WO2019069755A1 - Polarizing plate, image display device, and production method for polarizing plate - Google Patents

Polarizing plate, image display device, and production method for polarizing plate Download PDF

Info

Publication number
WO2019069755A1
WO2019069755A1 PCT/JP2018/035613 JP2018035613W WO2019069755A1 WO 2019069755 A1 WO2019069755 A1 WO 2019069755A1 JP 2018035613 W JP2018035613 W JP 2018035613W WO 2019069755 A1 WO2019069755 A1 WO 2019069755A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
based resin
stretching
polyester
polarizer
Prior art date
Application number
PCT/JP2018/035613
Other languages
French (fr)
Japanese (ja)
Inventor
善則 南川
健太郎 池嶋
後藤 周作
咲美 ▲徳▼岡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020207009163A priority Critical patent/KR20200064078A/en
Priority to CN201880064510.1A priority patent/CN111183378B/en
Publication of WO2019069755A1 publication Critical patent/WO2019069755A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a polarizing plate, an image display device, and a method of manufacturing the polarizing plate.
  • Patent Document 1 There has been proposed a method of obtaining a thin polarizer by forming a polyvinyl alcohol-based resin layer on a polyester-based resin base material, and stretching and dyeing this laminate (for example, Patent Document 1).
  • a method of manufacturing such a polarizer is noted, for example, as it can contribute to thinning of the image display device.
  • the said polarizer can be used in the state laminated
  • a laminate of a polyester-based resin substrate and a polarizer can be used as a polarizing plate without laminating a protective film to a polarizer, which can contribute to, for example, cost reduction of an image display device.
  • the heat shrinkage behavior of the polyester resin base material is large. Peeling of the polarizing plate may occur under high temperature and high humidity environment.
  • the present invention has been made to solve the above-mentioned conventional problems, and the main object thereof is a polarizing plate having a small heat shrinkage behavior and suppressing peeling, an image display device provided with the above polarizing plate, and a polarizing plate It is to provide a manufacturing method of
  • the polarizing plate of the present invention has a polyester-based resin base and a polarizer laminated on one side of the polyester-based resin base, the thickness of the polarizer is 10 ⁇ m or less, and the polyester-based resin base Modulus of 2.70 GPa or more.
  • the polarizer is laminated on one side of the polyester-based resin substrate without an adhesive layer.
  • an easily bonding layer is provided between the polyester resin substrate and the polarizer.
  • the polyester resin substrate functions as a protective layer of the polarizer.
  • an image display device is provided. This image display apparatus has the above-mentioned polarizing plate.
  • a method of manufacturing the above polarizing plate is provided.
  • the manufacturing method is to form a polyvinyl alcohol resin layer on one side of the polyester resin base material to form a laminate, and dye and stretch the laminate to obtain the polyvinyl alcohol resin layer as a polarizer.
  • the maximum heating temperature is 102 ° C. or more, or the temperature of the stretching bath in the above stretching is 69 ° C. or less, and the maximum heating temperature in the above heat treatment is 105 ° C. or more.
  • a polarizing plate having a small heat shrinkage behavior and suppressing peeling it is possible to provide a polarizing plate having a small heat shrinkage behavior and suppressing peeling, an image display apparatus provided with the above polarizing plate, and a method of manufacturing the polarizing plate.
  • FIG. 1 is a cross-sectional view of a polarizing plate according to an embodiment of the present invention.
  • the polarizing plate 10 has a polyester resin base 11 and a polarizer 12 laminated on one side of the polyester resin base 11.
  • the thickness of the polarizer 12 is 10 ⁇ m or less.
  • the elastic modulus of the polyester resin base material 11 is 2.70 GPa or more.
  • the elastic modulus of the polyester-based resin substrate 11 is typically measured by a nanoindentation method using an indentation tester (typically, a nano indenter).
  • the polarizer 12 is preferably laminated in close contact with one surface of the polyester resin substrate 11 (in other words, without an adhesive layer).
  • the polarizing plate 10 preferably has an easy adhesion layer (not shown) between the polyester resin substrate 11 and the polarizer 12.
  • the polarizing plate 10 may have a protective film (not shown) on the side of the polarizer 12 opposite to the polyester resin substrate 11.
  • the polyester resin substrate 11 typically functions as a protective layer of the polarizer 12.
  • peeling from the optical member may occur at both ends in the stretching direction of the polarizing plate when the surface on the polarizer side is bonded to another optical member and placed in a high temperature and high humidity environment.
  • the heat shrinkage behavior of the polyester resin substrate 11 is small when the surface on the polarizer 12 side is bonded to another optical member, and under the high temperature and high humidity environment. Peeling can be suppressed.
  • the polarizer is substantially a polyvinyl alcohol-based resin layer (PVA-based resin layer) in which iodine is adsorbed and oriented.
  • the thickness of the polarizer is 10 ⁇ m or less as described above, preferably 7.5 ⁇ m or less, and more preferably 5 ⁇ m or less. On the other hand, the thickness of the polarizer is preferably 0.5 ⁇ m or more, more preferably 1.5 ⁇ m or more. If the thickness is too thin, the optical properties of the resulting polarizer may be degraded.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, and still more preferably 42.0% or more.
  • the degree of polarization of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, and still more preferably 99.95% or more.
  • PVA system resin which forms the above-mentioned PVA system resin layer.
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymer can be mentioned.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the saponification degree of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. .
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA resin having such a degree of saponification, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the average degree of polymerization of the PVA-based resin can be appropriately selected depending on the purpose.
  • the average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • the polyester-based resin substrate has an elastic modulus of 2.70 GPa or more.
  • the elastic modulus is preferably 2.70 GPa to 4.50 GPa, more preferably 2.80 GPa to 3.90 GPa.
  • the elastic modulus is the temperature of the stretching bath when the laminate of the polyester resin base material and the polyvinyl alcohol resin layer is stretched in water, and the highest at the time of heat treatment after stretching in water in the manufacturing method of the polarizing plate described later. By setting the heating temperature appropriately, it can be controlled within the desired numerical range.
  • polyester-based resin base material for example, alicyclic dicarboxylic acid or alicyclic ring containing polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), isophthalic acid, cyclohexane ring and the like
  • PET-G Copolymerized PET containing a diol or the like of the formula, other polyesters, and copolymers and blends thereof can be used.
  • PET-G amorphous (non-crystallized) PET or copolymerized PET is preferably used.
  • These resins are amorphous in the unstretched state and have excellent stretchability suitable for high magnification stretch, and can impart heat resistance and dimensional stability by being crystallized by stretching and heating. Furthermore, the heat resistance of the extent which can apply
  • the glass transition temperature (Tg) of the polyester resin substrate is preferably 170 ° C. or less. By using such a polyester-based resin substrate, stretchability can be sufficiently secured while suppressing crystallization of the PVA-based resin layer. It is more preferable that the temperature is 120 ° C. or less in consideration of good plasticization of the polyester resin base material by water and stretching in water. In one embodiment, the glass transition temperature of the polyester resin substrate is preferably 60 ° C. or higher. By using such a polyester-based resin substrate, the polyester-based resin substrate is deformed (for example, generation of unevenness, sagging, wrinkles, etc.) when applying and drying a coating solution containing a PVA-based resin described later. Etc. can be prevented.
  • stretching of the laminate can be performed at a suitable temperature (for example, about 60 ° C. to 70 ° C.).
  • a glass transition temperature lower than 60 ° C. may be applied if the polyester-based resin substrate is not deformed when applying and drying a coating solution containing a PVA-based resin.
  • the glass transition temperature (Tg) is a value determined according to JIS K 7121.
  • the polyester resin base material preferably has a water absorption of 0.2% or more, more preferably 0.3% or more.
  • Such polyester resin base material absorbs water, and the water acts as a plasticizer and can be plasticized.
  • the stretching stress can be significantly reduced in the in-water stretching, and the stretchability can be excellent.
  • the water absorption rate of the polyester resin base material is preferably 3.0% or less, more preferably 1.0% or less.
  • the thickness of the polyester resin substrate is preferably 10 ⁇ m to 200 ⁇ m, and more preferably 20 ⁇ m to 150 ⁇ m.
  • the polarizing plate 10 may have a protective film on the side opposite to the polyester resin substrate 11 of the polarizer 12 as described above.
  • the material for forming the protective film include cellulose resins such as (meth) acrylic resins, diacetyl cellulose and triacetyl cellulose, cycloolefin resins, olefin resins such as polypropylene, and ester resins such as polyethylene terephthalate resins. Resin, polyamide-based resin, polycarbonate-based resin, copolymer resin of these, etc. may be mentioned.
  • the thickness of the protective film is preferably 10 ⁇ m to 100 ⁇ m.
  • the polarizing plate 10 may have an easy adhesion layer between the polyester resin substrate 11 and the polarizer 12 as described above.
  • the easy-adhesion layer may be a layer formed substantially only of the composition for forming the easy-adhesion layer, and the composition for forming the easy-adhesion layer and the material for forming the polarizer are mixed (including compatibility) It may be a layer or a region.
  • the thickness of the easy adhesion layer is preferably about 0.05 ⁇ m to 1 ⁇ m.
  • the easily bonding layer can be confirmed, for example, by observing the cross section of the polarizing plate with a scanning electron microscope (SEM).
  • the composition for easily adhesive layer formation preferably contains a polyvinyl alcohol-based component.
  • Any appropriate PVA-based resin may be used as the polyvinyl alcohol-based component.
  • polyvinyl alcohol and modified polyvinyl alcohol are mentioned.
  • the modified polyvinyl alcohol include polyvinyl alcohol modified with an acetoacetyl group, a carboxylic acid group, an acrylic group and / or a urethane group.
  • acetoacetyl-modified PVA is preferably used.
  • acetoacetyl-modified PVA a polymer having at least a repeating unit represented by the following general formula (I) is preferably used.
  • the ratio of n to l + m + n is preferably 1% to 10%.
  • the average degree of polymerization of acetoacetyl-modified PVA is preferably 1000 to 10000, preferably 1200 to 5000.
  • the degree of saponification of the acetoacetyl-modified PVA is preferably 97 mol% or more.
  • the pH of a 4% by weight aqueous solution of acetoacetyl-modified PVA is preferably 3.5 to 5.5.
  • composition for easily adhesive layer formation may further contain a polyolefin-based component, a polyester-based component, a polyacrylic-based component and the like according to the purpose and the like.
  • composition for easy adhesion layer formation further comprises a polyolefin-based component.
  • any appropriate polyolefin-based resin may be used as the polyolefin-based component.
  • the olefin component which is the main component of the polyolefin resin include olefin hydrocarbons having 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 1-butene, 1-pentene and 1-hexene. These can be used alone or in combination of two or more. Among these, olefin hydrocarbons having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene are preferable, and ethylene is more preferably used.
  • the proportion of the olefin component in the monomer component constituting the polyolefin resin is preferably 50% by weight to 95% by weight.
  • the said polyolefin resin has a carboxyl group and / or its anhydride group.
  • a polyolefin resin can be dispersed in water, and an easily adhesive layer can be formed well.
  • a monomer component which has such a functional group unsaturated carboxylic acid and its anhydride, the half ester of unsaturated dicarboxylic acid, a half amide are mentioned, for example. Specific examples of these include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid and crotonic acid.
  • the molecular weight of the polyolefin resin is, for example, 5,000 to 80,000.
  • the compounding ratio (the former: the latter (solid content)) of the polyvinyl alcohol-based component and the polyolefin-based component is preferably 5:95 to 60:40, more preferably 20:80 to 50. : 50. If the amount of the polyvinyl alcohol-based component is too large, the adhesion may not be obtained sufficiently. Specifically, the peeling force required for peeling the polarizer from the polyester-based resin base material may be reduced, and sufficient adhesion may not be obtained. On the other hand, when the amount of the polyvinyl alcohol-based component is too small, the appearance of the obtained polarizing plate may be impaired. Specifically, in the formation of the easy adhesion layer, problems such as the coating film becoming cloudy may occur, and it may be difficult to obtain a polarizing plate having an excellent appearance.
  • the composition for easily adhesive layer formation is preferably a water system.
  • the easy adhesion layer forming composition may contain an organic solvent. Examples of the organic solvent include ethanol, isopropanol and the like.
  • the solid content concentration of the composition for easily adhesive layer formation is preferably 1.0% by weight to 10% by weight.
  • the coating film may be dried.
  • the drying temperature is, for example, 50 ° C. or more.
  • the method of producing a polarizing plate of the present invention comprises forming a PVA-based resin layer on one side of a polyester-based resin substrate to form a laminate, and dyeing and stretching the laminate to obtain a PVA-based resin And making the layer into a polarizer, and heating the laminate of the polyester resin substrate and the polarizer after stretching.
  • the temperature of the stretching bath is 67 ° C. or less, and the maximum heating temperature in the heat treatment is 102 ° C. or more, or the temperature of the stretching bath is 69 ° C. or less, and the maximum heating temperature in the heat treatment is 105 ° C or more.
  • FIG. 2 is schematic which shows the manufacturing process of the polarizing plate which concerns on one Embodiment.
  • a laminate 10 ′ of a polyester-based resin base material and a PVA-based resin layer is drawn out from a drawing out part 101, and rolls 111 and 112 After being immersed in the bath 110 (insolubilization treatment), it is immersed in a bath 120 of an aqueous solution of a dichroic substance (iodine) and potassium iodide by rolls 121 and 122 (staining treatment).
  • a dichroic substance iodine
  • potassium iodide potassium iodide
  • the laminate 10 ′ is placed in the heating unit 160 and heated (heat treatment) to obtain the polarizing plate 10 of the present embodiment. Thereafter, the obtained polarizing plate 10 is wound by a winding unit 170.
  • illustration is omitted, it is possible to perform air-drawing processing before subjecting the laminate 10 ′ to insolubilization processing.
  • the manufacturing process shown in FIG. 2 is an example, and the frequency
  • any appropriate method may be employed.
  • a coating solution containing a PVA-based resin is applied onto a polyester-based resin substrate and dried to form a PVA-based resin layer.
  • a composition for forming an easy adhesion layer is applied onto a polyester resin substrate and dried to form an easy adhesion layer, and a PVA resin layer is formed on the easy adhesion layer.
  • the forming material of the polyester resin base material is as described in the section C above.
  • the thickness of the polyester resin substrate (the thickness before stretching described later) is preferably 20 ⁇ m to 300 ⁇ m, and more preferably 50 ⁇ m to 200 ⁇ m. There exists a possibility that formation of a PVA-type resin layer may become difficult as it is less than 20 micrometers. If it exceeds 300 ⁇ m, for example, it may take a long time for the polyester resin base material to absorb water during stretching in water, and an excessive load may be required for stretching.
  • the coating solution is typically a solution in which the PVA-based resin is dissolved in a solvent.
  • the solvent include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, water is preferred.
  • the PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, it is possible to form a uniform coating film in close contact with the polyester resin substrate.
  • the coating solution comprises a halide.
  • any appropriate halide can be adopted as the above-mentioned halide.
  • iodide and sodium chloride can be mentioned.
  • the iodide includes, for example, potassium iodide, sodium iodide and lithium iodide. Among these, preferred is potassium iodide.
  • the amount of the halide in the coating solution is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA resin, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA resin It is a department.
  • the halide may bleed out and the finally obtained polarizer may become cloudy.
  • the high-temperature stretching (auxiliary stretching) in air before stretching the laminate of the PVA-based resin layer containing a halide and the polyester-based resin substrate in boric acid water allows the PVA-based resin layer after the auxiliary stretching to be performed.
  • the crystallization of the PVA-based resin can be promoted.
  • the disorder of the orientation of polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This can improve the optical properties of the polarizer finally obtained.
  • a plasticizer As an additive, a plasticizer, surfactant, etc. are mentioned, for example.
  • the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
  • surfactant a nonionic surfactant is mentioned, for example. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the obtained PVA-based resin layer.
  • an easily bonding component is mentioned, for example. The adhesion between the polyester-based resin base and the PVA-based resin layer can be improved by using the easy-adhesion component.
