WO2017149909A1 - Polarizing plate - Google Patents

Polarizing plate Download PDF

Info

Publication number
WO2017149909A1
WO2017149909A1 PCT/JP2016/088101 JP2016088101W WO2017149909A1 WO 2017149909 A1 WO2017149909 A1 WO 2017149909A1 JP 2016088101 W JP2016088101 W JP 2016088101W WO 2017149909 A1 WO2017149909 A1 WO 2017149909A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stretching
polarizing plate
resin substrate
pva
Prior art date
Application number
PCT/JP2016/088101
Other languages
French (fr)
Japanese (ja)
Inventor
大介 濱本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020187025235A priority Critical patent/KR102219988B1/en
Priority to KR1020207005307A priority patent/KR20200022539A/en
Priority to CN201680083155.3A priority patent/CN108780172B/en
Priority to SG11201807351UA priority patent/SG11201807351UA/en
Publication of WO2017149909A1 publication Critical patent/WO2017149909A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00894Applying coatings; tinting; colouring colouring or tinting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a polarizing plate.
  • a method has been proposed in which a polarizing film is obtained by forming a polyvinyl alcohol-based resin layer on a resin substrate and stretching and dyeing the laminate (for example, Patent Document 1). According to such a method, a polarizing film having a small thickness can be obtained, and thus, for example, it has been attracting attention as being able to contribute to the thinning of the image display device.
  • the polarizing film can be used as it is laminated on the resin substrate (Patent Document 2).
  • Patent Document 2 since a crack may occur in the polarizing plate, improvement in durability is required.
  • JP 2000-338329 A Japanese Patent No. 4997833
  • the present invention has been made in order to solve the above problems, and its main purpose is a polarizing plate that can be used while the polarizing film is laminated on the resin base material, and has improved durability. It is to provide a polarizing plate.
  • the polarizing plate which has a polyester-type resin base material and the polarizing film laminated
  • the crystallinity calculated by the total reflection attenuation spectroscopy (ATR) measurement of the polyester-based resin substrate is 0.55 to 0.80, and the boric acid concentration in the polarizing film Is 10% to 20% by weight.
  • the polyester-based resin is polyethylene terephthalate or a copolymer thereof.
  • the polarizing film is laminated on one side of the polyester resin base material without an adhesive layer.
  • the polarizing plate does not have a protective film on the side of the polarizing film opposite to the side on which the polyester resin substrate is laminated. In one embodiment, the polarizing plate has an easy-adhesion layer between the polyester resin substrate and the polarizing film.
  • the manufacturing method of the said polarizing plate is provided. The production method includes forming a polyvinyl alcohol resin film on a polyester resin base material to produce a laminate, stretching the laminate, dyeing the polyvinyl alcohol resin film, and Crystallizing the polyester resin substrate.
  • the crystallinity of the resin substrate and boric acid in the polarizing film By adjusting the concentration within a specific range, it is possible to obtain a polarizing plate that can be used while the polarizing film is laminated on the resin base material and is excellent in durability.
  • (A) And (b) is a schematic sectional drawing of the polarizing plate in one embodiment of this invention, respectively.
  • the polarizing plate of the present invention has a polyester resin substrate and a polarizing film having a thickness of 10 ⁇ m or less laminated on one side of the polyester resin substrate.
  • Fig.1 (a) is a schematic sectional drawing of the polarizing plate in one Embodiment of this invention.
  • the polarizing plate 10a includes a polyester-based resin base material 11 and a polarizing film 12 stacked in close contact with one surface of the polyester-based resin base material 11 (in other words, without an adhesive layer).
  • FIG.1 (b) is a schematic sectional drawing of the polarizing plate in another embodiment of this invention.
  • the polarizing plate 10 b further includes a protective film 13.
  • the protective film 13 is arrange
  • the protective film 13 may be laminated on the polarizing film 12 via an adhesive layer, or may be laminated in close contact (without an adhesive layer).
  • the polyester resin substrate 11 can function as a protective film.
  • the polarizing plates 10a and 10b may have an easy-adhesion layer (not shown) between the polyester resin substrate 11 and the polarizing film 12.
  • the “perpendicular direction” includes a case of 90 ° ⁇ 5.0 °, preferably 90 ° ⁇ 3.0 °, more preferably 90 ° ⁇ 1.0 °. is there.
  • the “parallel direction” includes the case of 0 ° ⁇ 5.0 °, preferably 0 ° ⁇ 3.0 °, more preferably 0 ° ⁇ 1.0 °.
  • the polarizing film is substantially a PVA resin film in which iodine is adsorbed and oriented.
  • the thickness of the polarizing film is 10 ⁇ m or less, preferably 7.5 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the thickness of the polarizing film is preferably 0.5 ⁇ m or more, more preferably 1.5 ⁇ m or more. If the thickness is too thin, the optical properties of the obtained polarizing film may be deteriorated.
  • the polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizing film is preferably 40.0% or more, more preferably 41.0% or more, and further preferably 42.0% or more.
  • the polarization degree of the polarizing film is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.
  • any appropriate resin can be adopted as the PVA resin for forming the PVA resin film.
  • Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymer.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer can be obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. .
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, there is a risk of gelation.
  • the boric acid concentration in the polarizing film is, for example, changing the boric acid concentration in a stretching bath, an insolubilizing bath, a cross-linking bath, etc., and changing the immersion time in these baths, etc. Can be adjusted.
  • the boric acid concentration (% by weight) in the polarizing film can be determined using, for example, a boric acid amount index calculated from total reflection attenuation spectroscopy (ATR) measurement.
  • the glass transition temperature (Tg) of the polyester resin substrate is preferably 170 ° C. or lower.
  • Tg glass transition temperature
  • the glass transition temperature of the polyester resin substrate is preferably 60 ° C. or higher.
  • the laminate can be stretched at a suitable temperature (eg, about 60 ° C. to 70 ° C.).
  • a glass transition temperature lower than 60 ° C. may be used as long as the polyester resin base material is not deformed when applying and drying a coating solution containing a PVA resin.
  • the glass transition temperature (Tg) is a value determined according to JIS K 7121.
  • the polyester resin base material preferably has a water absorption rate of 0.2% or more, and more preferably 0.3% or more.
  • a polyester resin base material absorbs water, and the water can act as a plasticizer to be plasticized.
  • the stretching stress can be greatly reduced in stretching in water, and the stretchability can be excellent.
  • the water absorption rate of the polyester resin substrate is preferably 3.0% or less, more preferably 1.0% or less.
  • the degree of crystallinity calculated by measuring total reflection attenuation (ATR) of the polyester resin substrate is 0.55 to 0.80, preferably 0.58 to 0.80, and more preferably 0.60 to 0.8. 75.
  • ATR total reflection attenuation
  • the difference between the dimensional change rate of the polarizing film in the direction of the absorption axis and the dimensional change rate of the polyester resin base material is such that the dimensional change rate of the polarizing film in the direction orthogonal to the absorption axis and the polyester resin It can prevent becoming large compared with the difference with the dimensional change rate of a base material.
  • the degree of crystallization of the polyester resin substrate can be adjusted, for example, by changing the heating temperature and / or the heating time for crystallization.
  • the crystallinity degree of the said polyester-type resin base material is computed based on the following formula
  • equation. (Crystallinity) (Intensity of crystal peak 1340 cm ⁇ 1 ) / (Intensity of reference peak 1410 cm ⁇ 1 )
  • Protective film examples of the material for forming the protective film include (meth) acrylic resins, cellulose resins such as diacetyl cellulose and triacetyl cellulose, cycloolefin resins, olefin resins such as polypropylene, and polyethylene terephthalate resins. Examples thereof include ester resins, polyamide resins, polycarbonate resins, and copolymer resins thereof.
  • the thickness of the protective film is preferably 10 ⁇ m to 100 ⁇ m.
  • the easy-adhesion layer may be a layer formed substantially only from the composition for forming an easy-adhesion layer, and the composition for forming an easy-adhesion layer and the material for forming the polarizing film are mixed (compatible). A layer or region that is included). By forming the easy adhesion layer, excellent adhesion can be obtained.
  • the thickness of the easy adhesion layer is preferably about 0.05 ⁇ m to 1 ⁇ m.
  • the easy adhesion layer can be confirmed, for example, by observing the cross section of the polarizing plate with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Adhesive layer is formed of any suitable adhesive or adhesive.
  • the pressure-sensitive adhesive layer is typically formed of an acrylic pressure-sensitive adhesive.
  • the adhesive layer is typically formed of a vinyl alcohol adhesive.
  • the production method of the polarizing plate of the present invention typically comprises forming a PVA resin film on a polyester resin substrate to produce a laminate, and stretching the laminate. And dyeing the PVA resin film, and crystallizing the polyester resin substrate.
  • a PVA-based resin film is formed by applying a coating liquid containing a PVA-based resin on a polyester-based resin base material and drying it.
  • an easy-adhesion layer forming composition is applied on a polyester-based resin substrate and dried to form an easy-adhesion layer, and a PVA-based resin film is formed on the easy-adhesion layer To do.
  • the forming material of the polyester resin base material is as described above.
  • the thickness of the polyester resin substrate is preferably 20 ⁇ m to 300 ⁇ m, more preferably 50 ⁇ m to 200 ⁇ m. If it is less than 20 ⁇ m, it may be difficult to form a PVA resin film. If it exceeds 300 ⁇ m, for example, in stretching in water, it takes a long time for the polyester-based resin substrate to absorb water, and an excessive load may be required for stretching.
  • the degree of crystallinity calculated by the total reflection attenuation spectroscopy (ATR) measurement of the polyester-based resin substrate when used for the production of the laminate may be, for example, 0.20 to 0.50.
  • the coating solution is typically a solution obtained by dissolving the PVA resin in a solvent.
  • the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Among these, water is preferable.
  • the concentration of the PVA resin in the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film in close contact with the polyester resin substrate can be formed.
  • Additives may be added to the coating solution.
  • the additive include a plasticizer and a surfactant.
  • the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
  • the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the resulting PVA resin film.
  • an easily bonding component is mentioned, for example. By using the easy-adhesion component, the adhesion between the polyester resin substrate and the PVA resin film can be improved. As a result, for example, problems such as peeling of the PVA-based resin film from the substrate can be suppressed, and dyeing and underwater stretching described later can be performed satisfactorily.
  • modified PVA such as acetoacetyl-modified PVA is used.
  • the coating / drying temperature of the coating solution is preferably 50 ° C. or higher.
  • the thickness of the PVA resin film is preferably 3 ⁇ m to 20 ⁇ m.
  • the polyester-based resin substrate Before forming the PVA-based resin film, the polyester-based resin substrate may be subjected to a surface treatment (for example, corona treatment), or an easy-adhesion layer-forming composition is applied onto the polyester-based resin substrate (coating) Processing).
  • a surface treatment for example, corona treatment
  • an easy-adhesion layer-forming composition is applied onto the polyester-based resin substrate (coating) Processing.
  • the easy-adhesion layer-forming composition preferably contains a polyvinyl alcohol-based component.
  • Any appropriate PVA-based resin can be used as the polyvinyl alcohol-based component.
  • Specific examples include polyvinyl alcohol and modified polyvinyl alcohol.
  • the modified polyvinyl alcohol include polyvinyl alcohol modified with an acetoacetyl group, a carboxylic acid group, an acrylic group and / or a urethane group.
  • acetoacetyl-modified PVA is preferably used.
  • a polymer having at least a repeating unit represented by the following general formula (I) is preferably used as the acetoacetyl-modified PVA.
  • the easy-adhesion layer-forming composition may further contain a polyolefin-based component, a polyester-based component, a polyacrylic-based component, or the like depending on the purpose.
  • the easily adhesive layer forming composition further includes a polyolefin-based component.
  • the proportion of the olefin component in the monomer component constituting the polyolefin resin is preferably 50% by weight to 95% by weight.
  • the blending ratio of the polyvinyl alcohol component to the polyolefin component is preferably 5:95 to 60:40, more preferably 20:80 to 50. : 50.
  • the peeling force required when peeling the polarizing film from the resin base material may be reduced, and sufficient adhesion may not be obtained.
  • the external appearance of the polarizing plate obtained may be impaired.
  • the easy-adhesion layer is formed, a problem such as white turbidity of the coating film may occur, which may make it difficult to obtain a polarizing plate having an excellent appearance.
  • the stretching treatment may be an underwater stretching method performed by immersing the laminate in a stretching bath, or an air stretching method.
  • the underwater stretching treatment is performed at least once, and preferably the underwater stretching treatment and the air stretching treatment are combined.
  • the polyester resin substrate or PVA resin film can be stretched at a temperature lower than the glass transition temperature (typically about 80 ° C.), and the PVA resin film is crystallized. While suppressing, it can be stretched at a high magnification. As a result, a polarizing film having excellent polarization characteristics can be manufactured.
  • the stretching temperature of the laminate can be set to any appropriate value depending on the forming material of the polyester resin substrate, the stretching method, and the like.
  • the stretching temperature is preferably equal to or higher than the glass transition temperature (Tg) of the polyester-based resin base material, more preferably the glass transition temperature (Tg) of the polyester-based resin base material + 10 ° C. or higher.
  • Tg glass transition temperature
  • the stretching temperature of the laminate is preferably 170 ° C. or lower.
  • the liquid temperature of the stretching bath is preferably 40 ° C. to 85 ° C., more preferably 50 ° C. to 85 ° C. If it is such temperature, it can extend
  • the glass transition temperature (Tg) of the polyester-based resin substrate is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin film.
  • the stretching temperature is lower than 40 ° C., there is a possibility that the stretching cannot be satisfactorily performed even in consideration of plasticization of the polyester-based resin substrate with water.
  • the higher the temperature of the stretching bath the higher the solubility of the PVA-based resin film, and there is a possibility that excellent polarization characteristics cannot be obtained.
  • the boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent.
  • the boric acid concentration is preferably 1 to 10 parts by weight with respect to 100 parts by weight of water. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA-based resin film can be effectively suppressed, and a polarizing film having higher characteristics can be produced.
  • an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde, or the like in a solvent can also be used.
  • iodide is blended in the stretching bath (boric acid aqueous solution).
  • the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide.
  • potassium iodide is preferable.
  • the concentration of iodide is preferably 0.05 to 15 parts by weight, more preferably 0.5 to 8 parts by weight with respect to 100 parts by weight of water.
  • the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
  • the underwater stretching process is performed after the dyeing process.
  • the draw ratio (maximum draw ratio) of the laminate is preferably 4.0 times or more, more preferably 5.0 times or more with respect to the original length of the laminate. Such a high draw ratio can be achieved, for example, by employing an underwater drawing method (boric acid underwater drawing).
  • the “maximum stretch ratio” refers to a stretch ratio immediately before the laminate is ruptured. Separately, a stretch ratio at which the laminate is ruptured is confirmed, and a value that is 0.2 lower than that value. .
  • the dyeing of the PVA resin film is typically performed by adsorbing iodine to the PVA resin film.
  • adsorption method for example, a method of immersing a PVA resin film (laminated body) in a staining solution containing iodine, a method of applying the staining solution to the PVA resin film, and applying the staining solution to the PVA resin film The method of spraying etc. are mentioned.
  • the PVA resin film (laminate) is immersed in the dyeing solution. This is because iodine can be adsorbed well.
  • the immersion time is preferably 5 seconds to 5 minutes in order to ensure the transmittance of the PVA resin film.
  • the staining conditions concentration, liquid temperature, immersion time
  • immersion time is set so that the polarization degree of the polarizing film obtained may be 99.98% or more.
  • the immersion time is set so that the obtained polarizing film has a single transmittance of 40% to 44%.
  • the staining process can be performed at any appropriate timing.
  • it performs before an underwater extending
  • Crystallization of the polyester-based resin substrate is performed, for example, by heating the polyester-based resin substrate (substantially a laminate). Crystallization is preferably performed after dyeing and stretching the PVA resin film.
  • the heating temperature is typically a temperature that exceeds the glass transition temperature (Tg) of the polyester resin substrate.
  • the heating temperature is preferably 90 ° C. or higher, more preferably 100 ° C. or higher.
  • the heating temperature is preferably 125 ° C. or lower, more preferably 120 ° C. or lower.
  • the heating time can be appropriately set according to the heating temperature and the like. The heating time can be, for example, 3 seconds to 2 minutes.
  • the crystallization it is preferable to perform the crystallization so that the haze value of the polyester-based resin substrate is 2% or less.
  • the PVA-based resin film may be appropriately subjected to treatment for forming a polarizing film.
  • the treatment for forming the polarizing film include insolubilization treatment, crosslinking treatment, washing treatment, and drying treatment.
  • count, order, etc. of these processes are not specifically limited.
  • the insolubilization treatment is typically performed by immersing a PVA resin film (laminate) in a boric acid aqueous solution.
  • a boric acid aqueous solution By performing the insolubilization treatment, water resistance can be imparted to the PVA resin film.
  • the concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water.
  • the liquid temperature of the insolubilizing bath (boric acid aqueous solution) is preferably 20 ° C. to 50 ° C.
  • the insolubilization treatment is performed before the above-described underwater stretching or the above-described dyeing treatment.
  • the cross-linking treatment is typically performed by immersing a PVA resin film (laminate) in an aqueous boric acid solution.
  • the concentration of the boric acid aqueous solution is preferably 1 to 5 parts by weight with respect to 100 parts by weight of water.
  • blend an iodide it is preferable to mix
  • the blending amount of iodide is preferably 1 to 5 parts by weight with respect to 100 parts by weight of water.
  • the above-described cleaning treatment is typically performed by immersing a PVA resin film (laminated body) in a potassium iodide aqueous solution.
  • the drying temperature in the drying treatment is preferably 30 ° C. to 100 ° C.
  • the polarizing plate of the present invention can be obtained by forming a polarizing film on a polyester resin substrate and crystallizing the polyester resin substrate.
  • the polarizing plate of the present invention can be mounted on, for example, a liquid crystal display device.
  • the polarizing film is mounted so as to be disposed closer to the liquid crystal cell than the polyester resin substrate. According to such a structure, the influence which the phase difference which a polyester-type resin base material can have on the image characteristic of the liquid crystal display device obtained can be excluded.
  • Example 6 After the temperature was raised in minutes, the dimensional change rate was further measured when held at 100 ° C. for 60 minutes.
  • the polarizing film and the resin substrate were isolated in the same procedure from the polarizing plate prepared in the same manner except that the easy-adhesion layer was not formed. The dimensional change of the polarizing film and the resin base material was used.
  • Dimensional change rate (%) (Dimension after heat treatment ⁇ Dimension before heat treatment) / Dimension before heat treatment ⁇ 100 ⁇ Crystallinity ⁇
  • the polyester-based resin base materials obtained in the examples and comparative examples were subjected to total reflection attenuation spectroscopy (ATR) using a Fourier transform infrared spectrophotometer (FT-IR) (manufactured by Perkin Elmer, trade name “SPECTRUM2000”).
  • FT-IR Fourier transform infrared spectrophotometer
  • the intensity of the crystal peak (1340 cm ⁇ 1 ) and the intensity of the reference peak (1410 cm ⁇ 1 ) were measured by measurement.
  • the crystallinity was calculated by the following formula from the obtained crystal peak intensity and reference peak intensity.
  • (Crystallinity) (Intensity of crystal peak 1340 cm ⁇ 1 ) / (Intensity of reference peak 1410 cm ⁇ 1 ) ⁇ Glass transition temperature: Tg ⁇ Measured according to JIS K 7121. ⁇ Boric acid concentration ⁇ Using the Fourier transform infrared spectrophotometer (FT-IR) (manufactured by Perkin Elmer, trade name “SPECTRUM2000”) for the polarizing films obtained in Examples and Comparative Examples, total reflection attenuation using polarized light as measurement light The intensity of the boric acid peak (665 cm ⁇ 1 ) and the intensity of the reference peak (2941 cm ⁇ 1 ) were measured by spectroscopic (ATR) measurement.
  • FT-IR Fourier transform infrared spectrophotometer
  • the boric acid amount index was calculated from the obtained boric acid peak intensity and the reference peak intensity by the following formula, and the boric acid concentration was determined from the calculated boric acid amount index by the following formula.
  • (Boric acid amount index) (Intensity of boric acid peak 665 cm ⁇ 1 ) / (Intensity of reference peak 2941 cm ⁇ 1 )
  • (Boric acid concentration) (Boric acid amount index) ⁇ 5.54 + 4.1 ⁇ Crack evaluation ⁇
  • the polarizing plates obtained in the examples and comparative examples were heated in an oven at 100 ° C. for 240 hours in a state of being bonded to glass through an adhesive so that the polyester resin substrate was on the surface side. The presence or absence of cracks in the polarizing plate after heating was confirmed and evaluated according to the following criteria. Good: No cracking Defect: There is a crack
  • a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water was immersed for 30 seconds in a crosslinking bath having a liquid temperature of 30 ° C.
  • a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water (Crosslinking treatment).
  • the laminate is immersed in a boric acid aqueous solution (an aqueous solution obtained by blending 3 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 70 ° C.
  • Example 2 A polarizing plate was obtained in the same manner as in Example 1 except that the laminate was placed in an oven at 110 ° C. for 30 seconds to crystallize the resin substrate.
  • Example 4 Example 1 except that the amount of boric acid in the stretching bath during stretching in water was 3.5 parts by weight, and the laminate was put into an oven at 110 ° C. for 30 seconds to crystallize the resin substrate. In the same manner, a polarizing plate was obtained.
  • Example 5 Example 1 except that the amount of boric acid in the stretching bath during stretching in water was 2.5 parts by weight, and the laminate was put into an oven at 110 ° C. for 30 seconds to crystallize the resin substrate. In the same manner, a polarizing plate was obtained.
  • the easy adhesion layer was provided on one side of the resin base material by the following method.
  • One side of the resin base material is subjected to corona treatment, and this corona treatment surface is subjected to acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “Gosefimer Z200”, polymerization degree 1200, saponification degree 99.0 mol. %, Acetoacetyl modification degree 4.6%) and a modified polyolefin resin aqueous dispersion (manufactured by Unitika Ltd., trade name “Arrow Base SE1030N”, solid content concentration 22%) and pure water were mixed.
  • Example 1 A polarizing plate was obtained in the same manner as in Example 1 except that the laminate was placed in an oven at 85 ° C. for 30 seconds to crystallize the resin substrate.
  • Example 3 A polarizing plate was obtained in the same manner as in Example 1 except that the laminate was put in an oven at 95 ° C. for 30 seconds to crystallize the resin substrate.
  • the polarizing plate of the example having the resin base material having a specific crystallinity and the polarizing film satisfying the specific boric acid concentration occurrence of cracks is suppressed.
  • the polarizing plate of the comparative example is cracked and inferior in durability to the polarizing plate of the example.
  • the polarizing plate of Example 6 is superior in adhesion between the resin base material and the polarizing film (PVA-based resin layer) as compared to the polarizing plates of other examples or comparative examples. Further, undesired peeling or floating of the polarizing film (PVA resin layer) or the resin base material during processing of the polarizing plate (for example, punching) was suitably prevented.
  • the reason why the occurrence of cracks in the polarizing plate of the example was suppressed is estimated as follows. That is, in the polarizing plate of the example, the difference between the dimensional change rate of the resin base material and the dimensional change rate of the polarizing film in the MD direction (dimensional change rate of the resin base material ⁇ dimensional change rate of the polarizing film) and in the TD direction.
  • the difference between the dimensional change rate of the resin substrate and the dimensional change rate of the polarizing film is within 5%, and the dimensional change rate in the TD direction.
  • Difference (absolute value) is close to the difference (absolute value) in the dimensional change rate in the MD direction (within ⁇ 1.5%). Since the polarizing film is oriented in the stretching direction (MD), the mechanical properties tend to be weak in the direction (TD) orthogonal to the stretching direction. Therefore, by making the difference (absolute value) of the dimensional change rate in the TD direction close to the difference (absolute value) of the dimensional change rate in the MD direction, the occurrence of cracks is suppressed without biasing the strain in the TD direction. It is thought.
  • the polarizing plate of the present invention is suitably used for an image display device, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a polarizing plate that is improved in durability and that can be used as-is in a state where a polarizing film is layered on a resin substrate. This polarizing plate comprises a polyester resin substrate and a polarizing film that is layered on one side of the polyester resin substrate and that has a thickness of 10 µm or less. The degree of crystallinity of the polyester resin substrate as calculated by attenuated total reflection spectrometry is from 0.55 to 0.80, and the boric acid concentration in the polarizing film is from 10 wt% to 20 wt%.

