WO2017149701A1 - Fat or oil composition - Google Patents

Fat or oil composition Download PDF

Info

Publication number
WO2017149701A1
WO2017149701A1 PCT/JP2016/056457 JP2016056457W WO2017149701A1 WO 2017149701 A1 WO2017149701 A1 WO 2017149701A1 JP 2016056457 W JP2016056457 W JP 2016056457W WO 2017149701 A1 WO2017149701 A1 WO 2017149701A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water
weight
fat
fat composition
Prior art date
Application number
PCT/JP2016/056457
Other languages
French (fr)
Japanese (ja)
Inventor
真晴 加藤
美和子 盛川
将宏 杉山
Original Assignee
不二製油グループ本社株式会社
不二製油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二製油グループ本社株式会社, 不二製油株式会社 filed Critical 不二製油グループ本社株式会社
Priority to PCT/JP2016/056457 priority Critical patent/WO2017149701A1/en
Priority to CN201780014720.5A priority patent/CN108713053A/en
Priority to PCT/JP2017/007906 priority patent/WO2017150558A1/en
Priority to BR112018016854-8A priority patent/BR112018016854B1/en
Priority to US16/082,216 priority patent/US20200347300A1/en
Priority to EP17760024.4A priority patent/EP3424338A4/en
Priority to CN201780014630.6A priority patent/CN108697112B/en
Priority to PCT/JP2017/007908 priority patent/WO2017150559A1/en
Priority to SG11201807310QA priority patent/SG11201807310QA/en
Priority to MYPI2018703052A priority patent/MY193218A/en
Priority to SG11201807311WA priority patent/SG11201807311WA/en
Priority to US16/082,238 priority patent/US11957135B2/en
Priority to KR1020187028168A priority patent/KR20180121940A/en
Priority to KR1020187028169A priority patent/KR20180119640A/en
Priority to JP2018503345A priority patent/JP6889415B2/en
Priority to BR112018016998-6A priority patent/BR112018016998B1/en
Priority to MYPI2018703050A priority patent/MY187373A/en
Priority to EP17760023.6A priority patent/EP3425033A4/en
Priority to JP2018503344A priority patent/JP7103216B2/en
Priority to TW106106807A priority patent/TWI722126B/en
Priority to TW106106808A priority patent/TWI726057B/en
Publication of WO2017149701A1 publication Critical patent/WO2017149701A1/en
Priority to JP2022064186A priority patent/JP7343001B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B5/00Preserving by using additives, e.g. anti-oxidants

Definitions

  • the present invention relates to an oil and fat composition comprising a food or food additive and having a strong antioxidant power, and a method for producing the same.
  • Patent Document 1 It is known that an antioxidant effect can be obtained by adding a water-soluble antioxidant to fats and oils (Patent Document 1).
  • Patent Document 2 describes an oil and fat imparted with oxidation stability using a water-soluble tea polyphenol and an emulsifier.
  • Patent Document 3 describes that, in the chlorogenic acids having a specific composition, the antioxidant activity is improved by further adding a saccharide.
  • Patent Document 4 discloses that “a solid phase containing a tea extract is an oily composition dispersed in an oil phase containing an oily component and an emulsifier having an HLB of 10 or less, and containing the tea extract.
  • Patent Document 5 describes “an oil-soluble antioxidant having a water-soluble antioxidant property derived from a natural product and having an average particle size of 40 to 120 nm that can be transparently dispersed in fats and oils”.
  • Non-patent Document 1 TBHQ (tertiary butylhydroquinone) is a powerful synthetic antioxidant (Non-patent Document 1), and it may be used as an index when screening for a new antioxidant (Non-patent Document 1). Reference 2).
  • An object of the present invention is to provide an oil and fat composition having unprecedented strong oxidation stability by a simple method.
  • Patent Document 1 is the fats and oils used for frying in principle, and the state containing a fixed amount or more of water is not assumed. In the first place, there is no suggestion of an effect on polyunsaturated fatty acid-containing fats and oils that are extremely susceptible to oxidative degradation than frying fats and oils. Also in Patent Document 2, as in Patent Document 1, application to heating and cooking oils and fats such as frying is a preferred use, and a state of containing a certain amount or more of water is not assumed. And it is not suggested about the effect on polyunsaturated fatty acid-containing fats and oils.
  • Patent Document 3 the composition of chlorogenic acids must be specified, and the versatility is low. In addition, it does not suggest that the present invention exhibits extremely strong antioxidant power, which is a problem.
  • Patent Document 4 a tea extract that is substantially dehydrated and solid is dispersed in oil, and suggests a strong antioxidant effect that prevents oxidation of PUFA oil. Not what you want.
  • Patent Document 5 the description of the examples shows that what can be used as an antioxidant is substantially limited to catechins, and it is necessary to use a water-soluble emulsifier. there were. In addition, its antioxidant power is less than 1.5 times that of control oil (corn oil), and PUFA oil, which has extremely low oxidative stability compared to corn oil, can impart oxidative stability. Was unthinkable.
  • TBHQ is known to be a powerful antioxidant, but it has not been approved for food use in Japan. Actually, in order to further improve the oxidative stability of fats and oils containing a large amount of polyunsaturated fatty acids, it has been estimated that an antioxidant power exceeding TBHQ is required. Of course it needs to be usable as food.
  • an oil composition containing a water-soluble antioxidant and, if necessary, water-soluble solids such as carbohydrates, and an aqueous phase containing a certain amount or more of water-soluble solids dispersed in the oil phase with a predetermined particle size or less was completed by finding that a material containing a predetermined amount of water exhibits a very strong oxidation stabilizing effect.
  • the present invention (1) An oil and fat composition containing 1.9 to 18% by weight of water that satisfies the following requirements: 1. Containing 3 to 65% by weight of a water-soluble antioxidant in the aqueous phase, 2. The aqueous phase contains saccharides as necessary, and contains a total of 18 to 75% by weight of water-soluble solids. 3. 4.3 to 38% by weight of the aqueous phase is dispersed in the oil phase with a particle size of 300 nm or less.
  • the oil phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water.
  • the oil phase contains one or more oil-soluble emulsifiers selected from polyglycerin condensed ricinolate, sugar ester, glycerin fatty acid ester, 0.7 to 6.8 times the weight of water, (2)
  • the fat and oil composition according to the description (5)
  • the oil and fat composition according to (2), wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acids and catechins
  • (6) The oil and fat composition according to (3), wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acids, and catechins, (7)
  • the oil and fat composition according to (6), wherein the amino acid is one or more selected from glycine, proline, and serine
  • the oil and fat composition according to (7), wherein the amino acid is one or more selected from glycine, proline
  • the water phase is added to the oil phase so that the water phase is 4.3 to 38% by weight, and the water content in the oil and fat composition is 1.9 to 18% by weight, so that the particle diameter is 300 nm or less.
  • a process for making a water-in-oil type oil and fat composition (11) The production method according to (10), wherein the saccharide is one or more selected from sugar alcohol, glucose, sucrose, and dextrin, (12)
  • the oil phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water in the oil and fat composition.
  • the oily phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water in the oil and fat composition.
  • the water-soluble antioxidant is at least one selected from vitamin C, glycine, proline, serine and catechin, and 12 to 76% of the water contained in the oil and fat composition is partially dehydrated,
  • the production method according to (10), wherein the water content is 1.9 to 18% by weight (19) A method for producing an unsaturated fatty acid-containing oil or fat, wherein the oil or fat composition according to (7) is added to an unsaturated fatty acid-containing oil or fat so as to be 0.1 to 40% by weight, (20) A method for preventing oxidation of unsaturated fatty acid-containing fats and oils, comprising adding the fat composition according to (7) to unsaturated fatty acid-containing fats so as to be 0.1 to 40% by weight, It is about.
  • a water phase of 4.3 to 38% by weight containing a water-soluble antioxidant in an amount of 18 to 65% by weight in the aqueous phase is dispersed in the oil phase with a particle size of 300 nm or less, and a water content of 1.9 to 18
  • An oil and fat composition containing% by weight (22) Aqueous phase 4 containing 3 to 65% by weight of a water-soluble antioxidant in the aqueous phase, and further adding a saccharide such that the total amount of water-soluble solids in the aqueous phase is 18 to 75% by weight.
  • the oil phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water.
  • Aqueous phase Adding the aqueous phase to the oil phase such that the proportion of the aqueous phase is 4.3 to 38% by weight and the water content in the oil and fat composition is 1.9 to 18% by weight; 3.
  • a method for producing an oil and fat composition by the following steps, 1.
  • the oily phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water in the oil and fat composition.
  • a method for producing an unsaturated fatty acid-containing fat or oil wherein the fat or oil composition according to any one of (21) to (26) is added to an unsaturated fatty acid-containing fat or oil so as to be 0.1 to 40% by weight
  • (34) A method for preventing oxidation of an unsaturated fatty acid-containing oil or fat comprising adding the oil or fat composition according to any one of (21) to (26) to an unsaturated fatty acid-containing oil or fat so as to be 0.1 to 40% by weight.
  • (35) Soybean oil wherein the oil or fat composition according to any one of (21) to (26) is contained in an oil or fat containing 10 to 70% by weight of a highly unsaturated fatty acid in an amount of 0.1 to 40% by weight.
  • the oil or fat composition according to any one of (21) to (26) is added to an oil or fat containing 10 to 70% by weight of a highly unsaturated fatty acid so as to be 0.1 to 40% by weight.
  • the oil or fat composition according to any one of (21) to (26) is added to an oil or fat containing 10 to 70% by weight of a highly unsaturated fatty acid so as to be 0.1 to 40% by weight.
  • an oil and fat composition with extremely high antioxidant ability using edible raw materials that are widely used, and to provide highly unsaturated fatty acid-containing fats and oils having high oxidation stability using the composition. I can do it.
  • the oil and fat composition according to the present invention has a high antioxidant power. As a mode of use, this is simply mixed with a subject to be given antioxidant power. Since the oil / fat composition according to the present invention is a water-in-oil emulsified oil / fat composition, when used for oil / fat, it can be easily dispersed in the oil / fat. As fats and oils to be used, oils and fats containing unsaturated fatty acids can be widely used. Therefore, it can also be used to improve the stabilization of commonly used oils such as soybean oil and rapeseed oil.
  • the performance of the fats and oils composition which concerns on this invention is exhibited notably, and a preferable result can be obtained.
  • docosahexaenoic acid may be abbreviated as DHA
  • eicosapentaenoic acid may be abbreviated as EPA.
  • PUFA oil fats and oils containing a large amount of these are sometimes simply referred to as “PUFA oil”.
  • the amount of the oil / fat composition according to the present invention depends on the amount of unsaturated fatty acid in the target oil / fat, etc., but is preferably added so that the oil / fat composition is 0.1 to 40% by weight. This amount is more desirably 3 to 30% by weight, and further desirably 7 to 20% by weight. Antioxidant power can be preferably imparted by adding an appropriate amount.
  • the effect relating to the oxidation stability of the oil and fat composition according to the present invention is achieved by measuring a peroxide value (POV) when a predetermined amount of the oil and fat composition is added to a predetermined oil and fat and stored at a constant temperature. It can be said that the longer the time during which the increase in the POV value is suppressed, the stronger the oxidation stability. Specific measurement methods are described in the examples. As a simple evaluation method, a certain judgment index can be obtained by a CDM test.
  • CDM Conductmetric Determination Method
  • CDM is a value indicating the oxidation stability of fats and oils and can be used as an index for evaluating the oxidation stability. The longer the stability time by CDM, the better the oxidation stability.
  • the CDM test can be performed using dedicated test equipment (Rancimat).
  • Rancimat dedicated test equipment
  • the specific measurement method of this method is also described in the examples. Both are accelerated tests that test at a higher temperature than the intended mode of use.
  • Oxidative stability higher than soybean oil refers to a case where the above-described measurement method exhibits oxidative stability exceeding that of soybean oil.
  • the water-soluble antioxidant referred to in the present invention is an antioxidant that is soluble in water.
  • vitamin C sometimes abbreviated as VC in the present specification
  • catechin, tea extract, amino acid, bayberry extract can be given, more preferably vitamin C, amino acid, Vitamin C, glycine, proline and serine are desirable. In this invention, these can be selected suitably and 1 or more can be used.
  • a suitable water-soluble antioxidant it is possible to obtain an oil and fat composition exhibiting strong antioxidant power.
  • the water-soluble antioxidants mentioned here are not limited to those conventionally known as water-soluble antioxidants, but also include water-soluble components that have been newly found to have antioxidant power.
  • amino acids include those that have been newly found to have antioxidant power by this study. Among amino acids, proline, glycine, and serine are particularly desirable because of their strong antioxidant power.
  • the oil composition according to the present invention exhibits a certain antioxidant power, but when other water-soluble antioxidants such as vitamin C and proline are used. In comparison, its antioxidant power tends to be low. Therefore, in the present invention, it is desirable to mainly use other water-soluble antioxidants such as vitamin C, and catechins are desirably used only incidentally, not as antioxidants.
  • the present invention can develop an antioxidant power far exceeding that of a synthetic antioxidant in vitamin C, which can be said to be approved in many countries and has been confirmed to be safe from long dietary experiences. It has the feature in the point that can be done.
  • the amount of the water-soluble antioxidant in the present invention is required to be 3 to 65% by weight in the aqueous phase, more preferably 10 to 63% by weight, and still more preferably 16 to 60% by weight. is there.
  • an appropriate amount of an appropriate water-soluble antioxidant it is possible to obtain an oil and fat composition exhibiting a strong antioxidant power.
  • the aqueous phase in the present invention is a mixture of water and raw materials that are soluble in water.
  • the aqueous phase must be contained in an amount of 4.3 to 38% by weight, and this amount is more desirably 9 to 34% by weight, and further desirably 18 to 30% by weight. It is.
  • the oil and fat composition according to the present invention exhibits a strong antioxidant power.
  • the water-soluble solid content used is a foodstuff or a food additive.
  • the amount of water-soluble solid in the aqueous phase is 18 to 75% by weight, and this amount is preferably 30 to 75% by weight, and more preferably 50 to 75% by weight.
  • the quantity of water-soluble solid content said here contains the quantity of a water-soluble antioxidant.
  • the water-soluble solid content other than the water-soluble antioxidant various materials that can be used as foods or food additives can be used.
  • carbohydrates are desirable because they are inexpensive and have the effect of further increasing antioxidant power.
  • sugar alcohols oligosaccharides, various monosaccharides including glucose, various disaccharides including sucrose, and dextrins, more preferably sugar alcohols, sucrose, and dextrins.
  • sucrose ie sugar.
  • an appropriate saccharide is used, and the amount of water-soluble solid content in the aqueous phase is adjusted to an appropriate amount, whereby an oil and fat composition exhibiting a strong antioxidant power can be obtained.
  • the oil phase as used in the field of this invention means what dissolved the oil-soluble component in a raw material in oil.
  • various edible oils and fats such as soybean oil, rapeseed oil, and fractionated palm oil can be used as the oil.
  • the oil itself is referred to as an oil phase.
  • an oil-soluble emulsifier is used as necessary.
  • an emulsifier having an HLB of 7 or less is defined as an oil-soluble emulsifier.
  • the oil-soluble emulsifier one or more selected from polyglycerin esters, sugar esters, sorbitan esters, and monoglycerin fatty acid esters are desirable, more desirably polyglycerin esters, sugar esters, and distilled monoglycerides, and polyglycerin esters are particularly desirable.
  • polyglycerin condensed ricinoleate is most preferred.
  • Polyglycerin condensed ricinolate may be abbreviated as PGPR.
  • the amount of the oil-soluble emulsifier is preferably 0.7 to 6.8 times, more preferably 0.7 to 5 times, and still more preferably 0.7 to 6.8 times the weight of water in the state of the oil or fat composition. 7 to 2 times. If necessary, by using an appropriate amount of an appropriate oil-soluble emulsifier, an oil and fat composition exhibiting a strong antioxidant power can be obtained.
  • the oil and fat composition according to the present invention is characterized in that the aqueous phase is dispersed in the oil phase with a particle size of 300 nm or less.
  • the particle size is more desirably 160 nm or less, and further desirably 130 nm or less.
  • a strong antioxidant power can be stably expressed.
  • the particle size is larger than 300 nm. That is, it is necessary that no precipitation occurs visually, and it can be confirmed that the particle diameter is 300 nm or less because precipitation does not occur.
  • the particle size was measured with the apparatus and conditions described below.
  • Device name Zetasizer Nano S, manufacturer: Malvern 10 ⁇ l of oil composition to be measured was diluted in 2 ml of hexane and measured. (Measurement at the stage of the first day after sample preparation was rejected when it was 300 nm or more (that is, when precipitation occurred)) Temperature: 20.0 °C Equilibrium time: 240 seconds Cell: Glass cell Measurement angle: 173 ° Positioning method: Optimal position selection Automatic damping selection: Existence
  • the oil and fat composition according to the present invention contains 1.9 to 18% by weight of water.
  • the water content is more desirably 3 to 15% by weight, and further desirably 5 to 13% by weight.
  • precipitation does not occur in the oil and fat composition, and a strong antioxidant power can be exhibited. Needless to say, this moisture is brought into the water phase.
  • a water phase is prepared by dissolving a water-soluble antioxidant and, if necessary, other water-soluble solids such as carbohydrates in water.
  • these components need to be substantially dissolved in the aqueous phase. Whether or not it is substantially dissolved is determined by placing 5 ml of the aqueous phase into a 20 ml centrifuge tube at 20 ° C. and centrifuging at 3000 G for 1 minute. Also by the said process, it judges that it has melt
  • the oil phase is prepared by dissolving oil-soluble components in fats and oils.
  • an oil-soluble emulsifier is used as necessary as the oil-soluble component.
  • the oil phase and the aqueous phase are mixed and emulsified to obtain a water-in-oil type emulsified fat composition.
  • a preferred oil and fat composition can be easily obtained by using a commonly used emulsifier for emulsification.
  • a high-pressure homogenizer, an ultrasonic emulsifier, or a two-liquid collision type emulsifying device called a wet jet mill can be used.
  • a suitable emulsifying device a predetermined oil and fat composition can be obtained.
  • the general emulsification conditions when using a high-pressure homogenizer are 30 to 40 MPa and 10 to 30 passes.
  • the use of a general emulsifier can easily make the particle size finer because the water phase contains a large amount of water-soluble solids in a dissolved state.
  • the particle diameter is 300 nm or less at the stage of the emulsification operation. Even when the particle diameter is not within the predetermined range at the emulsification stage, the particle diameter can be further reduced by appropriate partial dehydration thereafter.
  • the oil and fat composition finally obtained needs to have a water phase of 300 nm or less and be dispersed in the oil phase.
  • the water content of the obtained emulsion by partial dehydration is preferable to adjust the water content of the obtained emulsion by partial dehydration.
  • a water-soluble solid having a low solubility can be used, and the particle size can be made finer, thereby suppressing the occurrence of precipitation.
  • the conditions for partial dehydration can be set as appropriate. If a small amount of sample is prepared, partial dehydration can be achieved by heating to about 60 ° C. and stirring. It is also possible to perform partial dehydration under reduced pressure. In this case, a simple device such as an aspirator can be used. Generation of precipitation can be suppressed by partial dehydration.
  • the amount of water after partial dehydration it is desirable to dehydrate 12 to 76% of the water contained in the original fat composition, and this value is more preferably 33 to 50%. This value is sometimes simply called dehydration rate.
  • production of the precipitation in an oil-fat composition can be suppressed by carrying out partial dehydration of the water
  • a dehydration rate can be calculated
  • equation. Dehydration rate 1-(water content of sample after dehydration) / (water content of sample before dehydration)
  • the antioxidant effect seems to be limited to the periphery of the precipitation. Therefore, when using the oil-and-fat composition once precipitated, unevenness may appear in the antioxidant effect. Therefore, in order to exhibit the antioxidant effect even in a stationary state, it is necessary that the oil and fat composition according to the present invention does not cause precipitation at the time of use. That is, due to partial dehydration, the expiration date of the oil and fat composition according to the present invention in a stationary state can be extended. In addition, after adding the oil-fat composition which concerns on this invention to the target oil-fat, generation
  • the oil and fat composition according to the present invention is particularly suitable for uses such as stabilization of fats and oils containing highly unsaturated fatty acids, such as PUFA oil. Examples will be described below.
  • Table 1-1 “Sanphenon 90S” manufactured by Taiyo Kagaku Co., Ltd. was used as the catechin. -As the palm fractionation oil 1, "Palm Ace 10" manufactured by Fuji Oil Co., Ltd. was used. IV was 67. As the emulsifier, “CRS-75” (polyglycerin condensed ricinoleic acid ester: PGPR) manufactured by Sakamoto Pharmaceutical Co., Ltd. was used. -In all the formulations, no precipitation was confirmed in the aqueous phase at the time of preparation.
  • Preparation method 1 of oil and fat composition 1. According to the formulation, catechin was dissolved in water to obtain an aqueous phase. 2. An emulsifier was dissolved in the oil according to the formulation to obtain an oil phase. 3. The aqueous phase was added to the oil phase and mixed with a homomixer. 4). Further, the sample was emulsified with a high-pressure homogenizer (37 MPa, 20 passes) to obtain a sample.
  • a high-pressure homogenizer 37 MPa, 20 passes
  • Table 1-2 Formulation 2 -As the palm fractionation oil 2, "Univers 100” manufactured by Fuji Oil Co., Ltd. was used. IV was 57. -As the palm oil, “refined palm oil” manufactured by Fuji Oil Co., Ltd. was used.
  • CDM oxidation stability evaluation method 1 Each sample was evaluated for oxidation stability with a CDM measuring device (Metrome CDM tester “Rancimat”) under the conditions of 120 ° C., air blowing rate 20.0 L / h, sample loading amount 3.0 g. It was. 2. The CDM value of each sample was divided by the CDM value of the oil used for each dilution, and a value of 2.7 or higher was regarded as acceptable.
  • the oil and fat composition according to the present invention has a function of suppressing an increase in POV to half or less even when compared with TBHQ. Further, when an oil-soluble emulsifier was used in combination, the effect was further improved.
  • the oil-soluble emulsifier to be used polyglycerin ester, sugar ester, and distilled monoglyceride are preferable, and polyglycerin ester is particularly preferable, and polyglycerin condensed ricinoleic acid ester is most preferable.
  • Use of emulsifier with high HLB had a weak POV rise inhibitory effect.
  • CDM oxidation stability evaluation method 2 1. Each sample was diluted 4-fold with PUFA oil (containing 19.8% EPA and 45.4% DHA). 2. Using a CDM measuring device (Metrohm CDM tester “Rancimat”), 3.0 g of the diluted sample of 2.1 was added at 96 ° C., an air blowing amount of 20.0 L / h, a specimen charging amount of 3.0 g, (water The oxidation stability was evaluated under the condition of 70 ml). Also, the PUFA oil alone used for dilution was measured in the same manner as the “CDM value of control oil”.
  • the CDM value of each diluted sample obtained in 3.2 was divided by the CDM value of the PUFA oil used for dilution (CDM value of the control fat / oil), and 2.3 or more was regarded as acceptable. Note that the sample in which precipitation occurred during the measurement was rejected at that time (the particle diameter is larger than 300 nm), and thus CDM measurement was not performed. (When measuring the CDM value of 3.0 g of soybean oil under the above conditions 2, it was 20 hr).
  • Preparation method 3 of oil and fat composition 1.
  • the raw materials classified into the aqueous phase by mixing were mixed and dissolved to obtain an aqueous phase.
  • An emulsifier was dissolved in the oil according to the formulation to obtain an oil phase.
  • the aqueous phase was added to the oil phase and mixed with a homomixer to obtain an emulsion. 4). Further, the mixture was emulsified with a high-pressure homogenizer (37 MPa, 20 passes). 5. The temperature was raised to 60 ° C. while stirring with a stirrer. 6). When 12 to 76% of the water in the oil and fat composition was partially dehydrated, stirring was stopped as appropriate and the temperature was returned to room temperature. Note: Samples with a dehydration step of “-” in the recipe table were not subjected to steps 5 and 6.
  • Example 4-9 precipitation occurred on the 9th day of preparation.
  • Example 4-10 in which it was partially dehydrated, no precipitation was observed even on the 9th day.
  • Example 4-20 in which Example 4-19 was partially dehydrated, precipitation occurred at the stage of the ninth day, but in Comparative Example 4-1, which was further dehydrated, precipitation occurred at the stage of the first day. occured.
  • Comparative Example 4-1 which was further dehydrated, precipitation occurred at the stage of the first day. occured.
  • Comparative Examples 4-2 to 4 and Examples 4-25 to 27 it was confirmed that precipitation occurred after the emulsification operation when the water-soluble solid content in the aqueous phase was too small.
  • Oil and fat composition having an antioxidant effect even if the kind and amount of the antioxidant used and the amount of sugar which is a water-soluble solid content are changed, provided that the amount of the antioxidant and the water-soluble solid content is the predetermined amount. It became clear that ⁇ It was suggested that by carrying out appropriate partial dehydration, the particle size becomes smaller and the storage period can be extended.
  • Table 6-1 Sample details -PUFA oil used fats and oils containing EPA 19.8% and DHA 45.4%.
  • ⁇ POV oxidation stability evaluation method 2 1. The fats and oils prepared according to the formulation shown in Table 6-1 were placed in a 50 ml glass bottle, capped, placed in a 60 ° C. incubator and stirred at 80 rpm. 2. Sampling was carried out in a timely manner, and POV (peroxide value) was measured. The POV was measured according to the standard oil analysis test method.
  • the PUFA oil using the oil / fat composition according to the present invention was able to be used for general purposes because generation of off-flavors such as fishy odor was strongly suppressed.
  • an off-flavor may be generated before the increase in the value of the peroxide value becomes apparent, and the occurrence of off-flavor has been assumed to have an element other than oxidation.
  • the present invention by using an oil and fat composition having an overwhelmingly strong anti-oxidant power, it was possible to suppress the generation of off-flavors, so the occurrence of off-flavors such as fish oil is mainly due to oxidation. It has been suggested.

