WO2017149773A1 - メタルコア基板及びメタルコア基板の製造方法 - Google Patents

メタルコア基板及びメタルコア基板の製造方法 Download PDF

Info

Publication number
WO2017149773A1
WO2017149773A1 PCT/JP2016/056843 JP2016056843W WO2017149773A1 WO 2017149773 A1 WO2017149773 A1 WO 2017149773A1 JP 2016056843 W JP2016056843 W JP 2016056843W WO 2017149773 A1 WO2017149773 A1 WO 2017149773A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
metal
core substrate
cutting
metal plates
Prior art date
Application number
PCT/JP2016/056843
Other languages
English (en)
French (fr)
Inventor
光昭 戸田
倫一 石田
光生 岩本
Original Assignee
株式会社メイコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メイコー filed Critical 株式会社メイコー
Priority to PCT/JP2016/056843 priority Critical patent/WO2017149773A1/ja
Publication of WO2017149773A1 publication Critical patent/WO2017149773A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a metal core substrate incorporating a metal plate as a core material of a printed wiring board, and a manufacturing method thereof.
  • the wiring pattern connected to the power supply or the ground (that is, the power supply layer or the ground layer located in the inner layer) is formed as a solid pattern having a large area, and the pattern thickness is increased. For this reason, even if it is going to mount an electronic component on the printed wiring board using reflow, heat is dissipated through the solid pattern, and the solder rise (that is, the solder spread) in the through hole is deteriorated. was there.
  • Patent Literature 1 discloses thermal lands having various shapes.
  • Patent Document 1 discloses that the heat transfer in a through hole is controlled by forming the thermal land by etching and changing its shape.
  • a thermal land cannot be formed on a metal plate by conventional general etching, and special etching is required, which causes a problem that the productivity of the metal core substrate is reduced and the manufacturing cost is increased. Arise.
  • the mounting of the component in the through hole and the mounting on another outer layer wiring pattern are performed in separate processes, and the outer layer design that suppresses the heat dissipation in the metal plate.
  • the metal core substrate has a laminated structure in which insulating resin materials are laminated on both sides of the metal plate, and the metal plate itself is thicker than the conventional solid pattern, so the temperature distribution in the through hole becomes non-uniform. There are also easy problems.
  • the present invention has been made in view of such problems, and the object of the present invention is to increase the manufacturing cost and the cost of subsequent component mounting, and without restricting the design of the outer layer.
  • An object of the present invention is to provide a metal core substrate in which the spread of solder is improved and the temperature distribution in a through hole during heating is uniform, and a method for manufacturing the same.
  • a metal core substrate of the present invention includes a laminated body composed of a plurality of metal plates, a plurality of insulating resin layers that are spaced apart and embedded while facing the plurality of metal plates, and penetrates the laminated body.
  • each of the metal plates includes at least one cutting hole in the vicinity of the through hole.
  • a method for manufacturing a metal core substrate according to the present invention is a method for manufacturing a metal core substrate including a through hole, and includes a preparation step of preparing a plurality of metal plates, and the through hole in the metal plate.
  • a cutting hole forming step for forming at least one cutting hole in the vicinity of a region where the metal plate is formed, the metal plate and the insulating resin material are alternately stacked, and the metal plate and the plurality of metal plates are opposed to each other.
  • the temperature distribution in the through-hole at the time of heating is uniform while improving the spread of the solder in the through-hole without increasing the manufacturing cost and subsequent component mounting cost and restricting the design of the outer layer.
  • a metal core substrate and a manufacturing method thereof can be provided.
  • FIG. 2 is an enlarged cross-sectional view of a copper core substrate taken along line II-II in FIG. It is a general
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. It is a partial expanded sectional view in the manufacturing process of the manufacturing method of the copper core board
  • FIG. 1 is a schematic partial cross-sectional view of the copper core substrate 1 according to the present embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the copper core substrate 1 taken along line II-II in FIG.
  • the copper core substrate 1 is one type of metal core substrate, and is a printed wiring board using a copper plate as a core material (core member).
  • a copper core substrate 1 is a laminate in which a first insulating resin layer 2, a first copper plate 3, a second insulating resin layer 4, a second copper plate 5, and a third insulating resin layer 6 are laminated. 7. That is, the copper core substrate 1 has two core members.
  • the copper core substrate 1 has a through hole 8 that penetrates the multilayer body 7 and electrically connects the first surface 7 a and the second surface 7 b (that is, the front and back surfaces) of the multilayer body 7. Further, the copper core substrate 1 has a first outer layer wiring pattern 11 on the first surface 7a of the multilayer body 7 and a second outer layer wiring pattern 12 on the second surface 7b of the multilayer body.
  • the first insulating resin layer 2, the second insulating resin layer 4, and the third insulating resin layer 6 are made of, for example, a prepreg that is an insulating resin material, but are made of other insulating resin materials. It may be.
  • the second insulating resin layer 4 is formed between the first copper plate 3 and the second copper plate 5 so as to separate the first copper plate 3 and the second copper plate 5 while facing each other. ing.
  • a first copper plate 3 is embedded by the first insulating resin layer 2 and the second insulating resin layer 4, and a second copper plate 5 is embedded by the second insulating resin layer 4 and the third insulating resin layer 6.
  • the through hole 8 includes a through hole 8 a penetrating the first insulating resin layer 2, the first copper plate 3, the second insulating resin layer 4, the second copper plate 5, and the third insulating resin layer 6. And formed on a part of the exposed surface of each layer exposed by the through-hole 8a and the surfaces of the first insulating resin layer 2 and the third insulating resin layer 6 (that is, the first surface 7a and the second surface 7b of the laminate 7). Copper film 8b. In addition, in place of the copper film 8b that electrically connects the front and back surfaces of the multilayer body 7, another general metal film such as gold or silver may be used for the through hole 8. In FIG.
  • the 1st outer layer wiring pattern 11 and the 2nd outer layer wiring pattern 12 which were formed in the front and back of the laminated body 7 are formed from the thin film of copper.
  • each wiring pattern may be formed of other general metal materials, similarly to the through hole 8.
  • a protective layer made of a resist may be formed so as to cover the first outer layer wiring pattern 11 and the second outer layer wiring pattern 12.
  • the first copper plate 3 and the second copper plate 5 are flat plate members made of copper which is a general metal plate.
  • the thicknesses of the first copper plate 3 and the second copper plate 5 are set to about 0.2 mm.
  • the thickness is not limited to this, and generally according to the characteristics required for the copper core substrate 1. It can select suitably in the range of the copper plate which can be manufactured.
  • the film thickness of a general copper film (hereinafter also referred to as copper foil) formed by plating is about 0.2 mm or less in consideration of the productivity, the thickness of the copper core substrate 1 is about It is preferable that it is 0.2 mm or more.
  • the regulation of the thickness is merely determined in consideration of the productivity of the copper plate and the productivity of the copper foil, and the thickness of each copper plate can be less than 0.2 mm.
