WO2017150588A1 - 放熱部材用組成物、放熱部材、電子機器、放熱部材用組成物の製造方法、放熱部材の製造方法 - Google Patents

放熱部材用組成物、放熱部材、電子機器、放熱部材用組成物の製造方法、放熱部材の製造方法 Download PDF

Info

Publication number
WO2017150588A1
WO2017150588A1 PCT/JP2017/008028 JP2017008028W WO2017150588A1 WO 2017150588 A1 WO2017150588 A1 WO 2017150588A1 JP 2017008028 W JP2017008028 W JP 2017008028W WO 2017150588 A1 WO2017150588 A1 WO 2017150588A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling agent
inorganic filler
heat
composition
silane coupling
Prior art date
Application number
PCT/JP2017/008028
Other languages
English (en)
French (fr)
Inventor
武 藤原
稲垣 順一
雅子 日夏
上利 泰幸
寛 平野
門多 丈治
哲周 岡田
Original Assignee
Jnc株式会社
地方独立行政法人大阪市立工業研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, 地方独立行政法人大阪市立工業研究所 filed Critical Jnc株式会社
Priority to KR1020187028319A priority Critical patent/KR20180113625A/ko
Priority to CN201780015303.2A priority patent/CN108779386A/zh
Priority to JP2018503361A priority patent/JP6902192B2/ja
Priority to EP17760052.5A priority patent/EP3425019A4/en
Priority to US16/081,426 priority patent/US10679922B2/en
Publication of WO2017150588A1 publication Critical patent/WO2017150588A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/285Ammonium nitrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds

Definitions

  • the present invention relates to a composition for a heat dissipation member.
  • the present invention relates to a heat radiating member composition capable of dissipating heat by efficiently conducting and transmitting heat generated in an electronic device, controlling a coefficient of thermal expansion, and forming a heat radiating member having heat resistance.
  • thermo conductivity As a method for solving such a heat dissipation problem, there is a method in which a heat-generating part is brought into contact with a highly heat-conductive material (heat-dissipating member) to guide heat to the outside and dissipate heat.
  • materials having high thermal conductivity include inorganic materials such as metals and metal oxides.
  • inorganic materials such as metals and metal oxides.
  • aluminum nitride is close to the thermal expansion coefficient of silicon and is preferably used.
  • such inorganic materials have problems in processability, easiness of cracking, and the like, and cannot be said to have sufficient characteristics as a substrate material in a package. Therefore, development of a heat radiating member in which these inorganic material and resin are combined to increase heat conductivity has been performed.
  • Patent Document 1 discloses a heat dissipating member obtained by polymerizing a liquid crystal composition by controlling the alignment with an alignment control additive or a rubbing treatment method as a method for improving the thermal conductivity of the resin.
  • the heat dissipation member is always required to have higher thermal conductivity and controllability of the thermal expansion coefficient. Then, this invention makes it a subject to provide the composition and heat dissipation member which can form the heat dissipation member which has high thermal conductivity and can control a coefficient of thermal expansion.
  • the present inventors do not add an inorganic material to the resin, but connect the inorganic materials to each other, that is, a coupling in which the mesogen site in the skeleton exhibits liquid crystallinity.
  • the present inventors completed the present invention by finding that by directly bonding inorganic materials through an agent, the thermal conductivity is extremely high, the thermal expansion coefficient can be controlled, and a heat-resistant composite material can be realized. .
  • the composition for heat radiating members according to the first aspect of the present invention includes a heat conductive first inorganic filler bonded to one end of the first coupling agent; and heat bonded to one end of the second coupling agent.
  • a conductive second inorganic filler, and at least one of the first coupling agent and the second coupling agent is a liquid crystal silane coupling agent, and other than the first coupling agent.
  • the other end of the second coupling agent has a functional group capable of binding to each other, and the other end of the first coupling agent is the other end of the second coupling agent by a curing process. It is characterized by combining with.
  • Liquid crystal silane coupling agent refers to a coupling agent having a mesogen moiety in the silane coupling agent skeleton.
  • the mesogenic portion has liquid crystallinity.
  • One end and “the other end” may be edges or ends of the shape of the molecule, and may or may not be both ends of the long side of the molecule. If comprised in this way, inorganic fillers can be directly combined with a liquid crystal silane coupling agent, and a heat radiating member can be formed. Therefore, the phonon which is the main element of heat conduction can be directly propagated, and the cured heat dissipation member can have extremely high heat conductivity not only in the horizontal direction but also in the thickness direction.
  • the composition for heat radiating members according to the second aspect of the present invention is the composition for heat radiating member according to the first aspect of the present invention, wherein the first inorganic filler and the second inorganic filler are boron nitride. , Boron carbide, boron nitride, graphite, carbon fiber, carbon nanotube, graphene, alumina, silica, aluminum nitride, silicon carbide, zinc oxide, magnesium hydroxide, or iron oxide based material. If comprised in this way, the thermal conductivity of an inorganic filler is high, and a thermal expansion coefficient is positive, very small, or is negative, and the target composition for heat radiating members is obtained by compounding with them.
  • the first inorganic filler and the second inorganic filler are boron nitride. , Boron carbide, boron nitride, graphite, carbon fiber, carbon nanotube, graphene, alumina, silica, aluminum nitride, silicon
  • composition for heat dissipation members according to the third aspect of the present invention is the composition for heat dissipation members according to the first aspect or the second aspect of the present invention, wherein the first inorganic filler and the second inorganic filler are used.
  • the inorganic filler used for the third inorganic filler there is no restriction on the inorganic filler, but boron nitride, aluminum nitride, silicon carbide, silicon nitride when high insulation is required, diamond, carbon nanotube when high insulation is not required, It is desirable that the material has high thermal conductivity such as graphene or metal powder.
  • the third inorganic filler may or may not be treated with a silane coupling agent.
  • the composition for a heat radiating member according to the fourth aspect of the present invention is the composition for a heat radiating member according to any one of the first aspect to the third aspect of the present invention. And an organic compound or a polymer compound that is not bonded to the second inorganic filler. If comprised in this way, in the composition for heat radiating members which hardened by connecting the 1st and 2nd inorganic fillers directly, as the particle diameter of the fillers is increased in order to improve the thermal conductivity, the voids are combined. The rate is high. By filling the voids with a compound that is not bonded, thermal conductivity, water vapor blocking performance, and the like can be improved.
  • composition for a heat radiating member according to the fifth aspect of the present invention is the composition for a heat radiating member according to any one of the first to fourth aspects of the present invention, wherein the liquid crystal silane coupling agent is And a silane coupling agent represented by the following formula (1) having a polymerizable group at the terminal.
  • R a is the polymerizable group that does not contain a —C ⁇ C— or —C ⁇ C— moiety
  • R c is alkylene having 2 to 3 carbon atoms, and in the alkylene, any —CH 2 — except for —C—C— adjacent to Si may be replaced by —CO— or —COO—, —C—C— adjacent to may be replaced by —C—CR d —, wherein R d is halogen (Ha) or CHa 3
  • A represents 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, or the following formulas (3-1) to (3 ⁇ 7) is a divalent group, and * in formulas (3-1) to (3 ⁇ 7) is a divalent group, and * in formulas (3-1) to (3 ⁇ 7) is a divalent group, and * in formulas (3
  • Alkyl, a halogenated alkyl having 1 to 10 carbon atoms, or an arbitrary —CH 2 — in the alkyl or the halogenated alkyl is —O—, —CO—, —COO—, —OCO—, —CH May be replaced by a group replaced by ⁇ CH— or —C ⁇ C—;
  • Z is independently a single bond, an alkylene having 1 to 20 carbon atoms in which any hydrogen may be replaced by a halogen, or in the alkylene, any —CH 2 — is —O—, —CO—, — A group replaced by COO- or -OCO-;
  • m is an integer from 1 to 6;
  • R 5 is hydrogen or alkyl having 1 to 8 carbons;
  • R 1 is hydrogen or alkyl having 1 to 5 carbons;
  • j is an integer of 1 to 3.
  • a liquid-crystal silane coupling agent can contain a polymeric liquid crystal compound in the structure.
  • These compounds are thermosetting, can be cured without being affected by the amount of filler, and are excellent in heat resistance.
  • the molecular structure has symmetry and linearity, which is considered advantageous for phonon conduction.
  • composition for heat radiating members according to the sixth aspect of the present invention is the composition for heat radiating member according to the fifth aspect of the present invention, wherein the liquid crystal silane coupling agent of the formula (1) is represented by the following formula (1 -1) or (1-2).
  • R c is —C—C—, —C—C—C—, —C—C—CO—, —C—C—CO—O—, —C—CF—CO—O—, —C—CCF 3 -CO-O-
  • R 1 is methyl or ethyl
  • R 2 , R 3 and R 4 are each independently a single bond, — (CH 2 ) a —, —O—, —O (CH 2 ) a —, — (CH 2 ) a O—, —O (CH 2 ) a O -, - COO - , - OCO -, - CH 2 CH 2 -COO -, - OCO-CH 2 CH
  • R c is —C—C—, —C—C—C—, —C—C—CO—, —C—C—CO—O—, —C—CF—CO—O—, —C—CCF 3 -CO-O-,
  • R 1 is methyl or ethyl
  • R 2 represents a single bond, — (CH 2 ) a —, —O—, —O (CH 2 ) a —, — (CH 2 ) a O—, —O (CH 2 ) a O—, —COO—.
  • R 3 are independently a single bond, - (CH 2) a - , - O-, O (CH 2) a -, - (CH 2) a O -, - O (CH 2) a O- , —COO—, —OCO—, —CH 2 CH 2 —COO—, —OCO—CH 2 CH 2 —, wherein a is an integer of 1 to 6, n is an integer of 1 to 6.
  • a liquid crystal silane coupling agent can contain the compound especially preferable as a polymeric liquid crystal compound in the structure.
  • These compounds are considered to be more advantageous for phonon conduction because of higher molecular linearity. Furthermore, these compounds are preferable because they are excellent in physical properties, ease of preparation, and handling.
  • the heat dissipation member according to the seventh aspect of the present invention is a heat dissipation member obtained by curing the composition for heat dissipation member according to any one of the first to sixth aspects of the present invention. If comprised in this way, a thermal radiation member has a coupling
  • An electronic apparatus includes the heat dissipating member according to the seventh aspect of the present invention; and an electronic device having a heat generating part, so that the heat dissipating member contacts the heat generating part. It is an electronic device arranged in the electronic device. If comprised in this way, the heat which generate
  • the manufacturing method of the composition for heat radiating members which concerns on the 9th aspect of this invention WHEREIN: The process of couple
  • the manufacturing method of the heat radiating member which concerns on the 10th aspect of this invention is the manufacturing method of the composition for heat radiating members which concerns on the said 9th aspect of this invention;
  • the other end of the said 1st coupling agent is said 1st. And coupling with the other end of the coupling agent. If comprised in this way, it will become the manufacturing method of the heat radiating member which inorganic fillers couple
  • the heat dissipating member formed from the composition for heat dissipating member of the present invention has extremely high thermal conductivity and controllability of the thermal expansion coefficient. In addition, it has excellent properties such as chemical stability, heat resistance, hardness and mechanical strength.
  • the heat radiating member is suitable for, for example, a heat radiating substrate, a heat radiating plate (planar heat sink), a heat radiating sheet, a heat radiating coating film, a heat radiating adhesive, etc. in which thermal distortion is a problem.
  • the heat radiating member of this invention it is a conceptual diagram which shows the coupling
  • FIG. It is a conceptual diagram which shows the state which the other ends of the coupling agent 12 couple
  • FIG. 2 is a 1 H-NMR chart showing the final structure of the heat-resistant liquid crystal silane coupling agents (6-1) and (6-2) synthesized in Examples and the progress of the reaction.
  • 3 is a 1 H-NMR chart showing the final structure of a heat-resistant liquid crystal silane coupling agent (6-3) of the present invention synthesized in Examples and the progress of the reaction.
  • 4 is a graph showing the results of measuring the coefficient of thermal expansion of the sample of Example 1.
  • Example 5 is a graph showing the results of measuring the coefficient of thermal expansion of the sample of Comparative Example 1. It is a graph which shows the thermal expansion coefficient measurement result of the sample of Example 2. It is a graph which shows the thermal expansion coefficient measurement result of the sample of Example 3. It is a graph which shows the thermal expansion coefficient measurement result of the sample of Example 4. It is a graph of TG / DTG in a nitrogen atmosphere. It is a graph of TG / DTG in the air.
  • Liquid crystal compound and “liquid crystal compound” are compounds that exhibit a liquid crystal phase such as a nematic phase or a smectic phase.
  • any —CH 2 — in alkyl may be replaced by —O—” or “any —CH 2 CH 2 — may be replaced by —CH ⁇ CH—, etc.”
  • the meaning is shown in the following example.
  • a group in which any —CH 2 — in C 4 H 9 — is replaced by —O— or —CH ⁇ CH— includes C 3 H 7 O—, CH 3 —O— (CH 2 ) 2 —, CH 3 —O—CH 2 —O— and the like.
  • groups in which any —CH 2 CH 2 — in C 5 H 11 — is replaced by —CH ⁇ CH— include H 2 C ⁇ CH— (CH 2 ) 3 —, CH 3 —CH ⁇ CH
  • the term “arbitrary” means “at least one selected without distinction”.
  • CH 3 —O—CH 2 —O— in which oxygen and oxygen are not adjacent to each other is more preferable than CH 3 —O—O—CH 2 — in which oxygen and oxygen are adjacent to each other. Is preferred.
  • any hydrogen may be replaced by halogen, alkyl having 1 to 10 carbons, or halogenated alkyl having 1 to 10 carbons” with respect to ring A is, for example, 2 of 1,4-phenylene. , 3, 5 and 6 position hydrogens are substituted with a substituent such as fluorine or methyl, and the substituent is “halogenated alkyl having 1 to 10 carbon atoms”.
  • Embodiments include examples such as 2-fluoroethyl and 3-fluoro-5-chlorohexyl.
  • Compound (1) means a compound represented by the following formula (1), which will be described later, and may mean at least one compound represented by the following formula (1). The same applies to “compound (1-1)” and “compound (1-2)”. The compound (1), the compound (1-1), and the compound (1-2) are collectively referred to as “compound (1)”. When one compound (1) has a plurality of A, any two A may be the same or different. When two or more compounds (1) have A, arbitrary two A may be same or different. This rule also applies to other symbols and groups such as Ra and Z. Note that halogen may be represented as Ha.
  • composition for heat dissipation member is a composition that can form a heat radiating member by directly bonding inorganic fillers with a coupling agent by a curing treatment.
  • FIG. 1 shows an example in which boron nitride is used as the inorganic filler.
  • boron nitride h-BN
  • boron nitride does not have a reactive group in the plane of the particle, so that the coupling agent binds only to the periphery thereof.
  • the coupling agent bonded to boron nitride can form a bond between the coupling agents by having functional groups that can be bonded to each other.
  • the present invention is characterized in that a liquid crystal silane coupling agent is used for at least one of the coupling agents bonded to the inorganic filler.
  • first coupling agent will be described as a liquid crystal silane coupling agent
  • second coupling agent will be described as a coupling agent other than the liquid crystal silane coupling agent.
  • both the first and second coupling agents may be liquid crystal silane coupling agents.
  • the composition for heat radiating members according to the first embodiment of the present invention includes, for example, as shown in FIG. 2, a thermally conductive first inorganic filler 1 bonded to one end of the first coupling agent 11; A thermally conductive second inorganic filler 2 bonded to one end of the second coupling agent 12.
  • the first coupling agent 11 and the second coupling agent 12 are not bonded.
  • the other end of the first coupling agent 11 bonded to the first inorganic filler 1 is bonded to the second inorganic filler 2. It couple
  • the liquid crystal silane coupling agent has a structure represented by the following formula (1) including a polymerizable compound and a silicon compound having alkoxy in the structure. (R 1 -O-) j R 5 (3-j) Si-R c -Z- (AZ) m -R a (1) This compound (1) tends to be uniform when mixed with other liquid crystalline compounds or polymerizable compounds.
  • the physical properties of the compound (1) can be arbitrarily adjusted.
  • the effects of the terminal group R a , the ring structure A and the bonding group Z on the physical properties of the compound (1) and preferred examples thereof will be described below.
  • Terminal group R a is preferably a polymerizable group not containing a —C ⁇ C— or —C ⁇ C— moiety. Examples thereof include, but are not limited to, a polymerizable group represented by the following formulas (2-1) to (2-2), cyclohexene oxide, or succinic anhydride.
  • R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbon atoms, and q is 0 or 1.
  • the terminal group R a may be any group including a functional group that can be bonded to the functional group of the organic compound (coupling agent 12 in FIG. 2) serving as a binding partner.
  • Examples of the combination of functional groups that can be bonded include, but are not limited to, a combination of oxiranyl and amino, methacryloxy, carboxy or carboxylic anhydride residue and amino, imidazole and oxiranyl, and the like. A combination with high heat resistance is more preferable.
  • A Preferred examples of A include 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1,4 -Phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2 , 3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-3,6-diyl, naphthalene -2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-
  • 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical, the latter is not illustrated. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
  • A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene and the like.
  • Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
  • the linking group Z of the compound (1) is a single bond, — (CH 2 ) 2 —, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, or — (CH 2 ).
  • it is 4 —, in particular, when it is a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, or — (CH 2 ) 4 —, the viscosity becomes small.
  • the bonding group Z is —CH ⁇ N—, —N ⁇ CH—, —N ⁇ N—, the temperature range of the liquid crystal phase is wide.
  • the bonding group Z is alkyl having about 4 to 10 carbon atoms, the melting point is lowered.
  • Preferred Z is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, — OCF 2 —, — (CH 2 ) 4 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CONR 6- , —NR 6 CO— (R 6 is hydrogen or alkyl having 1 to 6 carbon atoms).
  • Z More preferable examples of Z include a single bond, — (CH 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 — and the like. . Particularly preferred Z is a single bond, — (CH 2 ) 2 —, —COO— or —OCO—.
  • a 6-membered ring and a condensed ring including a 6-membered ring are regarded as a ring, and for example, a 3-membered ring, a 4-membered ring or a 5-membered ring alone is not regarded as a ring.
  • a condensed ring such as a naphthalene ring or a fluorene ring is regarded as one ring.
  • the compound (1) may be optically active or optically inactive.
  • the compound (1) may have an asymmetric carbon or an axial asymmetry.
  • the configuration of the asymmetric carbon may be R or S.
  • the asymmetric carbon may be located at either Ra or A, and when it has an asymmetric carbon, the compatibility of the compound (1) is good.
  • the compound (1) has axial asymmetry, the twist-inducing force is large.
  • the light application property may be any.
  • a compound having desired physical properties can be obtained by appropriately selecting the terminal group R a , the type of the ring structure A and the bonding group Z, and the number of rings.
  • m is an integer of 1-6.
  • the bonding group R c of the compound (1) is an alkylene having 2 to 3 carbon atoms, and in the alkylene, any —CH 2 — except for —C—C— adjacent to Si is —CO— or —COO—. And —C—C— adjacent to Si may be replaced with —C—CR d —, and R d is halogen (Ha) or CHa 3 .
  • Preferred R c is —C—C—, —C—C—C—, —C—C—CO—, —C—C—CO—O—, —C—CF—CO—O—, —C —CCF 3 —CO—O— and the like can be mentioned. Particularly preferred is —C—C—.