Abstract

The present invention addresses the problem of providing a fat or oil composition that exhibits unprecedentedly high oxidation stability by using a simple method. The present invention was accomplished by discovering that the effect of extremely high oxidation stability is achieved by a fat or oil composition which contains a water-soluble antioxidant, uses sugar as necessary, involves dispersion of a water phase containing at least a given amount of a water-soluble solid into an oil phase in a given particle diameter range, and also contains a prescribed amount of water.

Description

油脂組成物Oil composition
本発明は、食品ないし食品添加物からなる、強い抗酸化力を有する油脂組成物及び、その製造方法に関するものである。 The present invention relates to an oil and fat composition comprising a food or food additive and having a strong antioxidant power, and a method for producing the same.
 油脂に水溶性酸化防止剤を添加することで、酸化防止効果が得られることが知られている(特許文献1)。
 特許文献2では、水溶性茶ポリフェノール及び乳化剤を使用した、酸化安定性が付与された油脂について記載されている。
 特許文献3には、特定組成のクロロゲン酸類において、更に糖類を添加することにより、抗酸化活性が向上する旨記載されている。
 特許文献4には、「茶抽出物を含有してなる固体相が、油性成分及びHLB10以下の乳化剤を含有してなる油相中に分散した油性組成物であって、該茶抽出物を含有する固体相が平均粒子径5μm以下の微粒子で、且つ、該固体相中の水分含有量又はアルコール水溶液含有量が30重量%以下のものである消臭・酸化防止用茶抽出物含有油性組成物。」について記載されている。
特許文献5には、「天然物由来の水溶性の抗酸化成を含し、油脂中に透明に分散可能な平均粒子径が40~120nmの油溶性酸化防止剤。」について記載されている。
It is known that an antioxidant effect can be obtained by adding a water-soluble antioxidant to fats and oils (Patent Document 1).
Patent Document 2 describes an oil and fat imparted with oxidation stability using a water-soluble tea polyphenol and an emulsifier.
Patent Document 3 describes that, in the chlorogenic acids having a specific composition, the antioxidant activity is improved by further adding a saccharide.
Patent Document 4 discloses that “a solid phase containing a tea extract is an oily composition dispersed in an oil phase containing an oily component and an emulsifier having an HLB of 10 or less, and containing the tea extract. Deodorant / antioxidant tea extract-containing oily composition, wherein the solid phase is fine particles having an average particle size of 5 μm or less, and the water content or alcohol aqueous solution content in the solid phase is 30% by weight or less Is described.
Patent Document 5 describes “an oil-soluble antioxidant having a water-soluble antioxidant property derived from a natural product and having an average particle size of 40 to 120 nm that can be transparently dispersed in fats and oils”.
 TBHQ(第三ブチルヒドロキノン)は強力な合成抗酸化剤である旨の報告があり(非特許文献1)、新たな抗酸化剤をスクリーニングする際に、その指標とされる場合がある(非特許文献2)。 There is a report that TBHQ (tertiary butylhydroquinone) is a powerful synthetic antioxidant (Non-patent Document 1), and it may be used as an index when screening for a new antioxidant (Non-patent Document 1). Reference 2).
国際公開WO2O01/096506号パンフレットInternational Publication WO2O01 / 096506 Pamphlet 国際公開WO2013/172348号パンフレットInternational publication WO2013 / 172348 pamphlet 特開平9-143465号公報JP-A-9-143465 特開2000-229118号公報JP 2000-229118 A 特開2013-159730号公報JP 2013-159730 A
 本発明は、簡易な方法で、従来にない強い酸化安定性を有する油脂組成物を提供することを課題とする。 An object of the present invention is to provide an oil and fat composition having unprecedented strong oxidation stability by a simple method.
 特許文献1及び2において開示された技術を用いることで、一定程度、酸化安定性の向上した油脂を得ることができる。
しかし、特許文献1は原則的にフライ用に用いる油脂であり、一定量以上の水分を含有する状態は想定されていない。そもそも、フライ用油脂よりも極めて酸化劣化しやすい多価不飽和脂肪酸含有油脂への効果については、示唆されていない。
 特許文献2においても特許文献1同様、フライ等加熱調理用油脂への適用を好ましい用途とし、一定量以上の水分を含有する状態は想定していない。そして、多価不飽和脂肪酸含有油脂への効果についても示唆されていない。
By using the techniques disclosed in Patent Documents 1 and 2, fats and oils having improved oxidation stability to a certain extent can be obtained.
However, patent document 1 is the fats and oils used for frying in principle, and the state containing a fixed amount or more of water is not assumed. In the first place, there is no suggestion of an effect on polyunsaturated fatty acid-containing fats and oils that are extremely susceptible to oxidative degradation than frying fats and oils.
Also in Patent Document 2, as in Patent Document 1, application to heating and cooking oils and fats such as frying is a preferred use, and a state of containing a certain amount or more of water is not assumed. And it is not suggested about the effect on polyunsaturated fatty acid-containing fats and oils.
 特許文献3においては、クロロゲン酸類の組成を特定のものとしなければならず、汎用性は低いものであった。また、本発明が課題としているような、極めて強力な抗酸化力を示すことを示唆するものではない。
 特許文献4においては、実質的に脱水して固体状とした茶抽出物を油中に分散状態としたものであり、また、PUFA油の酸化を防止するような、強力な酸化防止効果を示唆するものではない。
 特許文献5においては、実施例の記載を見ると、抗酸化剤として使用できるものは実質的にカテキン類に限定され、かつ、水溶性の乳化剤を使用する必要がある等、制限の多いものであった。また、その抗酸化力は、コントロール油(コーン油)に対して1.5倍に満たないものであり、コーン油に比べて極めて酸化安定性の低いPUFA油において、酸化安定性が付与できるとは考えられないものであった。
In Patent Document 3, the composition of chlorogenic acids must be specified, and the versatility is low. In addition, it does not suggest that the present invention exhibits extremely strong antioxidant power, which is a problem.
In Patent Document 4, a tea extract that is substantially dehydrated and solid is dispersed in oil, and suggests a strong antioxidant effect that prevents oxidation of PUFA oil. Not what you want.
In Patent Document 5, the description of the examples shows that what can be used as an antioxidant is substantially limited to catechins, and it is necessary to use a water-soluble emulsifier. there were. In addition, its antioxidant power is less than 1.5 times that of control oil (corn oil), and PUFA oil, which has extremely low oxidative stability compared to corn oil, can impart oxidative stability. Was unthinkable.
 TBHQは強力な抗酸化剤であることが知られているが、日本では食品用としての認可はされていない。現実的には、多価不飽和脂肪酸を多く含む油脂の酸化安定性を更に向上させるためには、TBHQを凌ぐ抗酸化力が求められると推定された。無論それは、食品として使用可能である必要がある。 TBHQ is known to be a powerful antioxidant, but it has not been approved for food use in Japan. Actually, in order to further improve the oxidative stability of fats and oils containing a large amount of polyunsaturated fatty acids, it has been estimated that an antioxidant power exceeding TBHQ is required. Of course it needs to be usable as food.
 従来技術を見ても、抗酸化力を謳うものはあるが、実際に示されている抗酸化力は限定的なものであり、PUFA油のような、安定性の低い油に酸化安定性を付与するほどの抗酸化力を示すものは存在せず、この分野での抗酸化力の更なる向上は困難とも思われた。
 しかし、本発明者は更に鋭意検討を行った。その結果、水溶性抗酸化剤を含み、必要により糖質等の水溶性固形分を用い、水溶性固形分を一定量以上含む水相を油相中に所定の粒子径以下で分散した油脂組成物であって、所定の水分を含むものが、極めて強力な酸化安定効果を示すことを見出し本発明を完成させた。
Even if you look at the prior art, there are some that have an anti-oxidant power, but the anti-oxidant power that is actually shown is limited, and oxidative stability is reduced to less stable oils such as PUFA oil. There is no anti-oxidant power that can be imparted, and it seemed difficult to further improve the antioxidant power in this field.
However, the present inventor has further studied earnestly. As a result, an oil composition containing a water-soluble antioxidant and, if necessary, water-soluble solids such as carbohydrates, and an aqueous phase containing a certain amount or more of water-soluble solids dispersed in the oil phase with a predetermined particle size or less The present invention was completed by finding that a material containing a predetermined amount of water exhibits a very strong oxidation stabilizing effect.
即ち本発明は、
(1)以下の要件を満たす、水分1.9~18重量%を含有する油脂組成物、
1.水相中に水溶性抗酸化剤を3~65重量%含有する、
2.水相中に、必要により糖質を含有し、水溶性固形分を合計18~75重量%含有する、
3.該水相4.3~38重量%が、油相中に粒子径300nm以下で分散している、
(2)水相に糖アルコール、グルコース、スクロース、デキストリンから選ばれる1以上の糖質を含む(1)記載の油脂組成物、
(3)該油相が、ポリグリセリン縮合リシノレート、シュガーエステル、グリセリン脂肪酸エステルから選ばれる1種以上の油溶性乳化剤を、水の重量に対し0.7~6.8倍含有する、(1)記載の油脂組成物、
(4)該油相が、ポリグリセリン縮合リシノレート、シュガーエステル、グリセリン脂肪酸エステルから選ばれる1種以上の油溶性乳化剤を、水の重量に対し0.7~6.8倍含有する、(2)記載の油脂組成物、
(5)該水溶性抗酸化剤がビタミンC、アミノ酸、カテキンから選ばれる1以上である、(2)に記載の油脂組成物、
(6)該水溶性抗酸化剤がビタミンC、アミノ酸、カテキンから選ばれる1以上である、(3)に記載の油脂組成物、
(7)該水溶性抗酸化剤がビタミンC、アミノ酸、カテキンから選ばれる1以上である、(4)に記載の油脂組成物、
(8)該アミノ酸がグリシン、プロリン、セリンから選ばれる1以上である、(6)に記載の油脂組成物、
(9)該アミノ酸がグリシン、プロリン、セリンから選ばれる1以上である、(7)に記載の油脂組成物、
(10)以下の工程による、油脂組成物の製造法、
1.水溶性抗酸化剤を水相中3~65重量%含有し、必要により糖質を含有させ、水溶性固形分として合計で18~75重量%となる水相を調製する工程、
2.油相に該水相が4.3~38重量%であり、かつ油脂組成物中の水分が1.9~18重量%となるように水相を添加し、粒子径が300nm以下になるように油中水型油脂組成物とする工程、
(11)糖質が、糖アルコール、グルコース、スクロース、デキストリンから選ばれる1以上である、(10)記載の製造法、
(12)該油相にポリグリセリン縮合リシノレート、シュガーエステル、グリセリン脂肪酸エステルから選ばれる1種以上の油溶性乳化剤を、油脂組成物中の水の重量に対し0.7~6.8倍含有させる、(11)記載の製造法、
(13)該水溶性抗酸化剤がビタミンC、アミノ酸、カテキンから選ばれる1以上である、(12)に記載の製造法、
(14)該アミノ酸がグリシン、プロリン、セリンから選ばれる1以上である、(13)に記載の製造法、
(15)油脂組成物に含まれる水分のうち、12~76%を部分脱水し、油脂組成物中の水分を1.9~18重量%とする、(13)記載の製造法、
(16)該水溶性抗酸化剤がビタミンC、グリシン、プロリン、セリン、カテキンから選ばれる1以上であって、油脂組成物に含まれる水分のうち、12~76%を部分脱水し、油脂組成物中の水分を1.9~18重量%とする、(11)に記載の製造法、
(17)油脂組成物に含まれる水分のうち、12~76%を部分脱水し、油脂組成物中の水分を1.9~18重量%とする、(14)記載の製造法、
(18)該油相にポリグリセリン縮合リシノレート、シュガーエステル、グリセリン脂肪酸エステルから選ばれる1種以上の油溶性乳化剤を、油脂組成物中の水の重量に対し0.7~6.8倍含有させ、該水溶性抗酸化剤がビタミンC、グリシン、プロリン、セリン、カテキンから選ばれる1以上であって、油脂組成物に含まれる水分のうち、12~76%を部分脱水し、油脂組成物中の水分を1.9~18重量%とする、(10)に記載の製造法、
(19)(7)に記載の油脂組成物を不飽和脂肪酸含有油脂に0.1~40重量%となるように添加する、不飽和脂肪酸含有油脂の製造法、
(20)(7)に記載の油脂組成物を不飽和脂肪酸含有油脂に0.1~40重量%となるように添加する、不飽和脂肪酸含有油脂の酸化防止方法、
 に関するものである。
また、換言すれば、
(21)水溶性抗酸化剤を水相中18~65重量%含有する水相4.3~38重量%が、油相中に粒子径300nm以下で分散されている、水分1.9~18重量%を含有する油脂組成物、
(22)水溶性抗酸化剤を水相中3~65重量%含有し、さらに糖質を、水相中の水溶性固形分が合計18~75重量%となるように添加された水相4.3~38重量%が、油相中に粒子径300nm以下で分散されている、水分1.9~18重量%を含有する油脂組成物、
(23)該油相が、ポリグリセリン縮合リシノレート、シュガーエステル、グリセリン脂肪酸エステルから選ばれる1種以上の油溶性乳化剤を、水の重量に対し0.7~6.8倍含有する、(21)又は(22)に記載の油脂組成物、
(24)該水溶性抗酸化剤がビタミンC、アミノ酸、カテキンから選ばれる1以上である、(21)~(23)いずれか1つに記載の油脂組成物、
(25)該アミノ酸がグリシン、プロリン、セリンから選ばれる1以上である、(24)に記載の油脂組成物、
(26)糖質が、糖アルコール、グルコース、スクロース、デキストリンから選ばれる1以上である、(22)~(25)いずれか1つに記載の油脂組成物、
(27)以下の工程による、油脂組成物の製造法、
1.水溶性抗酸化剤を水相中18~65重量%含有する水相を調製する工程、
2.水相の割合が4.3~38重量%であってかつ、油脂組成物中の水分は1.9~18重量%となるように、油相に該水相を添加する工程、
3.水相の粒子径が300nm以下になるように油中水型の乳化物とする工程、
(28)以下の工程による、油脂組成物の製造法、
1.水溶性抗酸化剤を水相中3~65重量%含有し、さらに糖質を、水相中の水溶性固形分が合計18~75重量%となるように含有する水相を調製する工程、
2.水相の割合が4.3~38重量%であってかつ、油脂組成物中の水分は1.9~18重量%となるように、油相に該水相を添加する工程、
3.水相の粒子径が300nm以下になるように油中水型の乳化物とする工程、
(29)該油相にポリグリセリン縮合リシノレート、シュガーエステル、グリセリン脂肪酸エステルから選ばれる1種以上の油溶性乳化剤を、油脂組成物中の水の重量に対し0.7~6.8倍含有させる、(27)又は(28)に記載の製造法、
(30)該水溶性抗酸化剤がビタミンC、アミノ酸、カテキンから選ばれる1以上である、(27)~(29)いずれか1つに記載の製造法、
(31)該アミノ酸がグリシン、プロリン、セリンから選ばれる1以上である、(30)に記載の製造法、
(32)油脂組成物に含まれる水分のうち、12~76%を部分脱水する、(27)~(31)いずれか1つに記載の製造法、
(33)(21)~(26)いずれか1つに記載の油脂組成物を不飽和脂肪酸含有油脂に0.1~40重量%となるように添加する、不飽和脂肪酸含有油脂の製造法、
(34)(21)~(26)いずれか1つに記載の油脂組成物を不飽和脂肪酸含有油脂に0.1~40重量%となるように添加する、不飽和脂肪酸含有油脂の酸化防止方法、
(35)(21)~(26)いずれか1つに記載の油脂組成物が、高度不飽和脂肪酸を10~70重量%含有する油脂に0.1~40重量%含有されている、大豆油以上の酸化安定性を有する高度不飽和脂肪酸含有油脂、
(36)(21)~(26)いずれか1つに記載の油脂組成物を、高度不飽和脂肪酸を10~70重量%含有する油脂に0.1~40重量%となるように添加する、大豆油以上の酸化安定性を有する高度不飽和脂肪酸含有油脂の製造法、
(37)(21)~(26)いずれか1つに記載の油脂組成物を、高度不飽和脂肪酸を10~70重量%含有する油脂に0.1~40重量%となるように添加する、高度不飽和脂肪酸含有油脂に大豆油以上の酸化安定性を付与する方法、
に関するものである。
That is, the present invention
(1) An oil and fat composition containing 1.9 to 18% by weight of water that satisfies the following requirements:
1. Containing 3 to 65% by weight of a water-soluble antioxidant in the aqueous phase,
2. The aqueous phase contains saccharides as necessary, and contains a total of 18 to 75% by weight of water-soluble solids.
3. 4.3 to 38% by weight of the aqueous phase is dispersed in the oil phase with a particle size of 300 nm or less.
(2) The oil and fat composition according to (1), wherein the aqueous phase contains one or more saccharides selected from sugar alcohol, glucose, sucrose, and dextrin,
(3) The oil phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water. The fat and oil composition according to the description,
(4) The oil phase contains one or more oil-soluble emulsifiers selected from polyglycerin condensed ricinolate, sugar ester, glycerin fatty acid ester, 0.7 to 6.8 times the weight of water, (2) The fat and oil composition according to the description,
(5) The oil and fat composition according to (2), wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acids and catechins,
(6) The oil and fat composition according to (3), wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acids, and catechins,
(7) The oil and fat composition according to (4), wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acids and catechins,
(8) The oil and fat composition according to (6), wherein the amino acid is one or more selected from glycine, proline, and serine,
(9) The oil and fat composition according to (7), wherein the amino acid is one or more selected from glycine, proline, and serine,
(10) A method for producing an oil and fat composition by the following steps,
1. A step of preparing a water phase containing 3 to 65% by weight of a water-soluble antioxidant in the water phase, containing a saccharide if necessary, and a total of 18 to 75% by weight as a water-soluble solid content;