  • each cutting hole 21 is formed in the vicinity of the through hole 8 in the first copper plate 3. More specifically, the eight cutting holes 21 are formed so as to surround the periphery of the through hole 8, and each cutting hole 21 is arranged to be point-symmetric with the through hole 8 as a center point. That is, each cutting hole 21 is spaced apart from the through hole 8 by the same distance. For example, the distance is about 0.35 mm.
  • the planar shape of each cutting hole 21 is a circle having a diameter of about 0.5 mm. As shown in FIGS. 1 and 2, the cutting hole 21 is filled with a resin body 22.
  • the first copper plate 3 and the second copper plate 5 are the same members, and both the copper plates have the same thickness and the same shape. That is, as can be seen from FIG. 1, the cutting hole 21 is similarly formed in the second copper plate 5. And the formation position of the cutting hole 21 of the 1st copper plate 3 and the formation position of the cutting hole 21 of the 2nd copper plate 5 correspond in the lamination direction of the laminated body 7. FIG. In addition, the 1st copper plate 3 and the 2nd copper plate 5 may differ in the thickness, without making it completely the same.
  • the cutting hole 21 filled with the resin body 22 is formed so as to surround the periphery of the through hole 8 of the first copper plate 3 and the second copper plate 5, an electronic component is formed on the copper core substrate 1. Even if the heating for mounting is performed, the diffusion of heat from the through hole 8 in the direction of spreading the first copper plate 3 and the diffusion of heat from the through hole 8 in the direction of spreading the second copper plate 5 are suppressed. Can do. That is, the cutting hole 21 functions as a heat radiation control hole because it can suppress heat radiation similarly to the conventional thermal land.
  • the spread of the solder in the through hole 8 is improved as compared with the case where the cutting hole 21 is not present, and mounting in which the lead of an electronic component or the like is inserted into the through hole 8 is performed. It can be performed under the same conditions and steps as those for mounting other electronic components that do not use the. Therefore, by using the copper core substrate 1, the productivity of the subsequent mounting process can be improved, and an increase in the cost of component mounting can be prevented.
  • each copper plate in the present embodiment was assumed to be 0.2 mm, the heat dissipation amount of each copper plate increases as the thickness increases. For this reason, it is preferable to change the quantity and diameter (namely, the area of the formation area of the cutting hole 21) of the cutting hole 21 according to the thickness of each copper plate. That is, by adjusting the formation of the cutting hole 21 so that the thickness of each copper plate and the area of the formation region of the cutting hole 21 are in a proportional relationship, heat dissipation of each copper plate can be more reliably suppressed. become. For example, when the thickness of each copper plate is 0.5 mm or more, the accuracy of suppressing heat dissipation may be improved by setting the diameter of the cutting hole 21 to 0.9 mm.
  • two first copper plates 3 and second copper plates 5 are used as core members.
  • the temperature distribution in the through hole 8 can be made more uniform. Therefore, the temperature distribution in the through hole 8 can be made more uniform by increasing the number of copper plates in the copper core substrate 1.
  • the thermal expansion coefficient of each insulating resin layer, each copper plate, and solder can be reduced.
  • the influence of the difference can be reduced.
  • the cutting hole 21 is not formed, cracks are generated in each insulating resin layer due to the difference in the thermal expansion coefficient.
  • the above-described configuration and its Due to the effect the occurrence of the cracks is suppressed.
  • the outer layer is an insulating resin layer made of a general prepreg, the outer layer is not restricted and the cost is not increased.
  • FIG. 3 is a schematic partial cross-sectional view in the manufacturing process of the manufacturing method of the copper core substrate according to the embodiment.
  • FIG. 4 is the elements on larger scale in the manufacturing process of the manufacturing method of the copper core board
  • 5 is a cross-sectional view taken along line VV in FIG. 6 to 9 are partially enlarged cross-sectional views in the manufacturing process of the method for manufacturing the copper core substrate according to the example, which is shown in the same manner as FIG.
  • a first copper plate 3 and a second copper plate 5 having a thickness of about 0.2 mm are prepared as metal plates (preparation step).
  • the 1st copper plate 3 and the 2nd copper plate 5 may be cut out by the dimension of the copper core board
  • each copper plate using a cutting tool such as a drill (cutting hole forming step). More specifically, as shown in FIGS. 4 and 8, the planar shape is circular so as to surround the periphery of the through-hole forming region 31 (indicated by the alternate long and short dash line) where the through-hole 8 is to be formed. Hole 21 is formed.
  • the through hole 8 and the cutting hole 21 in the first copper plate 3 and the second copper plate 5 are designed at the same position, the first copper plate 3 and the second copper plate 5 are laminated, and both the copper plates are continuously formed. Will cut. Thereby, since the cutting hole 21 of each copper plate can be formed simultaneously, reduction of manufacturing cost can be aimed at.
  • a prepreg first insulating resin layer 2, second insulating resin layer 4, third insulating resin layer.
  • a through hole 8 a that penetrates the first insulating resin layer 2, the first copper plate 3, the second insulating resin layer 4, the second copper plate 5, and the third insulating resin layer 6 is formed. .
  • the through-hole formation region 31 of the laminated body 7 is removed using a cutting tool such as a drill. Then, it is preferable to perform a desmear process and to remove the insulating resin remaining at the time of forming the through hole 8a.
  • each copper plate exposed by formation of the through hole 8a is further subjected to a soft etching process to remove oxides and organic substances on the exposed surface. Thereby, the surface of a fresh metal will be exposed, and adhesiveness with the metal which precipitates in subsequent plating processing will increase, and electrical connection reliability will improve as a result.
  • a copper plating process is performed to form a copper film 41 on the exposed surface exposed by the first surface 7 a and the second surface 7 b of the laminate 7 and the through hole 8 a.
  • a patterning process is performed on the copper film 41 on the front and back surfaces of the multilayer body 7 by using a known photolithography technique to form the first outer layer wiring pattern 11 and the second outer layer wiring pattern 12.
  • the copper film 8b in the through hole 8a is not removed, but becomes the copper film 8b constituting the through hole 8, and the through hole 8 is formed.
  • the heat radiation control hole (that is, the cutting hole 21) having an effect equal to or more than that of the thermal land is formed by a general cutting process without performing a special etching process. Therefore, the manufacturing cost can be easily reduced.
  • the cutting hole 21 that functions as a heat radiation control hole is formed in order to cut the through hole formation region of each copper plate and its periphery in the state before lamination. Can be formed in the same cutting process, and the number of manufacturing processes of the copper core substrate 1 does not increase.
  • the formation process of the laminate 7 and the formation process of each outer layer wiring pattern do not require a special apparatus or the like, and can be performed in the same manner as in the past. Also, an increase in manufacturing cost is prevented.