  • R 1 is hydrogen or alkyl having 1 to 5 carbon atoms.
  • Preferred R 1 includes methyl or ethyl.
  • R 5 is hydrogen or linear or branched alkyl having 1 to 8 carbon atoms.
  • Preferred R 5 includes methyl.
  • j is an integer of 1 to 3.
  • Preferred j is 3.
  • Compound (1) can also be represented by the following formula (1-a) or (1-b). PY- (AZ) mR a (1-a) PY- (AZ) mYR a (1-b)
  • A, Z and R a have the same meanings as A, Z and R a defined in the above formula (1), and P is (R 1 —O—).
  • j R 5 (3-j) Si—R c — is shown.
  • Y represents a single bond or alkylene having 1 to 20 carbon atoms, preferably alkylene having 1 to 10 carbon atoms, and in the alkylene, arbitrary —CH 2 — represents —O—, —S—, —CO—, — It may be replaced by COO- or -OCO-.
  • Y is alkylene in which —CH 2 — at one or both ends of alkylene having 1 to 10 carbon atoms is replaced by —O—.
  • m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
  • Preferred examples of the compound (1) include the following compounds (a-1) to (g-14).
  • R a , P and Y are as defined in the above formulas (1-a) and (1-b).
  • Z 1 is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 3 O— , —O (CH 2 ) 3 —, —COO—, —OCO—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CH ⁇ N—, —N ⁇ CH—, —N ⁇ N—, —OCF 2 — or —CF 2 O—, —CONR 6 —, —NR 6 CO— (R 6 is hydrogen or alkyl having 1 to 6 carbon atoms).
  • a plurality of Z 1 may be the same or different.
  • Z 2 represents — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, —COO—, —OCO—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —OCF 2 — or —CF 2 O—, —CONR 6 —, — NR 6 CO— (R 6 is hydrogen or alkyl having 1 to 6 carbon atoms).
  • Z 3 represents a single bond, alkyl having 1 to 10 carbon atoms, — (CH 2 ) a —, —O (CH 2 ) a O—, —CH 2 O—, —OCH 2 —, —O (CH 2 ). 3 —, — (CH 2 ) 3 O—, —COO—, —OCO—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —OCF 2 — or —CF 2 O—, — CONR 6 —, —NR 6 CO— (R 6 is hydrogen or alkyl having 1 to 6 carbon atoms), and a plurality of Z 3 may be the same or different.
  • X is a substituent of 1,4-phenylene and fluorene-2,7-diyl in which arbitrary hydrogen may be replaced by halogen, alkyl or fluorinated alkyl, and represents halogen, alkyl or fluorinated alkyl. * Indicates an asymmetric carbon.
  • More preferred compound (1) can be represented by the following formula (1-c) or (1-d).
  • A, Y, Z, P and m are as defined above, and R a represents a polymerizable group represented by the following formulas (4-1) to (4-6).
  • R a represents a polymerizable group represented by the following formulas (4-1) to (4-6).
  • two Ys represent the same group, and the two Ys are bonded so as to be symmetrical.
  • a coupling agent other than the liquid crystal silane coupling agent preferably reacts with a functional group (such as oxiranyl) possessed by the liquid crystal silane coupling agent, the amine reactive group is terminated.
  • a functional group such as oxiranyl
  • the amine reactive group is terminated.
  • Silica Ace registered trademark
  • KBM903 and KBE903 are available from Shin-Etsu Chemical Co., Ltd.
  • the terminal of the liquid crystal silane coupling agent is an amine
  • a coupling agent having oxiranyl or the like at the terminal is preferable.
  • the product manufactured by JNC Corporation includes Sila Ace (registered trademark) S510, S530, and the like.
  • bonding increases, the more modification of the inorganic filler by a coupling agent is preferable.
  • first inorganic filler and the second inorganic filler examples include nitrides, carbides, or carbon materials.
  • the first inorganic filler and the second inorganic filler may be the same or different.
  • boron nitride, boron carbide, boron nitride, graphite, and the like are used as inorganic fillers having high thermal conductivity and a very small or negative coefficient of thermal expansion. Examples thereof include carbon fiber, carbon nanotube, and graphene.
  • alumina, silica, aluminum nitride, silicon carbide, zinc oxide, magnesium hydroxide, or iron oxide-based material can be given.
  • an inorganic filler having the following high thermal conductivity and a positive coefficient of thermal expansion may be used for either one of the first and second inorganic fillers.
  • alumina, silica, boron nitride, boron carbide, silicon carbide, aluminum nitride, silicon nitride, diamond such as high thermal conductivity or smaller size than the first and second inorganic fillers.
  • the structure of the liquid crystal silane coupling agent has a shape and length that can efficiently and directly bond between these inorganic fillers.
  • the kind, shape, size, addition amount, and the like of the inorganic filler can be appropriately selected according to the purpose.
  • an inorganic filler having conductivity may be used as long as the desired insulation is maintained.
  • the shape of the inorganic filler include a plate shape, a spherical shape, an amorphous shape, a fiber shape, a rod shape, and a tubular shape.
  • boron nitride, aluminum nitride, silicon nitride, silicon carbide, graphite, carbon fiber, and carbon nanotube are used.
  • hexagonal boron nitride (h-BN) and aluminum nitride are preferable.
  • Boron nitride is preferable because it has a very high thermal conductivity in the planar direction, a negative thermal expansion coefficient in the planar direction, a low dielectric constant, and a high insulating property.
  • the use of plate-like crystal boron nitride is preferable because the plate-like structure is easily oriented along the mold by the flow and pressure of the raw material during molding and curing.
  • aluminum nitride Since aluminum nitride has a very high thermal conductivity and a small and positive thermal expansion coefficient, when used in combination with boron nitride, it disturbs the orientation of the boron nitride plate structure and maintains high thermal conductivity. This is preferable because the anisotropy of the surface direction and the thickness direction of the thermal conductivity can be reduced and the coefficient of thermal expansion can be adjusted in the positive direction.
  • the average particle size of the inorganic filler is preferably 0.1 to 200 ⁇ m. More preferably, it is 1 to 100 ⁇ m. When it is 0.1 ⁇ m or more, the thermal conductivity is good, and when it is 200 ⁇ m or less, the filling rate can be increased.
  • the average particle size is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle size by the wet method using the analysis based on the Franhofer diffraction theory and Mie's scattering theory, the larger side and the smaller side are equivalent (volume basis). Was the median diameter.
  • the ratio of the inorganic filler to the coupling agent depends on the amount of the coupling agent to be combined with the inorganic filler to be used.
  • the compound used as the first and second inorganic fillers for example, boron nitride has no reactive group on the surface and has a reactive group only on the side surface. It is preferable that as many coupling agents as possible be bound to the few reactive groups, and an organic compound equal to or slightly larger than the number of reactive groups be bound.
  • the reaction amount of the coupling agent to the inorganic filler varies mainly depending on the size of the inorganic filler and the reactivity of the coupling agent used.
  • the larger the inorganic filler the smaller the amount of modification because the area ratio of the side surface of the inorganic filler decreases.
  • the volume ratio of the silane coupling agent and the inorganic component in the heat radiating member, which is a cured product is preferably in the range of 5:95 to 30:70, and more preferably 10:90 to 25:75. Is desirable.
  • An inorganic component is an inorganic raw material before performing a silane coupling agent process.
  • the first inorganic filler is modified with a liquid crystal silane coupling agent as the first coupling agent.
  • the second inorganic filler is modified with a silane coupling agent other than the liquid crystal silane coupling agent as the second coupling agent.
  • the first inorganic filler and the second inorganic filler surface-modified with a coupling agent can form a bond with a liquid crystal silane coupling agent and another silane coupling agent.
  • the liquid crystal silane coupling agent preferably contains a polymerizable liquid crystal compound in its structure. However, other polymerizable liquid crystal compounds may be included, and polymerizable compounds having no liquid crystallinity may be included.
  • the composition for heat dissipation member may further contain an organic compound (for example, a polymerizable compound or a polymer compound) that is not bonded to the first inorganic filler and the second inorganic filler, that is, does not contribute to the bonding. Further, it may contain a polymerization initiator, a solvent and the like.
  • an organic compound for example, a polymerizable compound or a polymer compound
  • it may contain a polymerization initiator, a solvent and the like.
  • the composition for heat radiating members may contain a polymerizable compound that is not bonded to an inorganic filler as a constituent element.
  • a polymerizable compound a compound that does not lower the film formability and the mechanical strength is preferable.
  • This polymerizable compound is classified into a compound having no liquid crystallinity and a compound having liquid crystallinity.
  • the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives, itaconic acid derivatives, and the like.
  • the composition for a heat radiating member may include a polymer compound that is not bonded to an inorganic filler as a constituent element.
  • a polymer compound a compound that does not lower the film formability and the mechanical strength is preferable.
  • the polymer compound may be any polymer compound that does not react with the inorganic filler and the liquid crystal silane coupling agent, and examples thereof include polyolefin resins, polyvinyl resins, polyamide resins, and polyitaconic acid resins.
  • the composition for a heat radiating member may contain a liquid crystal compound having no polymerizable group as a constituent element.
  • a liquid crystal compound having no polymerizable group examples of such non-polymerizable liquid crystal compounds are described in Licris, a database of liquid crystal compounds (LiqCryst, LCI Publisher GmbH, Hamburg, Germany).
  • a non-polymerizable liquid crystal compound for example, composite materials of a polymer of compound (1) and a liquid crystal compound can be obtained.
  • a non-polymerizable liquid crystal compound is present in a polymer network such as a polymer dispersed liquid crystal.
  • a liquid crystalline compound having characteristics that do not have fluidity in the temperature range to be used is desirable.
  • the filler may be compounded by a method of injecting into the void in the temperature range showing the isotropic phase, and the filler is mixed with a liquid crystal compound in an amount calculated to fill the void in advance.
  • the filler may be polymerized.
  • the composition for heat radiating members may contain a polymerization initiator as a constituent element.
  • a polymerization initiator for example, a radical photopolymerization initiator, a cationic photopolymerization initiator, a thermal radical polymerization initiator, or the like may be used depending on the components of the composition and the polymerization method.
  • Preferred initiators for thermal radical polymerization include, for example, benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-t-butylperoxide.
  • DTBPO dimethyl 2,2′-azobisisobutyrate
  • MAIB dimethyl 2,2′-azobisisobutyrate
  • AIBN azobisisobutyronitrile
  • ACN azobiscyclohexanecarbonitrile
  • the composition for heat radiating members may contain a solvent.
  • the polymerization may be performed in a solvent or without a solvent.
  • the composition containing a solvent may be applied onto a substrate by, for example, a spin coating method and then photopolymerized after removing the solvent. Alternatively, post-treatment may be performed by heat curing after heating to an appropriate temperature.
  • Preferred solvents include, for example, benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, ⁇ -butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide, cyclohexane, methylcyclohexane, cyclopentanone. , Cyclohexanone, PGMEA and the like.
  • the said solvent may be used individually by 1 type, or may mix and use 2 or more types.
  • there is not much meaning in limiting the use ratio of the solvent at the time of polymerization and it may be determined for each case in consideration of polymerization efficiency, solvent cost, energy cost, and the like.
  • a stabilizer may be added to the heat radiating member composition in order to facilitate handling.
  • a stabilizer known ones can be used without limitation, and examples thereof include hydroquinone, 4-ethoxyphenol and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
  • BHT 3,5-di-t-butyl-4-hydroxytoluene
  • titanium oxide for making white, carbon black for making black, and silica fine powder for adjusting viscosity can be mentioned.
  • an additive may be added to further increase the mechanical strength.
  • fibers or long molecules such as polyvinyl formal, polyvinyl butyral, polyester, polyamide, and polyimide can be used as inorganic fibers and cloth such as glass and carbon fiber, or polymer additives.
  • the liquid crystal silane coupling agent includes a polymerizable compound and an alkoxy-containing silicon compound in its structure, and the manufacturing method includes the following steps (1) to (3).
  • a polymerizable compound is obtained.
  • a polymerizable compound is obtained.
  • the polymerizable compound preferably has a functional group at both ends. It is preferable to have functional groups at both ends of the long side of the polymerizable compound because a linear bond (crosslinking) can be formed by the coupling agent.
  • the polymerizable compound may be a bifunctional or higher polymerizable liquid crystal compound. Examples thereof include the following formula (5-1) having vinyl at both ends.
  • the polymerizable compound may be synthesized or a commercially available product may be purchased.
  • the polymerizable compound can be synthesized by combining known methods in organic synthetic chemistry. Methods for introducing the desired end groups, ring structures and linking groups into the starting materials are described, for example, by Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart, Organic Syntheses, John Books such as Wily & Sons, Inc., Organic Reactions, John Wily & Sons Inc., Comprehensive Organic Synthesis, Pergamon Press, New Experimental Chemistry Course (Maruzen) It is described in. Reference may be made to Japanese Patent No. 5084148.
  • a polymerizable group is introduced into one end of the polymerizable compound.
  • an epoxy is introduced as a polymerizable group.
  • the following formulas (5-2) and (5-3) having an epoxy at the terminal can be obtained.
  • the following formulas (5-2) and (5-3) thus produced can be obtained by dissolving in a solvent, separating using a separator, and then removing the solvent.
  • a desired polymerizable group is introduced into either one of the ends.
  • the solvent for taking out the intermediate product may be any solvent that can dissolve the produced intermediate organism.
  • the said solvent may be used individually by 1 type, or may mix and use 2 or more types. In addition, it is not so meaningful to limit the use ratio of the solvent, and it may be determined for each case in consideration of solubility, solvent cost, energy cost, and the like.
  • the intermediate organism may synthesize a compound having an epoxy group and a compound having a vinyl group in advance, and finally etherify.
  • compounds of the following formulas (5-5) and (5-6) are obtained.
  • Si is introduced into the unreacted terminal of the polymerizable compound.
  • a silicon compound having alkoxy is bonded to an unreacted terminal of the polymerizable compound.
  • trimethoxysilyl is introduced into the unreacted functional group (vinyl) side of the above formulas (5-2), (5-3), and (5-5). See the following formulas (6-1), (6-2), and (6-3).
  • the introduction of Si may be introduction of triethoxysilyl.
  • methoxysilane and ethoxysilane methoxysilane having high reactivity is preferable.
  • Some methoxy or ethoxy may be substituted with linear or branched alkyl having 1 to 8 carbon atoms. For example, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-octyl and the like can be mentioned.
  • a polymerizable compound having vinyl at both ends is first epoxidized with vinyl at one end, and then Si is introduced into the other unreacted vinyl.
  • the manufacturing method of the present invention is not limited to this. Both ends of the polymerizable compound are not limited to vinyl as long as a polymerizable group and Si can be introduced.
  • Si may be introduced into a long-chain compound as described above using a hydrosilylation reaction. However, a long-chain compound is first synthesized separately in the left half and the right half, and then hydrosilylated in the left half.
  • a liquid crystal silane coupling agent may be synthesized by introducing Si using a reaction, introducing a polymerizable group in the right half, and connecting the left half and the right half.
  • a coupling process is performed. Coupling treatment is performed on the inorganic filler, and a combination of one end of the coupling agent and the inorganic filler is defined as a first inorganic filler and a second inorganic filler.
  • a known method can be used for the coupling treatment.
  • the coupling agent used for the first inorganic filler and the coupling agent used for the second inorganic filler are the same or different types of coupling agents in which the respective organic reactive groups are polymerizable. As an example, first, an inorganic filler and a coupling agent are added to a solvent. After stirring using a stirrer etc., it dries.
  • the mixing ratio of the first inorganic filler and the second inorganic filler is such that when the bonding group forming the bond between the first inorganic filler and the second inorganic filler is amine: epoxy, the weight of the inorganic filler alone is, for example, The ratio is preferably 1: 1 to 1:30, more preferably 1: 3 to 1:20.
  • the mixing ratio is determined by the number of terminal linking groups that form the bond between the first inorganic filler and the second inorganic filler. For example, if it is a secondary amine, it can react with two oxiranyls. The oxiranyl side may be ring-opened, and it is preferable to use a larger amount calculated from the epoxy equivalent.
  • the heat radiating member composition is sandwiched between hot plates using a compression molding machine, and oriented / cured by compression molding. Further, post-curing is performed using an oven or the like to obtain the heat radiating member of the present invention.
  • the pressure at the time of compression molding is preferably 50 ⁇ 200kgf / cm 2, more preferably 70 ⁇ 180kgf / cm 2. Basically, the pressure during curing is preferably high. However, it is preferable that the pressure is appropriately changed depending on the fluidity of the mold and the target physical properties (which direction of thermal conductivity is important) and an appropriate pressure is applied.
  • compositions for heat radiating members are solid (for example, in powder form) at room temperature, but have fluidity when heated to 40 to 140 ° C., preferably 70 to 120 ° C. Above the temperature at which the composition for heat radiating member softens and below the temperature at which the reactive groups begin to react, the composition for heat radiating member can be applied to a molding method such as transfer molding, as a semiconductor sealing material, etc. Is also useful. When the temperature at which fluidity is developed is higher than the polymerization temperature of the organic reactive group of the silane coupling agent, a curing reaction also occurs at the same time as molding, but powder press molding or powder injection molding can be used, and high thermal conductivity insulation It is also useful as a substrate, insulating sheet, molded part and the like.
  • the composition is applied onto a substrate, and the solvent is removed by drying to form a coating layer having a uniform film thickness.
