按体积百分比计,复合材料包括:不锈钢粉末85-95%,硅酸钙粉末5-15%。生物医用复合植入材料的制备方法包括:将组分混合后采用搅拌球磨工艺制备复合粉末,构建人体植入体三维模型后采用切片工艺计算二维横截面,然后铺设粉末并采用激光束扫描、熔化复合粉末,形成植入体的一个二维横截面,重复上述步骤从而使植入体三维模型成型,经后处理得到生物医用复合植入材料。生物医用复合植入材料能够有效控制材料的力学性能和生物相容性,满足对植入体材料的需求。

Description

一种生物医用复合植入材料及其制备方法 技术领域
本发明属于生物医用材料技术领域,涉及一种生物医用复合植入材料及其制备方法,具体涉及一种采用搅拌球磨和选择性激光熔化技术快速制备生物医用316L不锈钢与硅酸钙复合植入材料及其方法。
背景技术
选择性激光熔化技术是一种新型激光增材制造技术,基于分层叠加的原理,通过高能激光束完全熔化金属粉末,从而实现零件的三维自由成形。该技术是一个快速熔化和凝固的过程,成形零件晶粒细小,综合性能优良,在成形微细复杂结构方面具有显著优势。此外,基于增材制造及粉末材料的特点,选择性激光熔化技术还具有节省材料的优点。基于以上优点,这种技术已应用于航空航天、生物制造及军工等多个领域。特别在生物制造方面,该技术因其高精度、高定制性和可成形复杂内部结构的特点,非常适宜于人体承重体的制造。
生物医用材料是指用来对生物体进行诊断、治疗、修复或替换病损组织、器官,或增进其功能的材料。在硬组织修复与取代领域,全世界生物材料产业生产额每年都在快速增长。据估计,在美国每年就要进行30万例关节置换手术;全球每年接受髋骨手术则有50万人左右,而这一数字还以10万人/年的速度在增加。然而仅在英国,每年进行的髋骨取代手术中就有18%是返修手术;在我国,每年也有数百万例骨缺损病人,但在生物植入体的临床应用上,还仅局限于颌面部(如鼻骨、锁骨、颧骨等),对于承载部位硬组织(如关节骨,也是最易受损的部位),则还鲜有真正成功的应用。因此,构造可靠持久的人造硬组织修复与取代生物材料具有重大的实际意义,积极开展相关研究工作势在必行。
不锈钢是应用最早的一类生物材料,至今已有半个多世纪的历史。在医用的不锈钢材料中,奥氏体不锈钢因其良好的机械性能、耐腐蚀性及低廉的价格,而受到广泛的应用。医用不锈钢存在以下主要问题:(1)表面硬度较低,耐磨性较差,在人体的体液环境中对点蚀敏感,且腐蚀将会通过细胞对电流的反应,改变人体组织的PH值并释放出Ni、Cr、Mo等对人体有害的金属离子,引起局部组织过敏疼痛,甚至诱发癌变;(2)弹性模量与人骨组织相差较大,易产生应力遮挡,使假体松动,产生骨吸收和萎缩现象,最终造成植入失效; (3)生物相容性较差,表面无生物活性,植入人体环境后与人体系统形成形态结合,影响植入效果造成植入失败。
与天然骨骼成分接近的羟基磷灰石、磷酸钙、硅酸钙及类似陶瓷成为骨骼植入体的理想材料。研究表明,硅酸钙粉体或陶瓷在体外具有很好的生物活性和诱导沉积类骨羟基磷灰石层的能力,羟基磷灰石层的形成有利于促进材料的骨传导和骨再生,并促进同软/硬组织形成化学键合作用。但是生物陶瓷力学性能较差,在承重骨及大尺寸骨组织修复中的应用受到了限制。因此,将金属材料与生物陶瓷材料复合制备生物复合材料越来越受到各国学者的重视,成为目前的研究热点。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种生物医用复合植入材料的制备方法,该种生物医用316L不锈钢与硅酸钙复合植入材料的制备方法,能够解决现有技术中制备结构复杂的植入体的瓶颈,能够更加精确地控制植入体成形尺寸,实现植入体的一次成型,且比纯金属植入体有更好的生物相容性。
本发明的另一目的在于提供一种综合力学性能与人骨接近的生物医用316L不锈钢与硅酸钙复合植入材料,植入人体后,有效避免应力遮挡,防止植入体松动,提高植入体材料的稳定性。
为实现上述目的及其他相关目的,本发明提供一种复合材料,按体积百分比计,包括以下组分:
不锈钢粉末85-95vol%;
硅酸钙粉末5-15vol%。
优选地,所述复合材料,按体积百分比计,包括以下组分:
不锈钢粉末90vol%;
硅酸钙粉末10vol%。
优选地,所述不锈钢粉末为316L不锈钢粉末。
更优选地,所述316L不锈钢粉末的平均粒径为40-60μm。
进一步优选地,所述316L不锈钢粉末的平均粒径为50μm。
优选地,所述硅酸钙粉末的平均粒径为5-15μm。
更优选地,所述硅酸钙粉末的平均粒径为10μm。
本发明进一步提供一种复合材料作为生物医用复合植入材料的用途。
本发明还进一步提供一种生物医用复合植入材料的制备方法,包括以下步骤:
1)将不锈钢粉末和硅酸钙粉末混合后,采用搅拌球磨工艺制备复合粉末;
优选地,所述不锈钢粉末与硅酸钙粉末,以体积百分比计,加入量分别为85-95vol%和5-15vol%。
更优选地,所述不锈钢粉末与硅酸钙粉末,以体积百分比计,加入量分别为90vol%和10vol%。
优选地,所述不锈钢粉末为316L不锈钢粉末。
更优选地,所述316L不锈钢粉末的平均粒径为40-60μm。
进一步优选地,所述316L不锈钢粉末的平均粒径为50μm。
优选地,所述硅酸钙粉末的平均粒径为5-15μm。
更优选地,所述硅酸钙粉末的平均粒径为10μm。
优选地,所述搅拌球磨工艺采用的球磨机进行研磨。
更优选地,所述球磨机中使用的研磨球为硬质合金球,所述研磨球的直径为5±0.1mm。所述硬质合金球的材质为YG6钨钴类硬质合金。
更优选地,所述球磨机中使用的研磨球与复合粉末的球料质量比为9-11∶1。
进一步优选地,所述研磨球与复合粉末的球料质量比为10∶1。
更优选地,所述球磨机的研磨条件为:搅拌臂的转速:200-300转/分钟;球磨时间:10-15小时。
2)构建人体植入体三维模型后,采用切片工艺计算二维横截面,并将二维横截面信息传送到选择性激光熔化成型设备的控制单元;
优选地,所述人体植入体三维模型采用三维绘图软件进行构建。采用三维绘图软件进行构建三维模型时,需要根据所需制备植入材料的实际结构,设计和建立实际三维模型,并将三维模型信息保存为STL格式文件。
更优选地,所述三维绘图软件选自CAD、Solidworks、UG、ProE中的一种工程制图软件。
优选地,所述切片工艺是将三维模型信息导入分层软件中,通过分层软件逐层切片后,再计算二维横截面,并将二维横截面信息保存为SLM格式文件。
更优选地,所述分层软件为Autofab软件。所述Autofab软件可将三维(3D)模型沿某一方向(Z轴)离散为一系列的二维层面,得到一系列的二维平面信息,二维平面厚度可控为0.1-0.01mm。
优选地,所述选择性激光熔化成型设备是指根据选择性激光熔化技术(Selective Laser Melting)进行设计、制造的成型设备。
优选地,所述选择性激光熔化成型设备的控制单元是指选择性激光熔化成型设备的计算机控制系统。本领域技术人员均了解,如上所述控制单元的计算过程、均可以利用现有技术中的计算机、集成电路模块、可编程逻辑器件、其它硬件或现有的软件模块来实现。
所述选择性激光熔化技术(Selective Laser Melting)是先进的增材制造技术,它不需要模具,通过粉末材料“层层堆积”,完全熔化每层粉末的原理,通过计算机辅助设计数据模型,快速制造出复杂的三维实体模型的精确可控制造。
3)在基板上铺设一层复合粉末,根据存储在所述控制单元中的二维横截面信息,采用激光束扫描相对应的横截面区域并熔化横截面区域内的复合粉末,形成植入体的一个二维横截面;
优选地,所述基板为采用螺母固定在选择性激光熔化设备的工作台上的衬底板。
更优选地,所述基板的规格尺寸为300mm×300mm×20mm(长×宽×高)。
优选地,所述基板在初次铺粉前需要进行预热。所述预热是将基板调整至激光聚焦点进行。所述基板在加工过程中起到零件固定和散热的作用。
更优选地,所述预热条件为:预热温度:600-800℃;预热时间:3-5min。
优选地,所述在基板上铺设一层复合粉末,采用铺粉装置进行铺设。
更优选地,所述铺粉装置为铺粉辊。
优选地,所述复合粉末的厚度为0.02±0.01mm。
优选地,所述激光束扫描条件为:激光功率:120-180W;扫描间距:0.07±0.01mm;扫描速度:350-500mm/s。
更优选地,所述激光束扫描条件为:激光功率140-160W;扫描间距0.07mm;扫描速度:400mm/s。
优选地,所述激光束进行扫描之前,需要调整选择性激光熔化成型设备的腔体内的加工环境。
更优选地,所述选择性激光熔化成型设备的腔体内需要进行抽真空。
进一步优选地,所述抽真空采用机械泵进行抽取,真空度不大于-1Mpa。
更优选地,所述选择性激光熔化成型设备的腔体内充入高纯氩气作为保护气体。所述高纯氩气在腔体内的浓度不小于99.99vol%。
更优选地,所述选择性激光熔化成型设备的腔体内氧气的浓度低于0.01vol%。避免选择性激光熔化成型设备的腔体内金属粉氧化,影响所述植入体材料的制备。
4)将上述形成的二维横截面下降一层复合粉末的层厚高度;
优选地,所述下降一层复合粉末的层厚高度与在基板上铺设一层复合粉末的层厚高度相等。
所述二维横截面下降是通过伺服电机精确调整选择性激光熔化设备的工作台高度,使工作台的高度精确下降,从而带动固定在工作台上基板的高度精确下降,进而使基板上形成的二维横截面的高度精确下降。
更优选地,所述下降一层复合粉末的层厚高度为0.02±0.01mm。
5)重复步骤3)和4),直至达到所述植入体三维模型的最终的二维横截面,从而使植入体三维模型成型;
6)将成型的三维模型冷却后做喷砂处理,即得生物医用复合植入材料。
优选地,所述冷却至室温。所述室温为20-25℃。
优选地,所述喷砂处理采用压缩空气为动力,以形成高速喷射束将石英砂高速喷射到需要处理的工件表面,以去除工件表面的粉末残留。所述喷砂处理是常规处理模型的方式。
另外,本发明进一步提供一种生物医用复合植入材料,由上述制备方法制得。
如上所述,本发明提供了一种生物医用复合植入材料及其制备方法,制备获得一种生物医用316L不锈钢与硅酸钙复合植入材料,其植入体材料本体采用选择性激光熔化复合粉末技术制成,所述复合粉末采用搅拌球磨316L不锈钢粉末和硅酸钙粉末制备而成。
与现有技术相比,本发明提供的一种生物医用316L不锈钢与硅酸钙复合植入材料制备方法,一体化制备生物医用植入体材料,不需要后续处理,流程简单。该种制备方法,解决现有技术中制备结构复杂的植入体的瓶颈,能够更加精确地控制植入体成形尺寸,实现对材料的力学性能进行有效控制。同时,该种制备方法制备的复合植入材料性能与人骨接近,植入人体后,有效避免应力遮挡,防止植入体松动,提高植入体材料的稳定性,且比纯金属植入体有更好的生物相容性,其生物相容性有利于成骨细胞的生长,满足人体对植入体材料的各种需求。
附图说明
图1显示为扫描速度为400mm/s、激光功率为120-180W时复合材料试样应力应变曲线图。
图2显示为扫描速度为350-500mm/s、激光功率为140W时复合材料试 样应力应变曲线图。
图3显示为不同激光扫描速度350-500mm/s下复合材料试样极化曲线图。
图4显示为不同激光功率120-180W下复合材料试样极化曲线图。
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
须知,下列实施例中未具体注明的工艺设备或装置均采用本领域内的常规设备或装置;所有压力值和范围都是指相对压力。
此外应理解,本发明中提到的一个或多个方法步骤并不排斥在所述组合步骤前后还可以存在其他方法步骤或在这些明确提到的步骤之间还可以插入其他方法步骤,除非另有说明;还应理解,本发明中提到的一个或多个设备/装置之间的组合连接关系并不排斥在所述组合设备/装置前后还可以存在其他设备/装置或在这些明确提到的两个设备/装置之间还可以插入其他设备/装置,除非另有说明。而且,除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的便利工具,而非为限制各方法步骤的排列次序或限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容的情况下,当亦视为本发明可实施的范畴。
以下实施例中使用的设备如下:
AXT-S系列立式升降搅拌球磨机(江苏明海机械);HRPM-II型SLM系统选择性激光熔化成型设备(华中科技大学与上海航天设备制造总厂联合开发)。
实施例1
制备一种生物医用复合植入材料,包括以下步骤:
(1)取平均粒径50μm的90vol%316L不锈钢粉末和平均粒径10μm的10vol%硅酸钙粉末混合,采用球磨机进行研磨,球磨机中使用的研磨球为硬质合金球,所述研磨球的直径为5mm,研磨球的直径偏差≤0.1mm。所述球磨机中使用的研磨球与复合粉末的球料比为10∶1。搅拌臂的转速为200转/分钟,球磨时间为10h。
(2)采用CAD软件构建人体植入体三维模型,并将三维模型信息保存为STL格式文件。将STL格式文件导入Autofab分层软件中,通过分层软件逐层切片后,再计算二维横截面,并将二维横截面信息保存为SLM格式文件。Autofab软件可将三维模型沿Z轴离散为一系列的二维层面,得到一系列的二维平面信息,二维平面厚度可控制为0.1-0.01mm。再将SLM格式文件传送到选择性激光熔化成型设备的计算机控制系统中。
(3)采用铺粉辊在选择性激光熔化设备的工作台上的基板上铺设一层0.02mm的复合粉末,其中,基板的尺寸为300mm×300mm×20mm,基板采用螺母固定,在初次铺粉前需要调整至激光聚焦点进行预热,预热温度为700℃,预热时间为4min。
(4)然后,根据存储在计算机控制系统中的二维横截面信息,采用激光束扫描相对应的横截面区域并熔化横截面区域内的复合粉末,形成植入体的一个二维横截面。激光束扫描条件为:激光功率:120-180W;扫描间距:0.07mm;扫描速度:350-500mm/s。将上述形成的二维横截面下降一层0.02mm的复合粉末的层厚高度。
(5)重复步骤(3)和(4),直至达到所述植入体三维模型的最终的二维横截面,从而使植入体三维模型成型。将成型的三维模型冷却至室温后做喷砂处理,即得生物医用复合植入材料样品1#。
在选择性激光熔化设备的激光束进行扫描之前,需要调整选择性激光熔化成型设备的腔体内的加工环境。采用机械泵对工作腔进行抽真空至-1Mpa, 并缓慢通入高纯氩气作为保护气体,并使工作腔内氧气的浓度低于0.01%,以避免金属粉氧化,影响所述植入体材料的制备。
实施例2
制备一种生物医用复合植入材料,包括以下步骤:
(1)取平均粒径40-60μm的85-95vol%316L不锈钢粉末和平均粒径5-15μm的5-15vol%硅酸钙粉末混合,采用球磨机进行研磨,球磨机中使用的研磨球为硬质合金球,所述研磨球的直径为5mm,研磨球的直径偏差≤0.1mm。所述球磨机中使用的研磨球与复合粉末的球料比为9-11∶1。搅拌臂的转速为300转/分钟,球磨时间为15h。
(2)采用Solidworks软件构建人体植入体三维模型,并将三维模型信息保存为STL格式文件。将STL格式文件导入Autofab分层软件中,通过分层软件逐层切片后,再计算二维横截面,并将二维横截面信息保存为SLM格式文件。Autofab软件可将三维模型沿Z轴离散为一系列的二维层面,得到一系列的二维平面信息,二维平面厚度可控制为0.1-0.01mm。再将SLM格式文件传送到选择性激光熔化成型设备的计算机控制系统中。
(3)采用铺粉辊在选择性激光熔化设备的工作台上的基板上铺设一层0.02±0.01mm的复合粉末,其中,基板的尺寸为300mm×300mm×20mm,基板采用螺母固定,在初次铺粉前需要调整至激光聚焦点进行预热,预热温度为600-800℃,预热时间为3-5min。
(4)然后,根据存储在计算机控制系统中的二维横截面信息,采用激光束扫描相对应的横截面区域并熔化横截面区域内的复合粉末,形成植入体的一个二维横截面。激光束扫描条件为:激光功率:120-180W;扫描间距:0.07±0.01mm;扫描速度:350-500mm/s。将上述形成的二维横截面下降一层0.02±0.01mm的复合粉末的层厚高度。
(5)重复步骤(3)和(4),直至达到所述植入体三维模型的最终的二维横截面,从而使植入体三维模型成型。将成型的三维模型冷却至室温后做 喷砂处理,即得生物医用复合植入材料样品2#。
在选择性激光熔化设备的激光束进行扫描之前,需要调整选择性激光熔化成型设备的腔体内的加工环境。采用机械泵对工作腔进行抽真空至-1Mpa,并缓慢通入高纯氩气作为保护气体,并使工作腔内氧气的浓度低于0.01%,以避免金属粉氧化,影响所述植入体材料的制备。
实施例3
将实施例1中制备的生物医用复合植入材料样品1#,通过电子密度仪测定其密度为6.25-6.89g/cm3,与人体骨骼密度最为接近。
再通过霍尔传感器法杨氏弹性模量测定仪测定其弹性模量,具体结果见表1。由表1可知,选择激光扫描速度在350-500mm/s之间,测定获得的弹性模量平均值为160.4-181.2GPa,与人骨弹性模量最为接近,结果表明其符合植入体材料要求。
表1.不同激光扫描速度下样品弹性模量(Gpa)
Figure PCTCN2016086964-appb-000001
采用扫描速度为400mm/s、激光功率分别为120W、140W、160W、180W的条件下,对生物医用复合植入材料样品1#进行激光束扫描,获得相应复合材料试样应力应变曲线,具体结果见图1。同时,采用扫描速度分别为350mm/s、400mm/s、450mm/s、500mm/s、激光功率为140W的条件下,对生物医用复合植入材料样品1#进行激光束扫描,获得相应复合材料试样应力应变曲线,具体结果见图2。根据图1-2中的复合材料试样应力应变曲线,说明通过调整工艺参数,可制备出不同力学性能的样品,并且在该实验过程中,获得了满足人体承重骨要求的实验样品。
采用扫描速度分别为350mm/s、400mm/s、450mm/s、500mm/s的条件 下,对生物医用复合植入材料样品1#进行激光束扫描,获得相应复合材料试样极化曲线,具体结果见图3。同时,采用激光功率分别为120W、140W、160W、180W的条件下,对生物医用复合植入材料样品1#进行激光束扫描,获得相应复合材料试样极化曲线,具体结果见图4。根据图3-4中的复合材料试样极化曲线,表明该样品在人体模拟液中具有优异的耐腐蚀性能,在植入人体后能够有效减少植入体腐蚀几率,降低有毒离子释放可能性,延长植入体使用年限,提高生物相容性。
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
工业实用性
本发明提供一种复合材料,并进一步提供该复合材料作为生物医用复合植入材料的用途及其制备方法,能够有效控制材料的力学性能和生物相容性,满足人体对植入体材料的各种需求,并有效克服了现有技术中的种种缺点而具高度产业利用价值。

Claims (10)

  1. 一种复合材料,按体积百分比计,包括以下组分:
    不锈钢粉末  85-95vol%;
    硅酸钙粉末  5-15vol%。
  2. 根据权利要求1所述的复合材料,其特征在于,所述不锈钢粉末为316L不锈钢粉末。
  3. 权利要求1或2所述的复合材料在作为生物医用复合植入材料方面的应用。
  4. 一种生物医用复合植入材料的制备方法,包括以下步骤:
    1)将不锈钢粉末和硅酸钙粉末混合后,采用搅拌球磨工艺制备复合粉末;
    2)构建人体植入体三维模型后,采用切片工艺计算二维横截面,并将二维横截面信息传送到选择性激光熔化成型设备的控制单元;
    3)在基板上铺设一层复合粉末,根据存储在所述控制单元中的二维横截面信息,采用激光束扫描相对应的横截面区域并熔化横截面区域内的复合粉末,形成植入体的一个二维横截面;
    4)将上述形成的二维横截面下降一层复合粉末的层厚高度;
    5)重复步骤3)和4),直至达到所述植入体三维模型的最终的二维横截面,从而使植入体三维模型成型;
    6)将成型的三维模型冷却后做喷砂处理,即得生物医用复合植入材料。
  5. 根据权利要求4所述的生物医用复合植入材料的制备方法,其特征在于,步骤1)中,所述搅拌球磨工艺采用的球磨机进行研磨。
  6. 根据权利要求5所述的生物医用复合植入材料的制备方法,其特征在于,所述球磨机包括以下条件中任一项或多项:
    A1)所述球磨机中使用的研磨球为硬质合金球;
    A2)所述球磨机中使用的研磨球与复合粉末的球料质量比为9-11∶1;
    A3)所述球磨机的研磨条件为:搅拌臂的转速:200-300转/分钟;球磨 时间:10-15小时。
  7. 根据权利要求4所述的生物医用复合植入材料的制备方法,其特征在于,步骤2)中,所述人体植入体三维模型采用三维绘图软件进行构建。
  8. 根据权利要求4所述的生物医用复合植入材料的制备方法,其特征在于,步骤3)中,所述激光束扫描条件为:激光功率:120-180W;扫描间距:0.06-0.08mm;扫描速度:350-500mm/s。
  9. 根据权利要求4所述的生物医用复合植入材料的制备方法,其特征在于,步骤4)中,所述下降一层复合粉末的层厚高度与在基板上铺设一层复合粉末的层厚高度相等。
  10. 一种生物医用复合植入材料,由如权利要求4-9任一所述的制备方法制得。
PCT/CN2016/086964 2016-03-11 2016-06-24 一种生物医用复合植入材料及其制备方法 WO2017152541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610141352.8 2016-03-11
CN201610141352.8A CN105797206B (zh) 2016-03-11 2016-03-11 一种生物医用复合植入材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2017152541A1 true WO2017152541A1 (zh) 2017-09-14

Family

ID=56467372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086964 WO2017152541A1 (zh) 2016-03-11 2016-06-24 一种生物医用复合植入材料及其制备方法

Country Status (2)

Country Link
CN (1) CN105797206B (zh)
WO (1) WO2017152541A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171209A (zh) * 2021-04-27 2021-07-27 山东大学 一种增材制造镍钛合金股骨柄假体及其制备方法
CN115074575A (zh) * 2022-06-13 2022-09-20 长沙学院 一种高强高生物活性可降解锌基复合材料及其制备方法
CN115607309A (zh) * 2022-10-21 2023-01-17 华中科技大学 一种3d打印peek材料引导性骨再生膜的方法及其产品
CN115673339A (zh) * 2023-01-03 2023-02-03 西安赛隆增材技术股份有限公司 一种锆铌合金骨科植入物的三维制造方法
CN117206544A (zh) * 2023-11-09 2023-12-12 四川工程职业技术学院 一种Zn-Cu-Mn-Mg合金多孔结构激光选区熔化成形方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791681A (zh) * 2019-10-29 2020-02-14 华中科技大学 一种生物活性Ti-Ta-Nb合金骨植入体及其成形方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080090208A1 (en) * 2006-10-16 2008-04-17 Natural Dental Implants Gmbh Customized dental prosthesis for periodontal- or osseointegration, and related systems and methods
CN101229587A (zh) * 2008-02-20 2008-07-30 暨南大学 生物陶瓷钛基复合材料及其制备方法
CN101269238A (zh) * 2008-04-24 2008-09-24 中南大学 316l增韧ha基生物功能梯度材料及其制备方法
CN102512267A (zh) * 2011-12-07 2012-06-27 上海交通大学 一种复合多孔结构骨修复体及其制备方法
CN102634687A (zh) * 2012-04-18 2012-08-15 北京科技大学 一种选择性激光烧结制备不锈钢生物多孔植入材料的方法
CN105014069A (zh) * 2014-04-23 2015-11-04 中南大学 一种降解速率可控的镁合金骨支架及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550207B2 (en) * 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
CN104399978B (zh) * 2014-11-27 2017-02-08 华南理工大学 一种大尺寸复杂形状多孔非晶合金零件的3d成形方法
CN104972123A (zh) * 2015-05-22 2015-10-14 上海悦瑞电子科技有限公司 分子结构模型的3d打印成型方法以及3d打印成型机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080090208A1 (en) * 2006-10-16 2008-04-17 Natural Dental Implants Gmbh Customized dental prosthesis for periodontal- or osseointegration, and related systems and methods
CN101229587A (zh) * 2008-02-20 2008-07-30 暨南大学 生物陶瓷钛基复合材料及其制备方法
CN101269238A (zh) * 2008-04-24 2008-09-24 中南大学 316l增韧ha基生物功能梯度材料及其制备方法
CN102512267A (zh) * 2011-12-07 2012-06-27 上海交通大学 一种复合多孔结构骨修复体及其制备方法
CN102634687A (zh) * 2012-04-18 2012-08-15 北京科技大学 一种选择性激光烧结制备不锈钢生物多孔植入材料的方法
CN105014069A (zh) * 2014-04-23 2015-11-04 中南大学 一种降解速率可控的镁合金骨支架及制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171209A (zh) * 2021-04-27 2021-07-27 山东大学 一种增材制造镍钛合金股骨柄假体及其制备方法
CN113171209B (zh) * 2021-04-27 2023-10-20 山东大学 一种增材制造镍钛合金股骨柄假体及其制备方法
CN115074575A (zh) * 2022-06-13 2022-09-20 长沙学院 一种高强高生物活性可降解锌基复合材料及其制备方法
CN115607309A (zh) * 2022-10-21 2023-01-17 华中科技大学 一种3d打印peek材料引导性骨再生膜的方法及其产品
CN115673339A (zh) * 2023-01-03 2023-02-03 西安赛隆增材技术股份有限公司 一种锆铌合金骨科植入物的三维制造方法
CN115673339B (zh) * 2023-01-03 2023-04-07 西安赛隆增材技术股份有限公司 一种锆铌合金骨科植入物的三维制造方法
CN117206544A (zh) * 2023-11-09 2023-12-12 四川工程职业技术学院 一种Zn-Cu-Mn-Mg合金多孔结构激光选区熔化成形方法
CN117206544B (zh) * 2023-11-09 2024-02-20 四川工程职业技术学院 一种Zn-Cu-Mn-Mg合金多孔结构激光选区熔化成形方法

Also Published As

Publication number Publication date
CN105797206A (zh) 2016-07-27
CN105797206B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2017152541A1 (zh) 一种生物医用复合植入材料及其制备方法
US20210394269A1 (en) 4d printing method for in-situ regulation of functional properties of nickel-titanium alloy and use thereof
Shuai et al. Selective laser melted Fe-Mn bone scaffold: microstructure, corrosion behavior and cell response
Zhang et al. A review on design and mechanical properties of additively manufactured NiTi implants for orthopedic applications
Guo et al. Biomedical applications of the powder‐based 3D printed titanium alloys: a review
CN109261958B (zh) 表面包覆钽涂层的医用多孔钛或钛合金材料的制备方法
CN107130138B (zh) 医用高耐磨钛合金复合材料及3d打印梯度原位纳米复相减磨医用钛合金的方法
Barucca et al. Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering
Muthaiah et al. Surface engineering of additively manufactured titanium alloys for enhanced clinical performance of biomedical implants: A review of recent developments
CN106312060B (zh) 一种高性能低模量医用钛合金三维金属零件的制备方法
CN103328016B (zh) 形成有多孔涂层的体内插入用移植物
CN108971500B (zh) 高耐蚀性原位纳米碳化物增强不锈钢植入体及其成形方法
Kang et al. On the effect of the thermal cycle during the directed energy deposition application to the in-situ production of a Ti-Mo alloy functionally graded structure
CN104646669A (zh) 生物医用多孔纯钛植入材料及其制备方法
CN106902391A (zh) 一种镁合金植入体复合材料及其制备与应用
Zhao et al. Research progress of laser cladding on the surface of titanium and its alloys
Hussain et al. Mechanical properties of CNT reinforced hybrid functionally graded materials for bioimplants
Yoganand et al. Characterization and in vitro-bioactivity of natural hydroxyapatite based bio-glass–ceramics synthesized by thermal plasma processing
EP2774722A1 (en) Material having pores on surface, and method for manufacturing same
Wang et al. Research progress in electrospark deposition coatings on titanium alloy surfaces: a short review
Wang et al. High strength titanium with fibrous grain for advanced bone regeneration
Luo et al. Novel function-structure-integrated Ti-Mo-Cu alloy combined with excellent antibacterial properties and mechanical compatibility as implant application
WO2024169746A1 (zh) 一种医用钽合金及其制备方法和应用
Xie et al. Ti-10Mo/Hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity
Vijaya Kumar et al. Surface treatments and surface modification techniques for 3D built materials

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893187

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893187

Country of ref document: EP

Kind code of ref document: A1