  • the spread of solder in the through hole 8 is improved without increasing the manufacturing cost and the subsequent component mounting cost, and without restricting the design of the outer layer.
  • the copper core substrate 1 in which the temperature distribution in the through hole 8 during heating is uniform can be manufactured easily and reliably.
  • the first copper plate 3 and the second copper plate 5 are the same member.
  • the formation positions of the cutting holes 21 may be different in the stacking direction of the stacked body 7.
  • the first copper plate 3 has four cutting holes 121 surrounding the through hole forming region 31, and the second copper plate 5 has four cutting holes 122 surrounding the through hole forming region 31. have.
  • the cutting hole 122 is not located immediately above the cutting hole 121, and the cutting hole 122 has a through-hole formation region 31 compared to the cutting hole 121. It is formed at a position rotated 45 degrees as the center point.
  • a copper plate is used as the metal plate, but other metal plates such as aluminum, iron, and stainless steel may be used.
  • the several metal plate used as a core member may have a mutually different material or thickness. That is, the material and the thickness of each metal plate serving as the core member are determined according to the characteristics required for the metal core substrate.
  • the planar shape of the cutting hole 21 is circular, but by changing the planar shape, the heat diffusion of the copper plate may be appropriately adjusted.
  • the planar shape can be an ellipse, a square, or a U-shape.
  • the metal core substrate according to the first embodiment of the present invention penetrates through the laminate including a plurality of metal plates, a laminate composed of a plurality of insulating resin layers that are spaced apart and embedded while facing the plurality of metal plates.
  • each of the metal plates includes at least one cutting hole in the vicinity of the through hole.
  • the metal plate can be expanded from the through hole. Heat dissipation can be suppressed. As a result, the spread of the solder in the through hole is improved as compared with the case where there is no cutting hole, and the mounting in which the lead of the electronic component is inserted into the through hole is not made using the through hole. This can be performed under the same conditions and steps as those for mounting the electronic components. Therefore, by using the metal core substrate, the productivity of the subsequent mounting process can be improved, and an increase in the cost of component mounting can be prevented.
  • a plurality of metal plates are used as the core member.
  • the core member compared with the case where only one metal plate is used, it is possible to increase the existence ratio of members having high thermal conductivity in the laminated body, and to disperse the portion where heat dissipation easily proceeds in the through hole. be able to. Thereby, the temperature distribution in the through hole can be made more uniform.
  • the outer layer is a general insulating resin layer, the outer layer is not restricted and the cost is not increased.
  • a plurality of the cutting holes are formed in each of the metal plates so as to surround the through hole. . Thereby, the heat dissipation in each metal plate can be suppressed more.
  • the thickness of the metal plate is proportional to the area of the formation region of the cutting hole in the metal plate. That is. Thereby, it is possible to more reliably suppress heat dissipation in each metal plate.
  • the thickness of the metal plate is 0.2 mm or more.
  • a metal core substrate according to a fifth embodiment of the present invention is the metal core substrate according to any one of the first to fourth embodiments described above, wherein the formation positions of the cutting holes of the plurality of metal plates coincide with each other in the stacking direction of the stacked body. It is that you are. Thereby, since the cutting hole of each metal plate can be formed in the same process, the cost reduction of a metal core board
  • substrate can be aimed at.
  • a metal core substrate according to a sixth embodiment of the present invention is the metal core substrate according to any one of the first to fourth embodiments described above, wherein the formation positions of the cutting holes of the plurality of metal plates are different in the stacking direction of the stacked body. It is that you are. Thereby, heat dissipation can be controlled for each metal plate, and the temperature distribution in the through hole can be controlled with higher accuracy. Moreover, the stress in each insulating resin layer can be dispersed, and the generation of cracks can be further suppressed.
  • the plurality of metal plates are copper plates. Thereby, a metal core board
  • substrate is realizable at low cost.
  • a method for manufacturing a metal core substrate according to an eighth embodiment of the present invention is a method for manufacturing a metal core substrate having through holes, in which a preparation step of preparing a plurality of metal plates and the through holes in the metal plates are formed.
  • a cutting hole forming step for forming at least one cutting hole in the vicinity of the region to be cut, the metal plate and the insulating resin material are alternately stacked, and the metal plate and the plurality of metal plates are separated from each other while facing each other.
  • the eighth embodiment for the same reason as in the first embodiment, there is no increase in manufacturing cost and subsequent component mounting cost, and there is no restriction on the design of the outer layer, and heating while improving the spread of the solder in the through hole. It is possible to manufacture a metal core substrate in which the temperature distribution in the through hole is uniform.
  • the metal core substrate manufacturing method according to the ninth embodiment of the present invention is the above-described eighth embodiment, wherein the through hole is formed around each of the metal plates in the cutting hole forming step. A plurality of the cutting holes are formed so as to surround. Thereby, the heat dissipation in each metal plate can be suppressed more.
  • the manufacturing method of the metal core substrate according to the tenth embodiment of the present invention is the above-described eighth or ninth embodiment, wherein the cutting hole in the metal plate is formed according to the thickness of the metal plate in the cutting hole forming step.
  • the area of the formation region is set. Thereby, it is possible to more reliably suppress heat dissipation in each metal plate.
  • a method for manufacturing a metal core substrate according to an eleventh embodiment of the present invention is that, in any of the eighth to tenth embodiments described above, the thickness of the metal plate is 0.2 mm or more. As a result, even when it is required to mount an electronic component that requires a current of several tens of amperes to several hundreds of amperes, it is possible to sufficiently cope with it.
  • a metal core substrate manufacturing method is the method according to any one of the eighth to eleventh embodiments, wherein the plurality of metal plates are stacked in the cutting hole forming step, and the plurality of metal plates Is to cut continuously.
  • the cutting hole of each metal plate can be formed in the same process, the cost reduction of a metal core board
  • substrate can be aimed at.
  • the method for producing a metal core substrate according to a thirteenth embodiment of the present invention in any one of the eighth to eleventh embodiments described above, separately cutting the plurality of metal plates in the cutting hole forming step.
  • the formation positions of the cutting holes of the plurality of metal plates are different in the stacking direction of the stacked body. Thereby, heat dissipation can be controlled for each metal plate, and the temperature distribution in the through hole can be controlled with higher accuracy. Moreover, the stress in each insulating resin layer can be dispersed, and the generation of cracks can be further suppressed.
  • the plurality of metal plates are copper plates. Thereby, a low-cost metal core board