2. The water phase is added to the oil phase so that the water phase is 4.3 to 38% by weight, and the water content in the oil and fat composition is 1.9 to 18% by weight, so that the particle diameter is 300 nm or less. A process for making a water-in-oil type oil and fat composition,
(11) The production method according to (10), wherein the saccharide is one or more selected from sugar alcohol, glucose, sucrose, and dextrin,
(12) The oil phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water in the oil and fat composition. (11) The production method according to
(13) The production method according to (12), wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acids, and catechins,
(14) The production method according to (13), wherein the amino acid is one or more selected from glycine, proline, and serine,
(15) The production method according to (13), wherein 12 to 76% of the moisture contained in the oil and fat composition is partially dehydrated to make the moisture in the oil and fat composition 1.9 to 18% by weight,
(16) The water-soluble antioxidant is one or more selected from vitamin C, glycine, proline, serine and catechin, and 12 to 76% of the water contained in the oil and fat composition is partially dehydrated to obtain an oil and fat composition. The production method according to (11), wherein water in the product is 1.9 to 18% by weight,
(17) The production method according to (14), wherein 12 to 76% of the moisture contained in the oil and fat composition is partially dehydrated to make the moisture in the oil and fat composition 1.9 to 18% by weight,
(18) The oily phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water in the oil and fat composition. The water-soluble antioxidant is at least one selected from vitamin C, glycine, proline, serine and catechin, and 12 to 76% of the water contained in the oil and fat composition is partially dehydrated, The production method according to (10), wherein the water content is 1.9 to 18% by weight,
(19) A method for producing an unsaturated fatty acid-containing oil or fat, wherein the oil or fat composition according to (7) is added to an unsaturated fatty acid-containing oil or fat so as to be 0.1 to 40% by weight,
(20) A method for preventing oxidation of unsaturated fatty acid-containing fats and oils, comprising adding the fat composition according to (7) to unsaturated fatty acid-containing fats so as to be 0.1 to 40% by weight,
It is about.
In other words,
(21) A water phase of 4.3 to 38% by weight containing a water-soluble antioxidant in an amount of 18 to 65% by weight in the aqueous phase is dispersed in the oil phase with a particle size of 300 nm or less, and a water content of 1.9 to 18 An oil and fat composition containing% by weight,
(22) Aqueous phase 4 containing 3 to 65% by weight of a water-soluble antioxidant in the aqueous phase, and further adding a saccharide such that the total amount of water-soluble solids in the aqueous phase is 18 to 75% by weight. An oil or fat composition containing 1.9 to 18% by weight of water, wherein 3 to 38% by weight is dispersed in the oil phase with a particle size of 300 nm or less,
(23) The oil phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water. (21) Or the oil and fat composition according to (22),
(24) The oil and fat composition according to any one of (21) to (23), wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acids, and catechins,
(25) The oil and fat composition according to (24), wherein the amino acid is one or more selected from glycine, proline, and serine,
(26) The oil / fat composition according to any one of (22) to (25), wherein the saccharide is one or more selected from sugar alcohol, glucose, sucrose, and dextrin,
(27) A method for producing an oil and fat composition by the following steps,
1. Preparing an aqueous phase containing 18-65% by weight of a water-soluble antioxidant in the aqueous phase;
2. Adding the aqueous phase to the oil phase such that the proportion of the aqueous phase is 4.3 to 38% by weight and the water content in the oil and fat composition is 1.9 to 18% by weight;
3. A step of making a water-in-oil emulsion so that the particle size of the aqueous phase is 300 nm or less,
(28) A method for producing an oil and fat composition by the following steps,
1. A step of preparing an aqueous phase containing 3 to 65% by weight of a water-soluble antioxidant in the aqueous phase and further containing a saccharide so that the total amount of water-soluble solids in the aqueous phase is 18 to 75% by weight;
2. Adding the aqueous phase to the oil phase such that the proportion of the aqueous phase is 4.3 to 38% by weight and the water content in the oil and fat composition is 1.9 to 18% by weight;
3. A step of making a water-in-oil emulsion so that the particle size of the aqueous phase is 300 nm or less,
(29) The oily phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water in the oil and fat composition. , (27) or the production method according to (28),
(30) The production method according to any one of (27) to (29), wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acids, and catechins,
(31) The production method according to (30), wherein the amino acid is one or more selected from glycine, proline, and serine,
(32) The production method according to any one of (27) to (31), wherein 12 to 76% of the moisture contained in the oil and fat composition is partially dehydrated.
(33) A method for producing an unsaturated fatty acid-containing fat or oil, wherein the fat or oil composition according to any one of (21) to (26) is added to an unsaturated fatty acid-containing fat or oil so as to be 0.1 to 40% by weight,
(34) A method for preventing oxidation of an unsaturated fatty acid-containing oil or fat, comprising adding the oil or fat composition according to any one of (21) to (26) to an unsaturated fatty acid-containing oil or fat so as to be 0.1 to 40% by weight. ,
(35) Soybean oil, wherein the oil or fat composition according to any one of (21) to (26) is contained in an oil or fat containing 10 to 70% by weight of a highly unsaturated fatty acid in an amount of 0.1 to 40% by weight. Highly unsaturated fatty acid-containing fats and oils having the above oxidation stability,
(36) The oil or fat composition according to any one of (21) to (26) is added to an oil or fat containing 10 to 70% by weight of a highly unsaturated fatty acid so as to be 0.1 to 40% by weight. A process for producing highly unsaturated fatty acid-containing fats and oils having oxidation stability higher than that of soybean oil,
(37) The oil or fat composition according to any one of (21) to (26) is added to an oil or fat containing 10 to 70% by weight of a highly unsaturated fatty acid so as to be 0.1 to 40% by weight. A method for imparting oxidation stability higher than that of soybean oil to highly unsaturated fatty acid-containing fats and oils,
It is about.
 本発明により、汎用的に使用されている可食性原材料を用い、極めて抗酸化能力の高い油脂組成物を提供でき、これを用いた、酸化安定性の高い高度不飽和脂肪酸含有油脂等を提供することが出来る。 According to the present invention, it is possible to provide an oil and fat composition with extremely high antioxidant ability using edible raw materials that are widely used, and to provide highly unsaturated fatty acid-containing fats and oils having high oxidation stability using the composition. I can do it.
 本発明に係る油脂組成物は、抗酸化力の高いものである。
その使用態様としては、これを抗酸化力を付与したい対象に混合するだけである。本発明に係る油脂組成物は油中水型乳化油脂組成物となっていることから、油脂に使用する場合、該油脂に容易に分散させることができる。
 使用の対象とする油脂としては、不飽和脂肪酸を含有する油脂であれば、広く使用することが出来る。そのため、大豆油や菜種油等一般的に使用されている油脂の安定化向上にも使用することが出来る。また、PUFAと呼ばれる、複数の不飽和結合を有する脂肪酸を含む油脂へ使用した場合は、本発明に係る油脂組成物の性能が顕著に発揮され、好ましい結果を得ることが出来る。なお、本発明において、ドコサヘキサエン酸をDHAと、またエイコサペンタエン酸をEPAと略称することがある。そして、これらを多く含む油脂を本発明では単に「PUFA油」と呼ぶことがある。
 本発明に係る油脂組成物の使用量は、対象となる油脂における不飽和脂肪酸の量等にもよるが、該油脂組成物が0.1~40重量%となるように添加することが好ましい。この量は、より望ましくは3~30重量%であり、さらに望ましくは7~20重量%である。適当な量を添加することで、好ましく抗酸化力を付与することが出来る。
The oil and fat composition according to the present invention has a high antioxidant power.
As a mode of use, this is simply mixed with a subject to be given antioxidant power. Since the oil / fat composition according to the present invention is a water-in-oil emulsified oil / fat composition, when used for oil / fat, it can be easily dispersed in the oil / fat.
As fats and oils to be used, oils and fats containing unsaturated fatty acids can be widely used. Therefore, it can also be used to improve the stabilization of commonly used oils such as soybean oil and rapeseed oil. Moreover, when it uses for the fats and oils containing the fatty acid which has a some unsaturated bond called PUFA, the performance of the fats and oils composition which concerns on this invention is exhibited notably, and a preferable result can be obtained. In the present invention, docosahexaenoic acid may be abbreviated as DHA, and eicosapentaenoic acid may be abbreviated as EPA. In the present invention, fats and oils containing a large amount of these are sometimes simply referred to as “PUFA oil”.
The amount of the oil / fat composition according to the present invention depends on the amount of unsaturated fatty acid in the target oil / fat, etc., but is preferably added so that the oil / fat composition is 0.1 to 40% by weight. This amount is more desirably 3 to 30% by weight, and further desirably 7 to 20% by weight. Antioxidant power can be preferably imparted by adding an appropriate amount.
 本発明に係る油脂組成物の酸化安定性に関する効果は、所定の油脂に所定量の油脂組成物を添加し、一定温度で保管した場合の過酸化物価(POV)を測定することにより行う。POVの値の上昇が抑制される時間が長いほど、強い酸化安定性を有すると言える。具体的な測定方法は実施例に記載する。
 また、簡易的な評価法として、CDM試験によっても、一定の判断指標を得ることが出来る。ここで CDM(Conductmetric Determination Method)とは、油脂の酸化安定性を示す値であり、酸化安定性の評価の指標とすることが出来る。CDMによる安定性時間が長いほど、酸化安定性が優れている。
CDM試験は専用の試験機器(ランシマット)を用い、行うことが出来る。本方法も、具体的な測定方法は実施例に記載する。いずれも、想定される使用態様よりも高い温度で試験する、加速テストである。
なお、「大豆油以上の酸化安定性」とは、上記のいずれかの測定方法において、大豆油を超える酸化安定性を示す場合を言う。
The effect relating to the oxidation stability of the oil and fat composition according to the present invention is achieved by measuring a peroxide value (POV) when a predetermined amount of the oil and fat composition is added to a predetermined oil and fat and stored at a constant temperature. It can be said that the longer the time during which the increase in the POV value is suppressed, the stronger the oxidation stability. Specific measurement methods are described in the examples.
As a simple evaluation method, a certain judgment index can be obtained by a CDM test. Here, CDM (Conductmetric Determination Method) is a value indicating the oxidation stability of fats and oils and can be used as an index for evaluating the oxidation stability. The longer the stability time by CDM, the better the oxidation stability.
The CDM test can be performed using dedicated test equipment (Rancimat). The specific measurement method of this method is also described in the examples. Both are accelerated tests that test at a higher temperature than the intended mode of use.
“Oxidative stability higher than soybean oil” refers to a case where the above-described measurement method exhibits oxidative stability exceeding that of soybean oil.
 本発明で言う、水溶性抗酸化剤とは、水に溶ける抗酸化剤のことである。具体的にはビタミンC(本明細書中でVCと略称することがある)、カテキン、茶抽出物、アミノ酸、ヤマモモ抽出物をあげることができ、より望ましくは、ビタミンC,アミノ酸であり、更に望ましくはビタミンC、グリシン、プロリン、セリンである。本発明では、これらを適宜選択し、1以上を使用することができる。適当な水溶性抗酸化剤を使用することで、強力な抗酸化力を示す、油脂組成物を得ることができる。
 なお、ここで言う水溶性抗酸化剤には、従来から水溶性抗酸化剤として知られていたものに限らず、新たに抗酸化力を見出された水溶性成分も含むことは言うまでもない。特にアミノ酸については、本検討により新たに抗酸化力が見出されたものも含まれる。アミノ酸の中では、特にプロリン、グリシン、セリンが強い抗酸化力を示し、望ましい。
The water-soluble antioxidant referred to in the present invention is an antioxidant that is soluble in water. Specifically, vitamin C (sometimes abbreviated as VC in the present specification), catechin, tea extract, amino acid, bayberry extract can be given, more preferably vitamin C, amino acid, Vitamin C, glycine, proline and serine are desirable. In this invention, these can be selected suitably and 1 or more can be used. By using a suitable water-soluble antioxidant, it is possible to obtain an oil and fat composition exhibiting strong antioxidant power.
In addition, it goes without saying that the water-soluble antioxidants mentioned here are not limited to those conventionally known as water-soluble antioxidants, but also include water-soluble components that have been newly found to have antioxidant power. In particular, amino acids include those that have been newly found to have antioxidant power by this study. Among amino acids, proline, glycine, and serine are particularly desirable because of their strong antioxidant power.