  • the coating method include spin coating, roll coating, curtain coating, flow coating, printing, micro gravure coating, gravure coating, wire bar coating, dip coating, spray coating, meniscus coating, and the like.
  • the solvent can be removed by drying, for example, by air drying at room temperature, drying on a hot plate, drying in a drying furnace, blowing hot air or hot air, and the like.
  • the conditions for removing the solvent are not particularly limited, and it may be dried until the solvent is almost removed and the fluidity of the coating layer is lost.
  • the substrate examples include metal substrates such as copper, aluminum, and iron; inorganic semiconductor substrates such as silicon, silicon nitride, gallium nitride, and zinc oxide; glass substrates such as alkali glass, borosilicate glass, and flint glass; alumina; Inorganic insulating substrates such as aluminum nitride; polyimide, polyamideimide, polyamide, polyetherimide, polyetheretherketone, polyetherketone, polyketonesulfide, polyethersulfone, polysulfone, polyphenylenesulfide, polyphenyleneoxide, polyethyleneterephthalate, polybutyleneterephthalate , Polyethylene naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulose, Triacetyl cellulose or partially saponified product thereof, epoxy resins, phenolic resins, and a plastic film substrate such as norbornene resins.
  • the film substrate may be a uniaxially stretched film or a biaxially stretched film.
  • the film substrate may be subjected to surface treatment such as saponification treatment, corona treatment, or plasma treatment in advance.
  • the material used as the protective layer include polyvinyl alcohol.
  • an anchor coat layer may be formed in order to improve the adhesion between the protective layer and the substrate.
  • Such an anchor coat layer may be any inorganic or organic material as long as it improves the adhesion between the protective layer and the substrate.
  • the bonds between the inorganic fillers are composed of the inorganic filler treated with the liquid crystal silane coupling agent and the inorganic filler treated with another coupling agent has been described.
  • the first inorganic filler is coupled with a liquid crystal silane coupling agent having an epoxy at the end.
  • the second inorganic filler is subjected to a coupling treatment with another silane coupling agent having amino.
  • the epoxy on the first inorganic filler side is bonded to the amino on the second inorganic filler side (see FIG. 2).
  • a combination in which the first inorganic filler side has amino and the second inorganic filler side has epoxy may be used.
  • the coupling agent bonded to the first inorganic filler and the coupling agent bonded to the second inorganic filler each have a functional group for bonding the coupling agents together.
  • the functional group on the first inorganic filler side and the functional group on the second inorganic filler side may be a combination of different ones or a combination of the same ones as long as coupling between the coupling agents becomes possible.
  • Examples of combinations of functional groups that form a bond between coupling agents include combinations of oxiranyl and amino, vinyls, methacryloxy, carboxy or carboxylic anhydride residues and amino, imidazole and oxiranyl, and the like. However, it is not limited to these. A combination with high heat resistance is more preferable.
  • the first coupling agent and the second coupling agent As described above, by appropriately selecting the first coupling agent and the second coupling agent, the first inorganic filler and the second inorganic filler can be connected, and the composition for heat dissipation member of the present invention can be used.
  • a heat dissipating member having extremely high thermal conductivity, controllability of thermal expansion coefficient, and heat resistance can be obtained.
  • said functional group is an illustration and is not restricted to said functional group as long as the effect of this invention is acquired.
  • the heat radiating member according to the second embodiment of the present invention is formed by molding a cured product obtained by curing the composition for heat radiating member according to the first embodiment.
  • This cured product has high thermal conductivity and a negative or very small positive coefficient of thermal expansion, and is excellent in chemical stability, heat resistance, hardness, mechanical strength, and the like.
  • the mechanical strength includes Young's modulus, tensile strength, tear strength, bending strength, bending elastic modulus, impact strength, and the like.
  • thermosetting temperature ranges from room temperature to 350 ° C., preferably from room temperature to 250 ° C., more preferably from 50 ° C. to 200 ° C.
  • curing time is 5 ° C.
  • the range is from second to 10 hours, preferably from 1 minute to 5 hours, more preferably from 5 minutes to 1 hour.
  • reheating treatment may be performed to reduce strain and the like.
  • the heat dissipating member of the present invention is formed from the above heat dissipating member composition, and is used in the form of a plate, sheet, film, thin film, fiber, adhesive, molded article or the like.
  • Preferred shapes are plates, sheets, films and thin films.
  • the thickness of the sheet is 1 mm or more
  • the thickness of the film is 5 ⁇ m or more, preferably 10 to 500 ⁇ m, more preferably 20 to 300 ⁇ m
  • the thickness of the thin film is less than 5 ⁇ m. What is necessary is just to change a film thickness suitably according to a use.
  • An electronic apparatus such as an electronic substrate according to the third embodiment of the present invention includes the heat dissipation member according to the second embodiment and an electronic device having a heat generating portion.
  • a heat radiating member is arrange
  • a semiconductor element can be given as an electronic device.
  • the heat radiating member has high heat resistance and high insulation in addition to high thermal conductivity. Therefore, the present invention is particularly effective for an insulated gate bipolar transistor (IGBT) that requires a more efficient heat dissipation mechanism because of high power among semiconductor elements.
  • IGBT insulated gate bipolar transistor
  • An IGBT is one of semiconductor elements and is a bipolar transistor in which a MOSFET is incorporated in a gate portion, and is used for power control.
  • Electronic devices equipped with IGBTs include high-power inverter main conversion elements, uninterruptible power supply devices, AC motor variable voltage variable frequency control devices, railway vehicle control devices, electric vehicles such as hybrid cars and electric cars, IH A cooker can be mentioned.
  • the composition for heat radiating member uses only an inorganic filler modified with a liquid crystal silane coupling agent, bonds the polymerizable compounds in the liquid crystal silane coupling agent with an appropriate polymerization initiator, etc., and bonds between the inorganic fillers. May be formed. That is, according to the present invention, when an inorganic material and an organic compound are combined, a bond is formed between the inorganic materials with the organic compound, the thermal conductivity is remarkably improved, and the thermal expansion coefficient is controlled.
  • liquid crystal silane coupling agent ⁇ Liquid crystal silane coupling agent having heat resistance: mixture of the following (6-1) and (6-2) ⁇ Liquid crystal silane coupling agent having heat resistance: (6-3)
  • the liquid crystal silane coupling agent used in the present invention was synthesized by first synthesizing a polymerizable liquid crystal compound and then converting it into a silane coupling agent.
  • ⁇ Synthesis of liquid crystal silane coupling agent> A polymerizable liquid crystal compound of the following formula (5-1) was synthesized by the method described in Japanese Patent No. 5084148, and vinyl was epoxidized by the method described in Japanese Patent No. 5084148.
  • (5-1) becomes (5-4) via (5-2) and (5-3).
  • the reaction was stopped with an ice bath when (5-4) began to form while confirming the product using thin layer chromatography and a UV lamp as appropriate.
  • the mixture of (5-2) and (5-3) was separated by a solvent in which toluene / ethyl acetate was mixed at a volume ratio of 5: 1.
  • the solvent was evaporated from the solution containing (5-2) and (5-3) using a rotary evaporator to obtain a mixture of (5-2) and (5-3).
  • trimethoxysilane Under a nitrogen atmosphere, 1.5 g of trimethoxysilane was added to 4.0 g of a mixture of (5-2) and (5-3), and the mixture was stirred at 70 ° C. After reaching a predetermined temperature, 2 ⁇ L of Kalstead's catalyst diluted to 1/10 was added to react the polymerizable liquid crystal compound with trimethoxysilane. Sampling was performed every hour, the concentration of trimethoxysilane was confirmed by an infrared absorption spectrometer and gas chromatography, and the temperature was maintained at 70 ° C. until the concentration became constant. Thereafter, the residual solvent and the low boiling point silicon compound were evaporated by a rotary evaporator to obtain silane coupling agents (6-1) and (6-2) used in the present invention.
  • FIG. 1 H-NMR (CDCl 3 ): 8.35-8.07 (d, 2H), 7.60-6.74 (m, 6H), 4.11 (m, 4H), 3.58 (s, 9H), 3.18 (m, 1H), 2.86 (m, 1H), 2.76 (m, 1H), 2.25-1.60 (m, 4H), 1.05 (m, 2H) ), 0.75 (m, 2H).
  • the other component materials constituting the heat radiating member used in the examples of the present invention are as follows.
  • Silane coupling agent B 3-glycidoxypropyltrimethoxysilane (S510, manufactured by JNC Corporation)
  • Silane coupling agent C 3-triethoxylylpropyl succinic anhydride (manufactured by Gelest)
  • Example 1 Preparation of boron nitride particles treated with liquid crystal silane coupling agent 5.0 g of boron nitride particles (PTX25, hereinafter abbreviated as BN particles) and the liquid crystal silane coupling agent ((6-1) as a first coupling agent) A mixture of (6-2)) was added to 1.05 g of toluene (anhydrous), stirred at 750 rpm for 1 hour using a stirrer, and the resulting mixture was dried at 40 ° C. for 5 hours and at room temperature for 19 hours.
  • boron nitride particles treated with liquid crystal silane coupling agent 5.0 g of boron nitride particles (PTX25, hereinafter abbreviated as BN particles) and the liquid crystal silane coupling agent ((6-1) as a first coupling agent)
  • BN particles boron nitride particles
  • ((6-1) as a first coupling agent
  • BN particles modified with the liquid crystal silane coupling agent were transferred to a sample tube, 50 mL of THF (manufactured by Nacalai Tesque) was added, and then pulverized by ultrasonic treatment (MODEL 450, manufactured by BRANSON). Further, this solution was separated and purified at 6000 rpm for 10 minutes using a centrifuge (CT6E manufactured by Hitachi Koki Co., Ltd.). After discarding the supernatant, 50 mL of acetone was added and the same operation was performed twice. The modified BN particles after purification were dried in an oven at 60 ° C.
  • grains be the 1st inorganic filler modified with the liquid crystal silane coupling agent.
  • silane coupling agent A N- (2-aminoethyl) -3-aminopropyltrimethoxysilane
  • the coating amount of the first inorganic filler and the second inorganic filler on the BN particles of the liquid crystalline epoxy or silane coupling agent is determined by a thermogravimetric / differential calorimeter (Seiko Instruments Inc. (currently Hitachi High-Tech) ) Manufactured by EXSTAR TG / DTA5200) and calculated from the heat loss at 600 ° C.
  • composition for heat radiating member The modified 1st inorganic filler and 2nd inorganic filler were mixed as follows. 0.564 g of the first inorganic filler and 0.166 g of the second inorganic filler were measured, mixed in an agate mortar, and then mixed at 55 ° C. for 10 minutes using two rolls. The weight ratio, NH of the second inorganic filler (reactive group of KBM903 is because NH 2, a silane coupling agent NH per molecule and two terms) and the ratio of the number of the first inorganic filler epoxy ring Calculated as 1: 1.
  • FIG. 2 shows the first inorganic filler 1, the second inorganic filler 2, the liquid crystal silane coupling agent as the first silane coupling agent 11, and the silane coupling agent A as the second silane coupling agent 12. Indicates the binding state.
  • Thermal conductivity is measured in advance with a specific heat of a heat radiating member (DSC type input compensation type differential scanning calorimeter EXSTAR6000 manufactured by Seiko Instruments Inc. (currently Hitachi High-Tech)). ) And specific gravity (measured with a density meter AG204 density measurement kit manufactured by METTLER TOLEDO), and the value is multiplied by the thermal diffusivity determined by the TC7000 thermal diffusivity measuring device manufactured by ULVAC-RIKO. Thus, the thermal conductivity was obtained. The thermal diffusivity in the thickness direction was measured using a standard sample holder after blackening the sample with carbon spray.
  • the thermal diffusivity in the plane direction is determined from the distance from the time when the sample is irradiated with the laser and the infrared ray is emitted, and the distance between the spot that irradiates the laser and the spot that detects the infrared ray. Calculated.
  • the amount of the polymerizable liquid crystal compound is the amount to be reacted with the silane coupling agent A covering the second inorganic filler (as described above, two epoxy per molecule of the NH 2 -terminal silane coupling agent). About 5 times as many moles as calculated).
  • the reason for the excessive amount of the polymerizable liquid crystal compound is that, at the stage of synthesizing the first comparative filler, the epoxy at both ends of the polymerizable liquid crystal compound is bonded to the different second inorganic filler and cured. This is to prevent that.
  • FIG. 3 shows the bonding state of the second inorganic filler 2, the silane coupling agent A as the second coupling agent 12, and the polymerizable liquid crystal compound 21.
  • Example 2 A sample of Example 2 was obtained in the same manner as in Example 1 except that the commercially available silane coupling agent B was used instead of the liquid crystal silane coupling agent in Example 1.
  • FIG. 4 shows a combination of the first inorganic filler 1, the second inorganic filler 2, the silane coupling agent B as the first silane coupling agent 13, and the silane coupling agent A as the second silane coupling agent. Indicates the state.
  • Example 3 A sample of Example 3 was obtained in the same manner as in Example 1 except that a commercially available silane coupling agent C was used instead of the liquid crystal silane coupling agent in Example 1.
  • a commercially available silane coupling agent C was used instead of the liquid crystal silane coupling agent in Example 1.
  • the first inorganic filler 1, the second inorganic filler 2, the silane coupling agent C as the first silane coupling agent 13, and the silane coupling agent A as the second silane coupling agent are combined. Indicates the state.
  • Example 4 A liquid crystal silane coupling agent (6-3) was used in place of the liquid crystal silane coupling agent (mixture of (6-1) and (6-2)) in Example 1, and the others were the same as in Example 1
  • the sample of Example 4 was obtained by the above operation.
  • FIG. 2 shows the first inorganic filler 1, the second inorganic filler 2, the liquid crystal silane coupling agent as the first silane coupling agent 11, and the silane coupling agent A as the second silane coupling agent 12. Indicates the binding state.
  • Example 1 From the measurement result of the thermal expansion coefficient, it can be seen that in Example 1 as well as Comparative Example 1, a sample having a negative thermal expansion coefficient and high heat resistance (a glass transition point is not observed up to 250 ° C.) can be produced.
  • the polymerizable liquid crystal compound (5-4) nearly 10 times as much as the silane coupling agent was mixed, and the excess polymerizable liquid crystal compound (5-4) was added after the reaction. A cleaning step is required. Therefore, the method of Example 1 can save raw materials and can reduce the manufacturing process. Furthermore, it can be seen that Example 1 has higher reproducibility of the temperature cycle than Comparative Example 1.
  • Example 1 makes the relationship between the temperature and the shrinkage of the sample linear by converting the organic chain of the coupling agent into a liquid crystal. It can be seen that the reproducibility is high when the cycle is repeated. This is presumably because the thermal stability of the site where BN particles are bonded is improved by liquid crystal formation.
  • Example 3 uses a coupling agent having succinic anhydride at the reaction site in place of the commercially available coupling agent having the epoxy of Example 2.
  • the reaction between the succinic anhydride of the commercial coupling agent C and the diamine of the commercial coupling agent A causes the inorganic filler to bond with each other through an imide bond and a partial amide bond.
  • the result of the expansion coefficient measurement is linear.
  • Example 4 the coupling agent (6-3) was used in place of the liquid crystal silane coupling agent of Example 1.
  • the thermal conductivity is slightly low and a negative thermal expansion coefficient is maintained, but an inflection point is observed in the thermal expansion coefficient at 190 ° C. (FIG. 11). Therefore, it can be seen that the structure of Example 1 is superior for applications used at high temperatures.
  • the structure of the liquid crystal portion is required to be determined from the required heat resistance and the like.
  • Table 1 shows the results of measuring the thermal conductivity of Examples 1 to 4 and Comparative Example 1.
  • Example 1 and Comparative Example 1 When Example 1 and Comparative Example 1 are compared, the ratio of the liquid crystal silane coupling agent and the polymerizable compound to the BN particles is slightly smaller in Example 1 than in Comparative Example 1.
  • the liquid crystal silane coupling agents (6-1) and (6-2) of Example 1 one epoxy liquid crystal part is bonded to one coupling agent part, but this is used in Comparative Example 1. Since the terminal reactive group of the silane coupling agent A is in the state of NH 2 , there are those in which two molecules of the polymerizable liquid crystal compound (5-4) are reacted at this part, contributing to bonding BN and BN. This is probably due to the presence of epoxy molecules that do not.
  • the thermal conductivity in the xy direction is higher in Example 1 than in Comparative Example 1, although it is slightly smaller. This is also considered to be because the thermal conductivity is high because BN and BN are efficiently combined.
  • the thermal conductivity in the thickness direction is slightly smaller in Example 1. This is thought to be because, in the comparative example 1, excess liquid crystalline epoxy can bind the upper and lower BN particles when the plate-like BN particles are stacked.
  • Example 1 and Example 2 since the heat conductivity of highly oriented polyethylene is originally very high, the heat conductivity of the methylene structure is expected to be good, and the chain length of the coupling agent B is short. It is considered that phonon conduction is fast, and as a result, thermal conductivity is improved.
  • the lengths of the methylene structures are equal, and there is almost no difference in thermal conductivity between the epoxy-amine bond and the imide bond. Therefore, the length of the coupling agent and the reactive group may be designed in consideration of the balance of the desired thermal conductivity and heat resistance.
  • Example 1 The sample prepared in Example 1 was subjected to thermogravimetric / differential thermal analysis.
  • FIG. 12 shows the results in a nitrogen atmosphere
  • FIG. 13 shows the results in air.
  • the measurement results show that the composite material of the present invention has a heat resistance of about 320 ° C. in a nitrogen atmosphere and about 280 ° C. in the air.
  • the composite material of the present invention can relieve physical stress due to thermal expansion, can be used as a material having high heat resistance, and high thermal conductivity.