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

 複数のメタルプレート(3、5)、及び前記複数のメタルプレートを対向させつつ離間するとともに埋設する複数の絶縁樹脂層(2、4、6)からなる積層体(7)と、前記積層体を貫通するとともに前記積層体の表裏面を電気的に接続するスルーホール(8)と、を有し、前記メタルプレートのそれぞれは、前記スルーホールの近傍に少なくとも1つの切削孔(21)を備えるメタルコア基板。

Description

メタルコア基板及びメタルコア基板の製造方法
 本発明は、プリント配線基板の芯材としてメタルプレートを内蔵したメタルコア基板、及びその製造方法に関する。
 従来から、各種の電子部品を実装するためのプリント配線基板には、当該電子部品のリードを挿入するためのスルーホールが設けられている。また、電源又はグランドに接続される配線パターン(すなわち、内層に位置する電源層又はグランド層)は、面積の大きなべたパターンとして形成され、且つそのパターン厚みが厚くされていた。このため、リフローを使用して当該プリント配線基板に電子部品を実装しようとしても、当該べたパターンを経由して熱が放散し、当該スルーホール内のはんだ上がり(すなわち、はんだ広がり)が悪化する問題があった。
 このようなスルーホール内のはんだ上がりの改善を図るために、当該べたパターンにおいて、スルーホールの周囲に切れ込みを入れ、サーマルランドを形成することが従来から行われていた。例えば、特許文献1には、種々の形状のサーマルランドが開示されている。特に、特許文献1においては、当該サーマルランドをエッチングによって形成し、且つその形状を変えることによってスルーホール内の伝熱の制御を行うことが開示されている。
特開2005-12088号公報
 近年においては、車載又は産業機器向けのプリント配線基板としては、数十アンペアから数百アンペアの電流を電子部品の電極に流すために、電源層又はグランド層となるべたパターンの厚みをより大きくすることが要求されている。この要求を満たしつつコスト低減されたプリント配線基板を提供するために、比較的に厚いメタルプレート(金属板)を心材(コア材)として内蔵するメタルコア基板が検討されている。
 しかしながら、メタルプレートに対しては従来のような一般的なエッチングによってはサーマルランドを形成することができず、特殊なエッチングが必要となり、メタルコア基板の生産性の低下及び製造コストの増加という問題が生じる。一方、メタルプレートにサーマルランドを形成せず、スルーホールへの部品実装と他の外層配線パターンへの実装とを別工程で実施することや、メタルプレートにおける熱の放散を抑制する外層の設計を施すことが検討されているが、実装のコストアップや外層の設計に制約が生じる問題がある。また、当該メタルコア基板は、メタルプレートの両面に絶縁樹脂材が積層される積層構造を有し、且つメタルプレート自体が従来のべたパターンよりも厚いため、スルーホール内における温度分布が不均一になりやすい問題も生じる。
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、製造コスト及びその後の部品実装のコストの増加、並びに外層の設計に制約をもたらすことなく、スルーホール内におけるはんだの広がりが向上しつつ加熱時のスルーホール内の温度分布が均一となるメタルコア基板、及びその製造方法を提供することにある。
 上記目的を達成するため、本発明のメタルコア基板は、複数のメタルプレート、及び前記複数のメタルプレートを対向させつつ離間するとともに埋設する複数の絶縁樹脂層からなる積層体と、前記積層体を貫通するとともに前記積層体の表裏面を電気的に接続するスルーホールと、を有し、前記メタルプレートのそれぞれは、前記スルーホールの近傍に少なくとも1つの切削孔を備える。
 また、上記目的を達成するため、本発明のメタルコア基板の製造方法は、スルーホールを備えるメタルコア基板の製造方法であって、複数のメタルプレートを準備する準備工程と、前記メタルプレートにおける前記スルーホールが形成される領域の近傍に、少なくとも1つの切削孔を形成する切削孔形成工程と、前記メタルプレートと絶縁樹脂材料とを交互に積層し、前記メタルプレート及び前記複数のメタルプレートを対向させつつ離間するとともに埋設する複数の絶縁樹脂層からなる積層体を形成する積層体形成工程と、前記積層体を貫通するとともに前記積層体の表裏面を電気的に接続するスルーホールを形成するスルーホール形成工程と、を有する。
 本発明により、製造コスト及びその後の部品実装のコストの増加、並びに外層の設計に制約をもたらすことなく、スルーホール内におけるはんだの広がりが向上しつつ加熱時のスルーホール内の温度分布が均一となるメタルコア基板、及びその製造方法を提供することができる。
本発明の実施例に係る銅コア基板の概略部分断面図である。 図1における線II-IIに沿った銅コア基板の拡大断面図である。 本発明の実施例に係る銅コア基板の製造方法の製造工程における概略部分断面図である。 本発明の実施例に係る銅コア基板の製造方法の製造工程における部分拡大平面図である。 図4における線V-Vに沿った断面図である。 図4と同様に示す、本発明の実施例に係る銅コア基板の製造方法の製造工程における部分拡大断面図である。 図4と同様に示す、本発明の実施例に係る銅コア基板の製造方法の製造工程における部分拡大断面図である。 図4と同様に示す、本発明の実施例に係る銅コア基板の製造方法の製造工程における部分拡大断面図である。 図4と同様に示す、本発明の実施例に係る銅コア基板の製造方法の製造工程における部分拡大断面図である。 本発明の変形例に係る銅コア基板を構成する銅板の斜視図である。
 以下、図面を参照し、本発明の実施の形態について、実施例及び変形例に基づき詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施例及び変形例の説明に用いる図面は、いずれも実施例及び変形例に係る銅コア基板及びその構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、銅コア基板及びその構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。更に、実施例で用いる様々な数値は、いずれも一例を示すものであり、必要に応じて様々に変更することが可能である。
<実施例>
(銅コア基板の構造)
 先ず、図1及び図2を参照しつつ、本実施例に係る銅コア基板1の構造について詳細に説明する。ここで、図1は、本実施例に係る銅コア基板1の概略部分断面図である。また、図2は、図1における線II-IIに沿った銅コア基板1の拡大断面図である。
 本実施例に係る銅コア基板1は、メタルコア基板の1種類であって、銅板を心材(コア部材)として用いたプリント配線基板である。図1に示すように、銅コア基板1は、第1絶縁樹脂層2、第1銅板3、第2絶縁樹脂層4、第2銅板5、及び第3絶縁樹脂層6が積層された積層体7を有している。すなわち、銅コア基板1は、2枚のコア部材を有していることになる。また、銅コア基板1は、積層体7を貫通し、積層体7の第1表面7a及び第2表面7b(すなわち、表裏面)を電気的に接続するスルーホール8を有している。更に、銅コア基板1は、積層体7の第1表面7aに第1外層配線パターン11を有し、積層体の第2表面7bに第2外層配線パターン12を有している。