 また、抗酸化剤としてカテキンを単独で用いた場合、本発明に係る油脂組成物において一定の抗酸化力を示すものの、例えばビタミンCやプロリンなど、他の水溶性抗酸化剤を使用した場合に比べ、その抗酸化力は低く出る傾向がある。そのため、本発明においては、ビタミンCなど他の水溶性抗酸化剤を主に使用することが望ましく、カテキンは抗酸化剤として単独使用せず、付随的に使用する程度にとどめることが望ましい。
 本発明は特に、多くの国で使用が認められ、長い食経験から安全性も確認されていると言えるビタミンCを用いる中で、合成抗酸化剤をはるかに超える抗酸化力を発現させることができる点に特長を有するものである。
In addition, when catechin is used alone as an antioxidant, the oil composition according to the present invention exhibits a certain antioxidant power, but when other water-soluble antioxidants such as vitamin C and proline are used. In comparison, its antioxidant power tends to be low. Therefore, in the present invention, it is desirable to mainly use other water-soluble antioxidants such as vitamin C, and catechins are desirably used only incidentally, not as antioxidants.
In particular, the present invention can develop an antioxidant power far exceeding that of a synthetic antioxidant in vitamin C, which can be said to be approved in many countries and has been confirmed to be safe from long dietary experiences. It has the feature in the point that can be done.
 本発明における水溶性抗酸化剤の量は、水相中に3~65重量%含有することが必要であり、、より望ましくは10~63重量%であり、さらに望ましくは16~60重量%である。適当な水溶性抗酸化剤を適当な量使用することで、強力な抗酸化力を示す、油脂組成物を得ることができる。 The amount of the water-soluble antioxidant in the present invention is required to be 3 to 65% by weight in the aqueous phase, more preferably 10 to 63% by weight, and still more preferably 16 to 60% by weight. is there. By using an appropriate amount of an appropriate water-soluble antioxidant, it is possible to obtain an oil and fat composition exhibiting a strong antioxidant power.
 本発明における水相とは、水及び水に溶ける原材料を混合したものである。
本発明に係る油脂組成物中、水相は4.3~38重量%含有されている必要があり、この量は、より望ましくは9~34重量%であり、さらに望ましくは18~30重量%である。適当な量の水相を含むことで、本発明に係る油脂組成物は強力な抗酸化力を発揮する。
The aqueous phase in the present invention is a mixture of water and raw materials that are soluble in water.
In the oil and fat composition according to the present invention, the aqueous phase must be contained in an amount of 4.3 to 38% by weight, and this amount is more desirably 9 to 34% by weight, and further desirably 18 to 30% by weight. It is. By including an appropriate amount of the aqueous phase, the oil and fat composition according to the present invention exhibits a strong antioxidant power.
 本発明においては、水相中に水溶性固形分を多く含むことで、より好ましい抗酸化力を発揮する。なお、本発明に係る油脂組成物は主に食品に使用されるので、用いられる水溶性固形分も食品ないし、食品添加物である。
 本発明における、水相中の水溶性固形分量は18~75重量%であり、この量は望ましくは30~75重量%であり、さらに望ましくは50~75重量%である。なお、ここで言う水溶性固形分の量には、水溶性抗酸化剤の量が含まれる。
In the present invention, a more preferable antioxidant power is exhibited by containing a large amount of water-soluble solids in the aqueous phase. In addition, since the oil-fat composition which concerns on this invention is mainly used for a foodstuff, the water-soluble solid content used is a foodstuff or a food additive.
In the present invention, the amount of water-soluble solid in the aqueous phase is 18 to 75% by weight, and this amount is preferably 30 to 75% by weight, and more preferably 50 to 75% by weight. In addition, the quantity of water-soluble solid content said here contains the quantity of a water-soluble antioxidant.
 水溶性抗酸化剤以外の水溶性固形分としては、食品ないし食品添加物として使用可能な各種の素材を使用できる。特に糖質は、コストも安く、また抗酸化力をより高める効果もあり、望ましい。糖質の中では、糖アルコール、オリゴ糖の他、グルコースをはじめとする各種単糖、スクロースをはじめとする各種二糖、デキストリンを用いることが望ましく、より望ましくは糖アルコール、スクロース、デキストリンであり、最も望ましくはスクロース、つまり砂糖である。
 必要に応じ適当な糖質を使用し、水相中の水溶性固形分量を適当な量とすることで、強力な抗酸化力を示す、油脂組成物を得ることができる。
As the water-soluble solid content other than the water-soluble antioxidant, various materials that can be used as foods or food additives can be used. In particular, carbohydrates are desirable because they are inexpensive and have the effect of further increasing antioxidant power. Among carbohydrates, it is desirable to use sugar alcohols, oligosaccharides, various monosaccharides including glucose, various disaccharides including sucrose, and dextrins, more preferably sugar alcohols, sucrose, and dextrins. Most preferably, it is sucrose, ie sugar.
If necessary, an appropriate saccharide is used, and the amount of water-soluble solid content in the aqueous phase is adjusted to an appropriate amount, whereby an oil and fat composition exhibiting a strong antioxidant power can be obtained.
 本発明でいう油相とは、原材料中の油溶性成分を油に溶解したものを言う。ここで油としては大豆油や菜種油、分別したパーム油等各種の食用油脂を使用することが出来る。なお、原材料に油以外の油溶性成分がない場合は、油そのものを油相と称する。
 本発明における原材料中の油溶性成分としては、必要に応じ、油溶性乳化剤を用いる。なお、本発明ではHLB7以下の乳化剤を油溶性乳化剤と定義している。油溶性乳化剤としては、ポリグリセリンエステル、シュガーエステル、ソルビタンエステル、モノグリセリン脂肪酸エステルから選ばれる1以上が望ましく、より望ましくはポリグリセリンエステル、シュガーエステル、蒸留モノグリセリドが好ましく、特にポリグリセリンエステルが好ましく、そのうちポリグリセリン縮合リシノレイン酸エステルが最も好ましい。なお、ポリグリセリン縮合リシノレートはPGPRと略称されることがある。
 油溶性乳化剤の量は、油脂組成物の状態において、水の重量に対し0.7~6.8倍であることが望ましく、より望ましくは0.7~5倍であり、さらに望ましくは0.7~2倍である。必要に応じ、適当な油溶性乳化剤を適当な量使用することで、強力な抗酸化力を示す、油脂組成物を得ることができる。
The oil phase as used in the field of this invention means what dissolved the oil-soluble component in a raw material in oil. Here, various edible oils and fats such as soybean oil, rapeseed oil, and fractionated palm oil can be used as the oil. In addition, when there are no oil-soluble components other than oil in the raw material, the oil itself is referred to as an oil phase.
As the oil-soluble component in the raw material in the present invention, an oil-soluble emulsifier is used as necessary. In the present invention, an emulsifier having an HLB of 7 or less is defined as an oil-soluble emulsifier. As the oil-soluble emulsifier, one or more selected from polyglycerin esters, sugar esters, sorbitan esters, and monoglycerin fatty acid esters are desirable, more desirably polyglycerin esters, sugar esters, and distilled monoglycerides, and polyglycerin esters are particularly desirable. Of these, polyglycerin condensed ricinoleate is most preferred. Polyglycerin condensed ricinolate may be abbreviated as PGPR.
The amount of the oil-soluble emulsifier is preferably 0.7 to 6.8 times, more preferably 0.7 to 5 times, and still more preferably 0.7 to 6.8 times the weight of water in the state of the oil or fat composition. 7 to 2 times. If necessary, by using an appropriate amount of an appropriate oil-soluble emulsifier, an oil and fat composition exhibiting a strong antioxidant power can be obtained.
 本発明に係る油脂組成物は、水相が油相中に粒子径300nm以下で分散されている点に特長がある。粒子径は、より望ましくは160nm以下であり、さらに望ましくは130nm以下である。
 適当な粒子径とすることで、強い抗酸化力を安定的に発現することが出来る。なお、沈殿が生じた場合は、粒子径は300nmよりも大きい。すなわち、目視で沈殿が生じていないことが必要であり、沈殿が生じていないことで、粒子径が300nm以下であることを一応確認できる。
The oil and fat composition according to the present invention is characterized in that the aqueous phase is dispersed in the oil phase with a particle size of 300 nm or less. The particle size is more desirably 160 nm or less, and further desirably 130 nm or less.
By setting the particle size to an appropriate value, a strong antioxidant power can be stably expressed. When precipitation occurs, the particle size is larger than 300 nm. That is, it is necessary that no precipitation occurs visually, and it can be confirmed that the particle diameter is 300 nm or less because precipitation does not occur.
本発明において粒子径は、以下に記載の装置及び条件にて測定した。
装置名:ゼータサイザーナノS、製造元:マルバーン
測定する油脂組成物10μl をヘキサン2mlに希釈し、測定した。
(サンプル調製後1日目の段階での測定で、300nm以上の場合(すなわち、沈殿が生じていた場合)を不合格とした)
温度:   20.0℃
平衡時間: 240秒
セル:ガラスセル
測定角度: 173°
ポジショニング法:最適ポジション選択
自動減衰の選択:有
In the present invention, the particle size was measured with the apparatus and conditions described below.
Device name: Zetasizer Nano S, manufacturer: Malvern 10 μl of oil composition to be measured was diluted in 2 ml of hexane and measured.
(Measurement at the stage of the first day after sample preparation was rejected when it was 300 nm or more (that is, when precipitation occurred))
Temperature: 20.0 ℃
Equilibrium time: 240 seconds Cell: Glass cell Measurement angle: 173 °
Positioning method: Optimal position selection Automatic damping selection: Existence
本発明に係る油脂組成物は、水分を1.9~18重量%含有する。水分量は、より望ましくは3~15重量%であり、さらに望ましくは5~13重量%である。
適当な水分を含むことで、油脂組成物において沈殿が発生することもなく、また、強い抗酸化力を発揮することが出来る。なお言うまでもなく、この水分は水相により持ち込まれる水分である。
The oil and fat composition according to the present invention contains 1.9 to 18% by weight of water. The water content is more desirably 3 to 15% by weight, and further desirably 5 to 13% by weight.
By containing appropriate moisture, precipitation does not occur in the oil and fat composition, and a strong antioxidant power can be exhibited. Needless to say, this moisture is brought into the water phase.
 以下、本発明に係る油脂組成物の調製法を説明する。
 本発明においては、水溶性抗酸化剤及び、必要により他の水溶性固形分である糖質等を水に溶解して水相を調製する。ここで、これらの成分は水相に実質的に溶解している必要がある。なお、実質的に溶解しているかの判断は、20℃において、水相を20ml容の遠心チューブへ5ml入れ、3000Gにて1分間遠心分離して行う。当該処理によっても、目視で沈殿物を確認できない状態を称して実質的に溶解していると判断する。
 なお、水相に沈殿が生じていた場合、その後油相と混合して乳化しても、粒子径が所定の値とならない場合がある。この場合、高い抗酸化力を有する油脂組成物を得る事ができない。
Hereafter, the preparation method of the oil-fat composition which concerns on this invention is demonstrated.
In the present invention, a water phase is prepared by dissolving a water-soluble antioxidant and, if necessary, other water-soluble solids such as carbohydrates in water. Here, these components need to be substantially dissolved in the aqueous phase. Whether or not it is substantially dissolved is determined by placing 5 ml of the aqueous phase into a 20 ml centrifuge tube at 20 ° C. and centrifuging at 3000 G for 1 minute. Also by the said process, it judges that it has melt | dissolved substantially referring to the state which cannot confirm a deposit visually.
In addition, when precipitation has arisen in the water phase, even if it mixes with an oil phase after that and emulsifies, a particle diameter may not become a predetermined value. In this case, an oil or fat composition having a high antioxidant power cannot be obtained.
 油相は、油脂に油溶性成分を溶解して調製する。本発明においては、油溶性成分としては、必要に応じ油溶性乳化剤を使用する。
 次に、油相と水相を混合、乳化して、油中水型乳化油脂組成物とする。この際の乳化には一般的に使用される乳化機を使用することで、好ましい油脂組成物を容易に得ることができる。具体的には、高圧ホモゲナイザーや超音波乳化機、また、湿式ジェットミルとも言われる2液衝突型の乳化装置を用いることができる。適当な乳化装置を使用することで、所定の油脂組成物を得ることができる。なお、高圧ホモゲナイザーを使用する場合の一般的な乳化条件は、30~40MPa、10~30パスである。
 一般的な乳化機を用いることで、粒子径を容易に細かく出来るのは、水相において水溶性固形分が溶解状態で多量に存在している事が関係している可能性もある。
The oil phase is prepared by dissolving oil-soluble components in fats and oils. In the present invention, an oil-soluble emulsifier is used as necessary as the oil-soluble component.
Next, the oil phase and the aqueous phase are mixed and emulsified to obtain a water-in-oil type emulsified fat composition. In this case, a preferred oil and fat composition can be easily obtained by using a commonly used emulsifier for emulsification. Specifically, a high-pressure homogenizer, an ultrasonic emulsifier, or a two-liquid collision type emulsifying device called a wet jet mill can be used. By using a suitable emulsifying device, a predetermined oil and fat composition can be obtained. The general emulsification conditions when using a high-pressure homogenizer are 30 to 40 MPa and 10 to 30 passes.
The use of a general emulsifier can easily make the particle size finer because the water phase contains a large amount of water-soluble solids in a dissolved state.
 本発明においては、乳化操作の段階で粒子径が300nm以下となるように乳化することが好ましい。乳化の段階で粒子径が所定の範囲に無い場合でも、その後の適度な部分脱水で、粒子径をより小さくすることもできる。最終的に得られる油脂組成物は、水相が300nm以下で油相中に分散している必要がある。 In the present invention, it is preferable to emulsify so that the particle diameter is 300 nm or less at the stage of the emulsification operation. Even when the particle diameter is not within the predetermined range at the emulsification stage, the particle diameter can be further reduced by appropriate partial dehydration thereafter. The oil and fat composition finally obtained needs to have a water phase of 300 nm or less and be dispersed in the oil phase.
 次に、得られた乳化物は部分脱水により水分調整することが好ましい。部分脱水により水分調整を行うことで、溶解度の低い水溶性固形分を使用することが出来たり、また、粒子径をより細かくでき、それにより沈殿の発生を抑制できるためである。
 部分脱水の条件は適宜設定することができ、調製するサンプルが少量であれば60℃程度に加温し攪拌することでも部分脱水することができる。また、減圧して部分脱水することも可能であり、この場合は、アスピレーターのような、簡易な装置を用いることが出来る。部分脱水により、沈殿の発生を抑制することが出来る。
Next, it is preferable to adjust the water content of the obtained emulsion by partial dehydration. This is because by adjusting the water content by partial dehydration, a water-soluble solid having a low solubility can be used, and the particle size can be made finer, thereby suppressing the occurrence of precipitation.
The conditions for partial dehydration can be set as appropriate. If a small amount of sample is prepared, partial dehydration can be achieved by heating to about 60 ° C. and stirring. It is also possible to perform partial dehydration under reduced pressure. In this case, a simple device such as an aspirator can be used. Generation of precipitation can be suppressed by partial dehydration.
 部分脱水後の水の量は、元の油脂組成物に含まれる水分の12~76%を脱水することが望ましく、この値は、よりましくは33~50%である。この値を単に脱水率と呼ぶことがある。
 適切な割合の水分を部分脱水することにより、油脂組成物における沈殿の発生を抑制できる。過剰に脱水を行った場合、本発明に係る油脂組成物は白濁する場合があり、その抗酸化力も低下する場合がある。
なお、脱水率は以下の式で求めることが出来る。
脱水率=1-(脱水後のサンプルの水分量)/(脱水前のサンプルの水分量)
As for the amount of water after partial dehydration, it is desirable to dehydrate 12 to 76% of the water contained in the original fat composition, and this value is more preferably 33 to 50%. This value is sometimes simply called dehydration rate.
Generation | occurrence | production of the precipitation in an oil-fat composition can be suppressed by carrying out partial dehydration of the water | moisture content of a suitable ratio. When dehydration is performed excessively, the oil and fat composition according to the present invention may become cloudy, and its antioxidant power may also decrease.
In addition, a dehydration rate can be calculated | required with the following formula | equation.
Dehydration rate = 1-(water content of sample after dehydration) / (water content of sample before dehydration)
 本発明に係る油脂組成物に沈殿が生じた場合、その酸化防止効果は、沈殿の周辺に限定されるようである。そのため、一旦沈殿が生じた油脂組成物を使用する場合は、酸化防止効果にムラが出る可能性がある。よって、静置状態でも酸化防止効果を発揮させるためには、本発明に係る油脂組成物は使用時点で沈殿が発生していないことが必要である。すなわち、部分脱水により、本発明に係る油脂組成物の、静置状態における使用期限を延長することが出来る。
 なお本発明に係る油脂組成物を、対象とする油脂に添加した後は、沈殿の発生は抑制されるようである。これは、沈殿の発生が分散した水相粒子の凝集により発生していると考えられるところ、該水相粒子間の物理的距離が延長されることによる効果とも考えられる。
When precipitation occurs in the oil and fat composition according to the present invention, the antioxidant effect seems to be limited to the periphery of the precipitation. Therefore, when using the oil-and-fat composition once precipitated, unevenness may appear in the antioxidant effect. Therefore, in order to exhibit the antioxidant effect even in a stationary state, it is necessary that the oil and fat composition according to the present invention does not cause precipitation at the time of use. That is, due to partial dehydration, the expiration date of the oil and fat composition according to the present invention in a stationary state can be extended.
In addition, after adding the oil-fat composition which concerns on this invention to the target oil-fat, generation | occurrence | production of precipitation seems to be suppressed. This is considered to be caused by the aggregation of the dispersed aqueous phase particles, and the effect of extending the physical distance between the aqueous phase particles.
 また、適度の部分脱水により、計算上、水相に溶解度以上の水溶性抗酸化剤等が存在することになる場合がある。しかしながら目視上、濁り等は見られず、水相中に溶解度以上の水溶性固形分が溶解しているようにも思える。
このような状態を、広島大学生物生産学部 上野聡教授の協力の下、大型放射光施設「SPring-8」にて確認を行った。その結果、溶解度を超える固形分が、析出することもなく存在していることをうかがわせるデータが得られた。
In addition, due to moderate partial dehydration, a water-soluble antioxidant or the like having a solubility or higher may exist in the aqueous phase in calculation. However, visually, no turbidity is observed, and it seems that water-soluble solid content higher than solubility is dissolved in the aqueous phase.
This situation was confirmed at the large synchrotron radiation facility “SPring-8” with the cooperation of Professor Satoshi Ueno, Faculty of Bioproduction, Hiroshima University. As a result, data indicating that a solid content exceeding the solubility was present without precipitation was obtained.
 なお、本発明においては、部分脱水する場合でも、一定量の水を油脂組成物に残す必要がある。そのため、本油脂組成物を、そのままフライ油等の加熱調理用の油脂として使用することは難しい場合がある。
 すなわち、本発明に係る油脂組成物は、PUFA油と呼ばれるような、高度不飽和脂肪酸を含有する油脂の安定化のような用途に特に適したものである。
以下、実施例を記載する。
In the present invention, it is necessary to leave a certain amount of water in the oil / fat composition even in the case of partial dehydration. Therefore, it may be difficult to use this oil-and-fat composition as it is as oil for cooking such as frying oil.
That is, the oil and fat composition according to the present invention is particularly suitable for uses such as stabilization of fats and oils containing highly unsaturated fatty acids, such as PUFA oil.
Examples will be described below.
検討1 油溶性乳化剤の要否について
表1-1の配合にて、「○油脂組成物の調製法1」に従い、サンプルを調製した。
得られたサンプルを表1-2の通り希釈した後、「○CDM酸化安定性評価法1」に従い、評価した。結果を表1-3に示した。
なお、本検討においては乳化操作後の粒子径の、装置による実測は行わなかったが、目視で沈殿等の発生がないことを確認しており、粒子径は全て300nm以下と推定された。
Study 1 Regarding the necessity of oil-soluble emulsifiers, samples were prepared according to “○ Preparation method 1 of oil and fat composition” with the formulation shown in Table 1-1.
The obtained sample was diluted as shown in Table 1-2, and then evaluated according to “◯ CDM oxidation stability evaluation method 1”. The results are shown in Table 1-3.
In this study, the particle size after the emulsification operation was not actually measured with an apparatus, but it was confirmed that there was no precipitation or the like by visual observation, and all the particle sizes were estimated to be 300 nm or less.
表1-1配合
Figure JPOXMLDOC01-appb-I000001
・カテキンは太陽化学株式会社製「サンフェノン90S」を使用した。
・パーム分別油1には、不二製油株式会社製「パームエース10」を使用した。IVは67であった。
・乳化剤は阪本薬品工業株式会社製「CRS-75」(ポリグリセリン縮合リシノレイン酸エステル:PGPR)を使用した。
・すべての配合において、調製時の水相に沈殿は確認されなかった。
Table 1-1
Figure JPOXMLDOC01-appb-I000001
-“Sanphenon 90S” manufactured by Taiyo Kagaku Co., Ltd. was used as the catechin.
-As the palm fractionation oil 1, "Palm Ace 10" manufactured by Fuji Oil Co., Ltd. was used. IV was 67.
As the emulsifier, “CRS-75” (polyglycerin condensed ricinoleic acid ester: PGPR) manufactured by Sakamoto Pharmaceutical Co., Ltd. was used.
-In all the formulations, no precipitation was confirmed in the aqueous phase at the time of preparation.
○油脂組成物の調製法1
1.配合に従い、水にカテキンを溶解し、水相とした。
2.油脂に、配合に従い乳化剤を溶解し、油相とした。
3.油相に水相を入れ、ホモミキサーにて混合した。
4.さらに、高圧ホモゲナイザー(37MPa、20パス)にて乳化しサンプルとした
○ Preparation method 1 of oil and fat composition
1. According to the formulation, catechin was dissolved in water to obtain an aqueous phase.
2. An emulsifier was dissolved in the oil according to the formulation to obtain an oil phase.
3. The aqueous phase was added to the oil phase and mixed with a homomixer.
4). Further, the sample was emulsified with a high-pressure homogenizer (37 MPa, 20 passes) to obtain a sample.
表1-2 配合2
Figure JPOXMLDOC01-appb-I000002
・パーム分別油2には、不二製油株式会社製「ユニバー100」を使用した。IVは57であった。
・パーム油には、不二製油株式会社製「精製パーム油」を使用した。
Table 1-2 Formulation 2
Figure JPOXMLDOC01-appb-I000002
-As the palm fractionation oil 2, "Univers 100" manufactured by Fuji Oil Co., Ltd. was used. IV was 57.
-As the palm oil, “refined palm oil” manufactured by Fuji Oil Co., Ltd. was used.
○CDM酸化安定性評価法1
1.各サンプルを、CDM測定装置(メトローム社製CDM試験機「ランシマット」)にて、120℃、空気吹込み量20.0L/h、検体仕込み量3.0gの条件で酸化安定性の評価を行った。
2.各サンプルのCDM値を各希釈に使用した油脂のCDM値で割り、その値が2.7以上を合格とした。
○ CDM oxidation stability evaluation method 1
1. Each sample was evaluated for oxidation stability with a CDM measuring device (Metrome CDM tester “Rancimat”) under the conditions of 120 ° C., air blowing rate 20.0 L / h, sample loading amount 3.0 g. It was.
2. The CDM value of each sample was divided by the CDM value of the oil used for each dilution, and a value of 2.7 or higher was regarded as acceptable.
表1-3 結果
Figure JPOXMLDOC01-appb-I000003
Table 1-3 Results
Figure JPOXMLDOC01-appb-I000003
考察
所定量の水溶性固形分を含む水相を適当量用いることで、沈殿のない乳化物がえられた。各乳化物を所定量油脂中に存在させた場合に、強い抗酸化力を示した。
本検討では、乳化剤の有無によって大きな差異は見られなかった。
Discussion By using an appropriate amount of an aqueous phase containing a predetermined amount of water-soluble solids, an emulsion without precipitation was obtained. When each emulsion was present in a predetermined amount of oil and fat, strong antioxidant power was exhibited.
In this study, there was no significant difference depending on the presence or absence of the emulsifier.
検討2 油溶性乳化剤の種類について
表2-1の配合にて、「○油脂組成物の調製法2」に従い、サンプルを調製した。
得られたサンプルを「○POVによる酸化安定性評価法1」に従い、評価した。結果を表2-2に示した。
なお、本検討においても乳化操作後の粒子径の、装置による実測は行わなかったが、実施例に該当するサンフ゜ルにつては目視で沈殿等の発生がないことを確認しており、実施例については粒子径は全て300nm以下と推定された。
Study 2 Regarding types of oil-soluble emulsifiers, samples were prepared according to “○ Preparation method 2 of oil and fat composition” with the formulation shown in Table 2-1.
The obtained samples were evaluated according to “Oxidation stability evaluation method 1 using POV”. The results are shown in Table 2-2.
In this study, the particle size after the emulsification operation was not actually measured by the apparatus. However, it was confirmed that there was no precipitation or the like for the sample corresponding to the example. The particle diameter was estimated to be 300 nm or less.
表2-1 配合
Figure JPOXMLDOC01-appb-I000004
Table 2-1 Composition
Figure JPOXMLDOC01-appb-I000004
○POVによる酸化安定性評価法1
1.各サンプル3gをEPA19.8%、DHA45.4%含有する油脂で10倍に希釈した。
2.1の希釈した油脂を50ml容ガラス瓶へ入れ、ふたをして、 60℃インキュベーターに入れ、80rpmで撹拌した。
3.5日目にサンプリングし、POV(過酸化物価)を測定した。なおPOVの測定は基準油脂分析試験法に従った。
4.5日目のPOVが14以下のサンプルを合格とした。
○ POV oxidation stability evaluation method 1
1. 3 g of each sample was diluted 10 times with oil containing 19.8% EPA and 45.4% DHA.
The diluted fat of 2.1 was put into a 50 ml glass bottle, covered, put into a 60 ° C. incubator, and stirred at 80 rpm.
Sampling was performed on the 3.5th day, and POV (peroxide value) was measured. The POV was measured according to the standard oil analysis test method.
Samples with a POV of 14 or less on the 4.5th day were considered acceptable.
表2-2 結果
Figure JPOXMLDOC01-appb-I000005
全ての試験区において、乳化操作後に沈殿は生じなかった。
Table 2-2 Results
Figure JPOXMLDOC01-appb-I000005
In all the test sections, no precipitation occurred after the emulsification operation.
考察
・本検討において、本発明に係る油脂組成物は、TBHQと比較しても、POVの上昇を半分以下に抑える機能が確認された。また、油溶性乳化剤を併用した場合は、その効果は更に向上した。
・本発明においては、使用する油溶性乳化剤としては、ポリグリセリンエステル、シュガーエステル、蒸留モノグリセリドが好ましく、特にポリグリセリンエステルが好ましく、そのうちポリグリセリン縮合リシノレイン酸エステルが最も好ましかった。
・HLBの高い乳化剤を使用したものは、POVの上昇抑制効果は弱かった。
In the discussion and the present study, it was confirmed that the oil and fat composition according to the present invention has a function of suppressing an increase in POV to half or less even when compared with TBHQ. Further, when an oil-soluble emulsifier was used in combination, the effect was further improved.
In the present invention, as the oil-soluble emulsifier to be used, polyglycerin ester, sugar ester, and distilled monoglyceride are preferable, and polyglycerin ester is particularly preferable, and polyglycerin condensed ricinoleic acid ester is most preferable.
・ Use of emulsifier with high HLB had a weak POV rise inhibitory effect.
検討3 各種水溶性固形分の検討
表3-1の配合にて、「○油脂組成物の調製法2」に従い、サンプルを調製した。得られたサンプルを「○CDM酸化安定性評価法2」に従い、評価した。結果を表3-2に示した。
Examination 3 Examination of various water-soluble solids Samples were prepared according to “○ Preparation method 2 of oil and fat composition” with the composition shown in Table 3-1. The obtained samples were evaluated according to “◯ CDM oxidation stability evaluation method 2”. The results are shown in Table 3-2.
表3-1配合
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
・デキストリン1には三和澱粉工業株式会社製「サンデック150」を使用した。
・フラクトオリゴ糖には、和光純薬製「フラクトオリゴ糖」を使用した。
・マルトデキストリンには、松谷化学株式会社製「パインデックス#4」を使用した。
・ポリデキストリンにはダニスコ社製「ライテスウルトラ」を使用した。
・乳化剤には阪本薬品工業株式会社製ポリグリセリン縮合リシノレイン酸エステル「CRS-75」を使用した。
・ホエープロテインにはフォンテラジャパン株式会社製「WPI895」を使用した。
・「粒子径(nm)1日目」は乳化工程後1日目の粒子径を測定した値を記載した。ここで、沈殿の発生はないが測定結果がダブルピークとなっているものはWと記載した。また、目視で沈殿のないことを確認したサンプルについては「沈殿なし」とした。
・すべての配合において、調製時の水相に沈殿は確認されなかった。
Table 3-1 formulation
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
For dextrin 1, “Sandeck 150” manufactured by Sanwa Starch Co., Ltd. was used.
-"Fructooligosaccharide" manufactured by Wako Pure Chemicals was used as the fructooligosaccharide.
-As the maltodextrin, "Paindex # 4" manufactured by Matsutani Chemical Co., Ltd. was used.
-"Lightes Ultra" manufactured by Danisco Co. was used as the polydextrin.
-Polyglycerin condensed ricinoleic acid ester “CRS-75” manufactured by Sakamoto Pharmaceutical Co., Ltd. was used as the emulsifier.
・ For Whey Protein, “WPI895” manufactured by Fontera Japan Co., Ltd. was used.
-“Particle size (nm) 1st day” is a value obtained by measuring the particle size on the 1st day after the emulsification step. Here, no precipitation was generated, but a measurement result having a double peak was described as W. Moreover, it was set as "no precipitation" about the sample which confirmed that there was no precipitation visually.
-In all the formulations, no precipitation was confirmed in the aqueous phase at the time of preparation.