Abstract

本発明は、高熱伝導性を有し、熱膨張率を制御できる放熱部材を形成可能な組成物および放熱部材である。本発明の放熱部材用組成物は、第1のカップリング剤の一端と結合した熱伝導性の第1の無機フィラーと;第2のカップリング剤の一端と結合した熱伝導性の第2の無機フィラーと;を含み、前記第1のカップリング剤と前記第2のカップリング剤は、少なくとも1つが液晶シランカップリング剤であり、前記第1のカップリング剤の他端と前記第2のカップリング剤の他端は、互いに結合可能な官能基を有し、硬化処理により、前記第1のカップリング剤の他端が、前記第2のカップリング剤の他端と結合することを特徴とする。

Description

放熱部材用組成物、放熱部材、電子機器、放熱部材用組成物の製造方法、放熱部材の製造方法
 本発明は、放熱部材用組成物に関する。特に、電子機器内部に生じた熱を効率よく伝導、伝達することにより放熱し、熱膨張率を制御でき、耐熱性を有する放熱部材を形成可能な放熱部材用組成物に関する。
 近年、ハイブリッド自動車や電気自動車などの電力制御用の半導体素子や、高速コンピューター用のCPUなどにおいて、内部の半導体の温度が高くなり過ぎないように、パッケージ材料の高熱伝導化が望まれている。すなわち半導体チップから発生した熱を効果的に外部に放出させる能力が重要になっている。また、動作温度の上昇により、パッケージ内に使用されている材料間の熱膨張率の差により熱歪が発生し、配線の剥離などによる寿命の低下が問題になっている。
 このような放熱問題を解決する方法としては、発熱部位に高熱伝導性材料(放熱部材)を接触させて熱を外部に導き、放熱する方法が挙げられる。熱伝導性が高い材料として、金属や金属酸化物などの無機材料が挙げられる。特に窒化アルミニウムなどはシリコンの熱膨張率に近く、好んで使用されている。しかしながら、このような無機材料は、加工性や割れ易さなどに問題があり、パッケージ内の基板材料として充分な特性を持っているとはいえない。そのため、これら無機材料と樹脂を複合化し、高熱伝導化した放熱部材の開発が行われている。
 樹脂複合材の高熱伝導化は、一般的に、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、アクリル樹脂、エポキシ樹脂などの汎用樹脂に、金属充填材や無機充填材を多量に添加することにより行われてきた。しかしながら、無機充填材の熱伝導率は物質固有の値であり上限が決まっている。そのため、樹脂の熱伝導率を向上させ、複合材の熱伝導率をボトムアップさせる方法が広く試みられている。
 特許文献1には、樹脂の熱伝導率を向上させる方法として、液晶組成物を配向制御添加剤やラビング処理法などにより配向制御して重合することにより得られる放熱部材が開示されている。
特開2006-265527号公報
 上記のとおり、放熱部材は、電子機器の発達に伴い、常により効果の高い熱伝導化と熱膨張率の制御性が望まれる。
 そこで本発明は、高熱伝導性を有し、熱膨張率を制御できる放熱部材を形成可能な組成物および放熱部材を提供することを課題とする。
 本発明者らは、有機材料と無機材料の複合化において、樹脂に無機材料を添加するのではなく、無機材料同士をつなげるような態様、すなわち、骨格中のメソゲン部位が液晶性を示すカップリング剤を介して無機材料同士を直接結合させることにより、熱伝導率が極めて高く、熱膨張率の制御が可能であり、さらに耐熱性を有する複合材を実現できることを見出し、本発明を完成させた。
 本発明の第1の態様に係る放熱部材用組成物は、第1のカップリング剤の一端と結合した熱伝導性の第1の無機フィラーと;第2のカップリング剤の一端と結合した熱伝導性の第2の無機フィラーと;を含み、前記第1のカップリング剤と前記第2のカップリング剤は、少なくとも1つが液晶シランカップリング剤であり、前記第1のカップリング剤の他端と前記第2のカップリング剤の他端は、互いに結合可能な官能基を有し、硬化処理により、前記第1のカップリング剤の他端が、前記第2のカップリング剤の他端と結合することを特徴とする。「液晶シランカップリング剤」とは、シランカップリング剤骨格中にメソゲン部位を有するカップリング剤をいう。該メソゲン部位は液晶性を持つ。「一端」および「他端」とは、分子の形状の縁または端であればよく、分子の長辺の両端であってもなくてもよい。
 このように構成すると、無機フィラー同士を液晶シランカップリング剤により直接結合させて放熱部材を形成することができる。そのため、熱伝導の主な要素であるフォノンを直接的に伝播することができ、硬化後の放熱部材は水平方向だけでなく厚み方向にも極めて高い熱伝導性を有することができる。
 本発明の第2の態様に係る放熱部材用組成物は、上記本発明の第1の態様に係る放熱部材用組成物において、前記第1の無機フィラーと前記第2の無機フィラーが、窒化ホウ素、炭化ホウ素、窒化炭素ホウ素、黒鉛、炭素繊維、カーボンナノチューブ、グラフェン、アルミナ、シリカ、窒化アルミニウム、炭化珪素、酸化亜鉛、水酸化マグネシウム、または酸化鉄系材料から選ばれる少なくとも一つである。
 このように構成すると、無機フィラーの熱伝導率が高く、熱膨張率が正か非常に小さいかまたは負であり、それらと複合化することにより目的とする放熱部材用組成物が得られる。
 本発明の第3の態様に係る放熱部材用組成物は、上記本発明の第1の態様または第2の態様に係る放熱部材用組成物において、前記第1の無機フィラーおよび前記第2の無機フィラーと異なる熱膨張率を持つ、熱伝導性の第3の無機フィラー;をさらに含む。
 このように構成すると、前記第1の無機フィラーと前記第2の無機フィラーが異なる熱膨張率を持つ場合、それらを複合化させると、複合化した放熱部材用組成物の熱膨張率は、各々のフィラーのみで複合化した場合の中間的な値になる。しかしながら、そのままではフィラーの隙間が多く、熱伝導率が高くならないばかりか、隙間への水分の侵入により電気絶縁性が低下する。そこで、熱伝導率が高く、第1、第2の無機フィラーに比べ粒子径の小さな第3の無機フィラーを加えることにより、第1、第2の無機フィラーの隙間を埋め、材料の安定性を高くするという利点がある。さらに、第1、第2の無機フィラーのみを使用した場合に比べ、熱伝導率がより高い第3の無機フィラーを加えることにより、硬化物の熱伝導率を高くすることが可能になる。第3の無機フィラーに使用する無機フィラーに制約はないが、高絶縁性が必要な場合には窒化ホウ素や窒化アルミニウム、炭化ケイ素、窒化ケイ素、高絶縁性が必要でない場合はダイヤモンド、カーボンナノチューブ、グラフェン、金属粉などの熱伝導率が高い物であることが望ましい。第3の無機フィラーはシランカップリング剤で処理してあってもしていなくてもよい。
 本発明の第4の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第3の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラーおよび前記第2の無機フィラーに結合していない、有機化合物または高分子化合物;をさらに含む。
 このように構成すると、第1、第2の無機フィラーを直接接続して硬化させた放熱部材用組成物では、熱伝導率を向上させるためにフィラーの粒径を大きくするにつれて、それにあいまって空隙率が高くなる。その空隙を結合していない化合物で満たすことにより、熱伝導率や水蒸気遮断性能などを向上させることができる。
 本発明の第5の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第4の態様のいずれか1項に係る放熱部材用組成物において、前記液晶シランカップリング剤が、末端に重合性基を有する下記式(1)で表されるシランカップリング剤である。
  (R-O-)5(3-j)Si-R-Z-(A-Z)-R  (1)
[式(1)中、
 Rは、-C=C-もしくは-C≡C-部位を含まない前記重合性基であり;
 Rは、炭素数2~3のアルキレンであり、該アルキレンにおいてSiに隣接する-C-C-を除く任意の-CH-は-CO-もしくは-COO-で置き換えられてもよく、Siに隣接する-C-C-は-C-CR-で置き換えられてもよく、Rは、ハロゲン(Ha)もしくはCHaであり;
 Aは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、フルオレン-2,7-ジイルまたは下記式(3-1)~(3-7)で表される2価の基であり、式(3-1)~(3-7)中の*は不斉炭素であり、
 これらの環において、任意の-CH-は-O-で置き換えられてもよく、任意の-CH=は-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、炭素数1~10のハロゲン化アルキル、または、該アルキルもしくは該ハロゲン化アルキルにおいて、任意の-CH-が、-O-、-CO-、-COO-、-OCO-、-CH=CH-もしくは-C≡C-で置き換えられた基で置き換えられてもよく;
 Zは、独立に単結合、任意の水素がハロゲンで置き換えられてもよい炭素数1~20のアルキレン、または、該アルキレンにおいて、任意の-CH-が、-O-、-CO-、-COO-もしくは-OCO-で置き換えられた基であり;
 mは、1~6の整数であり;
 Rは、水素、または炭素数1~8のアルキルであり;
 Rは、水素、または炭素数1~5のアルキルであり;
 jは、1~3の整数である。]
Figure JPOXMLDOC01-appb-C000004
 このように構成すると、液晶シランカップリング剤は、その構造中に重合性液晶化合物を含有することができる。これらの化合物は、熱硬化性でありフィラーの量に影響を受けずに硬化させることができ、さらに耐熱性に優れる。また分子構造は、対称性、直線性を有するため、フォノンの伝導に有利であると考えられる。
 本発明の第6の態様に係る放熱部材用組成物は、上記本発明の第5の態様に係る放熱部材用組成物において、前記式(1)の液晶シランカップリング剤が、下記式(1-1)または(1-2)表されるシランカップリング剤である。
Figure JPOXMLDOC01-appb-C000005
[式(1-1)中、
 Rは、-C-C-、-C-C-C-、-C-C-CO-、-C-C-CO-O-、-C-CF-CO-O-、-C-CCF-CO-O-、
 Rは、メチルまたはエチル、
 R、R、Rは、独立に単結合、-(CH-、-O-、-O(CH-、-(CHO-、-O(CHO-、-COO-、-OCO-、-CHCH-COO-、-OCO-CHCH-、該aは1~6の整数、
 nは、1~6の整数、
 qは、0または1である。]
Figure JPOXMLDOC01-appb-C000006
[式(1-2)中、
 Rは、-C-C-、-C-C-C-、-C-C-CO-、-C-C-CO-O-、-C-CF-CO-O-、-C-CCF-CO-O-、
 Rは、メチルまたはエチル、
 Rは、単結合、-(CH-、-O-、-O(CH-、-(CHO-、-O(CHO-、-COO-、-OCO-、-CHCH-COO-、-OCO-CHCH-、該aは1~6の整数、
 R、Rは、独立に単結合、-(CH-、-O-、O(CH-、-(CHO-、-O(CHO-、-COO-、-OCO-、-CHCH-COO-、-OCO-CHCH-、該aは1~6の整数、
 nは、1~6の整数である。]
 このように構成すると、液晶シランカップリング剤は、重合性液晶化合物として特に好ましい化合物をその構造中に含有することができる。これらの化合物は、分子の直線性がより高くなり、フォノンの伝導により有利であると考えられる。さらに、これらの化合物は、物性、作り易さ、または扱い易さに優れるため好ましい。
 本発明の第7の態様に係る放熱部材は、上記本発明の第1の態様~第6の態様のいずれか1の態様に係る放熱部材用組成物が硬化した放熱部材である。
 このように構成すると、放熱部材は、無機フィラー間に結合を有し、極めて高い熱伝導性を有することができる。
 本発明の第8の態様に係る電子機器は、上記本発明の第7の態様に係る放熱部材と;発熱部を有する電子デバイスと;を備え、前記放熱部材が前記発熱部に接触するように前記電子デバイスに配置された電子機器である。
 このように構成すると、高熱伝導性を有する放熱部材により、電子デバイスに生じた熱を効率よく伝導させることができる。また、面方向の熱膨張率を、放熱部材に取り付けた銅配線やシリコン、窒化ケイ素などの半導体素子の熱膨張率に近づけておくことにより、ヒートサイクルにより剥がれ難いデバイスが作製できる。
 本発明の第9の態様に係る放熱部材用組成物の製造方法は、熱伝導性の第1の無機フィラーを、第1のカップリング剤の一端と結合させる工程と;熱伝導性の第2の無機フィラーを、第2のカップリング剤の一端と結合させる工程と;を備え、前記第1のカップリング剤と前記第2のカップリング剤は、少なくとも1つが液晶シランカップリング剤であり、前記第1のカップリング剤の他端と前記第2のカップリング剤の他端は、互いに結合可能な官能基を有する。
 このように構成すると、無機フィラー同士が液晶シランカップリング剤で直接結合した放熱部材を形成可能な放熱部材用組成物の製造方法となる。
 本発明の第10の態様に係る放熱部材の製造方法は、上記本発明の第9の態様に係る放熱部材用組成物の製造方法と;前記第1のカップリング剤の他端を、前記第2のカップリング剤の他端と結合させる工程と;を備える。
 このように構成すると、無機フィラー同士が液晶シランカップリング剤で直接結合した放熱部材の製造方法となる。
 本発明の放熱部材用組成物から形成された放熱部材は、極めて高い熱伝導性と熱膨張率の制御性を有する。さらに、化学的安定性、耐熱性、硬度および機械的強度などの優れた特性をも有する。当該放熱部材は、例えば、熱歪が問題になっている放熱基板、放熱板(面状ヒートシンク)、放熱シート、放熱塗膜、放熱接着剤などに適している。
本発明の放熱部材において、無機フィラー同士の結合を窒化ホウ素を例として示す概念図である。 放熱部材用組成物の硬化により、第1の無機フィラー1に結合した第1のカップリング剤11としての液晶シランカップリング剤の他端が、第2の無機フィラー2に結合した第2のカップリング剤12の他端と結合した状態を示す概念図である。 放熱部材用組成物の硬化により、第2の無機フィラー2に結合したカップリング剤12の他端同士が、重合性液晶化合物21を介して結合した状態を示す概念図である。 放熱部材用組成物の硬化により、第1の無機フィラー1に結合したカップリング剤13の他端が、第2の無機フィラー2に結合したカップリング剤12の他端と結合した状態を示す概念図である。 実施例で合成した本発明の耐熱性を有する液晶シランカップリング剤(6-1)(6-2)の最終的な構造と反応の進行状態を示すH-NMRチャートである。 実施例で合成した本発明の耐熱性を有する液晶シランカップリング剤(6-3)の最終的な構造と反応の進行状態を示すH-NMRチャートである。 実施例1の試料の熱膨張率測定結果を示すグラフである。 比較例1の試料の熱膨張率測定結果を示すグラフである。 実施例2の試料の熱膨張率測定結果を示すグラフである。 実施例3の試料の熱膨張率測定結果を示すグラフである。 実施例4の試料の熱膨張率測定結果を示すグラフである。 窒素雰囲気中のTG/DTGのグラフである。 空気中のTG/DTGのグラフである。
 この出願は、日本国で2016年3月2日に出願された特願2016-040524号に基づいており、その内容は本出願の内容として、その一部を形成する。本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明および特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。
 本明細書における用語の使い方は以下のとおりである。
 「液晶化合物」「液晶性化合物」は、ネマチック相やスメクチック相などの液晶相を発現する化合物である。
 「アルキルにおける任意の-CH-は、-O-などで置き換えられてもよい」あるいは「任意の-CHCH-は-CH=CH-などで置き換えられてもよい」等の句の意味を下記の一例で示す。例えば、C-における任意の-CH-が、-O-または-CH=CH-で置き換えられた基としては、CO-、CH-O-(CH-、CH-O-CH-O-などである。同様にC11-における任意の-CHCH-が、-CH=CH-で置き換えられた基としては、HC=CH-(CH-、CH-CH=CH-(CH-など、さらに任意の-CH-が-O-で置き換えられた基としては、CH-CH=CH-CH-O-などである。このように「任意の」という語は、「区別なく選択された少なくとも1つの」を意味する。なお、化合物の安定性を考慮して、酸素と酸素とが隣接したCH-O-O-CH-よりも、酸素と酸素とが隣接しないCH-O-CH-O-の方が好ましい。
 また、環Aに関して「任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよい」の句は、例えば1,4-フェニレンの2,3,5,6位の水素の少なくとも1つがフッ素やメチル等の置換基で置き換えられた場合の態様を意味し、また置換基が「炭素数1~10のハロゲン化アルキル」である場合の態様としては、2-フルオロエチルや3-フルオロ-5-クロロヘキシルのような例を包含する。
 「化合物(1)」は、後述する下記式(1)で表される化合物を意味し、また、下記式(1)で表される化合物の少なくとも1種を意味することもある。「化合物(1-1)」「化合物(1-2)」についても同様である。化合物(1)、化合物(1-1)、化合物(1-2)を総称する場合は「化合物(1)」と表す。
 1つの化合物(1)が複数のAを有するとき、任意の2つのAは同一でも異なっていてもよい。複数の化合物(1)がAを有するとき、任意の2つのAは同一でも異なっていてもよい。この規則は、RやZなど他の記号、基などにも適用される。なお、ハロゲンをHaと表することもある。
[放熱部材用組成物]
 放熱部材用組成物は、硬化処理により、無機フィラー同士をカップリング剤で直接結合させて放熱部材を形成できる組成物である。図1は無機フィラーとして窒化ホウ素を用いた場合の例である。窒化ホウ素(h-BN)をカップリング剤で処理すると、窒化ホウ素は粒子の平面に反応基がないため、その周囲のみにカップリング剤が結合する。窒化ホウ素に結合したカップリング剤は、互いに結合可能な官能基を有することによりカップリング剤同士の結合を形成できる。したがって、窒化ホウ素に結合したカップリング剤の他端同士を結合させることにより(図2参照)、窒化ホウ素を図1のように互いに結合させる。
 このように、無機フィラー同士をカップリング剤で結合させると、直接的にフォノンを伝播することができるので、硬化後の放熱部材は極めて高い熱伝導性を有し、無機成分の熱膨張率を直接反映させた複合材料の作製が可能になる。なお、本発明は、無機フィラーに結合させるカップリング剤の少なくとも一方に液晶シランカップリング剤を用いることを特徴とする。
 以下は、第1のカップリング剤を液晶シランカップリング剤、第2のカップリング剤を液晶シランカップリング剤以外のカップリング剤として説明する。しかし、本発明は、第1、第2のカップリング剤の両方が液晶シランカップリング剤であってもよい。
 本発明の第1の実施の形態に係る放熱部材用組成物は、例えば図2に示すように、第1のカップリング剤11の一端と結合した熱伝導性の第1の無機フィラー1と;第2のカップリング剤12の一端と結合した熱伝導性の第2の無機フィラー2とを含む。なお、硬化前の組成物は、第1のカップリング剤11と第2のカップリング剤12は結合していない。
 図2に示すように、放熱部材用組成物を硬化させると、第1の無機フィラー1に結合した第1のカップリング剤11の他端が、第2の無機フィラー2に結合した第2のカップリング剤12の他端と結合する。このようにして、無機フィラー間の結合が形成される。
≪液晶シランカップリング剤≫
 液晶シランカップリング剤について説明する。
 液晶シランカップリング剤は、その構造中に重合性化合物とアルコキシを有するケイ素化合物とを含む、下記式(1)に示す構造を有する。
  (R-O-)5(3-j)Si-R-Z-(A-Z)-R  (1)
 この化合物(1)は他の液晶性化合物や重合性化合物などと混合するとき、均一になりやすい。
 上記化合物(1)の末端基R、環構造Aおよび結合基Zを適宜選択することによって、化合物(1)の物性を任意に調整することができる。末端基R、環構造Aおよび結合基Zの種類が、化合物(1)の物性に与える効果、ならびに、これらの好ましい例を以下に説明する。
<末端基R
 末端基Rは、-C=C-もしくは-C≡C-部位を含まない重合性基であることが好ましい。例えば、下記式(2-1)~(2-2)で表される重合性基、シクロヘキセンオキシド、または無水コハク酸を挙げることができるが、これらに限られない。
Figure JPOXMLDOC01-appb-C000007
[式(2-1)~(2-2)中、Rは、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。]
 末端基Rは、結合相手となる有機化合物(図2ではカップリング剤12)の有する官能基と結合可能な官能基を含む基であればよい。結合可能な官能基の組合せとしては、例えば、オキシラニルとアミノ、メタクリロキシ同士、カルボキシまたはカルボン酸無水物残基とアミノ、イミダゾールとオキシラニル等の組合せを挙げることができるが、これらに限られない。耐熱性の高い組合せがより好ましい。
<環構造A>
 好ましいAとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、2,2-ジフルオロ-1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5-トリフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、3-フルオロピリジン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリダジン-3,6-ジイル、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、9-メチルフルオレン-2,7-ジイル、9,9-ジメチルフルオレン-2,7-ジイル、9-エチルフルオレン-2,7-ジイル、9-フルオロフルオレン-2,7-ジイル、9,9-ジフルオロフルオレン-2,7-ジイル、上記式(3-1)~(3-7)で表される2価の基などが挙げられる。
 1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置は、シスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンおよび3-フルオロ-1,4-フェニレンは構造的に同一であるので、後者は例示していない。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンとの関係などにも適用される。
 さらに好ましいAとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレンなどである。特に好ましいAは、1,4-シクロへキシレンおよび1,4-フェニレンである。
<結合基Z>
 上記化合物(1)の結合基Zが、単結合、-(CH-、-CHO-、-OCH-、-CFO-、-OCF-、または-(CH-である場合、特に、単結合、-(CH-、-CFO-、-OCF-、または-(CH-である場合、粘度が小さくなる。また、結合基Zが、-CH=N-、-N=CH-、-N=N-である場合、液晶相の温度範囲が広い。また、結合基Zが、炭素数4~10程度のアルキルの場合、融点が低下する。
 好ましいZとしては、単結合、-(CH-、-(CF-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-(CH-、-(CHO-、-O(CH-、-(CHCOO-、-OCO(CH-、-CONR-、-NRCO-(Rは水素または炭素数1~6のアルキルである)などが挙げられる。
 さらに好ましいZとしては、単結合、-(CH-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-などが挙げられる。特に好ましいZとしては、単結合、-(CH-、-COO-または-OCO-である。