 本実施例において、第1絶縁樹脂層2、第2絶縁樹脂層4、第3絶縁樹脂層6は、例えば、絶縁樹脂材料であるプリプレグから構成されているが、他の絶縁樹脂材料から構成されていてもよい。より具体的な積層構造として、第2絶縁樹脂層4は、第1銅板3と第2銅板5とを対向させつつ離間するように、第1銅板3と第2銅板5との間に形成されている。また、第1絶縁樹脂層2と第2絶縁樹脂層4とによって第1銅板3が埋設され、第2絶縁樹脂層4と第3絶縁樹脂層6とによって第2銅板5が埋設されている。
 図1から分かるように、スルーホール8は、第1絶縁樹脂層2、第1銅板3、第2絶縁樹脂層4、第2銅板5、及び第3絶縁樹脂層6を貫通する貫通孔8aと、貫通孔8aによって露出した各層の露出面並びに第1絶縁樹脂層2及び第3絶縁樹脂層6の表面(すなわち、積層体7の第1表面7a及び第2表面7b)の一部に形成された銅膜8bと、から構成されている。なお、スルーホール8には、積層体7の表裏面を電気的に接続する銅膜8bに代えて、金又は銀等の他の一般的な金属膜が用いられてもよい。また、図1においては、1つのスルーホール8のみを示しているが、実際の銅コア基板1においては、複数のスルーホールが形成されている。そして、図1においては、スルーホール8と各銅板とが接触しているが、銅コア基板1の他のスルーホールにおいては、当該スルーホールと各銅板が接触していない場合もある。
 積層体7の表裏面に形成された第1外層配線パターン11及び第2外層配線パターン12は、銅の薄膜から形成されている。なお、各配線パターンも、スルーホール8と同様に、他の一般的な金属材料から形成されていてもよい。また、第1外層配線パターン11及び第2外層配線パターン12を被覆するように、レジストからなる保護層を形成してもよい。
 第1銅板3及び第2銅板5は、一般的なメタルプレートである銅からなる平板状の板部材である。本実施例において、第1銅板3及び第2銅板5の厚みは、約0.2mmとしたが、これに限定されることなく、銅コア基板1に要求される特性に応じて、一般的に製造可能な銅板の範囲において適宜選択することができる。ここで、めっきによって形成される一般的な銅膜(以下、銅箔とも称する)の膜厚は、その生産性を考慮すると約0.2mm以下であるため、銅コア基板1の厚みは、約0.2mm以上であることが好ましい。このような厚み設定をすることにより、数十アンペアから数百アンペアの電流が必要となる電子部品を実装する場合においても、十分に対応することが可能となる。ただし、当該厚みの規定は、銅板の生産性と銅箔の生産性を考慮して決定しているに過ぎず、各銅板の厚みを0.2mm未満にすることも可能である。
 図2に示すように、第1銅板3には、スルーホール8の近傍に8個の切削孔21が形成されている。より具体的には、8個の切削孔21は、スルーホール8の周囲を囲むように形成され、各切削孔21はスルーホール8を中心点として点対称となるに配置されている。すなわち、各切削孔21は、スルーホール8から同一の距離だけ離間しており、例えば、当該離間距離は約0.35mmである。また、各切削孔21の平面形状は、直径が約0.5mmの円形である。そして、図1及び図2に示すように、当該切削孔21には、樹脂体22が充填されている。
 本実施例においては、第1銅板3と第2銅板5とは同一の部材であり、両銅板は同一の厚み、及び同一の形状を有している。すなわち、図1からも分かるように、第2銅板5についても、切削孔21が同様に形成されている。そして、第1銅板3の切削孔21の形成位置と、第2銅板5の切削孔21の形成位置は、積層体7の積層方向において一致している。なお、第1銅板3と第2銅板5とは、完全に同一とすることなく、その厚みが異なっていてもよい。
 本実施例においては、第1銅板3及び第2銅板5のスルーホール8の周囲を囲むように、樹脂体22によって充填された切削孔21が形成されているため、銅コア基板1に電子部品を実装するための加熱を行ったとしても、スルーホール8から第1銅板3を広がる方向への熱の放散、及びスルーホール8から第2銅板5を広がる方向への熱の放散を抑制することができる。すなわち、切削孔21は、従来のサーマルランドと同様に放熱を抑制することができることから、放熱制御孔として機能することになる。
 これにより、切削孔21が存在しない場合と比較して、スルーホール8内におけるはんだの広がりが向上することになり、スルーホール8に対して電子部品のリード等を挿入する実装を、スルーホール8を利用しない他の電子部品の実装と同一の条件・工程で行うことができる。従って、銅コア基板1を使用することにより、その後の実装工程の生産性を向上することができ、部品実装のコストの増加を防止することができる。
 ここで、本実施例における各銅板の厚みは0.2mmとして想定されていたが、その厚いが大きくなるほど、各銅板かの熱の放散量が多くなる。このため、各銅板の厚みに応じて、切削孔21の数量及び直径(すなわち、切削孔21の形成領域の面積)を変更することが好ましい。すなわち、各銅板の厚みと、切削孔21の形成領域の面積とが比例関係となるように切削孔21の形成を調整することにより、各銅板の熱の放散をより確実に抑制することが可能になる。例えば、各銅板の厚みが0.5mm以上においては、切削孔21の直径を0.9mmにすることにより、熱の放散の抑制の精度を向上させてもよい。
 また、本実施例においては、2枚の第1銅板3及び第2銅板5がコア部材として使用されている。このような構造により、銅板を1枚のみ使用する場合と比較して、積層体7における熱伝導性の高い部材の存在比率を高めることができ、スルーホール8内における放熱が進みやすい部分を分散することができる。これにより、スルーホール8内における温度分布をより均一とすることが可能になる。従って、銅コア基板1内における銅板の数量をより多くすることにより、スルーホール8内における温度分布をより均一とすることができる。
 上記のような第1銅板3及び第2銅板5における放熱の抑制、並びにスルーホール8内における温度分布の均一化が図られることにより、各絶縁樹脂層、各銅板、及びはんだの熱膨張係数の差の影響を小さくすることができる。切削孔21が形成されていない場合には、当該熱膨張係数の差によって各絶縁樹脂層にクラックが発生することになるが、本実施例に係る銅コア基板1においては、上述した構成及びその効果により、当該クラックの発生が抑制されている。
 また、本実施例に係る銅コア基板1においては、外層が一般的なプレプレグからなる絶縁樹脂層であるため、外層の制約がもたらされることがなくなり、コストの増加がもたらされることもない。
 以上のことから、本実施例に係る銅コア基板1については、製造コスト及びその後の部品実装のコストの増加、並びに外層の設計に制約もなく、スルーホール8内におけるはんだの広がりが向上されつつ加熱時のスルーホール8内の温度分布が均一となっている。
(銅コア基板の製造方法)