Description

偏光板Polarizer
 本発明は、偏光板に関する。 The present invention relates to a polarizing plate.
 樹脂基材上にポリビニルアルコール系樹脂層を形成し、この積層体を延伸、染色することにより偏光膜を得る方法が提案されている(例えば、特許文献1)。このような方法によれば、厚みの薄い偏光膜が得られるため、例えば、画像表示装置の薄型化で寄与し得るとして注目されている。 A method has been proposed in which a polarizing film is obtained by forming a polyvinyl alcohol-based resin layer on a resin substrate and stretching and dyeing the laminate (for example, Patent Document 1). According to such a method, a polarizing film having a small thickness can be obtained, and thus, for example, it has been attracting attention as being able to contribute to the thinning of the image display device.
 上記偏光膜は、上記樹脂基材に積層された状態のままで用いられ得る(特許文献2)。しかしながら、このような実施形態においては、偏光板にクラックが発生する場合があることから、耐久性の向上が求められている。 The polarizing film can be used as it is laminated on the resin substrate (Patent Document 2). However, in such an embodiment, since a crack may occur in the polarizing plate, improvement in durability is required.
特開2000-338329号公報JP 2000-338329 A 特許第4979833号公報Japanese Patent No. 4997833
 本発明は、上記問題を解決するためになされたものであり、その主たる目的は、偏光膜が樹脂基材に積層された状態のままで用いられ得る偏光板であって、耐久性が向上された偏光板を提供することにある。 The present invention has been made in order to solve the above problems, and its main purpose is a polarizing plate that can be used while the polarizing film is laminated on the resin base material, and has improved durability. It is to provide a polarizing plate.
 本発明によれば、ポリエステル系樹脂基材と、該ポリエステル系樹脂基材の片側に積層された厚みが10μm以下の偏光膜と、を有する偏光板が提供される。本発明の偏光板においては、該ポリエステル系樹脂基材の全反射減衰分光(ATR)測定により算出される結晶化度が、0.55~0.80であり、該偏光膜中のホウ酸濃度が、10重量%~20重量%である。
 1つの実施形態においては、上記ポリエステル系樹脂が、ポリエチレンテレフタレートまたはその共重合体である。
 1つの実施形態においては、上記偏光膜が、上記ポリエステル系樹脂基材の片側に接着層を介することなく積層されている。
 1つの実施形態においては、上記偏光板は、上記偏光膜の上記ポリエステル系樹脂基材が積層される側と反対側に、保護フィルムを有さない。
 1つの実施形態においては、上記偏光板は、上記ポリエステル系樹脂基材と上記偏光膜との間に易接着層を有する。
 本発明の別の局面によれば、上記偏光板の製造方法が提供される。該製造方法は、ポリエステル系樹脂基材上にポリビニルアルコール系樹脂膜を形成して積層体を作製すること、該積層体を延伸すること、該ポリビニルアルコール系樹脂膜を染色すること、および、該ポリエステル系樹脂基材を結晶化すること、を含む。
According to this invention, the polarizing plate which has a polyester-type resin base material and the polarizing film laminated | stacked on the one side of this polyester-type resin base material with a thickness of 10 micrometers or less is provided. In the polarizing plate of the present invention, the crystallinity calculated by the total reflection attenuation spectroscopy (ATR) measurement of the polyester-based resin substrate is 0.55 to 0.80, and the boric acid concentration in the polarizing film Is 10% to 20% by weight.
In one embodiment, the polyester-based resin is polyethylene terephthalate or a copolymer thereof.
In one embodiment, the polarizing film is laminated on one side of the polyester resin base material without an adhesive layer.
In one embodiment, the polarizing plate does not have a protective film on the side of the polarizing film opposite to the side on which the polyester resin substrate is laminated.
In one embodiment, the polarizing plate has an easy-adhesion layer between the polyester resin substrate and the polarizing film.
According to another situation of this invention, the manufacturing method of the said polarizing plate is provided. The production method includes forming a polyvinyl alcohol resin film on a polyester resin base material to produce a laminate, stretching the laminate, dyeing the polyvinyl alcohol resin film, and Crystallizing the polyester resin substrate.
 本発明によれば、樹脂基材上にポリビニルアルコール系樹脂膜が形成された積層体を延伸および染色することにより得られる偏光板において、該樹脂基材の結晶化度と偏光膜中のホウ酸濃度とを特定の範囲に調整することにより、偏光膜が樹脂基材に積層された状態のままで用いられ得、かつ、耐久性に優れた偏光板を得ることができる。 According to the present invention, in a polarizing plate obtained by stretching and dyeing a laminate in which a polyvinyl alcohol-based resin film is formed on a resin substrate, the crystallinity of the resin substrate and boric acid in the polarizing film By adjusting the concentration within a specific range, it is possible to obtain a polarizing plate that can be used while the polarizing film is laminated on the resin base material and is excellent in durability.
(a)および(b)はそれぞれ、本発明の1つの実施形態における偏光板の概略断面図である。(A) And (b) is a schematic sectional drawing of the polarizing plate in one embodiment of this invention, respectively.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.偏光板
 本発明の偏光板は、ポリエステル系樹脂基材と、該ポリエステル系樹脂基材の片側に積層された厚みが10μm以下の偏光膜と、を有する。図1(a)は、本発明の1つの実施形態における偏光板の概略断面図である。偏光板10aは、ポリエステル系樹脂基材11と、該ポリエステル系樹脂基材11の一方の面に密着して(換言すれば、接着層を介さずに)積層された偏光膜12とを有する。図1(b)は、本発明の別の実施形態における偏光板の概略断面図である。偏光板10bは、保護フィルム13をさらに有する。保護フィルム13は、偏光膜12のポリエステル系樹脂基材11が配置されている側とは反対側に配置されている。保護フィルム13は、偏光膜12に接着層を介して積層されていてもよいし、密着させて(接着層を介さずに)積層されていてもよい。偏光板10a、10bにおいては、ポリエステル系樹脂基材11が、保護フィルムとして機能し得る。本発明においては、偏光膜の作製過程における延伸および染色時に用いる樹脂基材を剥離することなく、保護フィルムとして用いることができ、偏光膜の片側にのみ該樹脂基材(保護フィルム)を有する構成(図1(a)の構成)であっても、クラックの発生を抑制し得る。なお、偏光板10a、10bは、ポリエステル系樹脂基材11と偏光膜12との間に易接着層(図示せず)を有していてもよい。
A. Polarizing plate The polarizing plate of the present invention has a polyester resin substrate and a polarizing film having a thickness of 10 μm or less laminated on one side of the polyester resin substrate. Fig.1 (a) is a schematic sectional drawing of the polarizing plate in one Embodiment of this invention. The polarizing plate 10a includes a polyester-based resin base material 11 and a polarizing film 12 stacked in close contact with one surface of the polyester-based resin base material 11 (in other words, without an adhesive layer). FIG.1 (b) is a schematic sectional drawing of the polarizing plate in another embodiment of this invention. The polarizing plate 10 b further includes a protective film 13. The protective film 13 is arrange | positioned on the opposite side to the side by which the polyester-type resin base material 11 of the polarizing film 12 is arrange | positioned. The protective film 13 may be laminated on the polarizing film 12 via an adhesive layer, or may be laminated in close contact (without an adhesive layer). In the polarizing plates 10a and 10b, the polyester resin substrate 11 can function as a protective film. In the present invention, it is possible to use as a protective film without peeling off the resin base material used during stretching and dyeing in the production process of the polarizing film, and the resin base material (protective film) is provided only on one side of the polarizing film. Even in the configuration of FIG. 1A, the generation of cracks can be suppressed. The polarizing plates 10a and 10b may have an easy-adhesion layer (not shown) between the polyester resin substrate 11 and the polarizing film 12.
 一般に、樹脂基材上にポリビニルアルコール(以下、「PVA」と称する場合がある)系樹脂膜が形成された積層体を延伸および染色することにより得られる偏光板においては、配向応力の緩和、収縮応力の発生等に起因して樹脂基材およびPVA系樹脂膜に寸法変化が生じる。このとき両者の寸法変化量が異なることから、その界面に歪みが生じ、クラックの発生につながると推測される。これに対し、本発明においては、樹脂基材として特定範囲の結晶化度を有するポリエステル系樹脂基材を用い、かつ、偏光膜中のホウ酸濃度を特定の範囲に調整する。これにより、偏光膜の吸収軸方向および該方向と直交する方向の両方向において、樹脂基材の寸法変化量と偏光膜の寸法変化量とが均衡するので、樹脂基材/偏光膜界面に歪みが生じ難くなり、また、生じた歪みも両方向に分散される。その結果、クラックの発生が抑制され得る。なお、本明細書において、「直交する方向」とは、90°±5.0°である場合を包含し、好ましくは90°±3.0°、さらに好ましくは90°±1.0°である。また、「平行な方向」とは、0°±5.0°である場合を包含し、好ましくは0°±3.0°、さらに好ましくは0°±1.0°である。 In general, in a polarizing plate obtained by stretching and dyeing a laminate in which a polyvinyl alcohol (hereinafter sometimes referred to as “PVA”) resin film is formed on a resin substrate, relaxation and shrinkage of orientation stress Dimensional changes occur in the resin base material and the PVA resin film due to the generation of stress and the like. At this time, since the amount of dimensional change between the two is different, it is presumed that distortion occurs at the interface and leads to generation of cracks. On the other hand, in this invention, the polyester-type resin base material which has the crystallinity of a specific range is used as a resin base material, and the boric acid density | concentration in a polarizing film is adjusted to a specific range. As a result, in both the absorption axis direction of the polarizing film and the direction orthogonal to the direction, the dimensional change amount of the resin base material and the dimensional change amount of the polarizing film are balanced, so that the distortion is caused at the resin base material / polarizing film interface. It becomes difficult to occur, and the generated distortion is also distributed in both directions. As a result, the occurrence of cracks can be suppressed. In this specification, the “perpendicular direction” includes a case of 90 ° ± 5.0 °, preferably 90 ° ± 3.0 °, more preferably 90 ° ± 1.0 °. is there. The “parallel direction” includes the case of 0 ° ± 5.0 °, preferably 0 ° ± 3.0 °, more preferably 0 ° ± 1.0 °.
A-1.偏光膜
 上記偏光膜は、実質的には、ヨウ素が吸着配向されたPVA系樹脂膜である。偏光膜の厚みは、10μm以下、好ましくは7.5μm以下、より好ましくは5μm以下である。一方、偏光膜の厚みは、好ましくは0.5μm以上、より好ましくは1.5μm以上である。厚みが薄すぎると得られる偏光膜の光学特性が低下するおそれがある。偏光膜は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光膜の単体透過率は、好ましくは40.0%以上、より好ましくは41.0%以上、さらに好ましくは42.0%以上である。偏光膜の偏光度は、好ましくは99.8%以上、より好ましくは99.9%以上、さらに好ましくは99.95%以上である。
A-1. Polarizing film The polarizing film is substantially a PVA resin film in which iodine is adsorbed and oriented. The thickness of the polarizing film is 10 μm or less, preferably 7.5 μm or less, more preferably 5 μm or less. On the other hand, the thickness of the polarizing film is preferably 0.5 μm or more, more preferably 1.5 μm or more. If the thickness is too thin, the optical properties of the obtained polarizing film may be deteriorated. The polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance of the polarizing film is preferably 40.0% or more, more preferably 41.0% or more, and further preferably 42.0% or more. The polarization degree of the polarizing film is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.
 上記PVA系樹脂膜を形成するPVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光膜が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。 Any appropriate resin can be adopted as the PVA resin for forming the PVA resin film. Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymer. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer can be obtained by saponifying an ethylene-vinyl acetate copolymer. The degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. . The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, there is a risk of gelation.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択され得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA resin can be appropriately selected according to the purpose. The average degree of polymerization is usually 1000 to 10,000, preferably 1200 to 4500, and more preferably 1500 to 4300. The average degree of polymerization can be determined according to JIS K 6726-1994.
 上記偏光膜は、ホウ酸を含む。偏光膜中のホウ酸濃度は、10重量%~20重量%であり、好ましくは12重量%~19重量%である。ホウ酸濃度が当該範囲内である場合、吸収軸方向および該方向と直交する方向における偏光膜の寸法変化率をポリエステル系樹脂基材の寸法変化率と近い値にすることができ、かつ、吸収軸方向における偏光膜の寸法変化率とポリエステル系樹脂基材の寸法変化率との差が、吸収軸に直交する方向における偏光膜の寸法変化率とポリエステル系樹脂基材の寸法変化率との差に比べて大きくなりすぎることを防止できる。偏光膜中のホウ酸濃度は、例えば、後述する偏光板の製造方法において、延伸浴、不溶化浴、架橋浴等におけるホウ酸濃度を変化させること、これらの浴への浸漬時間を変化させること等により調整することができる。なお、偏光膜中のホウ酸濃度(重量%)は、例えば、全反射減衰分光(ATR)測定から算出されるホウ酸量指数を用いて決定することができる。
   (ホウ酸量指数)=(ホウ酸ピーク665cm-1の強度)/(参照ピーク2941cm-1の強度)
   (ホウ酸濃度)=(ホウ酸量指数)×5.54+4.1
 ここで、「5.54」および「4.1」はいずれも、ホウ酸濃度が既知の試料の蛍光X線強度を測定し、検量線を作成することにより得られる定数である。
The polarizing film contains boric acid. The boric acid concentration in the polarizing film is 10 to 20% by weight, preferably 12 to 19% by weight. When the boric acid concentration is within the range, the dimensional change rate of the polarizing film in the absorption axis direction and the direction orthogonal to the direction can be made close to the dimensional change rate of the polyester-based resin base material, and the absorption The difference between the dimensional change rate of the polarizing film in the axial direction and the dimensional change rate of the polyester resin substrate is the difference between the dimensional change rate of the polarizing film and the dimensional change rate of the polyester resin substrate in the direction perpendicular to the absorption axis. It can be prevented from becoming too large compared to. The boric acid concentration in the polarizing film is, for example, changing the boric acid concentration in a stretching bath, an insolubilizing bath, a cross-linking bath, etc., and changing the immersion time in these baths, etc. Can be adjusted. The boric acid concentration (% by weight) in the polarizing film can be determined using, for example, a boric acid amount index calculated from total reflection attenuation spectroscopy (ATR) measurement.