 上記化合物(1)が3つ以下の環を有するときは粘度が低く、3つ以上の環を有するときは透明点が高い。なお、本明細書においては、基本的に6員環および6員環を含む縮合環等を環とみなし、例えば3員環や4員環、5員環単独のものは環とみなさない。また、ナフタレン環やフルオレン環などの縮合環は1つの環とみなす。
 上記化合物(1)は、光学活性であってもよいし、光学的に不活性でもよい。化合物(1)が光学活性である場合、該化合物(1)は不斉炭素を有する場合と軸不斉を有する場合がある。不斉炭素の立体配置はRでもSでもよい。不斉炭素はRまたはAのいずれに位置していてもよく、不斉炭素を有すると、化合物(1)の相溶性がよい。化合物(1)が軸不斉を有する場合、ねじれ誘起力が大きい。また、施光性はいずれでも構わない。
 以上のように、末端基R、環構造Aおよび結合基Zの種類、環の数を適宜選択することにより、目的の物性を有する化合物を得ることができる。
 なお、上記化合物(1)のmは、1~6の整数である。
<結合基R
 上記化合物(1)の結合基Rは、炭素数2~3のアルキレンであり、該アルキレンにおいてSiに隣接する-C-C-を除く任意の-CH-は-CO-もしくは-COO-で置き換えられてもよく、Siに隣接する-C-C-は-C-CR-で置き換えられてもよく、Rは、ハロゲン(Ha)もしくはCHaである。
 好ましいRとしては、-C-C-、-C-C-C-、-C-C-CO-、-C-C-CO-O-、-C-CF-CO-O-、-C-CCF-CO-O-などが挙げられる。特に好ましくは、-C-C-である。
<(R-O-)5(3-j)Si->
 上記化合物(1)の(R-O-)5(3-j)Si-において、Rは、水素、または炭素数1~5のアルキルである。好ましいRとしては、メチルまたはエチルが挙げられる。Rは水素、または炭素数1~8の直鎖もしくは分岐のアルキルである。好ましいRとしては、メチルが挙げられる。jは1~3の整数である。好ましいjは3である。
<化合物(1)>
 化合物(1)は、下記式(1-a)または(1-b)のように表すこともできる。
   P-Y-(A-Z)m-R   ・・・(1-a)
   P-Y-(A-Z)m-Y-R ・・・(1-b)
 上記式(1-a)および(1-b)中、A、Z、Rは上記式(1)で定義したA、Z、Rと同義であり、Pは(R-O-)5(3-j)Si-R-を示す。Yは単結合または炭素数1~20のアルキレン、好ましくは炭素数1~10のアルキレンを示し、該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、-OCO-で置き換えられてもよい。特に好ましいYとしては、炭素数1~10のアルキレンの片末端もしくは両末端の-CH-が-O-で置き換えられたアルキレンである。mは1~6の整数、好ましくは2~6の整数、さらに好ましくは2~4の整数である。
 好ましい化合物(1)の例としては、以下に示す化合物(a-1)~(g-14)が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記化学式において、R、PおよびYは上記式(1-a)および(1-b)で定義したとおりである。
 Zは、単結合、-(CH-、-(CF-、-(CH-、-CHO-、-OCH-、-(CHO-、-O(CH-、-COO-、-OCO-、-(CHCOO-、-OCO(CH-、-CH=N-、-N=CH-、-N=N-、-OCF-または-CFO-、-CONR-、-NRCO-(Rは水素または炭素数1~6のアルキルである)である。なお、複数のZは同一でも異なっていてもよい。
 Zは、-(CH-、-(CF-、-(CH-、-CHO-、-OCH-、-(CHO-、-O(CH-、-COO-、-OCO-、-(CHCOO-、-OCO(CH-、-OCF-または-CFO-、-CONR-、-NRCO-(Rは水素または炭素数1~6のアルキルである)である。
 Zは、単結合、炭素数1~10のアルキル、-(CH-、-O(CHO-、-CHO-、-OCH-、-O(CH-、-(CHO-、-COO-、-OCO-、-(CHCOO-、-OCO(CH-、-OCF-または-CFO-、-CONR-、-NRCO-(Rは水素または炭素数1~6のアルキルである)であり、複数のZは同一でも異なっていてもよい。
 Xは、任意の水素がハロゲン、アルキル、フッ化アルキルで置き換えられてもよい1,4-フェニレンおよびフルオレン-2,7-ジイルの置換基であり、ハロゲン、アルキルまたはフッ化アルキルを示す。
 *は、不斉炭素を示す。
 上記化合物(1)のより好ましい態様について説明する。より好ましい化合物(1)は、下記式(1-c)または(1-d)で表すことができる。
   P-Y-(A-Z)m-R   ・・・(1-c)
   P-Y-(A-Z)m-Y-R ・・・(1-d)
 上記式中、A、Y、Z、Pおよびmはすでに定義したとおりであり、Rは下記式(4-1)~(4-6)で表される重合性基を示す。上記式(1-d)の場合、2つのYは同一の基を示し、2つのYは対称となるように結合する。
Figure JPOXMLDOC01-appb-C000021
<液晶シランカップリング剤以外のカップリング剤>
 液晶シランカップリング剤以外のカップリング剤(以後、他のカップリング剤とする)は、液晶シランカップリング剤が有する官能基(オキシラニル等)と反応することが好ましいので、アミン系反応基を末端にもつものが好ましい。例えば、JNC(株)製では、サイラエース(登録商標)S310、S320、S330、S360、信越化学工業(株)製では、KBM903、KBE903などが挙げられる。
 なお、液晶シランカップリング剤の末端がアミンであった場合には、オキシラニル等を末端に持つカップリング剤が好ましい。例えば、JNC(株)製では、サイラエース(登録商標)S510、S530などが挙げられる。なお、カップリング剤による無機フィラーの修飾は、多ければ多いほど結合が増えるため好ましい。
<無機フィラー>
 第1の無機フィラー、第2の無機フィラーとしては、窒化物、炭化物、または炭素材料等を挙げることができる。第1の無機フィラーおよび第2の無機フィラーは、同一であってもよく異なったものでもよい。
 具体的には、第1の無機フィラー、第2の無機フィラーには、高熱伝導性で熱膨張率が非常に小さいか負である無機フィラーとして、窒化ホウ素、炭化ホウ素、窒化炭素ホウ素、黒鉛、炭素繊維、カーボンナノチューブ、グラフェンを挙げることができる。さらに、アルミナ、シリカ、窒化アルミニウム、炭化珪素、酸化亜鉛、水酸化マグネシウムまたは酸化鉄系材料を挙げることができる。または、第1または第2の無機フィラーのどちらか一方に下記の熱伝導率が高く熱膨張率が正である無機フィラーを用いてもよい。
 第3の無機フィラーとしては、熱伝導率が高い、または第1、第2の無機フィラーよりもサイズが小さい等、アルミナ、シリカ、窒化ホウ素、炭化ホウ素、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド、カーボンナノチューブ、黒鉛、グラフェン、珪素、ベリリア、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、酸化珪素、酸化銅、酸化チタン、酸化セリウム、酸化イットリウム、酸化錫、酸化ホルミニウム、酸化ビスマス、酸化コバルト、酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、金、銀、銅、白金、鉄、錫、鉛、ニッケル、アルミニウム、マグネシウム、タングステン、モリブデン、ステンレスなどの無機充填材および金属充填材を挙げることができる。
 液晶シランカップリング剤の構造はこれら無機フィラーの間を効率よく直接結合できる形状及び長さを持っていることが望ましい。無機フィラーの種類、形状、大きさ、添加量などは、目的に応じて適宜選択できる。得られる放熱部材が絶縁性を必要とする場合、所望の絶縁性が保たれれば導電性を有する無機フィラーであっても構わない。無機フィラーの形状としては、板状、球状、無定形、繊維状、棒状、筒状などが挙げられる。
 好ましくは、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素、黒鉛、炭素繊維、カーボンナノチューブである。特に六方晶系の窒化ホウ素(h-BN)や窒化アルミニウムが好ましい。窒化ホウ素は平面方向の熱伝導率が非常に高く、平面方向の熱膨張率が負であり、誘電率も低く、絶縁性も高いため好ましい。例えば、板状結晶の窒化ホウ素を用いると、成型および硬化時に、原料のフローや圧力によって、板状構造が金型に沿って配向され易いため好ましい。窒化アルミニウムは熱伝導率が非常に高く、熱膨張率が小さい正で、塊状であるため、窒化ホウ素と併せて用いると、窒化ホウ素の板状構造の配向を乱し、高い熱伝導率を保ったままで、熱伝導率の面方向と厚み方向の異方性を減少させたり、熱膨張率を正の方向に調整したりすることが可能になるため好ましい。
 無機フィラーの平均粒径は、0.1~200μmであることが好ましい。より好ましくは、1~100μmである。0.1μm以上であると熱伝導率がよく、200μm以下であると充填率を上げることができる。
 なお、本明細書において平均粒径とは、レーザー回折・散乱法による粒度分布測定に基づく。すなわち、フランホーファー回折理論およびミーの散乱理論による解析を利用して、湿式法により、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量(体積基準)となる径をメジアン径とした。
 無機フィラーとカップリング剤の割合は、使用する無機フィラーと結合させるカップリング剤の量に依存する。第1、第2の無機フィラーとして用いられる化合物、例えば窒化ホウ素は、前述のように表面に反応基がなく、側面にのみ反応基が存在する。その少ない反応基にできるだけ多くのカップリング剤を結合させ、その反応基の数と同数か少し多い有機化合物を結合させることが好ましい。無機フィラーへのカップリング剤の反応量は、主に無機フィラーの大きさや使用するカップリング剤の反応性により変化する。例えば、無機フィラーが大きくなるほど、無機フィラーの側面の面積比が減少するので修飾量は少ない。できるだけ多くのカップリング剤を反応させたいが、粒子を小さくすると生成物の熱伝導率が低くなるので、バランスを取ることが好ましい。
 硬化物である放熱部材中のシランカップリング剤と、無機成分との体積比率は、5:95~30:70の範囲になることが望ましく、さらに望ましくは10:90~25:75になることが望ましい。無機成分とは、シランカップリング剤処理などをおこなう前の無機原料のことである。
 第1の無機フィラーは、第1のカップリング剤としての液晶シランカップリング剤で修飾する。第2の無機フィラーは、第2のカップリング剤としての液晶シランカップリング剤以外のシランカップリング剤で修飾する。カップリング剤で表面修飾された第1の無機フィラーおよび第2の無機フィラーは、図2に示すように、液晶シランカップリング剤と他のシランカップリング剤で結合を形成でき、この結合が熱伝導に著しく寄与する。
 液晶シランカップリング剤は、重合性液晶化合物をその構造中に含むものが好ましい。しかし、それ以外の重合性液晶化合物を含んでもよく、液晶性のない重合性化合物を含んでもよい。
<その他の構成要素>
 放熱部材用組成物は、さらに第1の無機フィラーおよび第2の無機フィラーに結合していない、すなわち結合に寄与していない有機化合物(例えば重合性化合物または高分子化合物)を含んでいてもよく、重合開始剤や溶媒等を含んでいてもよい。
<結合していない重合性化合物>
 放熱部材用組成物は、無機フィラーに結合していない重合性化合物を構成要素としてもよい。このような重合性化合物としては、膜形成性および機械的強度を低下させない化合物が好ましい。この重合性化合物は、液晶性を有しない化合物と液晶性を有する化合物とに分類される。液晶性を有しない重合性化合物としては、ビニル誘導体、スチレン誘導体、(メタ)アクリル酸誘導体、ソルビン酸誘導体、フマル酸誘導体、イタコン酸誘導体、などが挙げられる。含有量は、まず結合していない重合性化合物を含まない、放熱部材用組成物を作製し、その空隙率を測定して、その空隙を埋められる量の重合性化合物を添加することが望ましい。
<結合していない高分子化合物>
 放熱部材用組成物は、無機フィラーに結合していない高分子化合物を構成要素としてもよい。このような高分子化合物としては、膜形成性および機械的強度を低下させない化合物が好ましい。この高分子化合物は、無機フィラーおよび液晶シランカップリング剤と反応しない高分子化合物であればよく、例えばポリオレフィン系樹脂、ポリビニル系樹脂、ポリアミド樹脂、ポリイタコン酸系樹脂などが挙げられる。含有量は、まず結合していない高分子化合物を含まない、放熱部材用組成物を作製し、その空隙率を測定して、その空隙を埋められる量の高分子化合物を添加することが望ましい。
<非重合性の液晶性化合物>
 放熱部材用組成物は、重合性基を有しない液晶性化合物を構成要素としてもよい。このような非重合性の液晶性化合物の例は、液晶性化合物のデータベースであるリクリスト(LiqCryst, LCI Publisher GmbH, Hamburg, Germany)などに記載されている。非重合性の液晶性化合物を含有する該組成物を重合させることによって、例えば、化合物(1)の重合体と液晶性化合物との複合材料(composite materials)を得ることができる。このような複合材料では、高分子分散型液晶のような高分子網目中に非重合性の液晶性化合物が存在している。よって、使用する温度領域で流動性がないような特性を持つ液晶性化合物が望ましい。フィラーを硬化させた後で、等方相を示す温度領域でその空隙に注入するような手法で複合化させてもよく、フィラーに予め空隙を埋めるように計算した分量の液晶性化合物を混合しておき、フィラーを重合させてもよい。
<重合開始剤>
 放熱部材用組成物は重合開始剤を構成要素としてもよい。重合開始剤は、該組成物の構成要素および重合方法に応じて、例えば光ラジカル重合開始剤、光カチオン重合開始剤、熱ラジカル重合開始剤などを用いればよい。
 熱ラジカル重合用の好ましい開始剤としては、例えば、過酸化ベンゾイル、ジイソプロピルパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキシド(DTBPO)、t-ブチルパーオキシジイソブチレート、過酸化ラウロイル、2,2’-アゾビスイソ酪酸ジメチル(MAIB)、アゾビスイソブチロニトリル(AIBN)、アゾビスシクロヘキサンカルボニトリル(ACN)などが挙げられる。
<溶媒>
 放熱部材用組成物は溶媒を含有してもよい。重合させる必要がある構成要素を該組成物中に含む場合、重合は溶媒中で行っても、無溶媒で行ってもよい。溶媒を含有する該組成物を基板上に、例えばスピンコート法などにより塗布した後、溶媒を除去してから光重合させてもよい。または、光硬化後適当な温度に加温して熱硬化により後処理を行ってもよい。
 好ましい溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テトラヒドロフラン、γ-ブチロラクトン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサン、メチルシクロヘキサン、シクロペンタノン、シクロヘキサノン、PGMEAなどが挙げられる。上記溶媒は1種単独で用いても、2種以上を混合して用いてもよい。
 なお、重合時の溶媒の使用割合を限定することにはあまり意味がなく、重合効率、溶媒コスト、エネルギーコストなどを考慮して、個々のケースごとに決定すればよい。
<その他>
 放熱部材用組成物には、取扱いを容易にするために、安定剤を添加してもよい。このような安定剤としては、公知のものを制限なく使用でき、例えば、ハイドロキノン、4-エトキシフェノールおよび3,5-ジ-t-ブチル-4-ヒドロキシトルエン(BHT)などが挙げられる。
 さらに、放熱部材用組成物の粘度や色を調整するために添加剤(酸化物等)を添加してもよい。例えば、白色にするための酸化チタン、黒色にするためのカーボンブラック、粘度を調整するためのシリカの微粉末を挙げることができる。また、機械的強度をさらに増すために添加剤を添加してもよい。例えば、ガラス、カーボンファイバーなどの無機繊維やクロス、または高分子添加剤として、ポリビニルホルマール、ポリビニルブチラール、ポリエステル、ポリアミド、ポリイミドなどの繊維または長分子を挙げることができる。
[製造方法]
 以下、液晶シランカップリング剤を製造する方法、放熱部材用組成物を製造する方法、および放熱部材用組成物から放熱部材を製造する方法について具体的に説明する。
<液晶シランカップリング剤の製造方法>
 液晶シランカップリング剤は、その構造中に重合性化合物とアルコキシを有するケイ素化合物とを含み、その製造方法は、以下のステップ(1)~(3)を備える。
(1)重合性化合物を得る。
 重合性化合物を得る。重合性化合物は、両末端に官能基を有するものが好ましい。重合性化合物の長辺の両端に官能基を有すると、カップリング剤による直線的な結合(架橋)を形成できるため好ましい。
 重合性化合物は、2官能以上の重合性液晶化合物であってもよい。例えば、両末端にビニルを有する下記式(5-1)を挙げることができる。
Figure JPOXMLDOC01-appb-C000022
 重合性化合物は、合成してもよく市販品を購入してもよい。
 重合性化合物は、有機合成化学における公知の手法を組み合わせることにより合成できる。出発物質に目的の末端基、環構造および結合基を導入する方法は、例えば、ホーベン-ワイル(Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart)、オーガニック・シンセシーズ(Organic Syntheses, John Wily & Sons, Inc.)、オーガニック・リアクションズ(Organic Reactions, John Wily & Sons Inc.)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載されている。また、特許第5084148号公報を参照してもよい。
(2)重合性化合物のどちらか1の末端に重合性基を導入する。
 例えば、重合性基としてエポキシを導入する場合を説明する。上記式(5-1)の両末端にエポキシを導入(エポキシ化)し下記式(5-4)を生成する反応において、当該反応を途中で止めることにより、中間生成物として、どちらか1の末端にエポキシを有する下記式(5-2)、(5-3)を得ることができる。生成した下記式(5-2)、(5-3)は、溶媒に溶解し、分離機を用いて分離した後、溶媒を除去することにより得ることができる。
 このように、中間生成物を取り出すことにより、どちらか1の末端に所望の重合性基を導入させる。
Figure JPOXMLDOC01-appb-C000023
 中間生成物を取り出す溶媒は、生成した中間性生物を溶解できる溶媒であればよい。例えば、酢酸エチル、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テトラヒドロフラン、γ-ブチロラクトン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサン、メチルシクロヘキサン、シクロペンタノン、シクロヘキサノン、PGMEAなどが挙げられる。上記溶媒は1種単独で用いても、2種以上を混合して用いてもよい。
 なお、溶媒の使用割合を限定することにはあまり意味がなく、溶解度、溶媒コスト、エネルギーコストなどを考慮して、個々のケースごとに決定すればよい。
 なお中間性生物は、エポキシ基を持つ化合物と、ビニル基を持つ化合物を予め合成し、最後にエーテル化してもよい。そのように合成すると下記式(5-5)、(5-6)の化合物が得られる。
Figure JPOXMLDOC01-appb-C000024
(3)重合性化合物の未反応の末端にSiを導入する。
 重合性化合物の未反応の末端にアルコキシを有するケイ素化合物を結合させる。
 例えば、上記式(5-2)、(5-3)、(5-5)の未反応の官能基(ビニル)側にトリメトキシシリルを導入する。下記式(6-1)、(6-2)、(6-3)を参照。なお、Siの導入はトリエトキシシリルの導入であってもよい。しかし、メトキシシランとエトキシシランでは、反応性の高いメトキシシランの方が好ましい。
 また、一部のメトキシもしくはエトキシは炭素数1~8の直鎖もしくは分岐したアルキルで置換されてもよい。例えばメチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、n-オクチルなどが挙げられる。
Figure JPOXMLDOC01-appb-C000025
 上記液晶シランカップリング剤の製造方法では、一例として、両末端にビニルを有する重合性化合物に対し、まず一方の末端のビニルをエポキシ化し、次に他方の未反応のビニルにSiを導入することにより製造したが、本発明の製造方法はこれに限られない。重合性化合物の両末端は、重合性基とSiを導入できるものであればビニルに限られない。
 また、上記のような長鎖の化合物にヒドロシリル化反応を用いてSiを導入してもよいが、長鎖の化合物を、まず左半分と右半分で別々に合成し、左半分にはヒドロシリル化反応を用いてSiを導入し、右半分には重合性基を導入した後に、左半分と右半分をつなぐことにより、液晶シランカップリング剤を合成してもよい。
<放熱部材用組成物の製造方法>
(1)カップリング処理を施す。
 無機フィラーにカップリング処理を施し、カップリング剤の一端と無機フィラーを結合させたものを第1の無機フィラー、第2の無機フィラーとする。カップリング処理は、公知の方法を用いることができる。第1の無機フィラーに用いるカップリング剤と、第2の無機フィラーに用いるカップリング剤は、それぞれの有機反応基同士が重合性を持つ同種または異種のカップリング剤である。
 一例として、まず無機フィラーとカップリング剤を溶媒に加える。スターラー等を用いて撹拌したのち、乾燥する。溶媒乾燥後に、真空乾燥機等を用いて、真空条件下で加熱処理をする。この無機フィラーに溶媒を加えて、超音波処理により粉砕する。遠心分離機を用いてこの溶液を分離精製する。上澄みを捨てたのち、溶媒を加えて同様の操作を数回行う。オーブンを用いて精製後のカップリング処理を施した無機フィラーを乾燥させる。
(2)混合する。
 カップリング処理を施した第1の無機フィラーと第2の無機フィラーを、例えば無機フィラーのみの重量が1:1になるように量り取り、メノウ乳鉢等で混合する。その後2本ロール等を用いて混合し、放熱部材用組成物を得る。
 第1の無機フィラーと第2の無機フィラーの混合割合は、第1の無機フィラーと第2の無機フィラーの結合を形成する結合基がそれぞれアミン:エポキシの場合、無機フィラーのみの重量は例えば、1:1~1:30であることが好ましく、より好ましくは1:3~1:20である。混合割合は、第1の無機フィラーと第2の無機フィラーの結合を形成する末端の結合基の数により決定し、例えば2級アミンであれば2個のオキシラニルと反応できるため、オキシラニル側に比べて少量でよく、オキシラニル側は開環してしまっている可能性もありエポキシ当量から計算される量を多めに使用することが好ましい。
<放熱部材の製造方法>
 一例として、放熱部材用組成物を用いて、放熱部材としてのフィルムを製造する方法を説明する。放熱部材用組成物を、圧縮成形機を用いて加熱板中にはさみ、圧縮成形により配向・硬化成形する。さらに、オーブン等を用いて後硬化を行い、本発明の放熱部材を得る。なお、圧縮成形時の圧力は、50~200kgf/cmが好ましく、より好ましくは70~180kgf/cmである。硬化時の圧力は基本的には高い方が好ましい。しかし、金型の流動性や、目的とする物性(どちら向きの熱伝導率を重視するかなど)によって適宜変更し、適切な圧力を加えることが好ましい。
 なお、放熱部材用組成物の中には、室温で固体(例えば粉末状)であるが40℃~140℃、好ましくは、70~120℃に加熱すると流動性を有するものがある。このような放熱部材用組成物が軟化する温度以上で、かつ反応基同士が反応し始める温度以下では、放熱部材用組成物はトランスファー成形等の成形法に対応でき、半導体の封止材等としても有用である。流動性を発現する温度がシランカップリング剤の有機反応基の重合温度よりも高いと成型と同時に硬化反応も起こるが、粉末プレス成型や粉末射出成型などを用いることができ、高熱伝導性の絶縁基板、絶縁シート、成型部品等としても有用である。