 次に、本発明の実施例に係る銅コア基板の製造方法について、図1、及び図3乃至図9を参照して詳細に説明する。ここで、図3は、実施例に係る銅コア基板の製造方法の製造工程における概略部分断面図である。また、図4は、実施例に係る銅コア基板の製造方法の製造工程における部分拡大平面図である。更に、図5は、図4における線V-Vに沿った断面図である。そして、図6乃至図9は、図5と同様にして示す、実施例に係る銅コア基板の製造方法の製造工程における部分拡大断面図である。
 先ず、図3に示すように、メタルプレートとして、厚みが約0.2mmの第1銅板3及び第2銅板5を準備する(準備工程)。なお、第1銅板3及び第2銅板5は、この時点において、完成する銅コア基板1の寸法で切り出されていてもよく、最終的に複数の銅コア基板1を切り出せるような大型のものであってもよい。
 次に、ドリル等の切削工具を用いて、各銅板に対して8個の切削孔21を形成する(切削孔形成工程)。より具体的には、図4及び図8に示すように、スルーホール8が形成されることになるスルーホール形成領域31(一点鎖線で示す)の周囲を囲むように、平面形状が円形の切削孔21を形成する。ここで、第1銅板3及び第2銅板5におけるスルーホール8及び切削孔21は同一位置に設計されているため、第1銅板3及び第2銅板5を積層するとともに、両銅板を連続的に切削することになる。これにより、各銅板の切削孔21を同時に形成することができるため、製造コストの低減を図ることができる。
 次に、図6及び図7に示すように、第1銅板3、第2銅板5、及びプリプレグ等の絶縁樹脂材料(第1絶縁樹脂層2、第2絶縁樹脂層4、第3絶縁樹脂層6)を交互に積層し、当該積層した状態で所望の加熱・加圧処理を施すことにより、積層体7が形成される(積層体形成工程)。この際、当該絶縁樹脂材料が切削孔21に流れ込み、切削孔21を充填する樹脂体22が形成されることになる。
 次に、図8に示すように、第1絶縁樹脂層2、第1銅板3、第2絶縁樹脂層4、第2銅板5、及び第3絶縁樹脂層6を貫通する貫通孔8aを形成する。具体的には、ドリル等の切削工具を用いて、積層体7のスルーホール形成領域31を除去する。その後、デスミア処理を施し、貫通孔8aの形成の際に残留している絶縁樹脂を除去することが好ましい。また、貫通孔8aの形成によって露出した各銅板には更にソフトエッチング処理を施し、当該露出面の酸化物や有機物を除去することが好ましい。これにより、新鮮な金属の表面が露出することになり、その後のめっき処理において析出する金属との密着性が高まり、結果として電気的な接続信頼性が向上する。
 次に、図9に示すように、銅めっき処理を施し、積層体7の第1表面7a及び第2表面7b、並びに貫通孔8aによって露出した露出面に銅膜41を形成する。続いて、公知のフォトリソグラフィ技術を用いて、積層体7の表裏面上の銅膜41にパターニング処理を施し、第1外層配線パターン11及び第2外層配線パターン12を形成する。この際、貫通孔8a内の銅膜8bは除去されず、スルーホール8を構成する銅膜8bとなり、スルーホール8が形成されることになる。上記の貫通孔8aの形成、銅膜41の形成、パターニング処理を行うことにより、スルーホール形成工程が完了する。
 その後、必要に応じてレジストからなる保護膜を形成し、銅コア基板1が完成する(図1)。
 本実施例の製造方法によれば、特殊なエッチング処理を行うことなく、一般的な切削処理により、サーマルランドと同等或いはそれ以上の効果がある放熱制御孔(すなわち、切削孔21)を形成することができるため、製造コストの低減が容易に図られることになる。ここで、スルーホールと各銅板とを電気的に接続させない部分については、積層前の状態において、各銅板のスルーホールの形成領域及びその周辺を切削するため、放熱制御孔として機能する切削孔21を同一切削工程にて形成することができ、銅コア基板1の製造工程数が増加することもない。
 また、本実施例の製造方法によれば、積層体7の形成工程、及び各外層配線パターンの形成工程についても、特殊な装置等が必要とならず、従来と同様に実施することができるため、製造コストの増加も防止されている。
 以上のことから、本実施例の製造方法によれば、製造コスト及びその後の部品実装のコストの増加、並びに外層の設計に制約をもたらすことなく、スルーホール8内におけるはんだの広がりが向上しつつ加熱時のスルーホール8内の温度分布が均一となる銅コア基板1を容易且つ確実に製造することができる。
<変形例>
 上述した実施例においては、第1銅板3及び第2銅板5が同一部材であったが、積層体7の積層方向において、切削孔21の形成位置が相違するようにしてもよい。例えば、図10に示す変形例のように、第1銅板3はスルーホール形成領域31を囲む4つの切削孔121を有し、第2銅板5はスルーホール形成領域31を囲む4つの切削孔122を有している。ここで、第1銅板3上に第2銅板5を積層すると、切削孔122は切削孔121の直上に位置することなく、切削孔122は切削孔121と比較して、スルーホール形成領域31を中心点として45度回転した位置に形成されている。このように、銅板ごとに切削孔の形成位置を決定することにより、銅板ごとに熱の放散を制御することができ、スルーホール8内の温度分布をより高精度に制御することが可能になる。また、当該このような切削孔の形成位置を決定することにより、各絶縁樹脂層における応力を分散することができ、クラックの発生をより一層抑制することができる。
 なお、このような切削孔121の形成位置が互いに相違する銅板を準備する場合には、上述した実施例における切削孔形成工程を、第1銅板3及び第2銅板5ごとに別々に実施することになる。
 また、上述した実施例においては、メタルプレートして銅板を使用していたが、アルミ、鉄、ステンレス等の他の金属板を使用してもよい。更に、コア部材となる複数の金属板は、互いに異なる材質、又は厚みを有していてもよい。すなわち、メタルコア基板に要求される特性に応じて、コア部材となるメタルプレートごとにその材質及びその厚みが決定されることになる。
 更に、上述した実施例においては、切削孔21の平面形状が円形であったが、当該平面形状を変更することにより、銅板の熱の拡散を適宜調整してもよい。例えば、その平面形状を楕円、角形、又はU字状とすることができる。
<本発明の実施態様>
 本発明の第1実施態様に係るメタルコア基板は、複数のメタルプレート、及び前記複数のメタルプレートを対向させつつ離間するとともに埋設する複数の絶縁樹脂層からなる積層体と、前記積層体を貫通するとともに前記積層体の表裏面を電気的に接続するスルーホールと、を有し、前記メタルプレートのそれぞれは、前記スルーホールの近傍に少なくとも1つの切削孔を備える。
 第1実施態様においては、各メタルプレートの近傍に、少なくとも1つの切削孔が形成されているため、電子部品を実装するための加熱を行ったとしても、スルーホールからメタルプレートを広がる方向への熱の放散を抑制することができる。これにより、切削孔が存在しない場合と比較して、スルーホール内におけるはんだの広がりが向上することになり、スルーホールに対して電子部品のリード等を挿入する実装を、スルーホールを利用しない他の電子部品の実装と同一の条件・工程で行うことができる。従って、メタルコア基板を使用することにより、その後の実装工程の生産性を向上することができ、部品実装のコストの増加を防止することができる。