  • a modified PVA such as acetoacetyl-modified PVA is used as the easy adhesion component.
  • any appropriate method can be adopted as a method of applying the coating solution.
  • a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (a comma coating method etc.) and the like can be mentioned.
  • the coating / drying temperature of the coating solution is preferably 50 ° C. or more.
  • the thickness of the PVA-based resin layer is preferably 3 ⁇ m to 20 ⁇ m.
  • the polyester-based resin substrate Before forming the PVA-based resin layer, the polyester-based resin substrate may be subjected to surface treatment (for example, corona treatment etc.), or the composition for forming an easy adhesion layer is coated on the polyester-based resin substrate (coating Processing).
  • surface treatment for example, corona treatment etc.
  • the composition for forming an easy adhesion layer is coated on the polyester-based resin substrate (coating Processing).
  • the stretching method of air-assisted stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, uniaxial stretching through a laminate between rolls with different peripheral speeds) Method).
  • the in-air stretching process includes a hot roll stretching step of stretching by the circumferential speed difference between the hot rolls while conveying the laminate in the longitudinal direction.
  • the air-drawing process typically includes a zone drawing process and a hot roll drawing process.
  • the order of the zone drawing process and the heat roll drawing process is not limited, and the zone drawing process may be performed first, or the heat roll drawing process may be performed first.
  • the zone stretching step may be omitted. In one embodiment, the zone drawing step and the hot roll drawing step are performed in this order.
  • the stretching temperature of the laminate can be set to any appropriate value according to the forming material of the polyester resin base material, the stretching method, and the like.
  • the stretching temperature in the aerial stretching process is preferably not less than the glass transition temperature (Tg) of the polyester resin substrate, more preferably the glass transition temperature (Tg) of the polyester resin substrate + 10 ° C. or more, particularly preferably Tg + 15 ° C. It is above.
  • the upper limit of the stretching temperature of the laminate is preferably 170 ° C.
  • the above-mentioned insolubilization treatment is typically performed by immersing the PVA-based resin layer in a boric acid aqueous solution. Water resistance can be imparted to the PVA-based resin layer by performing the insolubilization treatment.
  • the concentration of the aqueous boric acid solution is preferably 1 part by weight to 4 parts by weight with respect to 100 parts by weight of water.
  • the liquid temperature of the insolubilization bath (boric acid aqueous solution) is preferably 20 ° C to 50 ° C.
  • the insolubilization treatment is performed before the above-described in-water stretching and the above-mentioned dyeing treatment.
  • Dyeing treatment Dyeing of the PVA-based resin layer is typically performed by adsorbing iodine to the PVA-based resin layer.
  • adsorption method for example, a method of immersing a PVA-based resin layer (laminated body) in a staining solution containing iodine, a method of applying the staining solution to a PVA-based resin layer, the staining solution to a PVA-based resin layer The method of spraying etc. are mentioned.
  • it is a method of immersing a PVA-based resin layer (laminate) in a staining solution. It is because iodine can be adsorbed well.
  • the staining solution is preferably an aqueous iodine solution.
  • the compounding amount of iodine is preferably 0.1 parts by weight to 0.5 parts by weight with respect to 100 parts by weight of water.
  • an iodide is added to an aqueous iodine solution. Specific examples of iodide are as described above.
  • the compounding amount of iodide is preferably 0.02 parts by weight to 20 parts by weight, more preferably 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of water.
  • the liquid temperature at the time of dyeing of the staining solution is preferably 20 ° C. to 50 ° C.
  • the immersion time is preferably 5 seconds to 5 minutes in order to secure the transmittance of the PVA-based resin layer.
  • the dyeing conditions can be set such that the degree of polarization or single transmittance of the finally obtained polarizer falls within a predetermined range.
  • the immersion time is set so that the degree of polarization of the obtained polarizer is 99.98% or more.
  • the immersion time is set so that the single transmittance of the obtained polarizer is 40% to 44%.
  • the staining process may be performed at any appropriate timing. Preferably, it is carried out before in-water stretching.
  • Crosslinking treatment The above crosslinking treatment is typically performed by immersing the PVA-based resin layer (laminate) in a boric acid aqueous solution. Water resistance can be given to a PVA-type resin layer by giving a crosslinking process.
  • the concentration of the aqueous boric acid solution is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water.
  • blend iodide it is preferable to mix
  • the compounding amount of iodide is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water. Specific examples of iodide are as described above.
  • the liquid temperature of the crosslinking bath is preferably 20.degree. C. to 60.degree.
  • the crosslinking treatment is carried out before the in-water stretching treatment.
  • the air-drawing process, the dyeing process and the crosslinking process are carried out in this order.
  • the manufacturing process of the polarizing plate includes stretching the laminate in water in a stretching bath. Specifically, the film is stretched in water in a direction parallel to the stretching direction of the laminate. According to in-water stretching, stretching can be performed at a temperature lower than the glass transition temperature (typically, about 80 ° C.) of the above-mentioned polyester resin base material and PVA-based resin layer, and the PVA-based resin layer can be crystallized. While suppressing, it can be stretched to a high magnification. As a result, a polarizer having excellent optical properties (for example, the degree of polarization) can be produced.
  • “parallel direction” includes the case of 0 ° ⁇ 5.0 °, preferably 0 ° ⁇ 3.0 °, more preferably 0 ° ⁇ 1.0 °. .
  • the stretching temperature in the in-water stretching is 69 ° C. or less, more preferably 67 ° C. or less.
  • the lower limit of the solution temperature of the stretching bath is preferably 40 ° C, more preferably 50 ° C.
  • the stretching temperature is less than 40 ° C.
  • the higher the temperature of the stretching bath the higher the solubility of the PVA-based resin layer, which may make it impossible to obtain excellent optical properties.
  • the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
  • any appropriate method can be adopted as the drawing method in the underwater drawing process. Specifically, it may be fixed end stretching or free end stretching.
  • the stretching direction of the laminate is substantially the stretching direction (longitudinal direction) of the above-described air-drawing. Stretching of the laminate may be performed in one step or in multiple steps.
  • Stretching in water is preferably performed by immersing the laminate in an aqueous solution of boric acid (stretching in boric acid).
  • boric acid can form a tetrahydroxyborate anion in an aqueous solution and crosslink it with a PVA resin by hydrogen bonding.
  • rigidity and water resistance can be imparted to the PVA-based resin layer, the film can be favorably stretched, and a polarizer having excellent optical properties (for example, the degree of polarization) can be produced.
  • the aqueous boric acid solution is preferably obtained by dissolving boric acid and / or a borate in water which is a solvent.
  • the boric acid concentration is preferably 1 part by weight to 10 parts by weight with respect to 100 parts by weight of water. By setting the boric acid concentration to 1 part by weight or more, the dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizer with higher characteristics can be produced.
  • an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
  • a dichroic substance typically, iodine
  • an iodide is blended in the above-mentioned stretching bath (boric acid aqueous solution).
  • Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide and titanium iodide. Etc. Among these, preferred is potassium iodide.
  • the concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
  • the polyester-based resin base material By combining the polyester-based resin base material and stretching in water (stretching in boric acid), it can be stretched at a high magnification, and a polarizer having excellent optical properties (for example, the degree of polarization) can be produced.
  • the maximum draw ratio is preferably 5.0 times or more, more preferably 5.5 times or more, more preferably the original length of the laminate (including the draw ratio of the laminate). 6.0 times or more.
  • the "maximum stretch ratio" refers to the stretch ratio immediately before the laminate breaks, separately confirms the stretch ratio at which the laminate breaks, and refers to a value 0.2 lower than that value.
  • the maximum draw ratio of the laminated body using the said polyester-type resin base material may become high rather than extending
  • Cleaning Treatment Cleaning treatment is typically performed by immersing the PVA-based resin layer in a potassium iodide aqueous solution.
  • the drying temperature in the drying process is preferably 30 ° C. to 100 ° C.
  • the heat treatment is carried out after stretching in water. By the heat treatment, crystallization of the polyester resin substrate can proceed.
  • the heat treatment is typically performed by heating the transport roll disposed in the heating means 160 (using a so-called heat drum roll (heat roll)) (heat drum roll heating system).
  • the heating means 160 is an oven, and may use a heating method (oven heating method) by blowing hot air into the oven.
  • the temperature in the oven oven is preferably 30.degree. C. to 100.degree.
  • the heating time by the oven is preferably 1 second to 300 seconds.
  • the wind speed of hot air is preferably about 10 m / s to 30 m / s.
  • the said wind speed is the wind speed in oven, and it can measure with a mini-vane type digital anemometer.
  • a curl By heating using a heat drum roll, a curl can be suppressed and a polarizer excellent in appearance can be manufactured.
  • the crystallization of the polyester resin substrate can be efficiently promoted to increase the degree of crystallization. Even at a relatively low heating temperature, the crystallinity of the polyester resin substrate can be favorably increased.
  • the rigidity of the polyester-based resin base material is increased, and the polyester-based resin base material can endure the shrinkage of the PVA-based resin layer due to heating, and curling is suppressed.
  • it can heat, maintaining laminated body 10 'in a flat state by using a heat
  • a plurality of heat drum rolls may be arranged, and each heat drum roll may be set to a different temperature.
  • heat drum rolls may be arranged.
  • the contact time (total contact time) between the laminate 10 'and the heat drum roll is preferably 1 second to 300 seconds.
  • the heating conditions can be controlled by adjusting the temperature of the heat drum roll, the number of heat drum rolls, the contact time with the heat drum roll, and the like.
  • the highest heating temperature is 102 ° C. or higher, more preferably 105 ° C. or higher, when the temperature of the thermal drum roll set to the highest temperature among the plurality of heat drum rolls is the “maximum heating temperature”. Preferably it is 110 degreeC or more.
  • the upper limit of the maximum heating temperature is preferably 150 ° C., more preferably 120 ° C.
  • the contact time of the laminate to the heating drum roll maintained at the maximum heating temperature is preferably 0.2 seconds to 2 seconds. More preferably, it is 0.5 seconds to 2 seconds.
  • contact time shall mean time until an arbitrary one point on a laminated body contacts the peripheral face of a heat drum roll kept at maximum heating temperature, and it leaves.
  • the polarizing plate described in the items A to E obtained by the manufacturing method described in the item F can be applied to an image display device such as a liquid crystal display device. Therefore, the present invention includes an image display device using the above polarizing plate.
  • An image display device according to an embodiment of the present invention includes the polarizing plate described in the above items A to E.
  • the probe (indentor) of the nano indenter is pressed into the surface of the polarizing plate on the polyester resin substrate side, and the contact stiffness S obtained from the displacement-load hysteresis curve, the indenter, and the polyester resin substrate The following equation is calculated from the contact projected area A between them.
  • Elastic modulus (E) S ⁇ ⁇ 1/2 / 2A 1/2 (Measurement condition) ⁇ Measurement method: Single indentation method ⁇ Measurement temperature: 25 ° C ⁇ Indentation speed: about 2 nm / sec ⁇ Pushing depth: about 2000 nm -Probe: made of diamond, Berkovich type (triangular pyramid type) (3) Adhesion evaluation The long polarizing plates obtained in Examples and Comparative Examples were cut into a size of 150 mm (MD direction) ⁇ 200 mm (TD direction), and used as an evaluation sample.
  • the polarizer side of the sample for evaluation is attached to the glass through an acrylic adhesive, and after storing for 500 hours at 60 ° C./90% Rh, the presence or absence of peeling from the glass at the end of the sample for evaluation is confirmed did. In addition, when the sample for evaluation was peeled from the glass, the length of the peeled portion was measured.
  • Example 1 A long and amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 ⁇ m, degree of IPA modification: 5 mol%) was used as a polyester resin substrate.
  • IPA copolymerized PET polyethylene terephthalate
  • PVA acetoacetyl modified polyvinyl alcohol
  • the thickness after drying is a mixed solution (solid content concentration: 4.0%) of a mixture of purified polyolefin resin aqueous dispersion (product name: "Arrow base SE1030N” manufactured by Unitika, Inc.) and purified water of Gosefamer Z200 ”)
  • the coating was applied to 2000 nm and dried at 65 ° C.
  • the solid content blending ratio of acetoacetyl-modified PVA and modified polyolefin in the mixed solution was 30:70.
  • 90 parts by weight of PVA degree of polymerization 4200, degree of saponification 99.2 mol%
  • 10 parts by weight of acetoacetylated PVA trade name "Gosefamer Z410" manufactured by Japan Synthetic Chemical Industry Co., Ltd.
  • An aqueous solution containing a PVA-based resin compounded and potassium iodide in an amount of 13 parts by weight based on 100 parts by weight of the PVA-based resin is coated at 25 ° C. and dried at 60 ° C.
  • a stretching bath (stretching bath temperature: an aqueous solution obtained by blending 3 parts by weight of boric acid and 5 parts by weight of potassium iodide with 100 parts by weight of the aqueous solution) of the laminate. While immersing at 67 ° C., uniaxial stretching was performed in the longitudinal direction (longitudinal direction) by 2.75 times (total stretching ratio: 5.5 times) between rolls different in peripheral speed (in-water stretching treatment). Thereafter, the laminated body was immersed in a washing bath having a liquid temperature of 30 ° C. (an aqueous solution obtained by blending 3.5 parts by weight of potassium iodide with 100 parts by weight of water) (washing treatment).
  • the laminate is brought into contact with the heating roll maintained at 110 ° C., the maximum heating temperature, in an oven maintained at 80 ° C., with a plurality of heating rolls maintained at 80 to 110 ° C.
  • the heat treatment was carried out while conveying using a heating roll so that the total of 1 sec.
  • a long polarizing plate 1 in which a 5 ⁇ m thick polarizer was laminated on a polyester resin substrate was obtained.
  • the elastic modulus of the polyester resin base material of the polarizing plate 1 was 3.15 GPa.
  • Example 2 A polarizing plate 2 was obtained in the same manner as in Example 1, except that the maximum heating temperature was 105 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 2 was 2.85 GPa. The polarizing plate 2 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 3 A polarizing plate 3 was obtained in the same manner as in Example 1, except that the maximum heating temperature was 102 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 3 was 2.70 GPa. The polarizing plate 3 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 4 The procedure of Example 1 was repeated except that the laminate was stretched in water using a stretching bath having a temperature of 69 ° C., and the maximum heating temperature was 105 ° C., and the total contact time was 1 second.
  • the polarizing plate 4 was obtained.
  • the elastic modulus of the polyester resin base material of the polarizing plate 4 was 2.72 GPa.
  • the polarizing plate 4 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Comparative Example 1 A polarizing plate 5 was obtained in the same manner as in Example 1, except that the maximum heating temperature was 100 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 5 was 2.65 GPa. The polarizing plate 5 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 A polarizing plate 6 was obtained in the same manner as in Example 1, except that the maximum heating temperature was 95 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 6 was 2.37 GPa. The polarizing plate 6 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Comparative Example 3 A polarizing plate 7 was obtained in the same manner as in Example 1 except that the temperature in the furnace was set to 60 ° C., and the maximum heating temperature was 60 ° C., and the total contact time was 1 second.
  • the elastic modulus of the polyester resin base material of the polarizing plate 7 was 2.10 GPa.
  • the polarizing plate 7 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Comparative Example 4 A polarizing plate 8 was obtained in the same manner as in Example 4 except that the maximum heating temperature was 102 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 8 was 2.57 GPa. The polarizing plate 8 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Comparative Example 5 A polarizing plate 9 was obtained in the same manner as in Example 4 except that the maximum heating temperature was 100 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 9 was 2.50 GPa. The polarizing plate 9 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • the polarizing plate having an elastic modulus of 2.70 GPa or more did not peel off from the glass even when placed in a high temperature and high humidity environment.
  • the polarizing plate of the present invention is suitably used for image display devices such as liquid crystal display devices and organic EL display devices.

Abstract

Provided is a polarizing plate having little heat shrinkage behavior and having suppressed peeling. The polarizing plate has a polyester resin base material and a polarizer laminated on one side of the polyester resin base material. The polarizer thickness is no more than 10 µm and the polyester resin base material has an elastic modulus of at least 2.70 GPa.

Description

偏光板、画像表示装置、および偏光板の製造方法Polarizing plate, image display device, and method of manufacturing polarizing plate
 本発明は、偏光板、画像表示装置、および偏光板の製造方法に関する。 The present invention relates to a polarizing plate, an image display device, and a method of manufacturing the polarizing plate.
 ポリエステル系樹脂基材上にポリビニルアルコール系樹脂層を形成し、この積層体を延伸、染色することにより、厚みの薄い偏光子を得る方法が提案されている(例えば、特許文献1)。このような偏光子の製造方法は、例えば、画像表示装置の薄型化に寄与し得るとして注目されている。 There has been proposed a method of obtaining a thin polarizer by forming a polyvinyl alcohol-based resin layer on a polyester-based resin base material, and stretching and dyeing this laminate (for example, Patent Document 1). A method of manufacturing such a polarizer is noted, for example, as it can contribute to thinning of the image display device.
 上記偏光子は上記ポリエステル系樹脂基材に積層された状態のままで用いられ得、この場合、ポリエステル系樹脂基材は偏光子の保護層として用いられる(特許文献2)。これにより、偏光子に保護フィルムを貼り合せることなく、ポリエステル系樹脂基材と偏光子との積層体を偏光板として用いることができ、例えば、画像表示装置の低コスト化に寄与し得る。 The said polarizer can be used in the state laminated | stacked on the said polyester-based resin base material, and, in this case, a polyester-based resin base material is used as a protective layer of a polarizer (patent document 2). As a result, a laminate of a polyester-based resin substrate and a polarizer can be used as a polarizing plate without laminating a protective film to a polarizer, which can contribute to, for example, cost reduction of an image display device.
特開2000-338329号公報JP 2000-338329 A 特許第4979833号公報Patent No. 4797833 gazette
 しかしながら、上記偏光板の偏光子側の面を、粘着剤を介して表示セルまたは位相差板等の他の光学部材に貼り合せた場合、ポリエステル系樹脂基材の熱収縮挙動が大きい場合には、高温高湿環境下において偏光板の剥がれが生じ得る。 However, when the polarizer-side surface of the polarizing plate is bonded to a display cell or another optical member such as a retardation plate through an adhesive, the heat shrinkage behavior of the polyester resin base material is large. Peeling of the polarizing plate may occur under high temperature and high humidity environment.
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、熱収縮挙動が小さく、剥がれが抑制された偏光板、上記偏光板を備えた画像表示装置、および偏光板の製造方法を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and the main object thereof is a polarizing plate having a small heat shrinkage behavior and suppressing peeling, an image display device provided with the above polarizing plate, and a polarizing plate It is to provide a manufacturing method of
 本発明の偏光板は、ポリエステル系樹脂基材と、上記ポリエステル系樹脂基材の片側に積層された偏光子とを有し、上記偏光子の厚みが10μm以下であり、上記ポリエステル系樹脂基材の弾性率が2.70GPa以上である。
 1つの実施形態においては、上記偏光子が、上記ポリエステル系樹脂基材の片側に接着層を介することなく積層されている。
 1つの実施形態においては、上記ポリエステル系樹脂基材と上記偏光子との間に易接着層を有する。
 1つの実施形態においては、上記ポリエステル系樹脂基材が上記偏光子の保護層として機能する。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記偏光板を有する。
 本発明の別の局面によれば、上記偏光板の製造方法が提供される。該製造方法は、上記ポリエステル系樹脂基材の片側にポリビニルアルコール系樹脂層を形成して積層体とすること、上記積層体を、染色および延伸することにより上記ポリビニルアルコール系樹脂層を偏光子とすること、および上記延伸後に、上記ポリエステル系樹脂基材と上記偏光子との積層体を加熱処理することを含み、上記延伸における延伸浴の温度が67℃以下であり、かつ、上記加熱処理における最高加熱温度が102℃以上であるか、または、上記延伸における延伸浴の温度が69℃以下であり、かつ、上記加熱処理における最高加熱温度が105℃以上である。
The polarizing plate of the present invention has a polyester-based resin base and a polarizer laminated on one side of the polyester-based resin base, the thickness of the polarizer is 10 μm or less, and the polyester-based resin base Modulus of 2.70 GPa or more.
In one embodiment, the polarizer is laminated on one side of the polyester-based resin substrate without an adhesive layer.
In one embodiment, an easily bonding layer is provided between the polyester resin substrate and the polarizer.
In one embodiment, the polyester resin substrate functions as a protective layer of the polarizer.
According to another aspect of the present invention, an image display device is provided. This image display apparatus has the above-mentioned polarizing plate.
According to another aspect of the present invention, a method of manufacturing the above polarizing plate is provided. The manufacturing method is to form a polyvinyl alcohol resin layer on one side of the polyester resin base material to form a laminate, and dye and stretch the laminate to obtain the polyvinyl alcohol resin layer as a polarizer. And heating the laminate of the polyester-based resin substrate and the polarizer after the stretching, the temperature of the stretching bath in the stretching being 67.degree. C. or less, and the heat treatment in the heat treatment. The maximum heating temperature is 102 ° C. or more, or the temperature of the stretching bath in the above stretching is 69 ° C. or less, and the maximum heating temperature in the above heat treatment is 105 ° C. or more.
 本発明によれば、熱収縮挙動が小さく、剥がれが抑制された偏光板、上記偏光板を備えた画像表示装置、および偏光板の製造方法を提供し得る。 According to the present invention, it is possible to provide a polarizing plate having a small heat shrinkage behavior and suppressing peeling, an image display apparatus provided with the above polarizing plate, and a method of manufacturing the polarizing plate.
本発明の1つの実施形態に係る偏光板の断面図である。It is a sectional view of a polarizing plate concerning one embodiment of the present invention. 1つの実施形態に係る偏光板の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the polarizing plate which concerns on one embodiment.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, although the embodiment of the present invention is described, the present invention is not limited to these embodiments.
A.偏光板の全体構成
 図1は、本発明の1つの実施形態による偏光板の断面図である。図1に示すように、偏光板10は、ポリエステル系樹脂基材11と、ポリエステル系樹脂基材11の片側に積層された偏光子12とを有する。偏光子12の厚みは10μm以下である。ポリエステル系樹脂基材11の弾性率は2.70GPa以上である。ポリエステル系樹脂基材11の弾性率は、代表的には、押し込み試験機(代表的には、ナノインデンター)を用いたナノインデンテーション法により測定される。より具体的には、ポリエステル系樹脂基材11の弾性率(E)は、測定対象とされるポリエステル系樹脂基材の表面に探針(圧子)を押し当てて得られる変位―荷重ヒステリシス曲線から得られる接触剛性Sと、圧子とポリエステル系樹脂基材との間の接触射影面積Aとから、以下の式により算出される。
E=S×π1/2/2A1/2
 偏光子12は、好ましくは、ポリエステル系樹脂基材11の一方の面に密着して(換言すれば、接着層を介さずに)積層されている。偏光板10は、好ましくは、ポリエステル系樹脂基材11と偏光子12との間に易接着層(図示せず)を有する。偏光板10は、偏光子12のポリエステル系樹脂基材11とは反対側に保護フィルム(図示せず)を有していてもよい。ポリエステル系樹脂基材11は、代表的には偏光子12の保護層として機能する。従来の偏光板は、偏光子側の面を他の光学部材に貼り合せて高温高湿環境下に置いた場合、偏光板の延伸方向における両端部で光学部材からの剥がれが生じ得る。これに対して、本実施形態の偏光板10は、偏光子12側の面を他の光学部材に貼り合せたときのポリエステル系樹脂基材11の熱収縮挙動が小さく、高温高湿環境下における剥がれを抑制し得る。
A. Overall Configuration of Polarizing Plate FIG. 1 is a cross-sectional view of a polarizing plate according to an embodiment of the present invention. As shown in FIG. 1, the polarizing plate 10 has a polyester resin base 11 and a polarizer 12 laminated on one side of the polyester resin base 11. The thickness of the polarizer 12 is 10 μm or less. The elastic modulus of the polyester resin base material 11 is 2.70 GPa or more. The elastic modulus of the polyester-based resin substrate 11 is typically measured by a nanoindentation method using an indentation tester (typically, a nano indenter). More specifically, the elastic modulus (E) of the polyester resin substrate 11 is obtained by pressing a probe (indentor) against the surface of the polyester resin substrate to be measured, based on the displacement-load hysteresis curve. From the obtained contact rigidity S and the contact projected area A between the indenter and the polyester resin base material, it is calculated by the following equation.
E = S × π 1/2 / 2A 1/2
The polarizer 12 is preferably laminated in close contact with one surface of the polyester resin substrate 11 (in other words, without an adhesive layer). The polarizing plate 10 preferably has an easy adhesion layer (not shown) between the polyester resin substrate 11 and the polarizer 12. The polarizing plate 10 may have a protective film (not shown) on the side of the polarizer 12 opposite to the polyester resin substrate 11. The polyester resin substrate 11 typically functions as a protective layer of the polarizer 12. In the conventional polarizing plate, peeling from the optical member may occur at both ends in the stretching direction of the polarizing plate when the surface on the polarizer side is bonded to another optical member and placed in a high temperature and high humidity environment. On the other hand, in the polarizing plate 10 of the present embodiment, the heat shrinkage behavior of the polyester resin substrate 11 is small when the surface on the polarizer 12 side is bonded to another optical member, and under the high temperature and high humidity environment. Peeling can be suppressed.
B.偏光子
 偏光子は、実質的には、ヨウ素が吸着配向されたポリビニルアルコール系樹脂層(PVA系樹脂層)である。偏光子の厚みは、上記のとおり10μm以下であり、好ましくは7.5μm以下であり、より好ましくは5μm以下である。一方、偏光子の厚みは、好ましくは0.5μm以上、より好ましくは1.5μm以上である。厚みが薄すぎると得られる偏光子の光学特性が低下するおそれがある。偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40.0%以上、より好ましくは41.0%以上、さらに好ましくは42.0%以上である。偏光子の偏光度は、好ましくは99.8%以上、より好ましくは99.9%以上、さらに好ましくは99.95%以上である。
B. The polarizer is substantially a polyvinyl alcohol-based resin layer (PVA-based resin layer) in which iodine is adsorbed and oriented. The thickness of the polarizer is 10 μm or less as described above, preferably 7.5 μm or less, and more preferably 5 μm or less. On the other hand, the thickness of the polarizer is preferably 0.5 μm or more, more preferably 1.5 μm or more. If the thickness is too thin, the optical properties of the resulting polarizer may be degraded. The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, and still more preferably 42.0% or more. The degree of polarization of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, and still more preferably 99.95% or more.
 上記PVA系樹脂層を形成するPVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。 Arbitrary suitable resin may be adopted as PVA system resin which forms the above-mentioned PVA system resin layer. For example, polyvinyl alcohol and ethylene-vinyl alcohol copolymer can be mentioned. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer. The saponification degree of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. . The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA resin having such a degree of saponification, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択され得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA-based resin can be appropriately selected depending on the purpose. The average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300. The average degree of polymerization can be determined according to JIS K 6726-1994.
C. ポリエステル系樹脂基材
 ポリエステル系樹脂基材は、上記のとおり、弾性率が2.70GPa以上である。上記弾性率は、好ましくは2.70GPa~4.50GPaであり、より好ましくは2.80GPa~3.90GPaである。これにより、高温高湿環境下におけるポリエステル系樹脂基材の収縮を抑制し得、その結果、偏光板を光学部材に貼り合せた場合に、光学部材からポリエステル系樹脂基材が剥がれることを抑制し得る。上記弾性率は、後述する偏光板の製造方法において、ポリエステル系樹脂基材とポリビニルアルコール系樹脂層との積層体を水中延伸する際の延伸浴の温度と、水中延伸後に加熱処理する際の最高加熱温度とを適切に設定することによって、所望の数値範囲内に制御し得る。
C. Polyester-Based Resin Substrate As described above, the polyester-based resin substrate has an elastic modulus of 2.70 GPa or more. The elastic modulus is preferably 2.70 GPa to 4.50 GPa, more preferably 2.80 GPa to 3.90 GPa. Thereby, the shrinkage of the polyester resin base material under high temperature and high humidity environment can be suppressed, and as a result, when the polarizing plate is bonded to the optical member, the polyester resin base material is prevented from peeling from the optical member. obtain. The elastic modulus is the temperature of the stretching bath when the laminate of the polyester resin base material and the polyvinyl alcohol resin layer is stretched in water, and the highest at the time of heat treatment after stretching in water in the manufacturing method of the polarizing plate described later. By setting the heating temperature appropriately, it can be controlled within the desired numerical range.
 ポリエステル系樹脂基材の形成材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、イソフタル酸、シクロヘキサン環等を含む脂環式のジカルボン酸または脂環式のジオール等を含む共重合PET(PET-G)、その他ポリエステル、および、これらの共重合体やブレンド体等を用いることができる。なかでも、非晶質の(結晶化していない)PETまたは共重合PETを用いることが好ましい。これらの樹脂によれば、未延伸状態では非晶で高倍率延伸に適した優れた延伸性を有し、延伸、加熱により結晶化することで、耐熱性および寸法安定性を付与できる。さらに、未延伸の状態でPVA系樹脂を塗布、乾燥することが可能な程度の耐熱性を確保できる。 As a forming material of a polyester-based resin base material, for example, alicyclic dicarboxylic acid or alicyclic ring containing polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), isophthalic acid, cyclohexane ring and the like Copolymerized PET (PET-G) containing a diol or the like of the formula, other polyesters, and copolymers and blends thereof can be used. Among them, amorphous (non-crystallized) PET or copolymerized PET is preferably used. These resins are amorphous in the unstretched state and have excellent stretchability suitable for high magnification stretch, and can impart heat resistance and dimensional stability by being crystallized by stretching and heating. Furthermore, the heat resistance of the extent which can apply | coat and dry PVA-type resin in the unstretched state is securable.
 ポリエステル系樹脂基材のガラス転移温度(Tg)は、好ましくは170℃以下である。このようなポリエステル系樹脂基材を用いることにより、PVA系樹脂層の結晶化を抑制しながら、延伸性を十分に確保することができる。水によるポリエステル系樹脂基材の可塑化と、水中延伸を良好に行うことを考慮すると、120℃以下であることがさらに好ましい。1つの実施形態においては、ポリエステル系樹脂基材のガラス転移温度は、好ましくは60℃以上である。このようなポリエステル系樹脂基材を用いることにより、後述のPVA系樹脂を含む塗布液を塗布・乾燥する際に、ポリエステル系樹脂基材が変形(例えば、凹凸やタルミ、シワ等の発生)する等の不具合を防止することができる。また、積層体の延伸を、好適な温度(例えば、60℃~70℃程度)にて行うことができる。別の実施形態においては、PVA系樹脂を含む塗布液を塗布・乾燥する際に、ポリエステル系樹脂基材が変形しなければ、60℃より低いガラス転移温度であってもよい。なお、ガラス転移温度(Tg)は、JIS K 7121に準じて求められる値である。 The glass transition temperature (Tg) of the polyester resin substrate is preferably 170 ° C. or less. By using such a polyester-based resin substrate, stretchability can be sufficiently secured while suppressing crystallization of the PVA-based resin layer. It is more preferable that the temperature is 120 ° C. or less in consideration of good plasticization of the polyester resin base material by water and stretching in water. In one embodiment, the glass transition temperature of the polyester resin substrate is preferably 60 ° C. or higher. By using such a polyester-based resin substrate, the polyester-based resin substrate is deformed (for example, generation of unevenness, sagging, wrinkles, etc.) when applying and drying a coating solution containing a PVA-based resin described later. Etc. can be prevented. In addition, stretching of the laminate can be performed at a suitable temperature (for example, about 60 ° C. to 70 ° C.). In another embodiment, a glass transition temperature lower than 60 ° C. may be applied if the polyester-based resin substrate is not deformed when applying and drying a coating solution containing a PVA-based resin. The glass transition temperature (Tg) is a value determined according to JIS K 7121.
 1つの実施形態においては、ポリエステル系樹脂基材は、吸水率が0.2%以上であることが好ましく、さらに好ましくは0.3%以上である。このようなポリエステル系樹脂基材は水を吸収し、水が可塑剤的な働きをして可塑化し得る。その結果、水中延伸において延伸応力を大幅に低下させることができ、延伸性に優れ得る。一方、ポリエステル系樹脂基材の吸水率は、好ましくは3.0%以下、さらに好ましくは1.0%以下である。このようなポリエステル系樹脂基材を用いることにより、製造時にポリエステル系樹脂基材の寸法安定性が著しく低下して、得られる積層体の外観が悪化するなどの不具合を防止することができる。また、水中延伸時に破断したり、ポリエステル系樹脂基材からPVA系樹脂層が剥離したりするのを防止することができる。なお、吸水率は、JIS K 7209に準じて求められる値である。 In one embodiment, the polyester resin base material preferably has a water absorption of 0.2% or more, more preferably 0.3% or more. Such polyester resin base material absorbs water, and the water acts as a plasticizer and can be plasticized. As a result, the stretching stress can be significantly reduced in the in-water stretching, and the stretchability can be excellent. On the other hand, the water absorption rate of the polyester resin base material is preferably 3.0% or less, more preferably 1.0% or less. By using such a polyester-based resin base material, the dimensional stability of the polyester-based resin base material significantly decreases at the time of production, and it is possible to prevent such a problem that the appearance of the obtained laminate is deteriorated. In addition, it is possible to prevent breakage during stretching in water or peeling of the PVA-based resin layer from the polyester-based resin substrate. In addition, a water absorption is a value calculated | required according to JISK7209.
 ポリエステル系樹脂基材の厚みは、好ましくは10μm~200μm、さらに好ましくは20μm~150μmである。 The thickness of the polyester resin substrate is preferably 10 μm to 200 μm, and more preferably 20 μm to 150 μm.
D.保護フィルム
 偏光板10は、上記のとおり、偏光子12のポリエステル系樹脂基材11とは反対側に保護フィルムを有し得る。上記保護フィルムの形成材料としては、例えば、(メタ)アクリル系樹脂、ジアセチルセルロース、トリアセチルセルロース等のセルロース系樹脂、シクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。保護フィルムの厚みは、好ましくは10μm~100μmである。
D. Protective Film The polarizing plate 10 may have a protective film on the side opposite to the polyester resin substrate 11 of the polarizer 12 as described above. Examples of the material for forming the protective film include cellulose resins such as (meth) acrylic resins, diacetyl cellulose and triacetyl cellulose, cycloolefin resins, olefin resins such as polypropylene, and ester resins such as polyethylene terephthalate resins. Resin, polyamide-based resin, polycarbonate-based resin, copolymer resin of these, etc. may be mentioned. The thickness of the protective film is preferably 10 μm to 100 μm.
E.易接着層
 偏光板10は、上記のとおり、ポリエステル系樹脂基材11と偏光子12との間に易接着層を有し得る。易接着層は、実質的に易接着層形成用組成物のみから形成される層であってもよく、易接着層形成用組成物と偏光子の形成材料とが混合(相溶を含む)した層または領域であってもよい。易接着層が形成されていることにより、優れた密着性が得られ得る。易接着層の厚みは、0.05μm~1μm程度とすることが好ましい。易接着層は、例えば、偏光板の断面を走査型電子顕微鏡(SEM)で観察することにより確認することができる。
E. Easy Adhesion Layer The polarizing plate 10 may have an easy adhesion layer between the polyester resin substrate 11 and the polarizer 12 as described above. The easy-adhesion layer may be a layer formed substantially only of the composition for forming the easy-adhesion layer, and the composition for forming the easy-adhesion layer and the material for forming the polarizer are mixed (including compatibility) It may be a layer or a region. By forming the easy adhesion layer, excellent adhesion can be obtained. The thickness of the easy adhesion layer is preferably about 0.05 μm to 1 μm. The easily bonding layer can be confirmed, for example, by observing the cross section of the polarizing plate with a scanning electron microscope (SEM).
 易接着層形成用組成物は、好ましくはポリビニルアルコール系成分を含む。ポリビニルアルコール系成分としては、任意の適切なPVA系樹脂が用いられ得る。具体的には、ポリビニルアルコール、変性ポリビニルアルコールが挙げられる。変性ポリビニルアルコールとしては、例えば、アセトアセチル基、カルボン酸基、アクリル基および/またはウレタン基で変性されたポリビニルアルコールが挙げられる。これらの中でも、アセトアセチル変性PVAが好ましく用いられる。アセトアセチル変性PVAとしては、下記一般式(I)で表わされる繰り返し単位を少なくとも有する重合体が好ましく用いられる。 The composition for easily adhesive layer formation preferably contains a polyvinyl alcohol-based component. Any appropriate PVA-based resin may be used as the polyvinyl alcohol-based component. Specifically, polyvinyl alcohol and modified polyvinyl alcohol are mentioned. Examples of the modified polyvinyl alcohol include polyvinyl alcohol modified with an acetoacetyl group, a carboxylic acid group, an acrylic group and / or a urethane group. Among these, acetoacetyl-modified PVA is preferably used. As acetoacetyl-modified PVA, a polymer having at least a repeating unit represented by the following general formula (I) is preferably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(I)において、l+m+nに対するnの割合は、好ましくは1%~10%である。 In the above formula (I), the ratio of n to l + m + n is preferably 1% to 10%.
 アセトアセチル変性PVAの平均重合度は、好ましくは1000~10000であり、好ましくは1200~5000である。アセトアセチル変性PVAのケン化度は、好ましくは97モル%以上である。アセトアセチル変性PVAの4重量%水溶液のpHは、好ましくは3.5~5.5である。 The average degree of polymerization of acetoacetyl-modified PVA is preferably 1000 to 10000, preferably 1200 to 5000. The degree of saponification of the acetoacetyl-modified PVA is preferably 97 mol% or more. The pH of a 4% by weight aqueous solution of acetoacetyl-modified PVA is preferably 3.5 to 5.5.
 易接着層形成用組成物は、目的等に応じて、ポリオレフィン系成分、ポリエステル系成分、ポリアクリル系成分等をさらに含み得る。好ましくは、易接着層形成用組成物は、ポリオレフィン系成分をさらに含む。 The composition for easily adhesive layer formation may further contain a polyolefin-based component, a polyester-based component, a polyacrylic-based component and the like according to the purpose and the like. Preferably, the composition for easy adhesion layer formation further comprises a polyolefin-based component.
 上記ポリオレフィン系成分としては、任意の適切なポリオレフィン系樹脂が用いられ得る。ポリオレフィン系樹脂の主成分であるオレフィン成分としては、例えば、エチレン、プロピレン、イソブチレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素数2~6のオレフィン系炭化水素が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、エチレン、プロピレン、イソブチレン、1-ブテン等の炭素数2~4のオレフィン系炭化水素が好ましく、さらに好ましくはエチレンが用いられる。 Any appropriate polyolefin-based resin may be used as the polyolefin-based component. Examples of the olefin component which is the main component of the polyolefin resin include olefin hydrocarbons having 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 1-butene, 1-pentene and 1-hexene. These can be used alone or in combination of two or more. Among these, olefin hydrocarbons having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene are preferable, and ethylene is more preferably used.
 上記ポリオレフィン系樹脂を構成するモノマー成分のうち、オレフィン成分の占める割合は、好ましくは50重量%~95重量%である。 The proportion of the olefin component in the monomer component constituting the polyolefin resin is preferably 50% by weight to 95% by weight.
 上記ポリオレフィン系樹脂は、カルボキシル基および/またはその無水物基を有することが好ましい。このようなポリオレフィン系樹脂は水に分散し得、易接着層が良好に形成され得る。このような官能基を有するモノマー成分としては、例えば、不飽和カルボン酸およびその無水物、不飽和ジカルボン酸のハーフエステル、ハーフアミドが挙げられる。これらの具体例としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、クロトン酸が挙げられる。ポリオレフィン系樹脂の分子量は、例えば5000~80000である。 It is preferable that the said polyolefin resin has a carboxyl group and / or its anhydride group. Such a polyolefin resin can be dispersed in water, and an easily adhesive layer can be formed well. As a monomer component which has such a functional group, unsaturated carboxylic acid and its anhydride, the half ester of unsaturated dicarboxylic acid, a half amide are mentioned, for example. Specific examples of these include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid and crotonic acid. The molecular weight of the polyolefin resin is, for example, 5,000 to 80,000.
 易接着層形成用組成物において、ポリビニルアルコール系成分とポリオレフィン系成分との配合比(前者:後者(固形分))は、好ましくは5:95~60:40、さらに好ましくは20:80~50:50である。ポリビニルアルコール系成分が多すぎると密着性が十分に得られないおそれがある。具体的には、偏光子をポリエステル系樹脂基材から剥離する際に要する剥離力が低下して、十分な密着性が得られないおそれがある。一方、ポリビニルアルコール系成分が少なすぎると得られる偏光板の外観が損なわれるおそれがある。具体的には、易接着層の形成の際に、塗布膜が白濁する等の不具合が発生して、外観に優れた偏光板を得ることが困難となるおそれがある。 In the composition for easily adhesive layer formation, the compounding ratio (the former: the latter (solid content)) of the polyvinyl alcohol-based component and the polyolefin-based component is preferably 5:95 to 60:40, more preferably 20:80 to 50. : 50. If the amount of the polyvinyl alcohol-based component is too large, the adhesion may not be obtained sufficiently. Specifically, the peeling force required for peeling the polarizer from the polyester-based resin base material may be reduced, and sufficient adhesion may not be obtained. On the other hand, when the amount of the polyvinyl alcohol-based component is too small, the appearance of the obtained polarizing plate may be impaired. Specifically, in the formation of the easy adhesion layer, problems such as the coating film becoming cloudy may occur, and it may be difficult to obtain a polarizing plate having an excellent appearance.
 易接着層形成用組成物は、好ましくは水系である。易接着層形成組成物は、有機溶剤を含み得る。有機溶剤としては、例えば、エタノール、イソプロパノール等が挙げられる。易接着層形成用組成物の固形分濃度は、好ましくは1.0重量%~10重量%である。 The composition for easily adhesive layer formation is preferably a water system. The easy adhesion layer forming composition may contain an organic solvent. Examples of the organic solvent include ethanol, isopropanol and the like. The solid content concentration of the composition for easily adhesive layer formation is preferably 1.0% by weight to 10% by weight.
 易接着層形成用組成物の塗布方法としては、任意の適切な方法を採用することができる。易接着層形成用組成物の塗布後、塗布膜は乾燥され得る。乾燥温度は、例えば50℃以上である。 Any appropriate method can be adopted as a method of applying the composition for easily adhesive layer formation. After application of the composition for easy adhesion layer formation, the coating film may be dried. The drying temperature is, for example, 50 ° C. or more.
F.偏光板の製造方法
 本発明の偏光板の製造方法は、ポリエステル系樹脂基材の片側にPVA系樹脂層を形成して積層体とすること、積層体を、染色および延伸することによりPVA系樹脂層を偏光子とすること、および、延伸後に、ポリエステル系樹脂基材と偏光子との積層体を加熱処理することを含む。延伸浴の温度が67℃以下であり、かつ、加熱処理における最高加熱温度が102℃以上であるか、または、延伸浴の温度が69℃以下であり、かつ、加熱処理における最高加熱温度が105℃以上である。
F. Method of Producing Polarizing Plate The method of producing a polarizing plate of the present invention comprises forming a PVA-based resin layer on one side of a polyester-based resin substrate to form a laminate, and dyeing and stretching the laminate to obtain a PVA-based resin And making the layer into a polarizer, and heating the laminate of the polyester resin substrate and the polarizer after stretching. The temperature of the stretching bath is 67 ° C. or less, and the maximum heating temperature in the heat treatment is 102 ° C. or more, or the temperature of the stretching bath is 69 ° C. or less, and the maximum heating temperature in the heat treatment is 105 ° C or more.
 図2は、1つの実施形態に係る偏光板の製造工程を示す概略図である。本実施形態に係る偏光板の製造工程は、代表的には、ポリエステル系樹脂基材とPVA系樹脂層との積層体10’を、繰り出し部101から繰り出し、ロール111および112によってホウ酸水溶液の浴110中に浸漬した後(不溶化処理)、ロール121および122によって二色性物質(ヨウ素)およびヨウ化カリウムの水溶液の浴120中に浸漬する(染色処理)。次いで、ロール131および132によってホウ酸およびヨウ化カリウムの水溶液の浴130中に浸漬する(架橋処理)。次いで、積層体10’を、ホウ酸水溶液の延伸浴140中に浸漬しながら、速比の異なるロール141および142で縦方向(長手方向、搬送方向、MD方向)に張力を付与して延伸する(水中延伸処理)ことにより、PVA系樹脂層を偏光子とする。次いで、水中延伸した積層体10’を、ロール151および152によってヨウ化カリウム水溶液の浴150中に浸漬し(洗浄処理)、乾燥処理に供する(図示せず)。次いで、積層体10’を加熱手段160に入れて加熱する(加熱処理)ことにより、本実施形態の偏光板10が得られる。その後、得られた偏光板10を巻き取り部170にて巻き取る。図示は省略するが、積層体10’に不溶化処理を施す前に、空中延伸処理を施してもよい。なお、図2に示す製造工程は一例であり、上記の処理の回数、順序等は、特に限定されない。 FIG. 2: is schematic which shows the manufacturing process of the polarizing plate which concerns on one Embodiment. In the manufacturing process of the polarizing plate according to the present embodiment, typically, a laminate 10 ′ of a polyester-based resin base material and a PVA-based resin layer is drawn out from a drawing out part 101, and rolls 111 and 112 After being immersed in the bath 110 (insolubilization treatment), it is immersed in a bath 120 of an aqueous solution of a dichroic substance (iodine) and potassium iodide by rolls 121 and 122 (staining treatment). Then, it is immersed in a bath 130 of an aqueous solution of boric acid and potassium iodide by rolls 131 and 132 (crosslinking treatment). Next, while immersing the laminate 10 ′ in the boric acid aqueous solution stretching bath 140, tension is applied in the longitudinal direction (longitudinal direction, transport direction, MD direction) by the rolls 141 and 142 having different speed ratios to stretch. The PVA-based resin layer is used as a polarizer by (in-water stretching treatment). Next, the laminate 10 'stretched in water is immersed in a potassium iodide aqueous solution bath 150 by means of rolls 151 and 152 (washing treatment) and subjected to drying treatment (not shown). Next, the laminate 10 ′ is placed in the heating unit 160 and heated (heat treatment) to obtain the polarizing plate 10 of the present embodiment. Thereafter, the obtained polarizing plate 10 is wound by a winding unit 170. Although illustration is omitted, it is possible to perform air-drawing processing before subjecting the laminate 10 ′ to insolubilization processing. In addition, the manufacturing process shown in FIG. 2 is an example, and the frequency | count of said process, order, etc. are not specifically limited.
F-1.積層体の作製
 ポリエステル系樹脂基材上にPVA系樹脂層を形成する方法としては、任意の適切な方法が採用され得る。好ましくは、ポリエステル系樹脂基材上に、PVA系樹脂を含む塗布液を塗布し、乾燥することにより、PVA系樹脂層を形成する。1つの実施形態においては、ポリエステル系樹脂基材上に、易接着層形成用組成物を塗布し、乾燥することにより、易接着層を形成し、該易接着層上にPVA系樹脂層を形成する。
F-1. Production of Laminate As a method of forming a PVA-based resin layer on a polyester-based resin substrate, any appropriate method may be employed. Preferably, a coating solution containing a PVA-based resin is applied onto a polyester-based resin substrate and dried to form a PVA-based resin layer. In one embodiment, a composition for forming an easy adhesion layer is applied onto a polyester resin substrate and dried to form an easy adhesion layer, and a PVA resin layer is formed on the easy adhesion layer. Do.
 上記ポリエステル系樹脂基材の形成材料は、上記C項で説明したとおりである。ポリエステル系樹脂基材の厚み(後述する延伸前の厚み)は、好ましくは20μm~300μm、より好ましくは50μm~200μmである。20μm未満であると、PVA系樹脂層の形成が困難になるおそれがある。300μmを超えると、例えば、水中延伸において、ポリエステル系樹脂基材が水を吸収するのに長時間を要するとともに、延伸に過大な負荷を要するおそれがある。 The forming material of the polyester resin base material is as described in the section C above. The thickness of the polyester resin substrate (the thickness before stretching described later) is preferably 20 μm to 300 μm, and more preferably 50 μm to 200 μm. There exists a possibility that formation of a PVA-type resin layer may become difficult as it is less than 20 micrometers. If it exceeds 300 μm, for example, it may take a long time for the polyester resin base material to absorb water during stretching in water, and an excessive load may be required for stretching.
 上記塗布液は、代表的には、上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、ポリエステル系樹脂基材に密着した均一な塗布膜を形成することができる。1つの実施形態においては、上記塗布液はハロゲン化物を含む。上記ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。塗布液におけるハロゲン化物の量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部であり、より好ましくは、PVA系樹脂100重量部に対して10重量部~15重量部である。PVA系樹脂100重量部に対するハロゲン化物の量が20重量部を超えると、ハロゲン化物がブリードアウトし、最終的に得られる偏光子が白濁する場合がある。ハロゲン化物を含むPVA系樹脂層とポリエステル系樹脂基材との積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、最終的に得られる偏光子の光学特性を向上し得る。 The coating solution is typically a solution in which the PVA-based resin is dissolved in a solvent. Examples of the solvent include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, water is preferred. The PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, it is possible to form a uniform coating film in close contact with the polyester resin substrate. In one embodiment, the coating solution comprises a halide. Any appropriate halide can be adopted as the above-mentioned halide. For example, iodide and sodium chloride can be mentioned. The iodide includes, for example, potassium iodide, sodium iodide and lithium iodide. Among these, preferred is potassium iodide. The amount of the halide in the coating solution is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA resin, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA resin It is a department. When the amount of the halide relative to 100 parts by weight of the PVA resin exceeds 20 parts by weight, the halide may bleed out and the finally obtained polarizer may become cloudy. The high-temperature stretching (auxiliary stretching) in air before stretching the laminate of the PVA-based resin layer containing a halide and the polyester-based resin substrate in boric acid water allows the PVA-based resin layer after the auxiliary stretching to be performed. The crystallization of the PVA-based resin can be promoted. As a result, when the PVA-based resin layer is immersed in liquid, the disorder of the orientation of polyvinyl alcohol molecules and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This can improve the optical properties of the polarizer finally obtained.
 塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。また、添加剤としては、例えば、易接着成分が挙げられる。易接着成分を用いることにより、ポリエステル系樹脂基材とPVA系樹脂層との密着性を向上させ得る。その結果、例えば、ポリエステル系樹脂基材からPVA系樹脂層が剥がれる等の不具合を抑制して、後述の染色、水中延伸を良好に行うことができる。易接着成分としては、例えば、アセトアセチル変性PVAなどの変性PVAが用いられる。 You may mix | blend an additive with a coating liquid. As an additive, a plasticizer, surfactant, etc. are mentioned, for example. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. As surfactant, a nonionic surfactant is mentioned, for example. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the obtained PVA-based resin layer. Moreover, as an additive, an easily bonding component is mentioned, for example. The adhesion between the polyester-based resin base and the PVA-based resin layer can be improved by using the easy-adhesion component. As a result, for example, defects such as peeling of the PVA-based resin layer from the polyester-based resin substrate can be suppressed, and the below-mentioned dyeing and underwater stretching can be favorably performed. For example, a modified PVA such as acetoacetyl-modified PVA is used as the easy adhesion component.
 塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。塗布液の塗布・乾燥温度は、好ましくは50℃以上である。 Any appropriate method can be adopted as a method of applying the coating solution. For example, a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (a comma coating method etc.) and the like can be mentioned. The coating / drying temperature of the coating solution is preferably 50 ° C. or more.
 上記PVA系樹脂層の厚み(後述する延伸前の厚み)は、好ましくは3μm~20μmである。 The thickness of the PVA-based resin layer (thickness before stretching described later) is preferably 3 μm to 20 μm.
 PVA系樹脂層を形成する前に、ポリエステル系樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、ポリエステル系樹脂基材上に易接着層形成用組成物を塗布(コーティング処理)してもよい。このような処理を行うことにより、ポリエステル系樹脂基材とPVA系樹脂層との密着性を向上させることができる。その結果、例えば、ポリエステル系樹脂基材からPVA系樹脂層が剥がれる等の不具合を抑制して、後述の染色および延伸を良好に行うことができる。 Before forming the PVA-based resin layer, the polyester-based resin substrate may be subjected to surface treatment (for example, corona treatment etc.), or the composition for forming an easy adhesion layer is coated on the polyester-based resin substrate (coating Processing). By performing such treatment, the adhesion between the polyester resin substrate and the PVA resin layer can be improved. As a result, for example, defects such as peeling of the PVA-based resin layer from the polyester-based resin substrate can be suppressed, and the below-described dyeing and stretching can be favorably performed.
F-2.空中延伸処理
 空中補助延伸の延伸方法は、固定端延伸(たとえば、テンター延伸機を用いて延伸する方法)でもよいし、自由端延伸(たとえば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。一つの実施形態においては、空中延伸処理は、上記積層体をその長手方向に搬送しながら、熱ロール間の周速差により延伸する熱ロール延伸工程を含む。空中延伸処理は、代表的には、ゾーン延伸工程と熱ロール延伸工程とを含む。なお、ゾーン延伸工程と熱ロール延伸工程の順序は限定されず、ゾーン延伸工程が先に行われてもよく、熱ロール延伸工程が先に行われてもよい。ゾーン延伸工程は省略されてもよい。1つの実施形態においては、ゾーン延伸工程および熱ロール延伸工程がこの順に行われる。
F-2. In-Air Stretching The stretching method of air-assisted stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, uniaxial stretching through a laminate between rolls with different peripheral speeds) Method). In one embodiment, the in-air stretching process includes a hot roll stretching step of stretching by the circumferential speed difference between the hot rolls while conveying the laminate in the longitudinal direction. The air-drawing process typically includes a zone drawing process and a hot roll drawing process. The order of the zone drawing process and the heat roll drawing process is not limited, and the zone drawing process may be performed first, or the heat roll drawing process may be performed first. The zone stretching step may be omitted. In one embodiment, the zone drawing step and the hot roll drawing step are performed in this order.
 積層体の延伸温度は、ポリエステル系樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。空中延伸処理における延伸温度は、好ましくはポリエステル系樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくはポリエステル系樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、積層体の延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。 The stretching temperature of the laminate can be set to any appropriate value according to the forming material of the polyester resin base material, the stretching method, and the like. The stretching temperature in the aerial stretching process is preferably not less than the glass transition temperature (Tg) of the polyester resin substrate, more preferably the glass transition temperature (Tg) of the polyester resin substrate + 10 ° C. or more, particularly preferably Tg + 15 ° C. It is above. On the other hand, the upper limit of the stretching temperature of the laminate is preferably 170 ° C. By stretching at such a temperature, it is possible to suppress rapid progress of crystallization of the PVA-based resin and to suppress a defect due to the crystallization (for example, to prevent the orientation of the PVA-based resin layer by stretching). it can.
F-3.不溶化処理
 上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。不溶化処理を施すことにより、PVA系樹脂層に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。不溶化浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。好ましくは、不溶化処理は、上記水中延伸や上記染色処理の前に行う。
F-3. Insolubilization treatment The above-mentioned insolubilization treatment is typically performed by immersing the PVA-based resin layer in a boric acid aqueous solution. Water resistance can be imparted to the PVA-based resin layer by performing the insolubilization treatment. The concentration of the aqueous boric acid solution is preferably 1 part by weight to 4 parts by weight with respect to 100 parts by weight of water. The liquid temperature of the insolubilization bath (boric acid aqueous solution) is preferably 20 ° C to 50 ° C. Preferably, the insolubilization treatment is performed before the above-described in-water stretching and the above-mentioned dyeing treatment.
F-4.染色処理
 PVA系樹脂層の染色は、代表的には、PVA系樹脂層にヨウ素を吸着させることにより行う。当該吸着方法としては、例えば、ヨウ素を含む染色液にPVA系樹脂層(積層体)を浸漬させる方法、PVA系樹脂層に当該染色液を塗工する方法、当該染色液をPVA系樹脂層に噴霧する方法等が挙げられる。好ましくは、染色液にPVA系樹脂層(積層体)を浸漬させる方法である。ヨウ素が良好に吸着し得るからである。
F-4. Dyeing treatment Dyeing of the PVA-based resin layer is typically performed by adsorbing iodine to the PVA-based resin layer. As the adsorption method, for example, a method of immersing a PVA-based resin layer (laminated body) in a staining solution containing iodine, a method of applying the staining solution to a PVA-based resin layer, the staining solution to a PVA-based resin layer The method of spraying etc. are mentioned. Preferably, it is a method of immersing a PVA-based resin layer (laminate) in a staining solution. It is because iodine can be adsorbed well.
 上記染色液は、好ましくは、ヨウ素水溶液である。ヨウ素の配合量は、水100重量部に対して、好ましくは0.1重量部~0.5重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.02重量部~20重量部、より好ましくは0.1重量部~10重量部である。染色液の染色時の液温は、PVA系樹脂の溶解を抑制するため、好ましくは20℃~50℃である。染色液にPVA系樹脂層を浸漬させる場合、浸漬時間は、PVA系樹脂層の透過率を確保するため、好ましくは5秒~5分である。また、染色条件(濃度、液温、浸漬時間)は、最終的に得られる偏光子の偏光度もしくは単体透過率が所定の範囲となるように、設定することができる。1つの実施形態においては、得られる偏光子の偏光度が99.98%以上となるように、浸漬時間を設定する。別の実施形態においては、得られる偏光子の単体透過率が40%~44%となるように、浸漬時間を設定する。 The staining solution is preferably an aqueous iodine solution. The compounding amount of iodine is preferably 0.1 parts by weight to 0.5 parts by weight with respect to 100 parts by weight of water. In order to enhance the solubility of iodine in water, it is preferable to add an iodide to an aqueous iodine solution. Specific examples of iodide are as described above. The compounding amount of iodide is preferably 0.02 parts by weight to 20 parts by weight, more preferably 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of water. The liquid temperature at the time of dyeing of the staining solution is preferably 20 ° C. to 50 ° C. in order to suppress the dissolution of the PVA-based resin. In the case of immersing the PVA-based resin layer in the staining solution, the immersion time is preferably 5 seconds to 5 minutes in order to secure the transmittance of the PVA-based resin layer. The dyeing conditions (concentration, liquid temperature, immersion time) can be set such that the degree of polarization or single transmittance of the finally obtained polarizer falls within a predetermined range. In one embodiment, the immersion time is set so that the degree of polarization of the obtained polarizer is 99.98% or more. In another embodiment, the immersion time is set so that the single transmittance of the obtained polarizer is 40% to 44%.
 染色処理は、任意の適切なタイミングで行い得る。好ましくは、水中延伸の前に行う。 The staining process may be performed at any appropriate timing. Preferably, it is carried out before in-water stretching.
F-5.架橋処理
 上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層(積層体)を浸漬することにより行う。架橋処理を施すことにより、PVA系樹脂層に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~5重量部である。また、上記染色処理後に架橋処理を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部~5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃~60℃である。好ましくは、架橋処理は水中延伸処理の前に行う。好ましい実施形態においては、空中延伸処理、染色処理および架橋処理をこの順で行う。
F-5. Crosslinking treatment The above crosslinking treatment is typically performed by immersing the PVA-based resin layer (laminate) in a boric acid aqueous solution. Water resistance can be given to a PVA-type resin layer by giving a crosslinking process. The concentration of the aqueous boric acid solution is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water. Moreover, when performing a crosslinking process after the said dyeing | staining process, it is preferable to mix | blend iodide further. By blending an iodide, elution of iodine adsorbed to the PVA-based resin layer can be suppressed. The compounding amount of iodide is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water. Specific examples of iodide are as described above. The liquid temperature of the crosslinking bath (boric acid aqueous solution) is preferably 20.degree. C. to 60.degree. Preferably, the crosslinking treatment is carried out before the in-water stretching treatment. In a preferred embodiment, the air-drawing process, the dyeing process and the crosslinking process are carried out in this order.
F-6.水中延伸処理
 偏光板の製造工程は、上記のとおり、積層体を延伸浴中で水中延伸処理することを含む。具体的には、上記積層体の延伸方向と平行な方向に水中延伸する。水中延伸によれば、上記ポリエステル系樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた光学特性(例えば、偏光度)を有する偏光子を作製することができる。なお、本明細書において「平行な方向」とは、0°±5.0°である場合を包含し、好ましくは0°±3.0°、さらに好ましくは0°±1.0°である。
F-6. In-Water Stretching Process As described above, the manufacturing process of the polarizing plate includes stretching the laminate in water in a stretching bath. Specifically, the film is stretched in water in a direction parallel to the stretching direction of the laminate. According to in-water stretching, stretching can be performed at a temperature lower than the glass transition temperature (typically, about 80 ° C.) of the above-mentioned polyester resin base material and PVA-based resin layer, and the PVA-based resin layer can be crystallized. While suppressing, it can be stretched to a high magnification. As a result, a polarizer having excellent optical properties (for example, the degree of polarization) can be produced. In the present specification, “parallel direction” includes the case of 0 ° ± 5.0 °, preferably 0 ° ± 3.0 °, more preferably 0 ° ± 1.0 °. .
 水中延伸の延伸温度(延伸浴の液温)は、69℃以下であり、より好ましくは67℃以下である。延伸浴の液温の下限は、好ましくは40℃であり、より好ましくは50℃である。延伸浴の液温を上記の範囲内に設定することにより、後述の加熱処理における最高加熱温度とも相まって、ポリエステル系樹脂基材の弾性率を好ましい範囲内の値に調整することができる。さらに、上記のような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、ポリエステル系樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水によるポリエステル系樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。 The stretching temperature in the in-water stretching (liquid temperature of the stretching bath) is 69 ° C. or less, more preferably 67 ° C. or less. The lower limit of the solution temperature of the stretching bath is preferably 40 ° C, more preferably 50 ° C. By setting the liquid temperature of the stretching bath within the above range, the elastic modulus of the polyester resin substrate can be adjusted to a value within the preferred range, in combination with the maximum heating temperature in the heat treatment described later. Furthermore, if it is the above temperature, it can extend | stretch to high magnification, suppressing melt | dissolution of a PVA-type resin layer. Specifically, as described above, the glass transition temperature (Tg) of the polyester-based resin base material is preferably 60 ° C. or more in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is less than 40 ° C., there is a possibility that the film can not be stretched well even in consideration of the plasticization of the polyester resin base material by water. On the other hand, the higher the temperature of the stretching bath, the higher the solubility of the PVA-based resin layer, which may make it impossible to obtain excellent optical properties. The immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
 水中延伸処理における延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸でもよい。積層体の延伸方向は、実質的には、上記空中延伸の延伸方向(長手方向)である。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。 Any appropriate method can be adopted as the drawing method in the underwater drawing process. Specifically, it may be fixed end stretching or free end stretching. The stretching direction of the laminate is substantially the stretching direction (longitudinal direction) of the above-described air-drawing. Stretching of the laminate may be performed in one step or in multiple steps.
 水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬して行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性(例えば、偏光度)を有する偏光子を作製することができる。 Stretching in water is preferably performed by immersing the laminate in an aqueous solution of boric acid (stretching in boric acid). By using a boric acid aqueous solution as a stretching bath, the PVA resin layer can be provided with rigidity to withstand the tension applied during stretching and water resistance which is not dissolved in water. Specifically, boric acid can form a tetrahydroxyborate anion in an aqueous solution and crosslink it with a PVA resin by hydrogen bonding. As a result, rigidity and water resistance can be imparted to the PVA-based resin layer, the film can be favorably stretched, and a polarizer having excellent optical properties (for example, the degree of polarization) can be produced.
 上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光子を作製することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。 The aqueous boric acid solution is preferably obtained by dissolving boric acid and / or a borate in water which is a solvent. The boric acid concentration is preferably 1 part by weight to 10 parts by weight with respect to 100 parts by weight of water. By setting the boric acid concentration to 1 part by weight or more, the dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizer with higher characteristics can be produced. In addition to boric acid or a borate, an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
 染色処理により、予め、PVA系樹脂層に二色性物質(代表的には、ヨウ素)が吸着されている場合、好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。 In the case where a dichroic substance (typically, iodine) is adsorbed in advance to the PVA-based resin layer by the dyeing treatment, preferably, an iodide is blended in the above-mentioned stretching bath (boric acid aqueous solution). By blending an iodide, elution of iodine adsorbed to the PVA-based resin layer can be suppressed. Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide and titanium iodide. Etc. Among these, preferred is potassium iodide. The concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
 上記ポリエステル系樹脂基材と水中延伸(ホウ酸水中延伸)とを組み合わせることにより、高倍率に延伸することができ、優れた光学特性(例えば、偏光度)を有する偏光子を作製することができる。具体的には、最大延伸倍率は、上記積層体の元長に対して(積層体の延伸倍率を含めて)、好ましくは5.0倍以上、より好ましくは5.5倍以上、さらに好ましくは6.0倍以上である。本明細書において「最大延伸倍率」とは、積層体が破断する直前の延伸倍率をいい、別途、積層体が破断する延伸倍率を確認し、その値よりも0.2低い値をいう。なお、上記ポリエステル系樹脂基材を用いた積層体の最大延伸倍率は、水中延伸を経た方が空中延伸のみで延伸するよりも高くなり得る。 By combining the polyester-based resin base material and stretching in water (stretching in boric acid), it can be stretched at a high magnification, and a polarizer having excellent optical properties (for example, the degree of polarization) can be produced. . Specifically, the maximum draw ratio is preferably 5.0 times or more, more preferably 5.5 times or more, more preferably the original length of the laminate (including the draw ratio of the laminate). 6.0 times or more. In the present specification, the "maximum stretch ratio" refers to the stretch ratio immediately before the laminate breaks, separately confirms the stretch ratio at which the laminate breaks, and refers to a value 0.2 lower than that value. In addition, the maximum draw ratio of the laminated body using the said polyester-type resin base material may become high rather than extending | stretching by in-air extending | stretching only through in-water extending | stretching.
F-7.洗浄処理
 洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬することにより行う。乾燥処理における乾燥温度は、好ましくは30℃~100℃である。
F-7. Cleaning Treatment Cleaning treatment is typically performed by immersing the PVA-based resin layer in a potassium iodide aqueous solution. The drying temperature in the drying process is preferably 30 ° C. to 100 ° C.
F-8.加熱処理
 加熱処理は、水中延伸後に行われる。加熱処理により、ポリエステル系樹脂基材の結晶化が進行し得る。加熱処理は、代表的には加熱手段160内に配置された搬送ロールを加熱する(いわゆる熱ドラムロール(加熱ロール)を用いる)ことにより行う(熱ドラムロール加熱方式)。1つの実施形態においては、加熱手段160はオーブンであり、オーブン内に熱風を送風することによる加熱方式(オーブン加熱方式)を併用してもよい。熱ドラムロール加熱方式とオーブン加熱方式とを併用することにより、熱ドラムロール間での急峻な温度変化を抑制することができ、積層体10’の幅方向の収縮を容易に制御することができる。オーブンの炉内の温度は、好ましくは30℃~100℃である。また、オーブンによる加熱時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速はオーブン内における風速であり、ミニベーン型デジタル風速計により測定することができる。
F-8. Heat treatment The heat treatment is carried out after stretching in water. By the heat treatment, crystallization of the polyester resin substrate can proceed. The heat treatment is typically performed by heating the transport roll disposed in the heating means 160 (using a so-called heat drum roll (heat roll)) (heat drum roll heating system). In one embodiment, the heating means 160 is an oven, and may use a heating method (oven heating method) by blowing hot air into the oven. By using the heating drum roll heating method and the oven heating method in combination, it is possible to suppress a sharp temperature change between the heating drum rolls and to easily control the contraction in the width direction of the laminate 10 ′. . The temperature in the oven oven is preferably 30.degree. C. to 100.degree. The heating time by the oven is preferably 1 second to 300 seconds. The wind speed of hot air is preferably about 10 m / s to 30 m / s. In addition, the said wind speed is the wind speed in oven, and it can measure with a mini-vane type digital anemometer.
 熱ドラムロールを用いて加熱することにより、カールを抑制して、外観に優れた偏光子を製造することができる。具体的には、熱ドラムロールに積層体10’を沿わせた状態で加熱することにより、上記ポリエステル系樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い加熱温度であっても、ポリエステル系樹脂基材の結晶化度を良好に増加させることができる。その結果、ポリエステル系樹脂基材は、その剛性が増加して、加熱によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、熱ドラムロールを用いることにより、積層体10’を平らな状態に維持しながら加熱できるので、カールだけでなくシワの発生も抑制することができる。 By heating using a heat drum roll, a curl can be suppressed and a polarizer excellent in appearance can be manufactured. Specifically, by heating in a state where the laminate 10 'is placed along the heat drum roll, the crystallization of the polyester resin substrate can be efficiently promoted to increase the degree of crystallization. Even at a relatively low heating temperature, the crystallinity of the polyester resin substrate can be favorably increased. As a result, the rigidity of the polyester-based resin base material is increased, and the polyester-based resin base material can endure the shrinkage of the PVA-based resin layer due to heating, and curling is suppressed. Moreover, since it can heat, maintaining laminated body 10 'in a flat state by using a heat | fever drum roll, generation | occurrence | production of not only curl but wrinkles can be suppressed.
 加熱手段160内には、複数の熱ドラムロールが配置され得、各熱ドラムロールは異なる温度に設定され得る。加熱手段160内には、通常2個~20個、好ましくは4個~10個の熱ドラムロールが配置され得る。積層体10’と熱ドラムロールとの接触時間(総接触時間)は、好ましくは1秒~300秒である。熱ドラムロールの温度、熱ドラムロールの数、熱ドラムロールとの接触時間等を調整することにより、加熱条件を制御することができる。 Within the heating means 160, a plurality of heat drum rolls may be arranged, and each heat drum roll may be set to a different temperature. In the heating means 160, usually 2 to 20, preferably 4 to 10, heat drum rolls may be arranged. The contact time (total contact time) between the laminate 10 'and the heat drum roll is preferably 1 second to 300 seconds. The heating conditions can be controlled by adjusting the temperature of the heat drum roll, the number of heat drum rolls, the contact time with the heat drum roll, and the like.
 複数の熱ドラムロールのうち、最も高温に設定された熱ドラムロールの温度を「最高加熱温度」としたとき、最高加熱温度は、102℃以上であり、より好ましくは105℃以上であり、さらに好ましくは110℃以上である。最高加熱温度の上限は、好ましくは150℃であり、より好ましくは120℃である。加熱処理における最高加熱温度を上記の範囲内に設定することにより、水中延伸処理における延伸浴の温度とも相まって、ポリエステル系樹脂基材の耐久性指数を好ましい範囲内の値に調整することができる。なお、熱ドラムロールの温度は、接触式温度計により測定することができる。最高加熱温度に保たれた熱ドラムロールへの積層体の接触時間(最高加熱温度の熱ドラムロールが複数存在する場合には、合計接触時間)は、好ましくは0.2秒~2秒であり、より好ましくは0.5秒~2秒である。なお、「接触時間」とは、積層体上の任意の一点が、最高加熱温度に保たれた熱ドラムロールの外周面に接触してから離れるまでの時間を意味するものとする。 The highest heating temperature is 102 ° C. or higher, more preferably 105 ° C. or higher, when the temperature of the thermal drum roll set to the highest temperature among the plurality of heat drum rolls is the “maximum heating temperature”. Preferably it is 110 degreeC or more. The upper limit of the maximum heating temperature is preferably 150 ° C., more preferably 120 ° C. By setting the maximum heating temperature in the heat treatment to be in the above range, it is possible to adjust the durability index of the polyester resin base material to a value within the preferable range together with the temperature of the stretching bath in the underwater stretching process. The temperature of the heat drum roll can be measured by a contact thermometer. The contact time of the laminate to the heating drum roll maintained at the maximum heating temperature (total contact time in the case of multiple heating drum rolls at the maximum heating temperature) is preferably 0.2 seconds to 2 seconds. More preferably, it is 0.5 seconds to 2 seconds. In addition, "contact time" shall mean time until an arbitrary one point on a laminated body contacts the peripheral face of a heat drum roll kept at maximum heating temperature, and it leaves.
G.画像表示装置
 上記F項に記載の製造方法によって得られる上記A項からE項に記載の偏光板は、液晶表示装置などの画像表示装置に適用され得る。したがって、本発明は、上記偏光板を用いた画像表示装置を包含する。本発明の実施形態による画像表示装置は、上記A項からE項に記載の偏光板を備える。
G. Image Display Device The polarizing plate described in the items A to E obtained by the manufacturing method described in the item F can be applied to an image display device such as a liquid crystal display device. Therefore, the present invention includes an image display device using the above polarizing plate. An image display device according to an embodiment of the present invention includes the polarizing plate described in the above items A to E.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法および評価方法は以下の通りである。
(1)厚み
 デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)弾性率
 実施例および比較例で得られた偏光板のポリエステル系樹脂基材について、ナノインデンター(Hysitron Inc社製、「Triboindenter」)を用いて、以下の測定条件の下、ナノインデンテーション法により弾性率を測定した。具体的には、偏光板のポリエステル系樹脂基材側の面にナノインデンターの探針(圧子)を押し込み、変位―荷重ヒステリシス曲線から得られる接触剛性Sと、圧子とポリエステル系樹脂基材との間の接触射影面積Aとから、以下の式により算出した。
弾性率(E)=S×π1/2/2A1/2
(測定条件)
・測定方法:単一押し込み法
・測定温度:25℃
・押し込み速度:約2nm/sec
・押し込み深さ:約2000nm
・探針:ダイヤモンド製、Berkovich型(三角錐型)
(3)密着性評価
 実施例および比較例で得られた長尺状の偏光板を150mm(MD方向)×200mm(TD方向)のサイズに切り取り、評価用サンプルとした。上記評価用サンプルの偏光子側を、アクリル系粘着剤を介してガラスに貼り合せ、60℃/90%Rhで500時間保管した後、評価用サンプルの端部におけるガラスからの剥がれの有無を確認した。また、評価用サンプルがガラスから剥がれていた場合には、剥がれた部分の長さを測定した。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by these examples. In addition, the measuring method and evaluation method of each characteristic are as follows.
(1) Thickness The thickness was measured using a digital micrometer (manufactured by Anritsu, product name “KC-351C”).
(2) Elastic modulus About the polyester-type resin base material of the polarizing plate obtained by the Example and the comparative example, using a nano indenter (Hysitron Inc. make, "Triboindenter"), the nano indene under the following measurement conditions The elastic modulus was measured by the transfer method. Specifically, the probe (indentor) of the nano indenter is pressed into the surface of the polarizing plate on the polyester resin substrate side, and the contact stiffness S obtained from the displacement-load hysteresis curve, the indenter, and the polyester resin substrate The following equation is calculated from the contact projected area A between them.
Elastic modulus (E) = S × π 1/2 / 2A 1/2
(Measurement condition)
・ Measurement method: Single indentation method ・ Measurement temperature: 25 ° C
・ Indentation speed: about 2 nm / sec
・ Pushing depth: about 2000 nm
-Probe: made of diamond, Berkovich type (triangular pyramid type)
(3) Adhesion evaluation The long polarizing plates obtained in Examples and Comparative Examples were cut into a size of 150 mm (MD direction) × 200 mm (TD direction), and used as an evaluation sample. The polarizer side of the sample for evaluation is attached to the glass through an acrylic adhesive, and after storing for 500 hours at 60 ° C./90% Rh, the presence or absence of peeling from the glass at the end of the sample for evaluation is confirmed did. In addition, when the sample for evaluation was peeled from the glass, the length of the peeled portion was measured.
<実施例1>
 ポリエステル系樹脂基材として、長尺状で非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm、IPA変性度:5mol%)を用いた。(変性度=[エチレンイソフタレートユニット]/[エチレンテレフタレートユニット+エチレンイソフタレートユニット])
 ポリエステル系樹脂基材の片面に、コロナ処理(処理条件:50W・min/m)を施し、このコロナ処理面に、アセトアセチル変性ポリビニルアルコール(PVA)(日本合成化学工業社製、商品名「ゴーセファイマーZ200」)の変性ポリオレフィン樹脂水性分散体(ユニチカ社製、商品名「アローベースSE1030N」)と純水を混合した混合液(固形分濃度4.0%)を、乾燥後の厚みが2000nmになるように塗布し、65℃で2分間乾燥し、下塗り層を形成した。ここで、混合液におけるアセトアセチル変性PVAと変性ポリオレフィンとの固形分配合比は30:70であった。次いで、下塗り層面に、PVA(重合度4200、ケン化度99.2モル%)90重量部およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)10重量部で配合したPVA系樹脂と、PVA系樹脂100重量部に対して13重量部となるようにヨウ化カリウムを配合した水溶液を、25℃で塗布および60℃で3分間乾燥して、厚み13μmのPVA系樹脂層を形成した。こうして、積層体を作製した。
 得られた積層体を、140℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2倍に自由端一軸延伸した(空中補助延伸)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.5重量部配合して得られたヨウ素水溶液)に60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、ホウ酸水溶液(水100重量部に対して、ホウ酸を3重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)の延伸浴(延伸浴温度:67℃)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に2.75倍(総延伸倍率:5.5倍)に一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを3.5重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 次いで、積層体を、80~110℃に保たれた複数の加熱ロールを有し、80℃に保たれたオーブンの中で、最高加熱温度である110℃に保たれた加熱ロールへの接触時間の合計が1秒となるようにして、加熱ロールを用いて搬送しながら加熱処理した。
 このようにして、ポリエステル系樹脂基材上に厚み5μmの偏光子が積層された長尺状の偏光板1を得た。偏光板1のポリエステル系樹脂基材の弾性率は3.15GPaであった。偏光板1を上記密着性評価に供したところ、ガラスからの剥がれは発生しなかった。
Example 1
A long and amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 μm, degree of IPA modification: 5 mol%) was used as a polyester resin substrate. (Deterioration degree = [ethylene isophthalate unit] / [ethylene terephthalate unit + ethylene isophthalate unit])
Corona treatment (treatment conditions: 50 W · min / m 2 ) is applied to one side of the polyester resin base material, and acetoacetyl modified polyvinyl alcohol (PVA) (manufactured by Japan Synthetic Chemical Industry Co., Ltd., trade name) The thickness after drying is a mixed solution (solid content concentration: 4.0%) of a mixture of purified polyolefin resin aqueous dispersion (product name: "Arrow base SE1030N" manufactured by Unitika, Inc.) and purified water of Gosefamer Z200 ") The coating was applied to 2000 nm and dried at 65 ° C. for 2 minutes to form a primer layer. Here, the solid content blending ratio of acetoacetyl-modified PVA and modified polyolefin in the mixed solution was 30:70. Then, 90 parts by weight of PVA (degree of polymerization 4200, degree of saponification 99.2 mol%) and 10 parts by weight of acetoacetylated PVA (trade name "Gosefamer Z410" manufactured by Japan Synthetic Chemical Industry Co., Ltd.) on the undercoat layer surface An aqueous solution containing a PVA-based resin compounded and potassium iodide in an amount of 13 parts by weight based on 100 parts by weight of the PVA-based resin is coated at 25 ° C. and dried at 60 ° C. for 3 minutes to obtain 13 μm-thick PVA A base resin layer was formed. Thus, a laminate was produced.
The obtained laminate was uniaxially stretched free end uniaxially twice in the longitudinal direction (longitudinal direction) between rolls with different circumferential speeds in an oven at 140 ° C. (air-assisted extension).
Then, the laminate was immersed in an insolubilization bath (a solution of boric acid obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) having a liquid temperature of 40 ° C. for 30 seconds (insolubilization treatment).
Then, it is immersed in a dyeing bath having a liquid temperature of 30 ° C. (iodine aqueous solution obtained by blending 0.2 parts by weight of iodine with 100 parts by weight of water and 1.5 parts by weight of potassium iodide) for 60 seconds Let (staining process).
Then, it was immersed in a crosslinking bath having a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 100 parts by weight of water and 5 parts by weight of boric acid) for 30 seconds (Crosslinking treatment).
Thereafter, a stretching bath (stretching bath temperature: an aqueous solution obtained by blending 3 parts by weight of boric acid and 5 parts by weight of potassium iodide with 100 parts by weight of the aqueous solution) of the laminate. While immersing at 67 ° C., uniaxial stretching was performed in the longitudinal direction (longitudinal direction) by 2.75 times (total stretching ratio: 5.5 times) between rolls different in peripheral speed (in-water stretching treatment).
Thereafter, the laminated body was immersed in a washing bath having a liquid temperature of 30 ° C. (an aqueous solution obtained by blending 3.5 parts by weight of potassium iodide with 100 parts by weight of water) (washing treatment).
Then, the laminate is brought into contact with the heating roll maintained at 110 ° C., the maximum heating temperature, in an oven maintained at 80 ° C., with a plurality of heating rolls maintained at 80 to 110 ° C. The heat treatment was carried out while conveying using a heating roll so that the total of 1 sec.
Thus, a long polarizing plate 1 in which a 5 μm thick polarizer was laminated on a polyester resin substrate was obtained. The elastic modulus of the polyester resin base material of the polarizing plate 1 was 3.15 GPa. When the polarizing plate 1 was subjected to the above adhesion evaluation, peeling from the glass did not occur.
<実施例2>
 最高加熱温度を105℃、かつ接触時間の合計を1秒としたこと以外は実施例1と同様にして偏光板2を得た。偏光板2のポリエステル系樹脂基材の弾性率は2.85GPaであった。偏光板2を実施例1と同様の評価に供した。結果を表1に示す。
Example 2
A polarizing plate 2 was obtained in the same manner as in Example 1, except that the maximum heating temperature was 105 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 2 was 2.85 GPa. The polarizing plate 2 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<実施例3>
 最高加熱温度を102℃、かつ接触時間の合計を1秒としたこと以外は実施例1と同様にして偏光板3を得た。偏光板3のポリエステル系樹脂基材の弾性率は2.70GPaであった。偏光板3を実施例1と同様の評価に供した。結果を表1に示す。
Example 3
A polarizing plate 3 was obtained in the same manner as in Example 1, except that the maximum heating temperature was 102 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 3 was 2.70 GPa. The polarizing plate 3 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<実施例4>
 延伸浴温度が69℃である延伸浴を用いて積層体を水中延伸したこと、および、最高加熱温度を105℃、かつ接触時間の合計を1秒としたこと以外は実施例1と同様にして偏光板4を得た。偏光板4のポリエステル系樹脂基材の弾性率は2.72GPaであった。偏光板4を実施例1と同様の評価に供した。結果を表1に示す。
Example 4
The procedure of Example 1 was repeated except that the laminate was stretched in water using a stretching bath having a temperature of 69 ° C., and the maximum heating temperature was 105 ° C., and the total contact time was 1 second. The polarizing plate 4 was obtained. The elastic modulus of the polyester resin base material of the polarizing plate 4 was 2.72 GPa. The polarizing plate 4 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例1>
 最高加熱温度を100℃、かつ接触時間の合計を1秒としたこと以外は実施例1と同様にして偏光板5を得た。偏光板5のポリエステル系樹脂基材の弾性率は2.65GPaであった。偏光板5を実施例1と同様の評価に供した。結果を表1に示す。
Comparative Example 1
A polarizing plate 5 was obtained in the same manner as in Example 1, except that the maximum heating temperature was 100 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 5 was 2.65 GPa. The polarizing plate 5 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例2>
 最高加熱温度を95℃、かつ接触時間の合計を1秒としたこと以外は実施例1と同様にして偏光板6を得た。偏光板6のポリエステル系樹脂基材の弾性率は2.37GPaであった。偏光板6を実施例1と同様の評価に供した。結果を表1に示す。
Comparative Example 2
A polarizing plate 6 was obtained in the same manner as in Example 1, except that the maximum heating temperature was 95 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 6 was 2.37 GPa. The polarizing plate 6 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例3>
 炉内の温度を60℃に設定したこと、および、最高加熱温度を60℃、かつ接触時間の合計を1秒としたこと以外は実施例1と同様にして偏光板7を得た。偏光板7のポリエステル系樹脂基材の弾性率は2.10GPaであった。偏光板7を実施例1と同様の評価に供した。結果を表1に示す。
Comparative Example 3
A polarizing plate 7 was obtained in the same manner as in Example 1 except that the temperature in the furnace was set to 60 ° C., and the maximum heating temperature was 60 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 7 was 2.10 GPa. The polarizing plate 7 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例4>
 最高加熱温度を102℃、かつ接触時間の合計を1秒としたこと以外は実施例4と同様にして偏光板8を得た。偏光板8のポリエステル系樹脂基材の弾性率は2.57GPaであった。偏光板8を実施例1と同様の評価に供した。結果を表1に示す。
Comparative Example 4
A polarizing plate 8 was obtained in the same manner as in Example 4 except that the maximum heating temperature was 102 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 8 was 2.57 GPa. The polarizing plate 8 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例5>
 最高加熱温度を100℃、かつ接触時間の合計を1秒としたこと以外は実施例4と同様にして偏光板9を得た。偏光板9のポリエステル系樹脂基材の弾性率は2.50GPaであった。偏光板9を実施例1と同様の評価に供した。結果を表1に示す。
Comparative Example 5
A polarizing plate 9 was obtained in the same manner as in Example 4 except that the maximum heating temperature was 100 ° C., and the total contact time was 1 second. The elastic modulus of the polyester resin base material of the polarizing plate 9 was 2.50 GPa. The polarizing plate 9 was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、弾性率が2.70GPa以上である偏光板は、高温高湿環境下に置いてもガラスからの剥がれが生じなかった。 As apparent from Table 1, the polarizing plate having an elastic modulus of 2.70 GPa or more did not peel off from the glass even when placed in a high temperature and high humidity environment.
 本発明の偏光板は、液晶表示装置、有機EL表示装置等の画像表示装置に好適に用いられる。 The polarizing plate of the present invention is suitably used for image display devices such as liquid crystal display devices and organic EL display devices.
 10   偏光板
 11   ポリエステル系樹脂基材
 12   偏光子
10 Polarizing Plate 11 Polyester Resin Base 12 Polarizer

Claims (6)

  1.  ポリエステル系樹脂基材と、前記ポリエステル系樹脂基材の片側に積層された偏光子とを有し、
     前記偏光子の厚みが10μm以下であり、
     前記ポリエステル系樹脂基材の弾性率が2.70GPa以上である、偏光板。
    A polyester-based resin substrate, and a polarizer laminated on one side of the polyester-based resin substrate,
    The thickness of the polarizer is 10 μm or less,
    The polarizing plate whose elastic modulus of the said polyester-based resin base material is 2.70 GPa or more.
  2.  前記偏光子が、前記ポリエステル系樹脂基材の片側に接着層を介することなく積層されている、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the polarizer is laminated on one side of the polyester resin substrate without an adhesive layer.
  3.  前記ポリエステル系樹脂基材と前記偏光子との間に易接着層を有する、請求項1または2に記載の偏光板。 The polarizing plate of Claim 1 or 2 which has an easily bonding layer between the said polyester-type resin base material and the said polarizer.
  4.  前記ポリエステル系樹脂基材が前記偏光子の保護層として機能する、請求項1~3のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, wherein the polyester-based resin substrate functions as a protective layer of the polarizer.
  5.  請求項1~4のいずれかに記載の偏光板を備える、画像表示装置。 An image display comprising the polarizing plate according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかに記載の偏光板の製造方法であって、
     前記ポリエステル系樹脂基材の片側にポリビニルアルコール系樹脂層を形成して積層体とすること、
     前記積層体を、染色および延伸することにより前記ポリビニルアルコール系樹脂層を偏光子とすること、および
     前記延伸後に、前記ポリエステル系樹脂基材と前記偏光子との積層体を加熱処理することを含み、
     前記延伸における延伸浴の温度が67℃以下であり、かつ、前記加熱処理における最高加熱温度が102℃以上であるか、または、
     前記延伸における延伸浴の温度が69℃以下であり、かつ、前記加熱処理における最高加熱温度が105℃以上である、偏光板の製造方法。
     
    It is a manufacturing method of the polarizing plate in any one of Claims 1-4, Comprising:
    Forming a polyvinyl alcohol-based resin layer on one side of the polyester-based resin substrate to form a laminate;
    And making the polyvinyl alcohol-based resin layer a polarizer by dyeing and stretching the laminate, and heating the laminate of the polyester-based resin substrate and the polarizer after the stretching. ,
    The temperature of the stretching bath in the stretching is 67 ° C. or lower, and the maximum heating temperature in the heat treatment is 102 ° C. or higher, or
    The manufacturing method of the polarizing plate whose temperature of the extending | stretching bath in the said extending | stretching is 69 degrees C or less, and the maximum heating temperature in the said heat processing is 105 degrees C or more.
PCT/JP2018/035613 2017-10-03 2018-09-26 Polarizing plate, image display device, and production method for polarizing plate WO2019069755A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207009163A KR20200064078A (en) 2017-10-03 2018-09-26 Polarizing plate, image display device and manufacturing method of polarizing plate
CN201880064510.1A CN111183378B (en) 2017-10-03 2018-09-26 Polarizing plate, image display device, and method for manufacturing polarizing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017193274A JP7240090B2 (en) 2017-10-03 2017-10-03 Polarizing plate, image display device, and method for manufacturing polarizing plate
JP2017-193274 2017-10-03

Publications (1)

Publication Number Publication Date
WO2019069755A1 true WO2019069755A1 (en) 2019-04-11

Family

ID=65994677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035613 WO2019069755A1 (en) 2017-10-03 2018-09-26 Polarizing plate, image display device, and production method for polarizing plate

Country Status (5)

Country Link
JP (1) JP7240090B2 (en)
KR (1) KR20200064078A (en)
CN (1) CN111183378B (en)
TW (1) TWI771503B (en)
WO (1) WO2019069755A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303725A (en) * 2001-04-06 2002-10-18 Nitto Denko Corp Polarizing film, optical film and liquid crystal display device both using the polarizing film
JP2014115542A (en) * 2012-12-11 2014-06-26 Toagosei Co Ltd Polarizing plate
JP2014211578A (en) * 2013-04-19 2014-11-13 富士フイルム株式会社 Polarizing plate and production method of the same, and image display device
WO2015001980A1 (en) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device using same
WO2015076101A1 (en) * 2013-11-19 2015-05-28 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device using same
JP2015525900A (en) * 2013-06-18 2015-09-07 エルジー・ケム・リミテッド Thin polarizing plate and manufacturing method thereof
JP2017083858A (en) * 2012-10-12 2017-05-18 富士フイルム株式会社 Liquid crystal display device
WO2017149909A1 (en) * 2016-03-04 2017-09-08 日東電工株式会社 Polarizing plate

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279944B2 (en) 1999-06-01 2009-06-17 株式会社サンリッツ Manufacturing method of polarizing plate
JP2002040243A (en) * 2000-07-19 2002-02-06 Fuji Photo Film Co Ltd Circularly polarizing plate, touch panel and reflective liquid crystal display device
JP4701555B2 (en) * 2001-08-01 2011-06-15 住友化学株式会社 Manufacturing method of polarizing film
JP2003154616A (en) * 2001-11-20 2003-05-27 Teijin Dupont Films Japan Ltd Laminated film and surface protective film
EP1602683A4 (en) * 2003-03-11 2006-04-19 Mitsubishi Polyester Film Corp Biaxially oriented polyester film and release film
JP4121030B2 (en) * 2004-08-19 2008-07-16 日東電工株式会社 Retardation plate with protective film, manufacturing method thereof, adhesive retardation plate with protective film, and adhesive optical material with protective film
US7771781B2 (en) * 2005-03-09 2010-08-10 Konica Minolta Opto, Inc. Anti-glare film, manufacturing method of anti-glare film, anti glaring anti-reflection film, polarizing plate, and display
JP4759317B2 (en) * 2005-05-26 2011-08-31 富士フイルム株式会社 Polarizing plate and liquid crystal display device using the same
JP2008003541A (en) * 2006-01-27 2008-01-10 Fujifilm Corp Polarizer protective film, and polarizer and liquid crystal display using the same
JP4934422B2 (en) * 2006-12-28 2012-05-16 日本ポリエチレン株式会社 Surface protection film
US9411081B2 (en) * 2010-12-02 2016-08-09 Nitto Denko Corporation Method of manufacturing polarizing plate
JP5685222B2 (en) * 2012-06-06 2015-03-18 日東電工株式会社 Polarizing film containing modified PVA and optical laminate having the polarizing film
JP6144548B2 (en) * 2012-08-01 2017-06-07 日東電工株式会社 Transparent conductive laminated film, method for producing the same, and touch panel
JP5941832B2 (en) * 2012-10-04 2016-06-29 富士フイルム株式会社 Optical film, retardation film, polarizing plate, and liquid crystal display device
TW201428011A (en) * 2012-12-11 2014-07-16 Toagosei Co Ltd Active-energy-ray-curable composition for forming optical film, optical film, and polarizing plate
JP2014232126A (en) * 2013-03-19 2014-12-11 日東電工株式会社 Method for manufacturing polarizing plate
JP6214502B2 (en) * 2013-11-06 2017-10-18 富士フイルム株式会社 Manufacturing method of polarizing plate
EP3127681A4 (en) * 2014-03-31 2017-11-08 Kuraray Co., Ltd. Biaxially stretched film and method for manufacturing same, polarizer protective film, decorative film, and layered film
JP6138755B2 (en) 2014-12-24 2017-05-31 日東電工株式会社 Polarizer
TW201634283A (en) * 2015-03-31 2016-10-01 住友化學股份有限公司 Laminated film, method for producing laminated film, method for producing polarizing laminated film, method for producing polarizing plate
JP6721410B2 (en) * 2015-05-21 2020-07-15 株式会社巴川製紙所 Protective film, film laminate, and polarizing plate
CN107614569B (en) * 2015-05-27 2021-01-15 三菱瓦斯化学株式会社 Polyester resin and process for producing the same
KR101955203B1 (en) * 2015-09-02 2019-03-07 주식회사 엘지화학 Manufacturing method for thin polarizer, thin polarizer manufactured by thereof, polarizing plate and display device comprising thereof
JP6734745B2 (en) * 2015-10-14 2020-08-05 日東電工株式会社 Polarizer and manufacturing method thereof
KR101803675B1 (en) * 2016-01-19 2017-11-30 스미또모 가가꾸 가부시키가이샤 Polarizing plate and image display device
JP6491789B2 (en) * 2016-02-26 2019-03-27 日東電工株式会社 Polarizer, single-protective polarizing film, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method thereof
JP7240091B2 (en) * 2017-10-03 2023-03-15 日東電工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303725A (en) * 2001-04-06 2002-10-18 Nitto Denko Corp Polarizing film, optical film and liquid crystal display device both using the polarizing film
JP2017083858A (en) * 2012-10-12 2017-05-18 富士フイルム株式会社 Liquid crystal display device
JP2014115542A (en) * 2012-12-11 2014-06-26 Toagosei Co Ltd Polarizing plate
JP2014211578A (en) * 2013-04-19 2014-11-13 富士フイルム株式会社 Polarizing plate and production method of the same, and image display device
JP2015525900A (en) * 2013-06-18 2015-09-07 エルジー・ケム・リミテッド Thin polarizing plate and manufacturing method thereof
WO2015001980A1 (en) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device using same
WO2015076101A1 (en) * 2013-11-19 2015-05-28 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device using same
WO2017149909A1 (en) * 2016-03-04 2017-09-08 日東電工株式会社 Polarizing plate

Also Published As

Publication number Publication date
CN111183378B (en) 2022-09-27
CN111183378A (en) 2020-05-19
JP2019066715A (en) 2019-04-25
JP7240090B2 (en) 2023-03-15
TWI771503B (en) 2022-07-21
KR20200064078A (en) 2020-06-05
TW201935047A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
JP6893762B2 (en) Polarizer
TW201325873A (en) Method of manufacturing polarizing film
WO2019069756A1 (en) Polarizing plate, image display device, and production method for polarizing plate
KR102191636B1 (en) Polarizer
KR102640210B1 (en) Polarizer, image display device and method of manufacturing polarizer
WO2019069757A1 (en) Polarizing plate, image display device, and method for producing polarizing plate
JP6921953B2 (en) Laminates, methods for manufacturing laminates, polarizing plates, and methods for manufacturing polarizing plates
JP7240090B2 (en) Polarizing plate, image display device, and method for manufacturing polarizing plate
TWI835751B (en) Polarizing plate, image display device and manufacturing method of polarizing plate
CN115989138A (en) Optical laminate and method for manufacturing polarizing plate using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864281

Country of ref document: EP

Kind code of ref document: A1