(Boric acid amount index) = (Intensity of boric acid peak 665 cm −1 ) / (Intensity of reference peak 2941 cm −1 )
(Boric acid concentration) = (Boric acid amount index) × 5.54 + 4.1
Here, both “5.54” and “4.1” are constants obtained by measuring the fluorescent X-ray intensity of a sample having a known boric acid concentration and creating a calibration curve.
A-2.ポリエステル系樹脂基材
 上記ポリエステル系樹脂基材の形成材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、イソフタル酸、シクロヘキサン環等を含む脂環式のジカルボン酸または脂環式のジオール等を含む共重合PET(PET-G)、その他ポリエステル、および、これらの共重合体やブレンド体等を用いることができる。なかでも、PETまたは共重合PETを用いることが好ましい。これらの樹脂によれば、未延伸状態では非晶で高倍率延伸に適した優れた延伸性を有し、延伸、加熱により結晶化することで、耐熱性および寸法安定性を付与できる。さらに、未延伸の状態でPVA系樹脂を塗布、乾燥することが可能な程度の耐熱性を確保できる。
A-2. Polyester-based resin base material Examples of the polyester-based resin base material include, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), isophthalic acid, cyclohexane ring and the like. Copolymerized PET (PET-G) containing other dicarboxylic acids or alicyclic diols, other polyesters, copolymers and blends thereof, and the like can be used. Among these, it is preferable to use PET or copolymerized PET. According to these resins, in an unstretched state, it is amorphous and has excellent stretchability suitable for high-strength stretching, and heat resistance and dimensional stability can be imparted by crystallization by stretching and heating. Furthermore, the heat resistance of the grade which can apply | coat and dry PVA-type resin in an unstretched state is securable.
 ポリエステル系樹脂基材のガラス転移温度(Tg)は、好ましくは170℃以下である。このような樹脂基材を用いることにより、PVA系樹脂膜の結晶化を抑制しながら、延伸性を十分に確保することができる。水による樹脂基材の可塑化と、水中延伸を良好に行うことを考慮すると、120℃以下であることがさらに好ましい。1つの実施形態においては、ポリエステル系樹脂基材のガラス転移温度は、好ましくは60℃以上である。このようなポリエステル系樹脂基材を用いることにより、後述のPVA系樹脂を含む塗布液を塗布・乾燥する際に、ポリエステル系樹脂基材が変形(例えば、凹凸やタルミ、シワ等の発生)する等の不具合を防止することができる。また、積層体の延伸を、好適な温度(例えば、60℃~70℃程度)にて行うことができる。別の実施形態においては、PVA系樹脂を含む塗布液を塗布・乾燥する際に、ポリエステル系樹脂基材が変形しなければ、60℃より低いガラス転移温度であってもよい。なお、ガラス転移温度(Tg)は、JIS K 7121に準じて求められる値である。 The glass transition temperature (Tg) of the polyester resin substrate is preferably 170 ° C. or lower. By using such a resin base material, it is possible to sufficiently ensure stretchability while suppressing crystallization of the PVA-based resin film. Considering plasticization of the resin base material with water and good stretching in water, it is more preferably 120 ° C. or lower. In one embodiment, the glass transition temperature of the polyester resin substrate is preferably 60 ° C. or higher. By using such a polyester-based resin base material, the polyester-based resin base material is deformed (for example, generation of irregularities, talmi, wrinkles, etc.) when a coating solution containing a PVA-based resin described later is applied and dried. Etc. can be prevented. Further, the laminate can be stretched at a suitable temperature (eg, about 60 ° C. to 70 ° C.). In another embodiment, a glass transition temperature lower than 60 ° C. may be used as long as the polyester resin base material is not deformed when applying and drying a coating solution containing a PVA resin. The glass transition temperature (Tg) is a value determined according to JIS K 7121.
 1つの実施形態においては、ポリエステル系樹脂基材は、吸水率が0.2%以上であることが好ましく、さらに好ましくは0.3%以上である。このようなポリエステル系樹脂基材は水を吸収し、水が可塑剤的な働きをして可塑化し得る。その結果、水中延伸において延伸応力を大幅に低下させることができ、延伸性に優れ得る。一方、ポリエステル系樹脂基材の吸水率は、好ましくは3.0%以下、さらに好ましくは1.0%以下である。このようなポリエステル系樹脂基材を用いることにより、製造時にポリエステル系樹脂基材の寸法安定性が著しく低下して、得られる積層体の外観が悪化するなどの不具合を防止することができる。また、水中延伸時に破断したり、ポリエステル系樹脂基材からPVA系樹脂膜が剥離したりするのを防止することができる。なお、吸水率は、JIS K 7209に準じて求められる値である。 In one embodiment, the polyester resin base material preferably has a water absorption rate of 0.2% or more, and more preferably 0.3% or more. Such a polyester resin base material absorbs water, and the water can act as a plasticizer to be plasticized. As a result, the stretching stress can be greatly reduced in stretching in water, and the stretchability can be excellent. On the other hand, the water absorption rate of the polyester resin substrate is preferably 3.0% or less, more preferably 1.0% or less. By using such a polyester-based resin base material, it is possible to prevent problems such as a significant decrease in the dimensional stability of the polyester-based resin base material during production and deterioration of the appearance of the resulting laminate. Moreover, it can prevent at the time of extending | stretching in water, or a PVA-type resin film peeling from a polyester-type resin base material. The water absorption is a value determined according to JIS K 7209.
 ポリエステル系樹脂基材の厚みは、好ましくは10μm~200μm、さらに好ましくは20μm~150μmである。 The thickness of the polyester resin base material is preferably 10 μm to 200 μm, more preferably 20 μm to 150 μm.
 ポリエステル系樹脂基材の全反射減衰分光(ATR)測定により算出される結晶化度は、0.55~0.80、好ましくは0.58~0.80、より好ましくは0.60~0.75である。ポリエステル系樹脂基材の結晶化度が当該範囲内である場合、偏光膜の吸収軸方向および該方向と直交する方向におけるポリエステル系樹脂基材の寸法変化率を偏光膜の寸法変化率と近い値とすることができ、かつ、吸収軸方向における偏光膜の寸法変化率とポリエステル系樹脂基材の寸法変化率との差が、吸収軸に直交する方向における偏光膜の寸法変化率とポリエステル系樹脂基材の寸法変化率との差に比べて大きくなりすぎることを防止できる。ポリエステル系樹脂基材の結晶化度は、例えば、結晶化する際の加熱温度および/または加熱時間を変化させることによって調整することができる。なお、上記ポリエステル系樹脂基材の結晶化度は、以下の式に基づいて算出される。
(結晶化度)=(結晶ピーク1340cm-1の強度)/(参照ピーク1410cm-1の強度)
The degree of crystallinity calculated by measuring total reflection attenuation (ATR) of the polyester resin substrate is 0.55 to 0.80, preferably 0.58 to 0.80, and more preferably 0.60 to 0.8. 75. When the degree of crystallinity of the polyester-based resin substrate is within the above range, the dimensional change rate of the polyester-based resin substrate in the absorption axis direction of the polarizing film and the direction orthogonal to the direction is close to the dimensional change rate of the polarizing film. And the difference between the dimensional change rate of the polarizing film in the direction of the absorption axis and the dimensional change rate of the polyester resin base material is such that the dimensional change rate of the polarizing film in the direction orthogonal to the absorption axis and the polyester resin It can prevent becoming large compared with the difference with the dimensional change rate of a base material. The degree of crystallization of the polyester resin substrate can be adjusted, for example, by changing the heating temperature and / or the heating time for crystallization. In addition, the crystallinity degree of the said polyester-type resin base material is computed based on the following formula | equation.
(Crystallinity) = (Intensity of crystal peak 1340 cm −1 ) / (Intensity of reference peak 1410 cm −1 )
A-3.保護フィルム
 上記保護フィルムの形成材料としては、例えば、(メタ)アクリル系樹脂、ジアセチルセルロース、トリアセチルセルロース等のセルロース系樹脂、シクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。保護フィルムの厚みは、好ましくは10μm~100μmである。
A-3. Protective film Examples of the material for forming the protective film include (meth) acrylic resins, cellulose resins such as diacetyl cellulose and triacetyl cellulose, cycloolefin resins, olefin resins such as polypropylene, and polyethylene terephthalate resins. Examples thereof include ester resins, polyamide resins, polycarbonate resins, and copolymer resins thereof. The thickness of the protective film is preferably 10 μm to 100 μm.
A-4.易接着層
 易接着層は、実質的に易接着層形成用組成物のみから形成される層であってもよく、易接着層形成用組成物と偏光膜の形成材料とが混合(相溶を含む)した層または領域であってもよい。易接着層が形成されていることにより、優れた密着性が得られ得る。易接着層の厚みは、0.05μm~1μm程度とするのが好ましい。易接着層は、例えば、偏光板の断面を走査型電子顕微鏡(SEM)で観察することにより確認することができる。易接着層形成用組成物については、B項で詳述する。
A-4. Easy-adhesion layer The easy-adhesion layer may be a layer formed substantially only from the composition for forming an easy-adhesion layer, and the composition for forming an easy-adhesion layer and the material for forming the polarizing film are mixed (compatible). A layer or region that is included). By forming the easy adhesion layer, excellent adhesion can be obtained. The thickness of the easy adhesion layer is preferably about 0.05 μm to 1 μm. The easy adhesion layer can be confirmed, for example, by observing the cross section of the polarizing plate with a scanning electron microscope (SEM). The composition for forming an easily adhesive layer will be described in detail in Section B.
A-5.接着層
 接着層は、任意の適切な接着剤または粘着剤で形成される。粘着剤層は、代表的にはアクリル系粘着剤で形成される。接着剤層は、代表的にはビニルアルコール系接着剤で形成される。
A-5. Adhesive layer The adhesive layer is formed of any suitable adhesive or adhesive. The pressure-sensitive adhesive layer is typically formed of an acrylic pressure-sensitive adhesive. The adhesive layer is typically formed of a vinyl alcohol adhesive.
B.偏光板の製造方法
 本発明の偏光板の製造方法は、代表的には、ポリエステル系樹脂基材上にPVA系樹脂膜を形成して積層体を作製することと、該積層体を延伸することと、該PVA系樹脂膜を染色することと、該ポリエステル系樹脂基材を結晶化することと、を含む。
B. Production method of polarizing plate The production method of the polarizing plate of the present invention typically comprises forming a PVA resin film on a polyester resin substrate to produce a laminate, and stretching the laminate. And dyeing the PVA resin film, and crystallizing the polyester resin substrate.
B-1.積層体の作製
 ポリエステル系樹脂基材上にPVA系樹脂膜を形成する方法としては、任意の適切な方法が採用され得る。好ましくは、ポリエステル系樹脂基材上に、PVA系樹脂を含む塗布液を塗布し、乾燥することにより、PVA系樹脂膜を形成する。1つの実施形態においては、ポリエステル系樹脂基材上に、易接着層形成用組成物を塗布し、乾燥することにより、易接着層を形成し、該易接着層上にPVA系樹脂膜を形成する。
B-1. Production of Laminate Any appropriate method can be adopted as a method of forming a PVA resin film on a polyester resin substrate. Preferably, a PVA-based resin film is formed by applying a coating liquid containing a PVA-based resin on a polyester-based resin base material and drying it. In one embodiment, an easy-adhesion layer forming composition is applied on a polyester-based resin substrate and dried to form an easy-adhesion layer, and a PVA-based resin film is formed on the easy-adhesion layer To do.
 上記ポリエステル系樹脂基材の形成材料は、上記のとおりである。ポリエステル系樹脂基材の厚み(後述する延伸前の厚み)は、好ましくは20μm~300μm、より好ましくは50μm~200μmである。20μm未満であると、PVA系樹脂膜の形成が困難になるおそれがある。300μmを超えると、例えば、水中延伸において、ポリエステル系樹脂基材が水を吸収するのに長時間を要するとともに、延伸に過大な負荷を要するおそれがある。なお、積層体の作製に用いられる際のポリエステル系樹脂基材の全反射減衰分光(ATR)測定により算出される結晶化度は、例えば、0.20~0.50であり得る。 The forming material of the polyester resin base material is as described above. The thickness of the polyester resin substrate (thickness before stretching described later) is preferably 20 μm to 300 μm, more preferably 50 μm to 200 μm. If it is less than 20 μm, it may be difficult to form a PVA resin film. If it exceeds 300 μm, for example, in stretching in water, it takes a long time for the polyester-based resin substrate to absorb water, and an excessive load may be required for stretching. Note that the degree of crystallinity calculated by the total reflection attenuation spectroscopy (ATR) measurement of the polyester-based resin substrate when used for the production of the laminate may be, for example, 0.20 to 0.50.
 上記塗布液は、代表的には、上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、ポリエステル系樹脂基材に密着した均一な塗布膜を形成することができる。 The coating solution is typically a solution obtained by dissolving the PVA resin in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Among these, water is preferable. The concentration of the PVA resin in the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film in close contact with the polyester resin substrate can be formed.
 塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂膜の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。また、添加剤としては、例えば、易接着成分が挙げられる。易接着成分を用いることにより、ポリエステル系樹脂基材とPVA系樹脂膜との密着性を向上させ得る。その結果、例えば、基材からPVA系樹脂膜が剥がれる等の不具合を抑制して、後述の染色、水中延伸を良好に行うことができる。易接着成分としては、例えば、アセトアセチル変性PVAなどの変性PVAが用いられる。 Additives may be added to the coating solution. Examples of the additive include a plasticizer and a surfactant. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. Examples of the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the resulting PVA resin film. Moreover, as an additive, an easily bonding component is mentioned, for example. By using the easy-adhesion component, the adhesion between the polyester resin substrate and the PVA resin film can be improved. As a result, for example, problems such as peeling of the PVA-based resin film from the substrate can be suppressed, and dyeing and underwater stretching described later can be performed satisfactorily. As the easily adhesive component, for example, modified PVA such as acetoacetyl-modified PVA is used.
 塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。 Any appropriate method can be adopted as a coating method of the coating solution. Examples thereof include a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method and the like).
 塗布液の塗布・乾燥温度は、好ましくは50℃以上である。 The coating / drying temperature of the coating solution is preferably 50 ° C. or higher.
 上記PVA系樹脂膜の厚み(後述する延伸前の厚み)は、好ましくは3μm~20μmである。 The thickness of the PVA resin film (thickness before stretching described later) is preferably 3 μm to 20 μm.
 PVA系樹脂膜を形成する前に、ポリエステル系樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、ポリエステル系樹脂基材上に易接着層形成用組成物を塗布(コーティング処理)してもよい。このような処理を行うことにより、ポリエステル系樹脂基材とPVA系樹脂膜との密着性を向上させることができる。その結果、例えば、基材からPVA系樹脂膜が剥がれる等の不具合を抑制して、後述の染色および延伸を良好に行うことができる。 Before forming the PVA-based resin film, the polyester-based resin substrate may be subjected to a surface treatment (for example, corona treatment), or an easy-adhesion layer-forming composition is applied onto the polyester-based resin substrate (coating) Processing). By performing such a treatment, the adhesion between the polyester-based resin substrate and the PVA-based resin film can be improved. As a result, for example, problems such as peeling of the PVA resin film from the substrate can be suppressed, and dyeing and stretching described below can be performed satisfactorily.
 易接着層形成用組成物は、好ましくはポリビニルアルコール系成分を含む。ポリビニルアルコール系成分としては、任意の適切なPVA系樹脂が用いられ得る。具体的には、ポリビニルアルコール、変性ポリビニルアルコールが挙げられる。変性ポリビニルアルコールとしては、例えば、アセトアセチル基、カルボン酸基、アクリル基および/またはウレタン基で変性されたポリビニルアルコールが挙げられる。これらの中でも、アセトアセチル変性PVAが好ましく用いられる。アセトアセチル変性PVAとしては、下記一般式(I)で表わされる繰り返し単位を少なくとも有する重合体が好ましく用いられる。 The easy-adhesion layer-forming composition preferably contains a polyvinyl alcohol-based component. Any appropriate PVA-based resin can be used as the polyvinyl alcohol-based component. Specific examples include polyvinyl alcohol and modified polyvinyl alcohol. Examples of the modified polyvinyl alcohol include polyvinyl alcohol modified with an acetoacetyl group, a carboxylic acid group, an acrylic group and / or a urethane group. Among these, acetoacetyl-modified PVA is preferably used. As the acetoacetyl-modified PVA, a polymer having at least a repeating unit represented by the following general formula (I) is preferably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(I)において、l+m+nに対するnの割合は、好ましくは1%~10%である。 In the above formula (I), the ratio of n to l + m + n is preferably 1% to 10%.
 アセトアセチル変性PVAの平均重合度は、好ましくは1000~10000であり、好ましくは1200~5000である。アセトアセチル変性PVAのケン化度は、好ましくは97モル%以上である。アセトアセチル変性PVAの4重量%水溶液のpHは、好ましくは3.5~5.5である。なお、平均重合度およびケン化度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the acetoacetyl-modified PVA is preferably 1000 to 10,000, and preferably 1200 to 5,000. The saponification degree of acetoacetyl-modified PVA is preferably 97 mol% or more. The pH of a 4% by weight aqueous solution of acetoacetyl-modified PVA is preferably 3.5 to 5.5. The average polymerization degree and saponification degree can be determined according to JIS K 6726-1994.
 易接着層形成用組成物は、目的等に応じて、ポリオレフィン系成分、ポリエステル系成分、ポリアクリル系成分等をさらに含み得る。好ましくは、易接着層形成用組成物は、ポリオレフィン系成分をさらに含む。 The easy-adhesion layer-forming composition may further contain a polyolefin-based component, a polyester-based component, a polyacrylic-based component, or the like depending on the purpose. Preferably, the easily adhesive layer forming composition further includes a polyolefin-based component.
 上記ポリオレフィン系成分としては、任意の適切なポリオレフィン系樹脂が用いられ得る。ポリオレフィン系樹脂の主成分であるオレフィン成分としては、例えば、エチレン、プロピレン、イソブチレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素数2~6のオレフィン系炭化水素が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、エチレン、プロピレン、イソブチレン、1-ブテン等の炭素数2~4のオレフィン系炭化水素が好ましく、さらに好ましくはエチレンが用いられる。 Any appropriate polyolefin resin can be used as the polyolefin component. Examples of the olefin component that is a main component of the polyolefin resin include olefin hydrocarbons having 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 1-butene, 1-pentene, and 1-hexene. These may be used alone or in combination of two or more. Among these, olefinic hydrocarbons having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene are preferable, and ethylene is more preferably used.
 上記ポリオレフィン系樹脂を構成するモノマー成分のうち、オレフィン成分の占める割合は、好ましくは50重量%~95重量%である。 The proportion of the olefin component in the monomer component constituting the polyolefin resin is preferably 50% by weight to 95% by weight.
 上記ポリオレフィン系樹脂は、カルボキシル基および/またはその無水物基を有することが好ましい。このようなポリオレフィン系樹脂は水に分散し得、易接着層が良好に形成され得る。このような官能基を有するモノマー成分としては、例えば、不飽和カルボン酸およびその無水物、不飽和ジカルボン酸のハーフエステル、ハーフアミドが挙げられる。これらの具体例としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、クロトン酸が挙げられる。 The polyolefin-based resin preferably has a carboxyl group and / or an anhydride group thereof. Such a polyolefin resin can be dispersed in water, and an easy-adhesion layer can be formed well. Examples of the monomer component having such a functional group include unsaturated carboxylic acids and anhydrides thereof, half esters and half amides of unsaturated dicarboxylic acids. Specific examples thereof include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid and crotonic acid.
 ポリオレフィン系樹脂の分子量は、例えば5000~80000である。 The molecular weight of the polyolefin resin is, for example, 5000 to 80000.
 易接着層形成用組成物において、ポリビニルアルコール系成分とポリオレフィン系成分との配合比(前者:後者(固形分))は、好ましくは5:95~60:40、さらに好ましくは20:80~50:50である。ポリビニルアルコール系成分が多すぎると密着性が十分に得られないおそれがある。具体的には、偏光膜を樹脂基材から剥離する際に要する剥離力が低下して、十分な密着性が得られないおそれがある。一方、ポリビニルアルコール系成分が少なすぎると得られる偏光板の外観が損なわれるおそれがある。具体的には、易接着層の形成の際に、塗布膜が白濁する等の不具合が発生して、外観に優れた偏光板を得るのが困難となるおそれがある。 In the composition for forming an easily adhesive layer, the blending ratio of the polyvinyl alcohol component to the polyolefin component (the former: the latter (solid content)) is preferably 5:95 to 60:40, more preferably 20:80 to 50. : 50. When there are too many polyvinyl alcohol-type components, there exists a possibility that adhesiveness may not fully be acquired. Specifically, the peeling force required when peeling the polarizing film from the resin base material may be reduced, and sufficient adhesion may not be obtained. On the other hand, when there are too few polyvinyl alcohol-type components, there exists a possibility that the external appearance of the polarizing plate obtained may be impaired. Specifically, when the easy-adhesion layer is formed, a problem such as white turbidity of the coating film may occur, which may make it difficult to obtain a polarizing plate having an excellent appearance.
 易接着層形成用組成物は、好ましくは水系である。易接着層形成組成物は、有機溶剤を含み得る。有機溶剤としては、例えば、エタノール、イソプロパノール等が挙げられる。易接着層形成用組成物の固形分濃度は、好ましくは1.0重量%~10重量%である。 The easy-adhesion layer-forming composition is preferably aqueous. The easily adhesive layer forming composition may contain an organic solvent. Examples of the organic solvent include ethanol and isopropanol. The solid content concentration of the easily adhesive layer forming composition is preferably 1.0% by weight to 10% by weight.
 易接着層形成用組成物の塗布方法としては、任意の適切な方法を採用することができる。易接着層形成用組成物の塗布後、塗布膜は乾燥され得る。乾燥温度は、例えば50℃以上である。 Arbitrary appropriate methods can be employ | adopted as a coating method of the composition for easily bonding layer forming. After application of the easy-adhesion layer-forming composition, the coating film can be dried. The drying temperature is, for example, 50 ° C. or higher.
B-2.延伸
 積層体の延伸方法としては、任意の適切な方法を採用することができる。具体的には、固定端延伸(例えば、テンター延伸機を用いる方法)でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。また、同時二軸延伸(例えば、同時二軸延伸機を用いる方法)でもよいし、逐次二軸延伸でもよい。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率(最大延伸倍率)は、各段階の延伸倍率の積である。
B-2. Stretching Any appropriate method can be adopted as a stretching method of the laminate. Specifically, it may be fixed end stretching (for example, a method using a tenter stretching machine) or free end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Moreover, simultaneous biaxial stretching (for example, a method using a simultaneous biaxial stretching machine) or sequential biaxial stretching may be used. The stretching of the laminate may be performed in one stage or in multiple stages. When performed in multiple stages, the draw ratio (maximum draw ratio) of the laminate described later is the product of the draw ratios of the respective stages.
 延伸処理は、積層体を延伸浴に浸漬させながら行う水中延伸方式であってもよいし、空中延伸方式であってもよい。1つの実施形態においては、水中延伸処理を少なくとも1回施し、好ましくは、水中延伸処理と空中延伸処理を組み合わせる。水中延伸によれば、上記ポリエステル系樹脂基材やPVA系樹脂膜のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂膜を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた偏光特性を有する偏光膜を製造することができる。 The stretching treatment may be an underwater stretching method performed by immersing the laminate in a stretching bath, or an air stretching method. In one embodiment, the underwater stretching treatment is performed at least once, and preferably the underwater stretching treatment and the air stretching treatment are combined. According to stretching in water, the polyester resin substrate or PVA resin film can be stretched at a temperature lower than the glass transition temperature (typically about 80 ° C.), and the PVA resin film is crystallized. While suppressing, it can be stretched at a high magnification. As a result, a polarizing film having excellent polarization characteristics can be manufactured.
 積層体の延伸方向としては、任意の適切な方向を選択することができる。1つの実施形態においては、長尺状の積層体の長手方向に延伸する。具体的には、積層体を長手方向に搬送し、その搬送方向(MD)に延伸する。別の実施形態においては、長尺状の積層体の幅方向に延伸する。具体的には、積層体を長手方向に搬送し、その搬送方向(MD)と直交する方向(TD)に延伸する。 Any appropriate direction can be selected as the stretching direction of the laminate. In one embodiment, it extends | stretches in the longitudinal direction of an elongate laminated body. Specifically, the laminate is transported in the longitudinal direction and stretched in the transport direction (MD). In another embodiment, it extends | stretches in the width direction of an elongate laminated body. Specifically, the laminate is transported in the longitudinal direction and stretched in a direction (TD) orthogonal to the transport direction (MD).
 積層体の延伸温度は、ポリエステル系樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。空中延伸方式を採用する場合、延伸温度は、好ましくはポリエステル系樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくはポリエステル系樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、積層体の延伸温度は、好ましくは170℃以下である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂膜の配向を妨げる)を抑制することができる。 The stretching temperature of the laminate can be set to any appropriate value depending on the forming material of the polyester resin substrate, the stretching method, and the like. In the case of adopting the air stretching method, the stretching temperature is preferably equal to or higher than the glass transition temperature (Tg) of the polyester-based resin base material, more preferably the glass transition temperature (Tg) of the polyester-based resin base material + 10 ° C. or higher. Preferably it is Tg + 15 degreeC or more. On the other hand, the stretching temperature of the laminate is preferably 170 ° C. or lower. By stretching at such a temperature, it is possible to suppress rapid crystallization of the PVA-based resin and to suppress defects due to the crystallization (for example, preventing the orientation of the PVA-based resin film due to stretching). it can.
 延伸方式として水中延伸方式を採用する場合、延伸浴の液温は、好ましくは40℃~85℃、さらに好ましくは50℃~85℃である。このような温度であれば、PVA系樹脂膜の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、ポリエステル系樹脂基材のガラス転移温度(Tg)は、PVA系樹脂膜の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水によるポリエステル系樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂膜の溶解性が高くなって、優れた偏光特性が得られないおそれがある。 When the underwater stretching method is adopted as the stretching method, the liquid temperature of the stretching bath is preferably 40 ° C. to 85 ° C., more preferably 50 ° C. to 85 ° C. If it is such temperature, it can extend | stretch at high magnification, suppressing melt | dissolution of a PVA-type resin film. Specifically, as described above, the glass transition temperature (Tg) of the polyester-based resin substrate is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin film. In this case, when the stretching temperature is lower than 40 ° C., there is a possibility that the stretching cannot be satisfactorily performed even in consideration of plasticization of the polyester-based resin substrate with water. On the other hand, the higher the temperature of the stretching bath, the higher the solubility of the PVA-based resin film, and there is a possibility that excellent polarization characteristics cannot be obtained.
 水中延伸方式を採用する場合、積層体をホウ酸水溶液中に浸漬させて延伸することが好ましい(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂膜に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂膜に剛性と耐水性とを付与して、良好に延伸することができ、優れた偏光特性を有する偏光膜を作製することができる。 When employing an underwater stretching method, it is preferable to stretch the laminate by immersing it in an aqueous boric acid solution (stretching in boric acid in water). By using a boric acid aqueous solution as the stretching bath, the PVA resin film can be provided with rigidity that can withstand the tension applied during stretching and water resistance that does not dissolve in water. Specifically, boric acid can form a tetrahydroxyborate anion in an aqueous solution and crosslink with a PVA resin by hydrogen bonding. As a result, rigidity and water resistance can be imparted to the PVA-based resin film, the film can be stretched well, and a polarizing film having excellent polarization characteristics can be produced.
 上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂膜の溶解を効果的に抑制することができ、より高特性の偏光膜を作製することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。 The boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent. The boric acid concentration is preferably 1 to 10 parts by weight with respect to 100 parts by weight of water. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA-based resin film can be effectively suppressed, and a polarizing film having higher characteristics can be produced. In addition to boric acid or borate, an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde, or the like in a solvent can also be used.
 好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂膜に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、さらに好ましくは0.5重量部~8重量部である。 Preferably, iodide is blended in the stretching bath (boric acid aqueous solution). By blending iodide, elution of iodine adsorbed on the PVA resin film can be suppressed. Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Etc. Among these, potassium iodide is preferable. The concentration of iodide is preferably 0.05 to 15 parts by weight, more preferably 0.5 to 8 parts by weight with respect to 100 parts by weight of water.
 積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。好ましくは、水中延伸処理は染色処理の後に行う。 The immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes. Preferably, the underwater stretching process is performed after the dyeing process.
 積層体の延伸倍率(最大延伸倍率)は、積層体の元長に対して、好ましくは4.0倍以上、さらに好ましくは5.0倍以上である。このような高い延伸倍率は、例えば、水中延伸方式(ホウ酸水中延伸)を採用することにより、達成し得る。なお、本明細書において「最大延伸倍率」とは、積層体が破断する直前の延伸倍率をいい、別途、積層体が破断する延伸倍率を確認し、その値よりも0.2低い値をいう。 The draw ratio (maximum draw ratio) of the laminate is preferably 4.0 times or more, more preferably 5.0 times or more with respect to the original length of the laminate. Such a high draw ratio can be achieved, for example, by employing an underwater drawing method (boric acid underwater drawing). In the present specification, the “maximum stretch ratio” refers to a stretch ratio immediately before the laminate is ruptured. Separately, a stretch ratio at which the laminate is ruptured is confirmed, and a value that is 0.2 lower than that value. .
B-3.染色
 PVA系樹脂膜の染色は、代表的には、PVA系樹脂膜にヨウ素を吸着させることにより行う。当該吸着方法としては、例えば、ヨウ素を含む染色液にPVA系樹脂膜(積層体)を浸漬させる方法、PVA系樹脂膜に当該染色液を塗工する方法、当該染色液をPVA系樹脂膜に噴霧する方法等が挙げられる。好ましくは、染色液にPVA系樹脂膜(積層体)を浸漬させる方法である。ヨウ素が良好に吸着し得るからである。
B-3. Dyeing The dyeing of the PVA resin film is typically performed by adsorbing iodine to the PVA resin film. As the adsorption method, for example, a method of immersing a PVA resin film (laminated body) in a staining solution containing iodine, a method of applying the staining solution to the PVA resin film, and applying the staining solution to the PVA resin film The method of spraying etc. are mentioned. Preferably, the PVA resin film (laminate) is immersed in the dyeing solution. This is because iodine can be adsorbed well.
 上記染色液は、好ましくは、ヨウ素水溶液である。ヨウ素の配合量は、水100重量部に対して、好ましくは0.1重量部~0.5重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.02重量部~20重量部、より好ましくは0.1重量部~10重量部である。染色液の染色時の液温は、PVA系樹脂の溶解を抑制するため、好ましくは20℃~50℃である。染色液にPVA系樹脂膜を浸漬させる場合、浸漬時間は、PVA系樹脂膜の透過率を確保するため、好ましくは5秒~5分である。また、染色条件(濃度、液温、浸漬時間)は、最終的に得られる偏光膜の偏光度もしくは単体透過率が所定の範囲となるように、設定することができる。1つの実施形態においては、得られる偏光膜の偏光度が99.98%以上となるように、浸漬時間を設定する。別の実施形態においては、得られる偏光膜の単体透過率が40%~44%となるように、浸漬時間を設定する。 The staining solution is preferably an iodine aqueous solution. The amount of iodine is preferably 0.1 to 0.5 parts by weight with respect to 100 parts by weight of water. In order to increase the solubility of iodine in water, it is preferable to add an iodide to the aqueous iodine solution. Specific examples of the iodide are as described above. The blending amount of iodide is preferably 0.02 to 20 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of water. The liquid temperature during dyeing of the dyeing liquid is preferably 20 ° C. to 50 ° C. in order to suppress dissolution of the PVA resin. When the PVA resin film is immersed in the dyeing solution, the immersion time is preferably 5 seconds to 5 minutes in order to ensure the transmittance of the PVA resin film. The staining conditions (concentration, liquid temperature, immersion time) can be set so that the polarization degree or single transmittance of the finally obtained polarizing film is within a predetermined range. In one embodiment, immersion time is set so that the polarization degree of the polarizing film obtained may be 99.98% or more. In another embodiment, the immersion time is set so that the obtained polarizing film has a single transmittance of 40% to 44%.
 染色処理は、任意の適切なタイミングで行い得る。上記水中延伸を行う場合、好ましくは、水中延伸の前に行う。 The staining process can be performed at any appropriate timing. When performing the said underwater extending | stretching, Preferably, it performs before an underwater extending | stretching.
B-4.結晶化
 ポリエステル系樹脂基材の結晶化は、例えば、ポリエステル系樹脂基材(実質的には、積層体)を加熱することによって行われる。結晶化は、好ましくはPVA系樹脂膜の染色および延伸後に行われる。
B-4. Crystallization The crystallization of the polyester-based resin substrate is performed, for example, by heating the polyester-based resin substrate (substantially a laminate). Crystallization is preferably performed after dyeing and stretching the PVA resin film.
 加熱温度は、代表的には、ポリエステル系樹脂基材のガラス転移温度(Tg)を超える温度である。加熱温度は、好ましくは90℃以上、より好ましくは100℃以上である。また、加熱温度は、好ましくは125℃以下、より好ましくは120℃以下である。このような温度で加熱することにより、ポリエステル系樹脂基材を所望の結晶化度とすることができる。加熱時間は、加熱温度等に応じて適切に設定され得る。加熱時間は、例えば、3秒~2分であり得る。 The heating temperature is typically a temperature that exceeds the glass transition temperature (Tg) of the polyester resin substrate. The heating temperature is preferably 90 ° C. or higher, more preferably 100 ° C. or higher. The heating temperature is preferably 125 ° C. or lower, more preferably 120 ° C. or lower. By heating at such a temperature, a polyester-type resin base material can be made into a desired crystallinity degree. The heating time can be appropriately set according to the heating temperature and the like. The heating time can be, for example, 3 seconds to 2 minutes.
 上記結晶化においては、ポリエステル系樹脂基材のヘイズ値が2%以下となるように結晶化を行うことが好ましい。 In the above crystallization, it is preferable to perform the crystallization so that the haze value of the polyester-based resin substrate is 2% or less.
B-5.その他の処理
 上記PVA系樹脂膜(積層体)には、延伸および染色以外に、偏光膜とするための処理が、適宜施され得る。偏光膜とするための処理としては、例えば、不溶化処理、架橋処理、洗浄処理、乾燥処理等が挙げられる。なお、これらの処理の回数、順序等は、特に限定されない。
B-5. Other treatments In addition to stretching and dyeing, the PVA-based resin film (laminated body) may be appropriately subjected to treatment for forming a polarizing film. Examples of the treatment for forming the polarizing film include insolubilization treatment, crosslinking treatment, washing treatment, and drying treatment. In addition, the frequency | count, order, etc. of these processes are not specifically limited.
 上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂膜(積層体)を浸漬することにより行う。不溶化処理を施すことにより、PVA系樹脂膜に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。不溶化浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。好ましくは、不溶化処理は、上記水中延伸や上記染色処理の前に行う。 The insolubilization treatment is typically performed by immersing a PVA resin film (laminate) in a boric acid aqueous solution. By performing the insolubilization treatment, water resistance can be imparted to the PVA resin film. The concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water. The liquid temperature of the insolubilizing bath (boric acid aqueous solution) is preferably 20 ° C. to 50 ° C. Preferably, the insolubilization treatment is performed before the above-described underwater stretching or the above-described dyeing treatment.
 上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂膜(積層体)を浸漬することにより行う。架橋処理を施すことにより、PVA系樹脂膜に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~5重量部である。また、上記染色処理後に架橋処理を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂膜に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部~5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃~60℃である。好ましくは、架橋処理は上記水中延伸の前に行う。好ましい実施形態においては、空中延伸、染色処理および架橋処理をこの順で行う。 The cross-linking treatment is typically performed by immersing a PVA resin film (laminate) in an aqueous boric acid solution. By performing the crosslinking treatment, water resistance can be imparted to the PVA resin film. The concentration of the boric acid aqueous solution is preferably 1 to 5 parts by weight with respect to 100 parts by weight of water. Moreover, when performing a crosslinking process after the said dyeing | staining process, it is preferable to mix | blend an iodide further. By blending iodide, elution of iodine adsorbed on the PVA resin film can be suppressed. The blending amount of iodide is preferably 1 to 5 parts by weight with respect to 100 parts by weight of water. Specific examples of the iodide are as described above. The liquid temperature of the crosslinking bath (boric acid aqueous solution) is preferably 20 ° C. to 60 ° C. Preferably, the crosslinking treatment is performed before the underwater stretching. In a preferred embodiment, air stretching, dyeing treatment and crosslinking treatment are performed in this order.
 上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂膜(積層体)を浸漬することにより行う。上記乾燥処理における乾燥温度は、好ましくは30℃~100℃である。 The above-described cleaning treatment is typically performed by immersing a PVA resin film (laminated body) in a potassium iodide aqueous solution. The drying temperature in the drying treatment is preferably 30 ° C. to 100 ° C.
 以上のようにして、ポリエステル系樹脂基材上に偏光膜を形成するとともに、ポリエステル系樹脂基材を結晶化することによって、本発明の偏光板が得られ得る。 As described above, the polarizing plate of the present invention can be obtained by forming a polarizing film on a polyester resin substrate and crystallizing the polyester resin substrate.
C.偏光板の用途
 本発明の偏光板は、例えば、液晶表示装置に搭載され得る。この場合、偏光膜がポリエステル系樹脂基材よりも液晶セル側に配置されるように搭載されることが好ましい。このような構成によれば、ポリエステル系樹脂基材が有し得る位相差が、得られる液晶表示装置の画像特性に及ぼす影響を排除することができる。
C. Application of Polarizing Plate The polarizing plate of the present invention can be mounted on, for example, a liquid crystal display device. In this case, it is preferable that the polarizing film is mounted so as to be disposed closer to the liquid crystal cell than the polyester resin substrate. According to such a structure, the influence which the phase difference which a polyester-type resin base material can have on the image characteristic of the liquid crystal display device obtained can be excluded.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は以下の通りである。また、下記実施例および比較例における「部」および「%」は、それぞれ「重量部」および「重量%」を表す。
≪厚み≫
 デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
≪寸法変化率≫
 実施例および比較例で得られた偏光板から、偏光膜と樹脂基材とを端部にきっかけを与えることで剥がし、熱機械測定装置(TMA)にて、30℃から100℃に10℃/分で昇温後、さらに100℃で60分間保持した際の寸法変化率を測定した。なお、易接着層を間に挟む実施例6では、易接着層を形成しないこと以外は同様に作製した偏光板から、同様の手順で偏光膜と樹脂基材を単離したものを測定に供し、偏光膜および樹脂基材の寸法変化とした。
 寸法変化率(%)=(加熱処理後の寸法-加熱処理前の寸法)/加熱処理前の寸法×100
≪結晶化度≫
 実施例および比較例で得られたポリエステル系樹脂基材について、フーリエ変換赤外分光光度計(FT-IR)(Perkin Elmer社製、商品名「SPECTRUM2000」)を用いて、全反射減衰分光(ATR)測定により結晶ピーク(1340cm-1)の強度および参照ピーク(1410cm-1)の強度を測定した。得られた結晶ピーク強度および参照ピーク強度から結晶化度を下記式により算出した。
 (結晶化度)=(結晶ピーク1340cm-1の強度)/(参照ピーク1410cm-1の強度)
≪ガラス転移温度:Tg≫
 JIS K 7121に準拠し測定した。
≪ホウ酸濃度≫
 実施例および比較例で得られた偏光膜について、フーリエ変換赤外分光光度計(FT-IR)(Perkin Elmer社製、商品名「SPECTRUM2000」)を用いて、偏光を測定光とする全反射減衰分光(ATR)測定によりホウ酸ピーク(665cm-1)の強度および参照ピーク(2941cm-1)の強度を測定した。得られたホウ酸ピーク強度および参照ピーク強度からホウ酸量指数を下記式により算出し、さらに、算出したホウ酸量指数から下記式によりホウ酸濃度を決定した。
  (ホウ酸量指数)=(ホウ酸ピーク665cm-1の強度)/(参照ピーク2941cm-1の強度)
  (ホウ酸濃度)=(ホウ酸量指数)×5.54+4.1
≪クラック評価≫
 実施例および比較例で得られた偏光板を、ポリエステル系樹脂基材が表面側に来るように粘着剤を介してガラスに貼り合せた状態で、100℃のオーブンにて240h加熱した。加熱後の偏光板のクラックの有無を確認し、下記の基準に従って評価した。
   良:  クラック発生なし          
   不良: クラック発生あり
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. In addition, the measuring method of each characteristic is as follows. In the following examples and comparative examples, “parts” and “%” represent “parts by weight” and “% by weight”, respectively.
≪Thickness≫
The measurement was performed using a digital micrometer (manufactured by Anritsu Co., Ltd., product name “KC-351C”).
≪Dimension change rate≫
From the polarizing plates obtained in Examples and Comparative Examples, the polarizing film and the resin base material were peeled off by giving a trigger to the end, and the temperature was increased from 30 ° C. to 100 ° C. by 10 ° C. / After the temperature was raised in minutes, the dimensional change rate was further measured when held at 100 ° C. for 60 minutes. In Example 6 with the easy-adhesion layer sandwiched between them, the polarizing film and the resin substrate were isolated in the same procedure from the polarizing plate prepared in the same manner except that the easy-adhesion layer was not formed. The dimensional change of the polarizing film and the resin base material was used.
Dimensional change rate (%) = (Dimension after heat treatment−Dimension before heat treatment) / Dimension before heat treatment × 100
≪Crystallinity≫
The polyester-based resin base materials obtained in the examples and comparative examples were subjected to total reflection attenuation spectroscopy (ATR) using a Fourier transform infrared spectrophotometer (FT-IR) (manufactured by Perkin Elmer, trade name “SPECTRUM2000”). ) The intensity of the crystal peak (1340 cm −1 ) and the intensity of the reference peak (1410 cm −1 ) were measured by measurement. The crystallinity was calculated by the following formula from the obtained crystal peak intensity and reference peak intensity.
(Crystallinity) = (Intensity of crystal peak 1340 cm −1 ) / (Intensity of reference peak 1410 cm −1 )
≪Glass transition temperature: Tg≫
Measured according to JIS K 7121.
≪Boric acid concentration≫
Using the Fourier transform infrared spectrophotometer (FT-IR) (manufactured by Perkin Elmer, trade name “SPECTRUM2000”) for the polarizing films obtained in Examples and Comparative Examples, total reflection attenuation using polarized light as measurement light The intensity of the boric acid peak (665 cm −1 ) and the intensity of the reference peak (2941 cm −1 ) were measured by spectroscopic (ATR) measurement. The boric acid amount index was calculated from the obtained boric acid peak intensity and the reference peak intensity by the following formula, and the boric acid concentration was determined from the calculated boric acid amount index by the following formula.
(Boric acid amount index) = (Intensity of boric acid peak 665 cm −1 ) / (Intensity of reference peak 2941 cm −1 )
(Boric acid concentration) = (Boric acid amount index) × 5.54 + 4.1
≪Crack evaluation≫
The polarizing plates obtained in the examples and comparative examples were heated in an oven at 100 ° C. for 240 hours in a state of being bonded to glass through an adhesive so that the polyester resin substrate was on the surface side. The presence or absence of cracks in the polarizing plate after heating was confirmed and evaluated according to the following criteria.
Good: No cracking
Defect: There is a crack
[実施例1]
 樹脂基材として、長尺状で、吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)を用いた。
 樹脂基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布および乾燥して、厚み11μmのPVA系樹脂層を形成した。こうして、積層体を作製した。
[Example 1]
As the resin substrate, an amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 μm) having a long water absorption rate of 0.75% and Tg of 75 ° C. was used.
One side of the resin substrate was subjected to corona treatment, and polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl modification degree 4. An aqueous solution containing 6%, a saponification degree of 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “Gosefimer Z200”) at a ratio of 9: 1 was applied and dried at 25 ° C., and the thickness was 11 μm. A PVA-based resin layer was formed. Thus, a laminate was produced.
 得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に1.8倍に自由端一軸延伸した(空中補助延伸)。
 次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.5重量部配合して得られたヨウ素水溶液)に60秒間浸漬させた(染色処理)。
 次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を3重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸)。
 その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
The obtained laminate was uniaxially stretched at a free end 1.8 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 120 ° C. (air-assisted stretching).
Next, the laminate was immersed in an insolubilization bath (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, it is immersed for 60 seconds in a dyeing bath at 30 ° C. (an iodine aqueous solution obtained by blending 0.2 parts by weight of iodine and 1.5 parts by weight of potassium iodide with respect to 100 parts by weight of water). (Staining treatment).
Subsequently, it was immersed for 30 seconds in a crosslinking bath having a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water). (Crosslinking treatment).
Thereafter, the laminate is immersed in a boric acid aqueous solution (an aqueous solution obtained by blending 3 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 70 ° C. However, uniaxial stretching was performed in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds so that the total stretching ratio was 5.5 times (in-water stretching).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. (cleaning treatment).
 次いで、積層体を100℃のオーブンに30秒間投入して樹脂基材を結晶化した。
 このようにして、樹脂基材上に厚み5μmの偏光膜が積層された偏光板を得た。
Next, the laminate was put into an oven at 100 ° C. for 30 seconds to crystallize the resin base material.
Thus, a polarizing plate in which a polarizing film having a thickness of 5 μm was laminated on the resin base material was obtained.
[実施例2]
 積層体を110℃のオーブンに30秒間投入して樹脂基材を結晶化したこと以外は実施例1と同様にして偏光板を得た。
[Example 2]
A polarizing plate was obtained in the same manner as in Example 1 except that the laminate was placed in an oven at 110 ° C. for 30 seconds to crystallize the resin substrate.
[実施例3]
 積層体を120℃のオーブンに30秒間投入して樹脂基材を結晶化したこと以外は実施例1と同様にして偏光板を得た。
[Example 3]
A polarizing plate was obtained in the same manner as in Example 1 except that the laminate was placed in an oven at 120 ° C. for 30 seconds to crystallize the resin substrate.
[実施例4]
 水中延伸時の延伸浴中のホウ酸配合量を3.5重量部としたこと、および、積層体を110℃のオーブンに30秒間投入して樹脂基材を結晶化したこと以外は実施例1と同様にして偏光板を得た。
[Example 4]
Example 1 except that the amount of boric acid in the stretching bath during stretching in water was 3.5 parts by weight, and the laminate was put into an oven at 110 ° C. for 30 seconds to crystallize the resin substrate. In the same manner, a polarizing plate was obtained.
[実施例5]
 水中延伸時の延伸浴中のホウ酸配合量を2.5重量部としたこと、および、積層体を110℃のオーブンに30秒間投入して樹脂基材を結晶化したこと以外は実施例1と同様にして偏光板を得た。
[Example 5]
Example 1 except that the amount of boric acid in the stretching bath during stretching in water was 2.5 parts by weight, and the laminate was put into an oven at 110 ° C. for 30 seconds to crystallize the resin substrate. In the same manner, a polarizing plate was obtained.
[実施例6]
 以下の方法で、樹脂基材の片面に易接着層を設けた。
 樹脂基材の片面に、コロナ処理を施し、このコロナ処理面に、アセトアセチル変性PVA(日本合成化学工社製、商品名「ゴーセファイマーZ200」、重合度1200、ケン化度99.0モル%以上、アセトアセチル変性度4.6%)の4.0%水溶液と変性ポリオレフィン樹脂水性分散体(ユニチカ社製、商品名「アローベースSE1030N」、固形分濃度22%)と純水を混合した混合液(固形分濃度4.0%)を、乾燥後の厚みが2000nmになるように塗布し、60℃で3分間乾燥し、易接着層を形成した。ここで、混合液におけるアセトアセチル変性PVAと変性ポリオレフィンとの固形分配合比は30:70であった。
 該易接着層表面に、コロナ処理を施し、このコロナ処理面にPVA系樹脂層を形成したこと以外は実施例1と同様にして偏光板を得た。
[Example 6]
The easy adhesion layer was provided on one side of the resin base material by the following method.
One side of the resin base material is subjected to corona treatment, and this corona treatment surface is subjected to acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “Gosefimer Z200”, polymerization degree 1200, saponification degree 99.0 mol. %, Acetoacetyl modification degree 4.6%) and a modified polyolefin resin aqueous dispersion (manufactured by Unitika Ltd., trade name “Arrow Base SE1030N”, solid content concentration 22%) and pure water were mixed. The mixture (solid content concentration 4.0%) was applied so that the thickness after drying was 2000 nm, and dried at 60 ° C. for 3 minutes to form an easy-adhesion layer. Here, the solid content mixing ratio of acetoacetyl-modified PVA and modified polyolefin in the mixed solution was 30:70.
A polarizing plate was obtained in the same manner as in Example 1 except that the surface of the easy-adhesion layer was subjected to corona treatment and a PVA resin layer was formed on the corona-treated surface.
[比較例1]
 積層体を85℃のオーブンに30秒間投入して樹脂基材を結晶化したこと以外は実施例1と同様にして偏光板を得た。
[Comparative Example 1]
A polarizing plate was obtained in the same manner as in Example 1 except that the laminate was placed in an oven at 85 ° C. for 30 seconds to crystallize the resin substrate.
[比較例2]
 水中延伸時の延伸浴中のホウ酸配合量を4.0重量部としたこと、および、積層体を110℃のオーブンに30秒間投入して樹脂基材を結晶化したこと以外は実施例1と同様にして偏光板を得た。
[Comparative Example 2]
Example 1 except that the amount of boric acid in the stretching bath during stretching in water was 4.0 parts by weight, and the laminate was put into an oven at 110 ° C. for 30 seconds to crystallize the resin substrate. In the same manner, a polarizing plate was obtained.
[比較例3]
 積層体を95℃のオーブンに30秒間投入して樹脂基材を結晶化したこと以外は実施例1と同様にして偏光板を得た。
[Comparative Example 3]
A polarizing plate was obtained in the same manner as in Example 1 except that the laminate was put in an oven at 95 ° C. for 30 seconds to crystallize the resin substrate.
 実施例および比較例における偏光板の作製条件および得られた偏光板の各特性を表1に示す。なお、表中のMDは偏光子の吸収軸方向であり、TDは吸収軸と直交する方向である。
Figure JPOXMLDOC01-appb-T000002
Table 1 shows the production conditions of the polarizing plate and the characteristics of the obtained polarizing plate in Examples and Comparative Examples. In the table, MD is the absorption axis direction of the polarizer, and TD is the direction orthogonal to the absorption axis.
Figure JPOXMLDOC01-appb-T000002
 表1に示されるとおり、特定の結晶化度を有する樹脂基材と特定のホウ酸濃度を満たす偏光膜とを有する実施例の偏光板は、クラックの発生が抑制されている。一方、比較例の偏光板は、クラックが発生しており、実施例の偏光板に比べて耐久性に劣ることがわかる。また、実施例6の偏光板は、他の実施例または比較例の偏光板に比べて、樹脂基材と偏光膜(PVA系樹脂層)との密着性に優れており、偏光膜の製造時や偏光板の加工(例えば、打ち抜き)時における偏光膜(PVA系樹脂層)または樹脂基材の所望でない剥離または浮きが好適に防止されていた。 As shown in Table 1, in the polarizing plate of the example having the resin base material having a specific crystallinity and the polarizing film satisfying the specific boric acid concentration, occurrence of cracks is suppressed. On the other hand, it can be seen that the polarizing plate of the comparative example is cracked and inferior in durability to the polarizing plate of the example. In addition, the polarizing plate of Example 6 is superior in adhesion between the resin base material and the polarizing film (PVA-based resin layer) as compared to the polarizing plates of other examples or comparative examples. Further, undesired peeling or floating of the polarizing film (PVA resin layer) or the resin base material during processing of the polarizing plate (for example, punching) was suitably prevented.
 実施例の偏光板においてクラックの発生が抑制された理由としては、以下のように推測される。すなわち、実施例の偏光板においては、MD方向における樹脂基材の寸法変化率と偏光膜の寸法変化率との差(樹脂基材の寸法変化率-偏光膜の寸法変化率)およびTD方向における樹脂基材の寸法変化率と偏光膜の寸法変化率との差(樹脂基材の寸法変化率-偏光膜の寸法変化率)がいずれも5%以内であり、かつ、TD方向における寸法変化率の差(絶対値)がMD方向における寸法変化率の差(絶対値)と近い値になっている(±1.5%以内)。偏光膜は延伸方向(MD)に配向するため、機械物性として延伸方向と直交する方向(TD)に弱い傾向がある。そのため、TD方向における寸法変化率の差(絶対値)をMD方向における寸法変化率の差(絶対値)と近い値とすることで、TD方向に歪が偏ることなく、クラックの発生が抑制されたと考えられる。 The reason why the occurrence of cracks in the polarizing plate of the example was suppressed is estimated as follows. That is, in the polarizing plate of the example, the difference between the dimensional change rate of the resin base material and the dimensional change rate of the polarizing film in the MD direction (dimensional change rate of the resin base material−dimensional change rate of the polarizing film) and in the TD direction. The difference between the dimensional change rate of the resin substrate and the dimensional change rate of the polarizing film (the dimensional change rate of the resin base material−the dimensional change rate of the polarizing film) is within 5%, and the dimensional change rate in the TD direction. Difference (absolute value) is close to the difference (absolute value) in the dimensional change rate in the MD direction (within ± 1.5%). Since the polarizing film is oriented in the stretching direction (MD), the mechanical properties tend to be weak in the direction (TD) orthogonal to the stretching direction. Therefore, by making the difference (absolute value) of the dimensional change rate in the TD direction close to the difference (absolute value) of the dimensional change rate in the MD direction, the occurrence of cracks is suppressed without biasing the strain in the TD direction. It is thought.
 本発明の偏光板は、例えば、画像表示装置に好適に用いられる。 The polarizing plate of the present invention is suitably used for an image display device, for example.

Claims (6)

  1.  ポリエステル系樹脂基材と、該ポリエステル系樹脂基材の片側に積層された厚みが10μm以下の偏光膜と、を有する偏光板であって、
     該ポリエステル系樹脂基材の全反射減衰分光測定により算出される結晶化度が、0.55~0.80であり、
     該偏光膜中のホウ酸濃度が、10重量%~20重量%である、偏光板。
    A polarizing plate having a polyester resin base material and a polarizing film having a thickness of 10 μm or less laminated on one side of the polyester resin base material,
    The degree of crystallinity calculated by total reflection attenuation spectroscopy of the polyester resin substrate is 0.55 to 0.80,
    A polarizing plate, wherein the concentration of boric acid in the polarizing film is 10% by weight to 20% by weight.
  2.  前記ポリエステル系樹脂が、ポリエチレンテレフタレートまたはその共重合体である、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the polyester resin is polyethylene terephthalate or a copolymer thereof.
  3.  前記偏光膜が、前記ポリエステル系樹脂基材の片側に接着層を介することなく積層されている、請求項1または2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the polarizing film is laminated on one side of the polyester resin substrate without an adhesive layer.
  4.  前記偏光膜の前記ポリエステル系樹脂基材が積層される側と反対側に、保護フィルムを有さない、請求項1から3のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, wherein the polarizing film does not have a protective film on the side opposite to the side on which the polyester resin base material is laminated.
  5.  前記ポリエステル系樹脂基材と前記偏光膜との間に易接着層を有する、請求項1から4のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 4, further comprising an easy-adhesion layer between the polyester resin substrate and the polarizing film.
  6.  ポリエステル系樹脂基材上にポリビニルアルコール系樹脂膜を形成して積層体を作製すること、
     該積層体を延伸すること、
     該ポリビニルアルコール系樹脂膜を染色すること、および
     該ポリエステル系樹脂基材を結晶化すること、
     を含む、請求項1から5のいずれかに記載の偏光板の製造方法。
     
    Forming a polyvinyl alcohol resin film on a polyester resin substrate to produce a laminate,
    Stretching the laminate,
    Dyeing the polyvinyl alcohol resin film; and crystallizing the polyester resin substrate;
    The manufacturing method of the polarizing plate in any one of Claim 1 to 5 containing these.
PCT/JP2016/088101 2016-03-04 2016-12-21 Polarizing plate WO2017149909A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187025235A KR102219988B1 (en) 2016-03-04 2016-12-21 Polarizer
KR1020207005307A KR20200022539A (en) 2016-03-04 2016-12-21 Polarizing plate
CN201680083155.3A CN108780172B (en) 2016-03-04 2016-12-21 Polarizing plate
SG11201807351UA SG11201807351UA (en) 2016-03-04 2016-12-21 Polarizing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016042098A JP6893762B2 (en) 2016-03-04 2016-03-04 Polarizer
JP2016-042098 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017149909A1 true WO2017149909A1 (en) 2017-09-08

Family

ID=59743674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088101 WO2017149909A1 (en) 2016-03-04 2016-12-21 Polarizing plate

Country Status (6)

Country Link
JP (1) JP6893762B2 (en)
KR (2) KR20200022539A (en)
CN (1) CN108780172B (en)
SG (1) SG11201807351UA (en)
TW (1) TWI645223B (en)
WO (1) WO2017149909A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069756A1 (en) * 2017-10-03 2019-04-11 日東電工株式会社 Polarizing plate, image display device, and production method for polarizing plate
WO2019069755A1 (en) * 2017-10-03 2019-04-11 日東電工株式会社 Polarizing plate, image display device, and production method for polarizing plate
WO2019069757A1 (en) * 2017-10-03 2019-04-11 日東電工株式会社 Polarizing plate, image display device, and method for producing polarizing plate
WO2019069754A1 (en) * 2017-10-03 2019-04-11 日東電工株式会社 Polarizing plate, image display device, and production method for polarizing plate
WO2019112020A1 (en) * 2017-12-06 2019-06-13 大日本印刷株式会社 Battery packaging material, battery, method for manufacturing battery packaging material and battery, and polyester film
CN112840246A (en) * 2018-10-15 2021-05-25 日东电工株式会社 Polarizing plate with phase difference layer and image display device using same
CN112840248A (en) * 2018-10-15 2021-05-25 日东电工株式会社 Polarizing plate with phase difference layer and image display device using same
CN113366352A (en) * 2019-01-31 2021-09-07 日东电工株式会社 Polyester film and polarizing plate comprising same
JP7392715B2 (en) 2019-04-18 2023-12-06 東洋紡株式会社 Polyester sealant film and packaging using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021157068A (en) * 2020-03-27 2021-10-07 日東電工株式会社 Polyester film and polarizing plate comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979833B1 (en) * 2010-12-02 2012-07-18 日東電工株式会社 Manufacturing method of polarizing plate
JP2013122518A (en) * 2011-12-12 2013-06-20 Nitto Denko Corp Method of manufacturing polarizing film
WO2013146644A1 (en) * 2012-03-29 2013-10-03 住友化学株式会社 Laminate film, method for producing polarizing laminate film, and method for producing polarizing plate
JP2014074786A (en) * 2012-10-04 2014-04-24 Nitto Denko Corp Method for manufacturing stretched laminate
JP2015094906A (en) * 2013-11-14 2015-05-18 日東電工株式会社 Polarizing film and method for manufacturing polarizing film
JP2015094907A (en) * 2013-11-14 2015-05-18 日東電工株式会社 Polarizing film and method for manufacturing polarizing film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279944B2 (en) 1999-06-01 2009-06-17 株式会社サンリッツ Manufacturing method of polarizing plate
JP5991803B2 (en) * 2010-10-29 2016-09-14 住友化学株式会社 Manufacturing method of polarizing plate
JP4975186B1 (en) * 2010-12-16 2012-07-11 日東電工株式会社 Manufacturing method of polarizing film
KR102329698B1 (en) * 2013-08-09 2021-11-23 스미또모 가가꾸 가부시키가이샤 Process for producing long circularly polarizing plate and long circularly polarizing plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979833B1 (en) * 2010-12-02 2012-07-18 日東電工株式会社 Manufacturing method of polarizing plate
JP2013122518A (en) * 2011-12-12 2013-06-20 Nitto Denko Corp Method of manufacturing polarizing film
WO2013146644A1 (en) * 2012-03-29 2013-10-03 住友化学株式会社 Laminate film, method for producing polarizing laminate film, and method for producing polarizing plate
JP2014074786A (en) * 2012-10-04 2014-04-24 Nitto Denko Corp Method for manufacturing stretched laminate
JP2015094906A (en) * 2013-11-14 2015-05-18 日東電工株式会社 Polarizing film and method for manufacturing polarizing film
JP2015094907A (en) * 2013-11-14 2015-05-18 日東電工株式会社 Polarizing film and method for manufacturing polarizing film

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183378A (en) * 2017-10-03 2020-05-19 日东电工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
WO2019069757A1 (en) * 2017-10-03 2019-04-11 日東電工株式会社 Polarizing plate, image display device, and method for producing polarizing plate
CN111183379A (en) * 2017-10-03 2020-05-19 日东电工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
CN111183380A (en) * 2017-10-03 2020-05-19 日东电工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
JP2019066717A (en) * 2017-10-03 2019-04-25 日東電工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
JP2019066716A (en) * 2017-10-03 2019-04-25 日東電工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
JP2019066715A (en) * 2017-10-03 2019-04-25 日東電工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
JP2019066714A (en) * 2017-10-03 2019-04-25 日東電工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
WO2019069756A1 (en) * 2017-10-03 2019-04-11 日東電工株式会社 Polarizing plate, image display device, and production method for polarizing plate
JP7240089B2 (en) 2017-10-03 2023-03-15 日東電工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
TWI771503B (en) * 2017-10-03 2022-07-21 日商日東電工股份有限公司 Polarizing plate, image display device, and manufacturing method of polarizing plate
CN111164473A (en) * 2017-10-03 2020-05-15 日东电工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
KR102640210B1 (en) * 2017-10-03 2024-02-23 닛토덴코 가부시키가이샤 Polarizer, image display device and method of manufacturing polarizer
WO2019069755A1 (en) * 2017-10-03 2019-04-11 日東電工株式会社 Polarizing plate, image display device, and production method for polarizing plate
WO2019069754A1 (en) * 2017-10-03 2019-04-11 日東電工株式会社 Polarizing plate, image display device, and production method for polarizing plate
KR20200066299A (en) * 2017-10-03 2020-06-09 닛토덴코 가부시키가이샤 Polarizing plate, image display device and manufacturing method of polarizing plate
JP2020013796A (en) * 2017-12-06 2020-01-23 大日本印刷株式会社 Battery packaging material, battery, method for producing them, and polyester film
JP7234867B2 (en) 2017-12-06 2023-03-08 大日本印刷株式会社 Battery packaging material, battery, manufacturing method thereof, and polyester film
JP6587039B1 (en) * 2017-12-06 2019-10-09 大日本印刷株式会社 Battery packaging material, battery, manufacturing method thereof, and polyester film
WO2019112020A1 (en) * 2017-12-06 2019-06-13 大日本印刷株式会社 Battery packaging material, battery, method for manufacturing battery packaging material and battery, and polyester film
CN112840246A (en) * 2018-10-15 2021-05-25 日东电工株式会社 Polarizing plate with phase difference layer and image display device using same
CN112840248A (en) * 2018-10-15 2021-05-25 日东电工株式会社 Polarizing plate with phase difference layer and image display device using same
CN112840248B (en) * 2018-10-15 2023-09-29 日东电工株式会社 Polarizing plate with retardation layer and image display device using the same
CN112840246B (en) * 2018-10-15 2023-10-03 日东电工株式会社 Polarizing plate with retardation layer and image display device using the same
CN113366352A (en) * 2019-01-31 2021-09-07 日东电工株式会社 Polyester film and polarizing plate comprising same
JP7392715B2 (en) 2019-04-18 2023-12-06 東洋紡株式会社 Polyester sealant film and packaging using the same

Also Published As

Publication number Publication date
CN108780172B (en) 2021-07-20
KR20200022539A (en) 2020-03-03
JP6893762B2 (en) 2021-06-23
JP2017156663A (en) 2017-09-07
TW201732332A (en) 2017-09-16
CN108780172A (en) 2018-11-09
SG11201807351UA (en) 2018-09-27
KR102219988B1 (en) 2021-02-24
TWI645223B (en) 2018-12-21
KR20180107221A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2017149909A1 (en) Polarizing plate
JP6774556B2 (en) Manufacturing method of optical laminate and optical laminate
WO2017149908A1 (en) Polarizing plate
CN111164473B (en) Polarizing plate, image display device, and method for manufacturing polarizing plate
KR102562328B1 (en) Laminate, manufacturing method of laminate, polarizing plate and manufacturing method of polarizing plate
KR102129192B1 (en) Laminate and method of manufacturing the laminate
WO2019069757A1 (en) Polarizing plate, image display device, and method for producing polarizing plate
KR102640210B1 (en) Polarizer, image display device and method of manufacturing polarizer
TWI835751B (en) Polarizing plate, image display device and manufacturing method of polarizing plate
WO2019069755A1 (en) Polarizing plate, image display device, and production method for polarizing plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11201807351U

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20187025235

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892743

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892743

Country of ref document: EP

Kind code of ref document: A1