 また、第1実施態様においては、複数のメタルプレートがコア部材として使用されている。このような構造により、メタルプレートを1枚のみ使用する場合と比較して、積層体における熱伝導性の高い部材の存在比率を高めることができ、スルーホール内における放熱が進みやすい部分を分散することができる。これにより、スルーホール内における温度分布をより均一とすることが可能になる。
 上記のような放熱の抑制、及びスルーホール内における温度分布の均一化が図られることにより、各絶縁樹脂層、各銅板、及びはんだの熱膨張係数の差の影響を小さくすることができる。切削孔が形成されていない場合には、当該熱膨張係数の差によって各絶縁樹脂層にクラックが発生することになるが、第1実施態様に係るメタルコア基板においては、上述した構成及びその効果により、当該クラックの発生が抑制されている。
 更に、第1実施態様に係るメタルコア基板においては、外層が一般的な絶縁樹脂層であるため、外層の制約がもたらされることがなくなり、コストの増加がもたらされることもない。
 以上のことから、第1実施態様においては、製造コスト及びその後の部品実装のコストの増加、並びに外層の設計に制約もなく、スルーホール内におけるはんだの広がりが向上されつつ加熱時のスルーホール内の温度分布が均一となる。
 本発明の第2実施態様に係るメタルコア基板は、上述した第1実施態様において、前記メタルプレートのそれぞれには、前記スルーホールの周囲を囲むように前記切削孔が複数形成されていることである。これにより、各メタルプレートにおける熱お放散をより抑制することができる。
 本発明の第3実施態様に係るメタルコア基板は、上述した第1又は第2実施態様において、前記メタルプレートの厚みと、前記メタルプレートにおける前記切削孔の形成領域の面積とは、比例関係にあることである。これにより、各メタルプレートにおける熱の放散をより確実に抑制することが可能になる。
 本発明の第4実施態様に係るメタルコア基板は、上述した第1乃至第3実施態様のいずれかにおいて、前記メタルプレートの厚みが0.2mm以上であることである。これにより、数十アンペアから数百アンペアの電流が必要となる電子部品を実装することが要求される場合においても、十分に対応することが可能となる。
 本発明の第5実施態様に係るメタルコア基板は、上述した第1乃至4実施態様のいずれかにおいて、前記複数のメタルプレートの前記切削孔の形成位置は、前記積層体の積層方向において一致していることである。これにより、各メタルプレートの切削孔を同一工程にて形成することができるため、メタルコア基板のコスト低減を図ることができる。
 本発明の第6実施態様に係るメタルコア基板は、上述した第1乃至4実施態様のいずれかにおいて、前記複数のメタルプレートの前記切削孔の形成位置は、前記積層体の積層方向において相違していることである。これにより、メタルプレートごとに熱の放散を制御することができ、スルーホール内の温度分布をより高精度に制御することが可能になる。また、各絶縁樹脂層における応力を分散することができ、クラックの発生をより一層抑制することができる。
 本発明の第7実施態様に係るメタルコア基板は、上述した第1乃至6実施態様のいずれかにおいて、前記複数のメタルプレートが銅板であることである。これにより、低コストによってメタルコア基板を実現できる。
 本発明の第8実施態様に係るメタルコア基板の製造方法は、スルーホールを備えるメタルコア基板の製造方法であって、複数のメタルプレートを準備する準備工程と、前記メタルプレートにおける前記スルーホールが形成される領域の近傍に、少なくとも1つの切削孔を形成する切削孔形成工程と、前記メタルプレートと絶縁樹脂材料とを交互に積層し、前記メタルプレート及び前記複数のメタルプレートを対向させつつ離間するとともに埋設する複数の絶縁樹脂層からなる積層体を形成する積層体形成工程と、前記積層体を貫通するとともに前記積層体の表裏面を電気的に接続するスルーホールを形成するスルーホール形成工程と、を有することである。
 第8実施態様においも、第1実施態様と同様の理由により、製造コスト及びその後の部品実装のコストの増加、並びに外層の設計に制約もなく、スルーホール内におけるはんだの広がりが向上されつつ加熱時のスルーホール内の温度分布が均一となるメタルコア基板を製造することができる。
 本発明の第9実施態様に係るメタルコア基板の製造方法は、上述した第8実施態様において、前記切削孔形成工程で前記メタルプレートのそれぞれに対して、前記スルーホールが形成される領域の周囲を囲むように前記切削孔を複数形成することである。これにより、各メタルプレートにおける熱お放散をより抑制することができる。
 本発明の第10実施態様に係るメタルコア基板の製造方法は、上述した第8又は第9実施態様において、前記切削孔形成工程で前記メタルプレートの厚みに応じて、前記メタルプレートにおける前記切削孔の形成領域の面積を設定することである。これにより、各メタルプレートにおける熱の放散をより確実に抑制することが可能になる。
 本発明の第11実施態様に係るメタルコア基板の製造方法は、上述した第8乃至第10実施態様のいずれかにおいて、前記メタルプレートの厚みを0.2mm以上とすることである。これにより、数十アンペアから数百アンペアの電流が必要となる電子部品を実装することが要求される場合においても、十分に対応することが可能となる。
 本発明の第12実施態様に係るメタルコア基板の製造方法は、上述した第8乃至第11実施態様のいずれかにおいて、前記切削孔形成工程で前記複数のメタルプレートを積層し、前記複数のメタルプレートに対して連続的に切削を施すことである。これにより、各メタルプレートの切削孔を同一工程にて形成することができるため、メタルコア基板のコスト低減を図ることができる。
 本発明の第13実施態様に係るメタルコア基板の製造方法は、上述した第8乃至第11実施態様のいずれかにおいて、前記切削孔形成工程で前記複数のメタルプレートに対して別々に切削を施し、前記複数のメタルプレートの前記切削孔の形成位置を前記積層体の積層方向において相違させることである。これにより、メタルプレートごとに熱の放散を制御することができ、スルーホール内の温度分布をより高精度に制御することが可能になる。また、各絶縁樹脂層における応力を分散することができ、クラックの発生をより一層抑制することができる。
 本発明の第14実施態様に係るメタルコア基板の製造方法は、上述した第8乃至第13実施態様のいずれかにおいて、前記複数のメタルプレートは銅板である。これにより、低コストのメタルコア基板を製造することができる。
 1  銅コア基板(メタルコア基板)
 2  第1絶縁樹脂層
 3  第1銅板(メタルプレート)
 4  第2絶縁樹脂層
 5  第2銅板(メタルプレート)
 6  第3絶縁樹脂層
 7  積層体
 7a  第1表面
 7b  第2表面
 8  スルーホール
 8a  貫通孔
 8b  銅膜
 11  第1外層配線パターン
 12  第2外層配線パターン
 21  切削孔
 22  樹脂体
 31  スルーホール形成領域
 41  銅膜
 121  切削孔
 122  切削孔
 