○CDM酸化安定性評価法2
1.各サンプルをPUFA油(EPA19.8%、DHA45.4%含有)で4倍に希釈した。
2.1の希釈サンプル3.0gを、CDM測定装置(メトローム社製CDM試験機「ランシマット」)にて、96℃、空気吹込み量20.0L/h、検体仕込み量3.0g、(水の量70ml)の条件で酸化安定性の評価を行った。また、希釈に用いたPUFA油単独についても、同様に測定し「コントロール油脂のCDM値」とした。
3.2で得られた各希釈サンプルのCDM値を、希釈に用いたPUFA油のCDM値(コントロール油脂のCDM値)で割り、2.3以上を合格とした。
なお、測定に際して沈殿が生じているサンフ゜ルについては、その時点で不合格(粒子径が300nmより大きい)であるため、CDMの測定は実施しなかった。
(大豆油3.0gを上記2の条件でCDM値を測定したところ、20hrであった)。
○ CDM oxidation stability evaluation method 2
1. Each sample was diluted 4-fold with PUFA oil (containing 19.8% EPA and 45.4% DHA).
2. Using a CDM measuring device (Metrohm CDM tester “Rancimat”), 3.0 g of the diluted sample of 2.1 was added at 96 ° C., an air blowing amount of 20.0 L / h, a specimen charging amount of 3.0 g, (water The oxidation stability was evaluated under the condition of 70 ml). Also, the PUFA oil alone used for dilution was measured in the same manner as the “CDM value of control oil”.
The CDM value of each diluted sample obtained in 3.2 was divided by the CDM value of the PUFA oil used for dilution (CDM value of the control fat / oil), and 2.3 or more was regarded as acceptable.
Note that the sample in which precipitation occurred during the measurement was rejected at that time (the particle diameter is larger than 300 nm), and thus CDM measurement was not performed.
(When measuring the CDM value of 3.0 g of soybean oil under the above conditions 2, it was 20 hr).
表3-2 結果
Figure JPOXMLDOC01-appb-I000008
Table 3-2 Results
Figure JPOXMLDOC01-appb-I000008
考察
抗酸化剤としてビタミンCを使用し、共存させる糖質の種類を変えた場合も、それぞれ差はあるものの、いずれも、水溶性固形分を使用しないものに比べ、抗酸化力が向上した。
糖質の中では、特にソルビトールやエリスリトールをはじめとする糖アルコールが優れていた。食品素材としては、砂糖、デキストリン、フラクトオリゴ糖、マルトデキストリンが優れていた。
 コストや汎用性の観点からは、砂糖の使用が好ましいと判断された。
なお、アミノ酸にはそれ自身で抗酸化力が存在することが判明したことから、水溶性抗酸化剤以外の水溶性固形分としての考察からは除いた。
 抗酸化剤としてみたアミノ酸については、特にプロリン、グリシンが優れていた。
蛋白質については、抗酸化力を向上させる効果は少ないが、粒子径を細かくする効果が認められた。保管期間の延長に寄与するものと考えられた。
以上より、食品として可能性のある水溶性固形分については、各種の成分が使用できることが明らかとなった。
Discussion When vitamin C was used as an antioxidant and the type of carbohydrate to be coexisted was changed, the antioxidant power was improved as compared with those not using water-soluble solids, although there were differences.
Among sugars, sugar alcohols including sorbitol and erythritol were particularly excellent. As food materials, sugar, dextrin, fructooligosaccharide and maltodextrin were excellent.
From the viewpoint of cost and versatility, it was judged that the use of sugar was preferable.
In addition, since it turned out that an amino acid itself has antioxidant power, it excluded from consideration as water-soluble solid content other than a water-soluble antioxidant.
As for amino acids as antioxidants, proline and glycine were particularly excellent.
For proteins, the effect of improving antioxidant power was small, but the effect of reducing the particle size was recognized. It was thought to contribute to the extension of the storage period.
From the above, it has been clarified that various components can be used for water-soluble solids that may be used as food.
比較として、日本では認可されていない合成抗酸化剤「TBHQ」を、「○CDM酸化安定性評価法2」で使用したPUFA油に諸外国での添加量上限である200ppm添加し評価したところ、CDM値は11.6hrであった。すなわち、本願発明に係る油脂組成物は、従来知られている食品素材や食品添加物を使用する中で、合成抗酸化剤と同等以上の抗酸化力を示していた。 As a comparison, when the synthetic antioxidant "TBHQ" that is not approved in Japan was added to the PUFA oil used in "○ CDM oxidation stability evaluation method 2", 200 ppm which is the upper limit of addition amount in other countries was evaluated, The CDM value was 11.6 hr. That is, the oil and fat composition according to the present invention exhibited an antioxidant power equivalent to or higher than that of a synthetic antioxidant while using conventionally known food materials and food additives.
検討4 部分脱水の効果等1
表4-1の配合にて、「○油脂組成物の調製法3」に従い、サンプルを調製した。得られたサンプルを「○CDM酸化安定性評価法2」に従い、評価した。結果を表4-2に示した。
なお、配合表中の「脱水工程」において、脱水前の状態は「前」、脱水後の状態は「後」で示した。ここで、配合に記載した組成で調製したものは脱水工程の「前」であり、脱水工程「後」の組成は、表中直前の脱水工程「前」のサンプルを脱水し、低下した水分量から逆算した組成を記載した。
脱水工程が「-」となっているサンフ゜ルは、脱水操作は行わなかった。
Study 4 Effects of partial dehydration 1
Samples were prepared in accordance with “Oil composition preparation method 3” with the formulation shown in Table 4-1. The obtained samples were evaluated according to “◯ CDM oxidation stability evaluation method 2”. The results are shown in Table 4-2.
In the “dehydration step” in the recipe, the state before dehydration is indicated as “front”, and the state after dehydration is indicated as “after”. Here, what was prepared with the composition described in the formulation was “before” the dehydration process, and the composition after the dehydration process “after” was dehydrated from the sample immediately before the dehydration process “before” in the table, and the amount of water decreased The composition calculated backward from is described.
Samples with a dehydration process of “-” were not dehydrated.
表4-1 配合
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
・すべての実施例配合において、調製時の水相に沈殿は確認されなかった。
・「脱水率」には脱水前のサンプルに含まれる水分の何%を脱水したかを記載した。
Table 4-1 Composition
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
-In all of the examples, no precipitation was confirmed in the aqueous phase at the time of preparation.
・ “Dehydration rate” describes what percentage of water contained in the sample before dehydration was dehydrated.
○油脂組成物の調製法3
1.配合で水相に分類されている原材料を混合、溶解して水相とした。
2.油脂に、配合に従い乳化剤を溶解し、油相とした。
3.油相に水相を入れ、ホモミキサーにて混合し乳化液とした。
4.さらに、高圧ホモゲナイザー(37Mpa、20パス)にて乳化した。
5.スターラーで撹拌しつつ60℃へ昇温した。
6.油脂組成物中の水分のうち、12~76%が部分脱水された段階で適宜撹拌をやめ、室温にもどした。
注:配合表中で、脱水工程が「-」となっているサンフ゜ルは、5,6の工程は行わなかった。
○ Preparation method 3 of oil and fat composition
1. The raw materials classified into the aqueous phase by mixing were mixed and dissolved to obtain an aqueous phase.
2. An emulsifier was dissolved in the oil according to the formulation to obtain an oil phase.
3. The aqueous phase was added to the oil phase and mixed with a homomixer to obtain an emulsion.
4). Further, the mixture was emulsified with a high-pressure homogenizer (37 MPa, 20 passes).
5. The temperature was raised to 60 ° C. while stirring with a stirrer.
6). When 12 to 76% of the water in the oil and fat composition was partially dehydrated, stirring was stopped as appropriate and the temperature was returned to room temperature.
Note: Samples with a dehydration step of “-” in the recipe table were not subjected to steps 5 and 6.
表4-2 結果
Figure JPOXMLDOC01-appb-I000012
注:脱水前サンプルの一部は、CDMの測定を割愛した。
Table 4-2 Results
Figure JPOXMLDOC01-appb-I000012
Note: Some of the samples before dehydration omitted measurement of CDM.
考察
実施例4-9では、調製9日目には沈殿を生じた。一方、それを部分脱水した実施例4-10では、9日目でも沈殿の発生は見られなかった。
一方、実施例4-19を部分脱水した実施例4-20では、9日目の段階で沈殿が発生していたが、更に脱水した比較例4-1では、1日目の段階で沈殿を生じた。
以上のように、適度な部分脱水により、経時的な沈殿の発生を抑制できることが示された。
比較例4-2~4、実施例4-25~27においては、水相中の水溶性固形分量が少なすぎる場合には、乳化操作後に沈殿が生じることが確認された。
Discussion In Example 4-9, precipitation occurred on the 9th day of preparation. On the other hand, in Example 4-10 in which it was partially dehydrated, no precipitation was observed even on the 9th day.
On the other hand, in Example 4-20 in which Example 4-19 was partially dehydrated, precipitation occurred at the stage of the ninth day, but in Comparative Example 4-1, which was further dehydrated, precipitation occurred at the stage of the first day. occured.
As described above, it was shown that the occurrence of precipitation over time can be suppressed by appropriate partial dehydration.
In Comparative Examples 4-2 to 4 and Examples 4-25 to 27, it was confirmed that precipitation occurred after the emulsification operation when the water-soluble solid content in the aqueous phase was too small.
検討5 部分脱水の効果等2
表5-1の配合にて、「○油脂組成物の調製法3」に従い、サンプルを調製した。得られたサンプルを「○CDM酸化安定性評価法2」に従い、評価した。結果を表5-2に示した。
なお、脱水工程「前」「後」の関係は検討4と同様とした。
Study 5 Effects of partial dehydration, etc.2
Samples were prepared in accordance with “Oil composition preparation method 3” with the formulation shown in Table 5-1. The obtained samples were evaluated according to “◯ CDM oxidation stability evaluation method 2”. The results are shown in Table 5-2.
The relationship between the dehydration process “before” and “after” was the same as in Study 4.
表5-1
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
注:粒子径「-」は装置による測定は行っていないが、目視で沈殿の発生がないことを確認した。
・すべての配合において、調製時の水相に沈殿は確認されなかった。
Table 5-1
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Note: The particle size “-” was not measured by an apparatus, but it was confirmed that no precipitation occurred visually.
-In all the formulations, no precipitation was confirmed in the aqueous phase at the time of preparation.
表5-2
Figure JPOXMLDOC01-appb-I000016
Table 5-2
Figure JPOXMLDOC01-appb-I000016
考察
・使用する抗酸化剤の種類や量、また水溶性固形分である砂糖の量を変えても、所定の抗酸化剤量及び水溶性固形分量であれば、抗酸化効果を有する油脂組成物が得られることが明らかとなった。
・適正な部分脱水を行うことで、粒子径がより小さくなり、保管期間を延長できることが示唆させれた。
Oil and fat composition having an antioxidant effect even if the kind and amount of the antioxidant used and the amount of sugar which is a water-soluble solid content are changed, provided that the amount of the antioxidant and the water-soluble solid content is the predetermined amount. It became clear that
・ It was suggested that by carrying out appropriate partial dehydration, the particle size becomes smaller and the storage period can be extended.
検討6 効果の確認
本発明で得られる油脂組成物の、抗酸化力の比較確認を行った。
サンプルは表6-1に示した。効果はPOVの測定で行った。評価法の詳細は以下「○POVによる酸化安定性評価法2」に記載の方法で行った。
結果を図1に示した。
Examination 6 Confirmation of effect Comparison of the antioxidant power of the oil and fat composition obtained in the present invention was confirmed.
Samples are shown in Table 6-1. The effect was measured by measuring POV. The details of the evaluation method were the same as those described in “Oxidation stability evaluation method 2 using POV”.
The results are shown in FIG.
表6-1 サンプルの詳細
Figure JPOXMLDOC01-appb-I000017
・PUFA油はEPA19.8%、DHA45.4%含有する油脂を使用した。
Table 6-1 Sample details
Figure JPOXMLDOC01-appb-I000017
-PUFA oil used fats and oils containing EPA 19.8% and DHA 45.4%.
○POVによる酸化安定性評価法2
1.表6-1の配合に従い調製した油脂を、50ml容ガラス瓶へ入れ、ふたをして、 60℃インキュベーターに入れ、80rpmで撹拌した。
2.適時にサンプリングし、POV(過酸化物価)を測定した。なおPOVの測定は基準油脂分析試験法に従った。
○ POV oxidation stability evaluation method 2
1. The fats and oils prepared according to the formulation shown in Table 6-1 were placed in a 50 ml glass bottle, capped, placed in a 60 ° C. incubator and stirred at 80 rpm.
2. Sampling was carried out in a timely manner, and POV (peroxide value) was measured. The POV was measured according to the standard oil analysis test method.
考察
 図1に示した通り、本発明に係る油脂組成物を使用した場合、PUFA油の酸化安定性が大豆油よりも高い値を示すようになった。その抗酸化力は、合成抗酸化剤であるTBHQを上回るものであった。
 PUFA油は、その酸化安定性の低さから、使用態様が制限される場面も多かったが、本発明に係る油脂組成物を使用することで、大豆油のような一般的な油脂と同様に使用することが出来るようになったと推察された。
Discussion As shown in FIG. 1, when the oil and fat composition according to the present invention was used, the oxidation stability of PUFA oil was higher than that of soybean oil. Its antioxidant power exceeded that of the synthetic antioxidant TBHQ.
PUFA oils have been used in many cases due to their low oxidative stability, but by using the oil and fat composition according to the present invention, PUFA oil is similar to common oils and fats such as soybean oil. It was inferred that it could be used.
 なお、本検討に際し、併せて臭気を確認する方法での官能評価を行った。ここでも、本発明に係る油脂組成物を使用したPUFA油は、魚臭さ等の異臭の発生が強く抑制され、汎用的な使用が可能なものであった。従来、魚油等においては、過酸化物価の数値上昇が顕在化する前から異臭が発生する場合もあり、異臭の発生には酸化とは別の要素の存在も想定されていた。しかし、本発明において、圧倒的に強力な抗酸化力を有する油脂組成物を用いることで、異臭の発生を抑えることが出来たことから、魚油等の異臭の発生は、酸化が主たる原因であることが示唆された。 In addition, in this examination, sensory evaluation by the method of confirming odor was also performed. Here again, the PUFA oil using the oil / fat composition according to the present invention was able to be used for general purposes because generation of off-flavors such as fishy odor was strongly suppressed. Conventionally, in fish oil and the like, an off-flavor may be generated before the increase in the value of the peroxide value becomes apparent, and the occurrence of off-flavor has been assumed to have an element other than oxidation. However, in the present invention, by using an oil and fat composition having an overwhelmingly strong anti-oxidant power, it was possible to suppress the generation of off-flavors, so the occurrence of off-flavors such as fish oil is mainly due to oxidation. It has been suggested.
本発明に係る油脂組成物の酸化防止効果を示す図である。It is a figure which shows the antioxidant effect of the oil-fat composition which concerns on this invention.

Claims (20)

  1. 以下の要件を満たす、水分1.9~18重量%を含有する油脂組成物。
    1.水相中に水溶性抗酸化剤を3~65重量%含有する。
    2.水相中に、必要により糖質を含有し、水溶性固形分を合計18~75重量%含有する。
    3.該水相4.3~38重量%が、油相中に粒子径300nm以下で分散している。
    An oil and fat composition containing 1.9 to 18% by weight of water that satisfies the following requirements.
    1. 3 to 65% by weight of a water-soluble antioxidant is contained in the aqueous phase.
    2. If necessary, the aqueous phase contains saccharides and contains a total of 18 to 75% by weight of water-soluble solids.
    3. 4.3 to 38% by weight of the aqueous phase is dispersed in the oil phase with a particle size of 300 nm or less.
  2. 水相に糖アルコール、グルコース、スクロース、デキストリンから選ばれる1以上の糖質を含む、請求項1記載の油脂組成物。 The fat and oil composition according to claim 1, wherein the aqueous phase contains one or more saccharides selected from sugar alcohol, glucose, sucrose, and dextrin.
  3. 該油相が、ポリグリセリン縮合リシノレート、シュガーエステル、グリセリン脂肪酸エステルから選ばれる1種以上の油溶性乳化剤を、水の重量に対し0.7~6.8倍含有する、請求項1記載の油脂組成物。 The fat or oil according to claim 1, wherein the oil phase contains 0.7 to 6.8 times the weight of water of one or more oil-soluble emulsifiers selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester. Composition.
  4. 該油相が、ポリグリセリン縮合リシノレート、シュガーエステル、グリセリン脂肪酸エステルから選ばれる1種以上の油溶性乳化剤を、水の重量に対し0.7~6.8倍含有する、請求項2記載の油脂組成物。 The fat or oil according to claim 2, wherein the oil phase contains 0.7 to 6.8 times the weight of water of one or more oil-soluble emulsifiers selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester. Composition.
  5. 該水溶性抗酸化剤がビタミンC、アミノ酸、カテキンから選ばれる1以上である、請求項2に記載の油脂組成物。 The oil and fat composition according to claim 2, wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acids, and catechins.
  6. 該水溶性抗酸化剤がビタミンC、アミノ酸、カテキンから選ばれる1以上である、請求項3に記載の油脂組成物。 The fat and oil composition according to claim 3, wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acid, and catechin.
  7. 該水溶性抗酸化剤がビタミンC、アミノ酸、カテキンから選ばれる1以上である、請求項4に記載の油脂組成物。 The oil and fat composition according to claim 4, wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acids, and catechins.
  8. 該アミノ酸がグリシン、プロリン、セリンから選ばれる1以上である、請求項6に記載の油脂組成物。 The fat composition according to claim 6, wherein the amino acid is one or more selected from glycine, proline, and serine.
  9. 該アミノ酸がグリシン、プロリン、セリンから選ばれる1以上である、請求項7に記載の油脂組成物。 The fat composition according to claim 7, wherein the amino acid is one or more selected from glycine, proline, and serine.
  10. 以下の工程による、油脂組成物の製造法。
    1.水溶性抗酸化剤を水相中3~65重量%含有し、必要により糖質を含有させ、水溶性固形分として合計で18~75重量%となる水相を調製する工程。
    2.油相に該水相が4.3~38重量%であり、かつ油脂組成物中の水分が1.9~18重量%となるように水相を添加し、粒子径が300nm以下になるように油中水型油脂組成物とする工程。
    The manufacturing method of the oil-fat composition by the following processes.
    1. A step of preparing an aqueous phase containing 3 to 65% by weight of a water-soluble antioxidant in the aqueous phase and containing a saccharide if necessary, so that the total amount of water-soluble solids is 18 to 75% by weight.
    2. The water phase is added to the oil phase so that the water phase is 4.3 to 38% by weight, and the water content in the oil and fat composition is 1.9 to 18% by weight, so that the particle diameter is 300 nm or less. And a step of preparing a water-in-oil type oil and fat composition.
  11. 糖質が、糖アルコール、グルコース、スクロース、デキストリンから選ばれる1以上である、請求項10記載の製造法。 The manufacturing method of Claim 10 whose saccharide | sugar is 1 or more chosen from sugar alcohol, glucose, sucrose, and dextrin.
  12. 該油相にポリグリセリン縮合リシノレート、シュガーエステル、グリセリン脂肪酸エステルから選ばれる1種以上の油溶性乳化剤を、油脂組成物中の水の重量に対し0.7~6.8倍含有させる、請求項11記載の製造法。 The oil phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water in the oil or fat composition. 11. The production method according to 11.
  13. 該水溶性抗酸化剤がビタミンC、アミノ酸、カテキンから選ばれる1以上である、請求項12に記載の製造法。 The production method according to claim 12, wherein the water-soluble antioxidant is one or more selected from vitamin C, amino acid, and catechin.
  14. 該アミノ酸がグリシン、プロリン、セリンから選ばれる1以上である、請求項13に記載の製造法。 The production method according to claim 13, wherein the amino acid is one or more selected from glycine, proline, and serine.
  15. 油脂組成物に含まれる水分のうち、12~76%を部分脱水し、油脂組成物中の水分を1.9~18重量%とする、請求項13記載の製造法。 14. The production method according to claim 13, wherein 12 to 76% of the moisture contained in the oil and fat composition is partially dehydrated so that the moisture in the oil and fat composition is 1.9 to 18% by weight.
  16. 該水溶性抗酸化剤がビタミンC、グリシン、プロリン、セリン、カテキンから選ばれる1以上であって、油脂組成物に含まれる水分のうち、12~76%を部分脱水し、油脂組成物中の水分を1.9~18重量%とする、請求項11に記載の製造法。 The water-soluble antioxidant is one or more selected from vitamin C, glycine, proline, serine, and catechin, and 12 to 76% of the water contained in the oil / fat composition is partially dehydrated. The production method according to claim 11, wherein the water content is 1.9 to 18% by weight.
  17. 油脂組成物に含まれる水分のうち、12~76%を部分脱水し、油脂組成物中の水分を1.9~18重量%とする、請求項14記載の製造法。 15. The production method according to claim 14, wherein 12 to 76% of the moisture contained in the oil and fat composition is partially dehydrated to make the moisture in the oil and fat composition 1.9 to 18% by weight.
  18. 該油相にポリグリセリン縮合リシノレート、シュガーエステル、グリセリン脂肪酸エステルから選ばれる1種以上の油溶性乳化剤を、油脂組成物中の水の重量に対し0.7~6.8倍含有させ、該水溶性抗酸化剤がビタミンC、グリシン、プロリン、セリン、カテキンから選ばれる1以上であって、油脂組成物に含まれる水分のうち、12~76%を部分脱水し、油脂組成物中の水分を1.9~18重量%とする、請求項10に記載の製造法。 The oil phase contains at least one oil-soluble emulsifier selected from polyglycerin condensed ricinolate, sugar ester, and glycerin fatty acid ester in an amount of 0.7 to 6.8 times the weight of water in the oil and fat composition. The antioxidant is one or more selected from vitamin C, glycine, proline, serine, and catechin, and 12 to 76% of the moisture contained in the oil and fat composition is partially dehydrated, and the moisture in the oil and fat composition is reduced. The production method according to claim 10, wherein the content is 1.9 to 18% by weight.
  19. 請求項7に記載の油脂組成物を不飽和脂肪酸含有油脂に0.1~40重量%となるように添加する、不飽和脂肪酸含有油脂の製造法。 A method for producing an unsaturated fatty acid-containing fat or oil, comprising adding the fat or oil composition according to claim 7 to an unsaturated fatty acid-containing fat or oil so as to be 0.1 to 40% by weight.
  20. 請求項7に記載の油脂組成物を不飽和脂肪酸含有油脂に0.1~40重量%となるように添加する、不飽和脂肪酸含有油脂の酸化防止方法。 A method for preventing oxidation of an unsaturated fatty acid-containing oil or fat, comprising adding the oil or fat composition according to claim 7 to an unsaturated fatty acid-containing oil or fat so as to be 0.1 to 40 wt%.
PCT/JP2016/056457 2016-03-02 2016-03-02 Fat or oil composition WO2017149701A1 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
PCT/JP2016/056457 WO2017149701A1 (en) 2016-03-02 2016-03-02 Fat or oil composition
US16/082,238 US11957135B2 (en) 2016-03-02 2017-02-28 Chocolate-like food containing polyunsaturated fatty acid
KR1020187028168A KR20180121940A (en) 2016-03-02 2017-02-28 Antioxidant composition
PCT/JP2017/007906 WO2017150558A1 (en) 2016-03-02 2017-02-28 Fat or oil composition exhibiting anti-oxidation properties
US16/082,216 US20200347300A1 (en) 2016-03-02 2017-02-28 Fat or oil composition exhibiting anti-oxidation properties
EP17760024.4A EP3424338A4 (en) 2016-03-02 2017-02-28 Chocolate-like food containing polyunsaturated fatty acid
CN201780014630.6A CN108697112B (en) 2016-03-02 2017-02-28 Chocolate food containing highly unsaturated fatty acid
PCT/JP2017/007908 WO2017150559A1 (en) 2016-03-02 2017-02-28 Chocolate-like food containing polyunsaturated fatty acid
SG11201807310QA SG11201807310QA (en) 2016-03-02 2017-02-28 Fat or oil composition exhibiting anti-oxidation properties
KR1020187028169A KR20180119640A (en) 2016-03-02 2017-02-28 Chocolate sheep food containing polyunsaturated fatty acids
SG11201807311WA SG11201807311WA (en) 2016-03-02 2017-02-28 Chocolate-like food containing polyunsaturated fatty acid
CN201780014720.5A CN108713053A (en) 2016-03-02 2017-02-28 Inhibited oil oil/fat composition
BR112018016854-8A BR112018016854B1 (en) 2016-03-02 2017-02-28 CHOCOLATE-TYPE FOOD PRODUCT CONTAINING POLYUNSATURATED FATTY ACID AND PRODUCTION METHOD
MYPI2018703052A MY193218A (en) 2016-03-02 2017-02-28 Chocolate-like food containing polyunsaturated fatty acid
JP2018503345A JP6889415B2 (en) 2016-03-02 2017-02-28 Chocolate-like foods containing highly unsaturated fatty acids
BR112018016998-6A BR112018016998B1 (en) 2016-03-02 2017-02-28 OIL AND FAT ANTIOXIDANT COMPOSITION AND METHODS FOR PRODUCING THE SAME
MYPI2018703050A MY187373A (en) 2016-03-02 2017-02-28 Fat or oil composition exhibiting anti-oxidation properties
EP17760023.6A EP3425033A4 (en) 2016-03-02 2017-02-28 Fat or oil composition exhibiting anti-oxidation properties
JP2018503344A JP7103216B2 (en) 2016-03-02 2017-02-28 Antioxidant fat composition
TW106106807A TWI722126B (en) 2016-03-02 2017-03-02 Chocolate foods containing highly unsaturated fatty acids
TW106106808A TWI726057B (en) 2016-03-02 2017-03-02 Antioxidant grease composition
JP2022064186A JP7343001B2 (en) 2016-03-02 2022-04-08 Antioxidant oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056457 WO2017149701A1 (en) 2016-03-02 2016-03-02 Fat or oil composition

Publications (1)

Publication Number Publication Date
WO2017149701A1 true WO2017149701A1 (en) 2017-09-08

Family

ID=59742647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056457 WO2017149701A1 (en) 2016-03-02 2016-03-02 Fat or oil composition

Country Status (1)

Country Link
WO (1) WO2017149701A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017225381A (en) * 2016-06-21 2017-12-28 不二製油株式会社 Highly unsaturated fatty acid-containing plastic oil and fat composition
JP6399245B1 (en) * 2018-03-16 2018-10-03 不二製油株式会社 Ascorbic acid preparation
JP2019188294A (en) * 2018-04-20 2019-10-31 ミヨシ油脂株式会社 Method for stabilizing emulsified product, and emulsified product and emulsion fuel using the same
WO2020149287A1 (en) * 2019-01-16 2020-07-23 不二製油グループ本社株式会社 Edible oil/fat composition and method for producing same
JP6836226B1 (en) * 2020-06-12 2021-02-24 不二製油株式会社 Water-in-oil unsaturated fatty acid-containing composition and its production method
JPWO2019187242A1 (en) * 2018-03-28 2021-04-01 不二製油株式会社 Oil composition
CN112638166A (en) * 2018-08-09 2021-04-09 不二制油集团控股株式会社 Oil and fat composition
CN112638166B (en) * 2018-08-09 2024-05-03 不二制油集团控股株式会社 Grease composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312697A (en) * 1986-07-03 1988-01-20 日本油脂株式会社 Modification inhibitor of tocoherol
JPH03221587A (en) * 1990-01-29 1991-09-30 Dainippon Ink & Chem Inc Water-soluble antioxidant
JPH0584436A (en) * 1991-09-27 1993-04-06 Marino Forum 21 Production of emulsion having antioxidization performance
JPH09235584A (en) * 1996-03-01 1997-09-09 Nof Corp Oil and fat composition and food containing the same
JP2002142673A (en) * 2000-11-17 2002-05-21 T Hasegawa Co Ltd Lipophilic antioxidant for oil and fat cooked food and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312697A (en) * 1986-07-03 1988-01-20 日本油脂株式会社 Modification inhibitor of tocoherol
JPH03221587A (en) * 1990-01-29 1991-09-30 Dainippon Ink & Chem Inc Water-soluble antioxidant
JPH0584436A (en) * 1991-09-27 1993-04-06 Marino Forum 21 Production of emulsion having antioxidization performance
JPH09235584A (en) * 1996-03-01 1997-09-09 Nof Corp Oil and fat composition and food containing the same
JP2002142673A (en) * 2000-11-17 2002-05-21 T Hasegawa Co Ltd Lipophilic antioxidant for oil and fat cooked food and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.MOSCA ET AL., BIOCOMPATIBLE WATER-IN-OIL EMULSION AS A MODEL TO STUDY ASCORBIC ACID EFFECT ON LIPID OXIDATION, THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 112, no. 15, 2008, pages 4635 - 4641, XP055414959 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017225381A (en) * 2016-06-21 2017-12-28 不二製油株式会社 Highly unsaturated fatty acid-containing plastic oil and fat composition
JP6399245B1 (en) * 2018-03-16 2018-10-03 不二製油株式会社 Ascorbic acid preparation
JP2019156797A (en) * 2018-03-16 2019-09-19 不二製油株式会社 Ascorbic acid formulation
JPWO2019187242A1 (en) * 2018-03-28 2021-04-01 不二製油株式会社 Oil composition
JP7342855B2 (en) 2018-03-28 2023-09-12 不二製油株式会社 Method for producing oil and fat compositions
JP2019188294A (en) * 2018-04-20 2019-10-31 ミヨシ油脂株式会社 Method for stabilizing emulsified product, and emulsified product and emulsion fuel using the same
JP7063703B2 (en) 2018-04-20 2022-05-09 ミヨシ油脂株式会社 Emulsion stabilization method and emulsion and emulsion fuel using it
CN112638166A (en) * 2018-08-09 2021-04-09 不二制油集团控股株式会社 Oil and fat composition
CN112638166B (en) * 2018-08-09 2024-05-03 不二制油集团控股株式会社 Grease composition
CN113316395A (en) * 2019-01-16 2021-08-27 不二制油集团控股株式会社 Edible oil and fat composition and method for producing same
WO2020149287A1 (en) * 2019-01-16 2020-07-23 不二製油グループ本社株式会社 Edible oil/fat composition and method for producing same
JP6836226B1 (en) * 2020-06-12 2021-02-24 不二製油株式会社 Water-in-oil unsaturated fatty acid-containing composition and its production method
JP2021193923A (en) * 2020-06-12 2021-12-27 不二製油株式会社 Oil-in-water type composition containing unsaturated fatty acid and method for producing the same

Similar Documents

Publication Publication Date Title
WO2017149701A1 (en) Fat or oil composition
JP7343001B2 (en) Antioxidant oil composition
JP6870220B2 (en) Polyunsaturated fatty acid-containing plastic fat composition
JP6694726B2 (en) O / D type emulsion composition, oil-in-water type emulsion composition, food and drink and food material
KR20200043372A (en) Oil and fat composition containing unsaturated fatty acids
EP3520620A1 (en) Premix for preparing emulsion composition, and composition using same
JP6836226B1 (en) Water-in-oil unsaturated fatty acid-containing composition and its production method
JP6969618B2 (en) Ice cream containing polyunsaturated fatty acids
JP2021180649A (en) Plastic oil-and-fat composition containing dha and epa and method for producing the same
JP6704485B1 (en) Frozen dessert containing highly unsaturated fatty acids
WO2016129611A1 (en) Antioxidant composition and oil having same added thereto
JP5260365B2 (en) Emulsified composition produced using modified sugar beet pectin and method for producing the same
AU2015286964B2 (en) Pourable water-in-oil cooking composition
EP3166414B1 (en) Pourable oil-in-water cooking composition
EP2629626B1 (en) Food product containing ethylcellulose
EP1905310A1 (en) Powder containing polyunsaturated fatty acids
WO2023089975A1 (en) Oil or fat powder containing highly unsaturated fatty acid
JP2018139553A (en) Water-in-oil emulsified oil and fat composition and method for producing the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892543

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892543

Country of ref document: EP

Kind code of ref document: A1