 または、溶媒を含有する放熱部材用組成物を用いて、放熱部材としてのフィルムを製造する方法について具体的に説明する。
 まず、基板上に該組成物を塗布し、溶媒を乾燥除去して膜厚の均一な塗膜層を形成する。塗布方法としては、例えば、スピンコート、ロールコート、カーテンコート、フローコート、プリント、マイクログラビアコート、グラビアコート、ワイヤーバーコート、ディップコート、スプレーコート、メニスカスコート法などが挙げられる。
 溶媒の乾燥除去は、例えば、室温での風乾、ホットプレートでの乾燥、乾燥炉での乾燥、温風や熱風の吹き付けなどにより行うことができる。溶媒除去の条件は特に限定されず、溶媒がおおむね除去され、塗膜層の流動性がなくなるまで乾燥すればよい。
 上記基板としては、例えば、銅、アルミニウム、鉄、などの金属基板;シリコン、窒化ケイ素、窒化ガリウム、酸化亜鉛などの無機半導体基板;アルカリガラス、ホウ珪酸ガラス、フリントガラスなどのガラス基板、アルミナ、窒化アルミニウムなどの無機絶縁基板;ポリイミド、ポリアミドイミド、ポリアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリケトンサルファイド、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリカーボネート、ポリアリレート、アクリル樹脂、ポリビニルアルコール、ポリプロピレン、セルロース、トリアセチルセルロースもしくはその部分鹸化物、エポキシ樹脂、フェノール樹脂、ノルボルネン樹脂などのプラスティックフィルム基板などが挙げられる。
 上記フィルム基板は、一軸延伸フィルムでも、二軸延伸フィルムであってもよい。上記フィルム基板は、事前に鹸化処理、コロナ処理、プラズマ処理などの表面処理を施してもよい。なお、これらのフィルム基板上には、上記放熱部材用組成物に含まれる溶媒に侵されないような保護層を形成してもよい。保護層として用いられる材料としては、例えばポリビニルアルコールが挙げられる。さらに、保護層と基板の密着性を高めるためにアンカーコート層を形成させてもよい。このようなアンカーコート層は保護層と基板の密着性を高めるものであれば、無機系および有機系のいずれの材料であってもよい。
 以上、無機フィラー同士の結合を、液晶シランカップリング剤で処理された無機フィラーと、他のカップリング剤で処理された無機フィラーで構成する場合を説明した。具体的には、例えば、第1の無機フィラーを末端にエポキシを有する液晶シランカップリング剤でカップリング処理する。第2の無機フィラーを、アミノを有する他のシランカップリング剤でカップリング処理する。最後に第1の無機フィラー側のエポキシと、第2の無機フィラー側のアミノとを結合させる(図2参照)。なお、第1の無機フィラー側がアミノを有し、第2の無機フィラー側がエポキシを有する組合せであってもよい。
 このように、第1の無機フィラーに結合したカップリング剤と第2の無機フィラーに結合したカップリング剤は、カップリング剤同士を結合させる官能基をそれぞれ有する。第1の無機フィラー側の官能基と第2の無機フィラー側の官能基は、カップリング剤同士の結合が可能になる限り、異なるものの組合せでもよく、同一のものの組合せでもよい。
 カップリング剤同士の結合を形成する官能基の組合せとしては、例えば、オキシラニルとアミノ、ビニル同士、メタクリロキシ同士、カルボキシまたはカルボン酸無水物残基とアミノ、イミダゾールとオキシラニル等の組合せを挙げることができるが、これらに限られない。耐熱性の高い組合せがより好ましい。
 このように、第1のカップリング剤と第2のカップリング剤を適宜選択することにより、第1の無機フィラーと第2の無機フィラーを繋ぐことができ、本発明の放熱部材用組成物から極めて高い熱伝導性と熱膨張率の制御性、および耐熱性を有する放熱部材を得ることができる。なお、上記の官能基は例示であり、本発明の効果を得られる限り上記の官能基に限られない。
[放熱部材]
 本発明の第2の実施の形態に係る放熱部材は、上記第1の実施の形態に係る放熱部材用組成物を硬化させた硬化物を用途に応じて成形したものである。この硬化物は、高い熱伝導性を有するとともに、熱膨張率が負かまたは非常に小さい正であり、化学的安定性、耐熱性、硬度および機械的強度などに優れている。なお、前記機械的強度とは、ヤング率、引っ張り強度、引き裂き強度、曲げ強度、曲げ弾性率、衝撃強度などである。
 熱重合により放熱部材用組成物を硬化させる条件としては、熱硬化温度が、室温~350℃、好ましくは室温~250℃、より好ましくは50℃~200℃の範囲であり、硬化時間は、5秒~10時間、好ましくは1分~5時間、より好ましくは5分~1時間の範囲である。重合後は、応力ひずみなど抑制するために徐冷することが好ましい。また、再加熱処理を行い、ひずみなどを緩和させてもよい。
 本発明の放熱部材は、上記放熱部材用組成物から形成され、板、シート、フィルム、薄膜、繊維、接着剤、成形体などの形状で使用する。好ましい形状は、板、シート、フィルムおよび薄膜である。なお、本明細書におけるシートの膜厚は1mm以上であり、フィルムの膜厚は5μm以上、好ましくは10~500μm、より好ましくは20~300μmであり、薄膜の膜厚は5μm未満である。膜厚は、用途に応じて適宜変更すればよい。
[電子機器]
 本発明の第3の実施の形態に係る電子基板等の電子機器は、上記第2の実施の形態に係る放熱部材と、発熱部を有する電子デバイスとを備える。放熱部材は、前記発熱部に接触するように電子デバイスに配置される。
 例えば、電子デバイスとして、半導体素子を挙げることができる。放熱部材は、高熱伝導性に加えて、高耐熱性、高絶縁性を有する。そのため、半導体素子の中でも高電力のためより効率的な放熱機構を必要とする絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、IGBT)に特に有効である。IGBTは半導体素子のひとつで、MOSFETをゲート部に組み込んだバイポーラトランジスタであり、電力制御の用途で使用される。IGBTを備えた電子機器には、大電力インバータの主変換素子、無停電電源装置、交流電動機の可変電圧可変周波数制御装置、鉄道車両の制御装置、ハイブリッドカー、エレクトリックカーなどの電動輸送機器、IH調理器などを挙げることができる。
 放熱部材用組成物は、液晶シランカップリング剤で修飾した無機フィラーのみを用いて、適切な重合開始剤等により液晶シランカップリング剤中の重合性化合物同士を結合させて、無機フィラー間に結合を形成してもよい。
 すなわち、本発明は、無機材料と有機化合物の複合化において、無機材料間に有機化合物で結合を形成し、熱伝導性を著しく向上させ、さらに熱膨張率を制御したものである。
 以下に、本発明を実施例を用いて詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。
<液晶シランカップリング剤>
・耐熱性を有する液晶シランカップリング剤:下記(6-1)と(6-2)の混合物
・耐熱性を有する液晶シランカップリング剤:下記(6-3)
 本発明で使用する液晶シランカップリング剤の合成を下記のとおり、まず重合性液晶化合物を合成し、次にシランカップリング剤化する手順でおこなった。
<液晶シランカップリング剤の合成>
 下記式(5-1)の重合性液晶化合物を、特許第5084148号公報に記載の方法で合成し、同じく特許第5084148号公報に記載の方法でビニルをエポキシ化した。エポキシ化の反応中、(5-1)は(5-2)および(5-3)を経て(5-4)になる。適宜薄層クロマトグラフィーとUVランプを用いて生成物を確認しながら、(5-4)が生成し始めたところで氷浴により反応を停止させた。さらにシリカゲルを充填したカラムをもちいて、トルエン/酢酸エチルを容量比5:1で混合した溶媒により(5-2)と(5-3)の混合物を分離した。(5-2)と(5-3)が含まれている溶液から、ロータリー・エバポレータを用いて溶媒を蒸発させ、(5-2)と(5-3)の混合物を得た。
Figure JPOXMLDOC01-appb-C000026
 下記式(5-7)からエピクロロヒドリンを用いて導入した(5-8)と、下記式(5-9)から臭化アリルを用いて導入した(5-10)とのエステル化により(5-5)の化合物を得た。適宜薄層クロマトグラフィーと蛍光ランプを用いて、(5-5)が生成し始めるところで反応を止め、さらにシリカゲルを充填したカラムを用いて、トルエン/酢酸エチルを容量比5:1で混合した溶媒により不純物を分離した。ロータリー・エバポレータを用いて溶媒を蒸発させ、(5-5)の化合物を得た。
Figure JPOXMLDOC01-appb-C000027
 窒素雰囲気下で(5-2)と(5-3)の混合物4.0gにトリメトキシシラン1.5gを加え70℃にて攪拌した。所定の温度に達した後、1/10に希釈したKalsted’s触媒を2μL添加し、重合性液晶化合物と、トリメトキシシランを反応させた。1時間毎にサンプリングし、赤外吸収分光器とガスクロマトグラフィーにより、トリメトキシシランの濃度を確認し、その濃度が一定になるまで70℃を保持した。その後、ロータリー・エバポレータで、残留溶媒と低沸点のシリコン化合物を蒸発させ、本発明に用いるシランカップリング剤(6-1)、(6-2)を得た。最終的な構造と反応の進行状態はH-NMRで確認した。
H-NMRチャートを図5に示す。
H-NMR(CDCl):8.35-8.07(d,2H),7.60-6.74(m,6H),4.11(m,4H),3.58(s,9H),3.18(m,1H),2.86(m,1H),2.76(m,1H),2.25-1・60(m,4H),1.05(m,2H),0.75(m,2H).
 窒素雰囲気下で(5-5)4.0gにトリメトキシシラン1.5gを加え70℃にて攪拌した。所定の温度に達した後、Kalsted’s触媒を2μL添加し、重合性液晶化合物と、トリメトキシシランを70℃で6時間反応させた。その後、ロータリー・エバポレータで、80℃、5mmHgにて溶媒などの低沸点成分を留去し、本発明に用いるシランカップリング剤(6-3)を得た。最終的な構造と反応の進行状態はH-NMRで確認した。
H-NMRチャートを図6に示す。
H-NMR(CDCl):8.12(d,2H),7.24-6.87(m,6H),4.32(d,1H),4.00(d,1H),3.92(m,2H),3.60(s,9H),3.38(m,1H),2.92(m,1H),2.76(m,1H),1.89(m,2H),0.79(m,2H).
Figure JPOXMLDOC01-appb-C000028
 本発明の実施例に用いた放熱部材を構成するその他の成分材料は次のとおりである。
<無機フィラー>
・窒化ホウ素:h-BN粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合)製、(商品名)PolarTherm PTX―25)
<他のシランカップリング剤>
・シランカップリング剤A:3-アミノプロピルトリメトキシシラン(信越化学(株)製、(商品名)KBM-903)
・シランカップリング剤B:3-グリシドキシプロピルトリメトキシシラン(S510、JNC(株)製)
・シランカップリング剤C:3-トリエトキシリルプロピルコハク酸無水物(Gelest社製)
Figure JPOXMLDOC01-appb-C000029
 以下に、放熱部材の調製例を示す。
[実施例1]
・液晶シランカップリング剤処理窒化ホウ素粒子の準備
 窒化ホウ素粒子(PTX25、以下BN粒子と略記)5.0gと、第1のカップリング剤としての前記液晶シランカップリング剤((6-1)と(6-2)の混合物)1.05gをトルエン(無水)50mLに加え、スターラーを用いて750rpmで1時間攪拌し、得られた混合物を40℃で5時間、室温で19時間乾燥した。さらに、溶媒乾燥後に125℃に設定した真空乾燥機を用いて真空条件下で5時間加熱処理した。
 この液晶シランカップリング剤で修飾したBN粒子をサンプル管に移してTHF(ナカライテスク(株)製)50mLを加えたのち、超音波処理(BRANSON(株)製MODEL450)により粉砕した。さらに、この溶液を遠心分離機(日立工機(株)製CT6E)を用いて6000rpmで10分間分離精製した。上澄み液を捨てたのち、アセトンを50mL加えて同様の操作を二回行った。精製後の修飾BN粒子を60℃のオーブン中で24時間乾燥した。得られた粒子を液晶シランカップリング剤で修飾した第1の無機フィラーとする。
 同様に、BN粒子5.0gと、第2のカップリング剤としてのシランカップリング剤A(N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン)0.75gを用いて、同様の処理をおこなった。得られた粒子をシランカップリング剤Aで修飾した第2の無機フィラーとする。
 第1の無機フィラーおよび第2の無機フィラーの液晶性エポキシまたはシランカップリング剤のBN粒子に対する被覆量は、熱重量・示差熱測定装置(セイコーインスツル(株)(現・(株)日立ハイテク)製EXSTAR TG/DTA5200)を用いて、その600℃における加熱減量から算出した。
・放熱部材用組成物の調製
 修飾した第1の無機フィラーと第2の無機フィラーを以下のとおり混合した。
 第1の無機フィラーを0.564gと第2の無機フィラーを0.166g測り取り、メノウ乳鉢で混合したのち、2本ロールを用いて55℃で10分間混合した。この重量比は、第2の無機フィラーのNH(KBM903の反応基はNHなので、シランカップリング剤1分子あたりNHが2個と換算)と第1の無機フィラーのエポキシ環の個数の割合が1:1として算出した。
・放熱部材の調製
 重合および成形を以下のとおり行った。
 得られた混合物をステンレス製板中にはさみ、150℃に設定した圧縮成形機((株)神藤金属工業所製F-37)を用いて9.8MPaまで加圧し、15分間加熱状態を続けることで、配向処理と前硬化を行った。すなわちステンレス板の間を混合物が広がる際に、BN粒子は板状粒子であるため、粒子とステンレス板が平行になるように配向する。また、試料の厚みが約200μmになるように、試料の量を調整した。さらに、オーブンを用いて80℃で1時間、180℃で3時間の後硬化を行い、目的とする本発明の放熱部材とした。なお、この状態で液晶シランカップリング剤とシランカップリング剤Aを合算した成分は約13体積%であった。
 図2に、第1の無機フィラー1、第2の無機フィラー2、第1のシランカップリング剤11としての液晶シランカップリング剤、第2のシランカップリング剤12としてのシランカップリング剤Aの結合状態を示す。
・熱伝導率および熱拡散率の評価
 熱伝導率は、予め放熱部材の比熱(セイコーインスツル(株)(現・(株)日立ハイテク)製DSC型入力補償型示差走査熱量測定装置EXSTAR6000で測定した。)と比重(メトラー・トレド製比重計AG204密度測定キットにより測定した。)を求めておき、その値をアルバック理工(株)製TC7000熱拡散率測定装置により求めた熱拡散率を掛け合わせることにより熱伝導率を求めた。なお、厚み方向の熱拡散率は、試料を、カーボンスプレーを用いて黒化処理し、標準のサンプルホルダーを用いて測定した。また、平面方向の熱拡散率は、レーザーを照射するスポットと、赤外線を検出するスポットの間を5mm離すアダプターを作製し、試料にレーザーが照射されて赤外線が出るまでの時間と、その距離から算出した。
・熱膨張率の評価
 得られた試料から、5×20mmの試験片を切り出し、熱膨張率(現・(株)日立ハイテク製TMA7000型熱機械的分析装置で測定した。)を、室温~250℃の範囲で求めた。温度の範囲は、測定する試料の耐熱性により適宜調整した。
[比較例1]
 シランカップリング剤Aで修飾した第2の無機フィラーと両末端がエポキシの重合性液晶化合物(5-4)を、それぞれ2gと4g(BN粒子の配合比が19体積%)薬包紙上に測りとり、乳鉢を用いて混合したのち、2本ロール(日東反応機(株)製HR-3)を用いて120℃で10分混練した。その後、超音波処理および遠心分離によって分離精製し、未反応成分を取り除いた重合性液晶化合物修飾BN粒子を得た。この粒子を、第1の比較フィラーとする。このとき、重合性液晶化合物の量は、第2の無機フィラーを覆っているシランカップリング剤Aと反応すべき量(前記のようにNH末端のシランカップリング剤1分子あたり2個のエポキシが反応すると計算)の、さらに約5倍のモル数の量を使用している。このように重合性液晶化合物が過剰な量である理由は、第1の比較フィラーを合成する段階で、重合性液晶化合物の両末端のエポキシが、異なる第2の無機フィラーと結合し、硬化してしまうことを防ぐためである。
 第1の比較フィラーとシランカップリング剤Aで修飾した第2の無機フィラーを用いて、実施例1と同様に試料を作製し、熱伝導率および熱膨張率の測定をおこなった。
 図3に、第2の無機フィラー2、第2のカップリング剤12としてのシランカップリング剤A、重合性液晶化合物21の結合状態を示す。
[実施例2]
 実施例1における液晶シランカップリング剤の代わりに、市販のシランカップリング剤Bを用いて、それ以外は実施例1と同様の操作により実施例2の試料を得た。
 図4に、第1の無機フィラー1、第2の無機フィラー2、第1のシランカップリング剤13としてのシランカップリング剤B、第2のシランカップリング剤としてのシランカップリング剤Aの結合状態を示す。
[実施例3]
 実施例1における液晶シランカップリング剤の代わりに、市販のシランカップリング剤Cを用いて、それ以外は実施例1と同様の操作により実施例3の試料を得た。
 図4に、第1の無機フィラー1、第2の無機フィラー2、第1のシランカップリング剤13としてのシランカップリング剤C、第2のシランカップリング剤としてのシランカップリング剤Aの結合状態を示す。
[実施例4]
 実施例1における液晶シランカップリング剤((6-1)と(6-2)の混合物)の代わりに、液晶シランカップリング剤(6-3)を用いて、それ以外は実施例1と同様の操作により実施例4の試料を得た。
 図2に、第1の無機フィラー1、第2の無機フィラー2、第1のシランカップリング剤11としての液晶シランカップリング剤、第2のシランカップリング剤12としてのシランカップリング剤Aの結合状態を示す。
 実施例1~4、比較例1の熱膨張率を測定した結果を図7~11に示す。
 熱膨張率の測定結果より、実施例1でも比較例1と同様に、負の熱膨張率と、高耐熱(250℃までガラス転移点が観察されない)な試料が作製できていることがわかる。実施例1に比べ、比較例1の方法では、シランカップリング剤に対して10倍近い重合性液晶化合物(5-4)を混合し、反応後余分な重合性液晶化合物(5-4)を洗浄する工程が必要である。したがって実施例1の方法は原料の節約が可能となり、製造工程も減らすことができる。さらに、実施例1の方が比較例1より温度サイクルの再現性が高いことがわかる。これは、未反応の重合成分が少ないためと考えられ、本発明の方法の方が、比較例1の方法に比べ簡便に、負の熱膨張率を持つ高耐熱高熱伝導シートが形成可能であることが判る。
 一方、エポキシを持つカップリング剤を用いた実施例2と比較すると、実施例1はカップリング剤の有機鎖を液晶化することにより、温度と試料の収縮の関係が直線的になり、また熱サイクルを繰り返した際の再現性も高くなっていることが判る。これは、BN粒子を結合させる部位の熱安定性が、液晶化により向上しているためと考えられる。ただし、液晶になるので耐熱性が上がるのではなく、耐熱性がよくフォノン伝導性が高い分子構造は、多環で直線的な構造を持つために、結果として液晶性を発現する場合が多いと考えている。
 実施例3は実施例2のエポキシを持つ市販カップリング剤の代わりに無水コハク酸を反応部位に持つカップリング剤を使用している。市販カップリング剤Cの無水コハク酸と、市販カップリング剤Aのジアミンが反応することにより、イミド結合および一部アミド結合により無機フィラー間が結合するため、エポキシとジアミンで結合する場合に比べ熱膨張率測定の結果が直線的である。これはイミド結合の方が、耐熱性の高いことを表しており、実施例1のような液晶カップリング剤の場合でも、さらに耐熱性のよい結合を使用することにより耐熱性を向上させられることを示している。
 実施例4は、実施例1の液晶シランカップリング剤の代わりに(6-3)のカップリング剤を使用している。この構造の場合、熱伝導率が少し低く、負の熱膨張率を維持しているが190℃で熱膨張率に変極点が認められる(図11)。したがって、高温で使用される用途では、実施例1の構造のほうが優れていることがわかる。求められる耐熱性などから、液晶部分の構造は決定されることが求められる。
 実施例1~4と、比較例1の熱伝導率を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000030
 実施例1と比較例1を比較すると、BN粒子に対する液晶シランカップリング剤と重合性化合物の割合は実施例1の方が比較例1より少し小さくなっている。これは実施例1の液晶シランカップリング剤(6-1)(6-2)では1つのカップリング剤部位に1つのエポキシ性液晶部位が結合しているが、比較例1に使用しているシランカップリング剤Aの末端反応基がNHの状態のため、この部分に重合性液晶化合物(5-4)が2分子反応しているものも存在し、BNとBNを結合させることに寄与しないエポキシ分子が存在しているためと考えられる。また、x-y方向の熱伝導率は、実施例1の方が僅かではあるが比較例1よりも高い。これも、BNとBNとを効率よく結合させているので熱伝導率が高くなっていると考えられる。一方、厚み方向の熱伝導率は実施例1の方が僅かに小さい。これは、板状のBN粒子が積み重なる際に、比較例1では余分な液晶性エポキシが、上下のBN粒子を結合することができるためと考えている。実施例1と実施例2の比較では、もともと高配向ポリエチレンの熱伝導率は非常に高いことから、メチレン構造の熱伝導性もよいと予想され、またカップリング剤Bの鎖長も短いので、フォノン伝導が早く、結果として熱伝導率が向上しているものと考えられる。また、実施例2と実施例3を比較すると、メチレン構造の長さは等しく、エポキシ-アミンの結合と、イミド結合間に熱伝導率の差はほとんどない。したがって、カップリング剤の長さや反応基は、目的とする熱伝導率や耐熱性のバランスを考慮し設計すればよい。
 実施例1で作製した試料の熱重量・示差熱分析を行った。図12に窒素雰囲気中の結果を、図13に空気中の結果を示す。
 測定結果より、本発明の複合材料は、窒素雰囲気下で320℃、大気中で280℃程度の耐熱性を持つことがわかる。これらの結果を鑑みると、本発明の複合材料は熱膨張による物理的な応力を緩和することができ、高耐熱な材料であり、さらに熱伝導率も高い材料として使用できることがわかる。
 本明細書中で引用する刊行物、特許出願および特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ程度で、参照してここに組み込む。
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞および同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限定しない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、本発明の実施に不可欠である、請求項に記載されていない要素を示すものとは解釈されないものとする。
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読んだ上で、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを予期しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の変更および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組合せも本発明に包含される。
1   第1の無機フィラー
2   第2の無機フィラー
11  第1のシランカップリング剤、液晶シランカップリング剤
12  第2のシランカップリング剤、カップリング剤A
13  第1のシランカップリング剤、カップリング剤B、カップリング剤C、
21  重合性液晶化合物

Claims (10)

  1.  第1のカップリング剤の一端と結合した熱伝導性の第1の無機フィラーと;
     第2のカップリング剤の一端と結合した熱伝導性の第2の無機フィラーと;を含み、
     前記第1のカップリング剤と前記第2のカップリング剤は、少なくとも1つが液晶シランカップリング剤であり、
     前記第1のカップリング剤の他端と前記第2のカップリング剤の他端は、互いに結合可能な官能基を有し、
     硬化処理により、前記第1のカップリング剤の他端が、前記第2のカップリング剤の他端と結合することを特徴とする、
     放熱部材用組成物。
  2.  前記第1の無機フィラーと前記第2の無機フィラーが、窒化ホウ素、炭化ホウ素、窒化炭素ホウ素、黒鉛、炭素繊維、カーボンナノチューブ、グラフェン、アルミナ、シリカ、窒化アルミニウム、炭化珪素、酸化亜鉛、水酸化マグネシウム、または酸化鉄系材料から選ばれる少なくとも一つである、
     請求項1に記載の放熱部材用組成物。
  3.  前記第1の無機フィラーおよび前記第2の無機フィラーと異なる熱膨張率を持つ第3の無機フィラー;をさらに含む、
     請求項1または請求項2に記載の放熱部材用組成物。
  4.  前記第1の無機フィラーおよび前記第2の無機フィラーに結合していない、有機化合物または高分子化合物;をさらに含む、
     請求項1~請求項3のいずれか1項に記載の放熱部材用組成物。
  5.  前記液晶シランカップリング剤が、末端に重合性基を有する下記式(1)で表されるシランカップリング剤である、
     請求項1~請求項4のいずれか1項に記載の放熱部材用組成物。
     
      (R-O-)5(3-j)Si-R-Z-(A-Z)-R  (1)
    [式(1)中、
     Rは、-C=C-もしくは-C≡C-部位を含まない前記重合性基であり;
     Rは、炭素数2~3のアルキレンであり、該アルキレンにおいてSiに隣接する-C-C-を除く任意の-CH-は-CO-もしくは-COO-で置き換えられてもよく、Siに隣接する-C-C-は-C-CR-で置き換えられてもよく、Rは、ハロゲン(Ha)もしくはCHaであり;
     Aは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、フルオレン-2,7-ジイルまたは下記式(3-1)~(3-7)で表される2価の基であり、式(3-1)~(3-7)中の*は不斉炭素であり、
     これらの環において、任意の-CH-は-O-で置き換えられてもよく、任意の-CH=は-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、炭素数1~10のハロゲン化アルキル、または、該アルキルもしくは該ハロゲン化アルキルにおいて、任意の-CH-が、-O-、-CO-、-COO-、-OCO-、-CH=CH-もしくは-C≡C-で置き換えられた基で置き換えられてもよく;
     Zは、独立に単結合、任意の水素がハロゲンで置き換えられてもよい炭素数1~20のアルキレン、または、該アルキレンにおいて、任意の-CH-が、-O-、-CO-、-COO-もしくは-OCO-で置き換えられた基であり;
     mは、1~6の整数であり;
     Rは、水素、または炭素数1~8のアルキルであり;
     Rは、水素、または炭素数1~5のアルキルであり;
     jは、1~3の整数である。]
    Figure JPOXMLDOC01-appb-C000001
  6.  前記式(1)の液晶シランカップリング剤が、下記式(1-1)または(1-2)表されるシランカップリング剤である、
     請求項5に記載の放熱部材用組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式(1-1)中、
     Rは、-C-C-、-C-C-C-、-C-C-CO-、-C-C-CO-O-、-C-CF-CO-O-、-C-CCF-CO-O-、
     Rは、メチルまたはエチル、
     R、R、Rは、独立に単結合、-(CH-、-O-、-O(CH-、-(CHO-、-O(CHO-、-COO-、-OCO-、-CHCH-COO-、-OCO-CHCH-、該aは1~6の整数、
     nは、1~6の整数、
     qは0または1である。]
    Figure JPOXMLDOC01-appb-C000003
    [式(1-2)中、
     Rは、-C-C-、-C-C-C-、-C-C-CO-、-C-C-CO-O-、-C-CF-CO-O-、-C-CCF-CO-O-、
     Rは、メチルまたはエチル、
     Rは、単結合、-(CH-、-O-、-O(CH-、-(CHO-、-O(CHO-、-COO-、-OCO-、-CHCH-COO-、-OCO-CHCH-、該aは1~6の整数、
     R、Rは、独立に単結合、-(CH-、-O-、O(CH-、-(CHO-、-O(CHO-、-COO-、-OCO-、-CHCH-COO-、-OCO-CHCH-、該aは1~6の整数、
     nは、1~6の整数である。]
  7.  請求項1~請求項6のいずれか1項に記載の放熱部材用組成物が硬化した、
     放熱部材。
  8.  請求項7に記載の放熱部材と;
     発熱部を有する電子デバイスと;を備え、
     前記放熱部材が前記発熱部に接触するように前記電子デバイスに配置された;
     電子機器。
  9.  熱伝導性の第1の無機フィラーを、第1のカップリング剤の一端と結合させる工程と;
     熱伝導性の第2の無機フィラーを、第2のカップリング剤の一端と結合させる工程と;を備え、
     前記第1のカップリング剤と前記第2のカップリング剤は、少なくとも1つが液晶性シランカップリング剤であり、
     前記第1のカップリング剤の他端と前記第2のカップリング剤の他端は、互いに結合可能な官能基を有する、
     放熱部材用組成物の製造方法。
  10.  請求項9に記載の放熱部材用組成物の製造方法と;
     前記第1のカップリング剤の他端を、前記第2のカップリング剤の他端と結合させる工程と;を備える、
     放熱部材の製造方法。
PCT/JP2017/008028 2016-03-02 2017-02-28 放熱部材用組成物、放熱部材、電子機器、放熱部材用組成物の製造方法、放熱部材の製造方法 WO2017150588A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187028319A KR20180113625A (ko) 2016-03-02 2017-02-28 방열 부재용 조성물, 방열 부재, 전자 기기, 방열 부재용 조성물의 제조 방법, 방열 부재의 제조 방법
CN201780015303.2A CN108779386A (zh) 2016-03-02 2017-02-28 放热构件用组合物、放热构件、电子机器、放热构件用组合物的制造方法、放热构件的制造方法
JP2018503361A JP6902192B2 (ja) 2016-03-02 2017-02-28 放熱部材用組成物、放熱部材、電子機器、放熱部材用組成物の製造方法、放熱部材の製造方法
EP17760052.5A EP3425019A4 (en) 2016-03-02 2017-02-28 COMPOSITION FOR HEAT DISSIPATING ELEMENT, HEAT DISSIPATING ELEMENT, ELECTRONIC INSTRUMENT, METHOD FOR PRODUCING COMPOSITION FOR HEAT DISSIPATING ELEMENT, AND PROCESS FOR PRODUCTION OF HEAT DISSIPATING ELEMENT
US16/081,426 US10679922B2 (en) 2016-03-02 2017-02-28 Composition for heat-dissipating member, heat-dissipating member, electronic instrument, method for producing composition for heat-dissipating member, and method for producing heat-dissipating member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-040524 2016-03-02
JP2016040524 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017150588A1 true WO2017150588A1 (ja) 2017-09-08

Family

ID=59744112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008028 WO2017150588A1 (ja) 2016-03-02 2017-02-28 放熱部材用組成物、放熱部材、電子機器、放熱部材用組成物の製造方法、放熱部材の製造方法

Country Status (7)

Country Link
US (1) US10679922B2 (ja)
EP (1) EP3425019A4 (ja)
JP (1) JP6902192B2 (ja)
KR (1) KR20180113625A (ja)
CN (1) CN108779386A (ja)
TW (1) TW201736569A (ja)
WO (1) WO2017150588A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190111559A (ko) * 2018-03-23 2019-10-02 전북대학교산학협력단 유-무기 결합 초분자 매트릭스 조성물, 이를 이용하여 제조된 방열필름 및 이의 제조방법
CN110872492A (zh) * 2018-09-03 2020-03-10 丰田自动车株式会社 热传导性材料、其制造方法和热传导性组合物
JP2021093300A (ja) * 2019-12-11 2021-06-17 エルジー ディスプレイ カンパニー リミテッド 封止材および表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763403A (zh) * 2020-07-15 2020-10-13 深圳先进电子材料国际创新研究院 一种液体环氧树脂组合物及其制备方法和应用
KR102455478B1 (ko) * 2022-01-18 2022-10-17 에스케이씨하이테크앤마케팅(주) 열전도 아크릴 시트, 이의 제조방법 및 이를 포함하는 배터리 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265527A (ja) 2005-02-25 2006-10-05 Chisso Corp 放熱部材およびその製造方法
JP2010116543A (ja) * 2008-10-14 2010-05-27 Panasonic Corp プリプレグ及びその製造方法とこれを用いたプリント配線板
JP2012153846A (ja) * 2011-01-28 2012-08-16 Nippon Zeon Co Ltd 塊状重合成形体
WO2015170744A1 (ja) * 2014-05-09 2015-11-12 Jnc株式会社 放熱部材用組成物、放熱部材、電子機器
WO2016031888A1 (ja) * 2014-08-27 2016-03-03 Jnc株式会社 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352970B2 (ja) * 2007-07-04 2013-11-27 住友ベークライト株式会社 樹脂組成物および半導体装置
US8980984B2 (en) * 2009-07-24 2015-03-17 Ticona Llc Thermally conductive polymer compositions and articles made therefrom
US9745411B2 (en) * 2013-06-27 2017-08-29 Hitachi Chemical Company, Ltd. Resin composition, resin sheet, cured resin sheet, resin sheet structure, cured resin sheet structure, method for producing cured resin sheet structure, semiconductor device, and LED device
CN104672495B (zh) * 2015-01-28 2017-08-25 深圳航天科技创新研究院 一种有机‑无机复合导热填料及其制备方法及其应用
KR102107736B1 (ko) * 2015-08-03 2020-05-07 주식회사 엘지화학 플렉시블 플라스틱 필름용 코팅 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265527A (ja) 2005-02-25 2006-10-05 Chisso Corp 放熱部材およびその製造方法
JP5084148B2 (ja) 2005-02-25 2012-11-28 Jnc株式会社 放熱部材およびその製造方法
JP2010116543A (ja) * 2008-10-14 2010-05-27 Panasonic Corp プリプレグ及びその製造方法とこれを用いたプリント配線板
JP2012153846A (ja) * 2011-01-28 2012-08-16 Nippon Zeon Co Ltd 塊状重合成形体
WO2015170744A1 (ja) * 2014-05-09 2015-11-12 Jnc株式会社 放熱部材用組成物、放熱部材、電子機器
WO2016031888A1 (ja) * 2014-08-27 2016-03-03 Jnc株式会社 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Comprehensive Organic Synthesis", PERGAMON PRESS
"Organic Reactions", JOHN WILY & SONS INC.
"Organic Syntheses", JOHN WILY & SONS, INC.
HOUBEN-WYLE: "Methods of Organic Chemistry", GEORG THIEME VERLAG
See also references of EP3425019A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190111559A (ko) * 2018-03-23 2019-10-02 전북대학교산학협력단 유-무기 결합 초분자 매트릭스 조성물, 이를 이용하여 제조된 방열필름 및 이의 제조방법
KR102108327B1 (ko) * 2018-03-23 2020-05-12 전북대학교 산학협력단 유-무기 결합 초분자 매트릭스 조성물, 이를 이용하여 제조된 방열필름 및 이의 제조방법
CN110872492A (zh) * 2018-09-03 2020-03-10 丰田自动车株式会社 热传导性材料、其制造方法和热传导性组合物
JP2021093300A (ja) * 2019-12-11 2021-06-17 エルジー ディスプレイ カンパニー リミテッド 封止材および表示装置

Also Published As

Publication number Publication date
US10679922B2 (en) 2020-06-09
CN108779386A (zh) 2018-11-09
KR20180113625A (ko) 2018-10-16
JPWO2017150588A1 (ja) 2019-02-14
JP6902192B2 (ja) 2021-07-14
US20190023900A1 (en) 2019-01-24
TW201736569A (zh) 2017-10-16
EP3425019A1 (en) 2019-01-09
EP3425019A4 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2016031888A1 (ja) 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法
JP6902193B2 (ja) 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法
WO2017150588A1 (ja) 放熱部材用組成物、放熱部材、電子機器、放熱部材用組成物の製造方法、放熱部材の製造方法
WO2017150587A1 (ja) 低熱膨張部材用組成物、低熱膨張部材、電子機器、低熱膨張部材の製造方法
WO2020045560A1 (ja) 組成物、硬化物、積層体および電子機器
JP2019172936A (ja) 放熱部材用組成物、放熱部材、電子機器
WO2017150586A1 (ja) 積層体、電子機器、積層体の製造方法
WO2019188973A1 (ja) 組成物、放熱部材、電子機器、および組成物の製造方法
JP7060021B2 (ja) 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法
WO2018181839A1 (ja) 積層体、電子機器、積層体の製造方法
WO2018181838A1 (ja) 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法
WO2019049911A1 (ja) 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法
JP2019172937A (ja) 放熱部材用組成物、放熱部材、電子機器
JP2019137801A (ja) 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法。

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503361

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017760052

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017760052

Country of ref document: EP

Effective date: 20181002

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760052

Country of ref document: EP

Kind code of ref document: A1