 

Claims (14)

  1.  複数のメタルプレート、及び前記複数のメタルプレートを対向させつつ離間するとともに埋設する複数の絶縁樹脂層からなる積層体と、
     前記積層体を貫通するとともに前記積層体の表裏面を電気的に接続するスルーホールと、を有し、
     前記メタルプレートのそれぞれは、前記スルーホールの近傍に少なくとも1つの切削孔を備えるメタルコア基板。
  2.  前記メタルプレートのそれぞれには、前記スルーホールの周囲を囲むように前記切削孔が複数形成されている請求項1に記載のメタルコア基板。
  3.  前記メタルプレートの厚みと、前記メタルプレートにおける前記切削孔の形成領域の面積とは、比例関係にある請求項1又は2に記載のメタルコア基板。
  4.  前記メタルプレートの厚みは、0.2mm以上である請求項1乃至3のいずれか1項に記載のメタルコア基板。
  5.  前記複数のメタルプレートの前記切削孔の形成位置は、前記積層体の積層方向において、一致している請求項1乃至4のいずれか1項に記載のメタルコア基板。
  6.  前記複数のメタルプレートの前記切削孔の形成位置は、前記積層体の積層方向において、相違している請求項1乃至4のいずれか1項に記載のメタルコア基板。
  7.  前記複数のメタルプレートは、銅板である請求項1乃至6のいずれか1項に記載のメタルコア基板。
  8.  スルーホールを備えるメタルコア基板の製造方法であって、
     複数のメタルプレートを準備する準備工程と、
     前記メタルプレートにおける前記スルーホールが形成される領域の近傍に、少なくとも1つの切削孔を形成する切削孔形成工程と、
     前記メタルプレートと絶縁樹脂材料とを交互に積層し、前記メタルプレート及び前記複数のメタルプレートを対向させつつ離間するとともに埋設する複数の絶縁樹脂層からなる積層体を形成する積層体形成工程と、
     前記積層体を貫通するとともに前記積層体の表裏面を電気的に接続するスルーホールを形成するスルーホール形成工程と、を有するメタルコア基板の製造方法。
  9.  前記切削孔形成工程においては、前記メタルプレートのそれぞれに対して、前記スルーホールが形成される領域の周囲を囲むように前記切削孔を複数形成する請求項8に記載のメタルコア基板の製造方法。
  10.  前記切削孔形成工程においては、前記メタルプレートの厚みに応じて、前記メタルプレートにおける前記切削孔の形成領域の面積を設定する請求項8又は9に記載のメタルコア基板の製造方法。
  11.  前記メタルプレートの厚みを0.2mm以上とする請求項8乃至10のいずれか1項に記載のメタルコア基板の製造方法。
  12.  前記切削孔形成工程においては、前記複数のメタルプレートを積層し、前記複数のメタルプレートに対して連続的に切削を施す請求項8乃至11のいずれか1項に記載のメタルコア基板の製造方法。
  13.  前記切削孔形成工程においては、前記複数のメタルプレートに対して別々に切削を施し、前記複数のメタルプレートの前記切削孔の形成位置を前記積層体の積層方向において相違させる請求項8乃至11のいずれか1項に記載のメタルコア基板の製造方法。
  14.  前記複数のメタルプレートは、銅板である請求項8乃至13のいずれか1項に記載のメタルコア基板の製造方法。
PCT/JP2016/056843 2016-03-04 2016-03-04 メタルコア基板及びメタルコア基板の製造方法 WO2017149773A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056843 WO2017149773A1 (ja) 2016-03-04 2016-03-04 メタルコア基板及びメタルコア基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056843 WO2017149773A1 (ja) 2016-03-04 2016-03-04 メタルコア基板及びメタルコア基板の製造方法

Publications (1)

Publication Number Publication Date
WO2017149773A1 true WO2017149773A1 (ja) 2017-09-08

Family

ID=59743656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056843 WO2017149773A1 (ja) 2016-03-04 2016-03-04 メタルコア基板及びメタルコア基板の製造方法

Country Status (1)

Country Link
WO (1) WO2017149773A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388391A (ja) * 1989-08-31 1991-04-12 Toshiba Chem Corp 多層銅張積層板
JPH09162516A (ja) * 1995-12-04 1997-06-20 Furukawa Electric Co Ltd:The プリント配線板
JP2011014692A (ja) * 2009-07-01 2011-01-20 Alps Electric Co Ltd 電子回路ユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388391A (ja) * 1989-08-31 1991-04-12 Toshiba Chem Corp 多層銅張積層板
JPH09162516A (ja) * 1995-12-04 1997-06-20 Furukawa Electric Co Ltd:The プリント配線板
JP2011014692A (ja) * 2009-07-01 2011-01-20 Alps Electric Co Ltd 電子回路ユニット

Similar Documents

Publication Publication Date Title
KR102488164B1 (ko) 프로파일된 도전성 층을 갖는 인쇄 회로 기판 및 그 제조 방법
CN112689380A (zh) 嵌入铜块电路板结构制作方法和电路板
US9204547B2 (en) Non-planar printed circuit board with embedded electronic components
TWI572267B (zh) 具有凹槽的多層線路板與其製作方法
JP2008071963A (ja) 多層配線基板
WO2017149773A1 (ja) メタルコア基板及びメタルコア基板の製造方法
CN106604577A (zh) 一种能够实现精确对位的hdi电路板制作工艺
CN104159392A (zh) 一种印制电路板及其制备方法
JP6866229B2 (ja) リジッド・フレックス多層プリント配線板
JP5385967B2 (ja) 配線板及びその製造方法
JP4657870B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
WO2013125033A1 (ja) 回路基板の製造方法
WO2013021477A1 (ja) 回路基板の製造方法
US11950373B2 (en) Method of manufacturing circuits using thick metals and machined bulk dielectrics
WO2016013277A1 (ja) 電子部品の製造方法
JP4618442B2 (ja) 電子部品の構成に用いられるシートの製造方法
JP2019153819A (ja) 樹脂基板および電子機器
JP2020150016A (ja) リジッド・フレックス多層プリント配線板
JP2014192203A (ja) 配線基板の製造方法
WO2015125267A1 (ja) プリント配線基板及びプリント配線基板の製造方法
JP5360404B2 (ja) 部品内蔵基板の製造方法
JP2006120738A (ja) セラミック多層基板およびその製造方法
JP2006196567A (ja) 回路形成基板の製造方法
JP2007311723A (ja) 多層回路基板
CN116321814A (zh) 一种压合板的制作方法及压合板

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892613

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP