WO2017148098A1 - 光波导探测器与光模块 - Google Patents

光波导探测器与光模块 Download PDF

Info

Publication number
WO2017148098A1
WO2017148098A1 PCT/CN2016/092994 CN2016092994W WO2017148098A1 WO 2017148098 A1 WO2017148098 A1 WO 2017148098A1 CN 2016092994 W CN2016092994 W CN 2016092994W WO 2017148098 A1 WO2017148098 A1 WO 2017148098A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped region
edge
waveguide
germanium
type silicon
Prior art date
Application number
PCT/CN2016/092994
Other languages
English (en)
French (fr)
Inventor
费永浩
崔积适
朱以胜
Original Assignee
华为技术有限公司
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 北京大学 filed Critical 华为技术有限公司
Priority to EP16892285.4A priority Critical patent/EP3349252B1/en
Publication of WO2017148098A1 publication Critical patent/WO2017148098A1/zh
Priority to US16/001,653 priority patent/US10446707B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present invention relate to the field of semiconductors and, more particularly, to an optical waveguide detector and an optical module.
  • the silicon optical interconnect system mainly integrates a modulator, an optical waveguide detector and some passive functional devices on a single chip, wherein the modulator is used to convert an electrical signal into an optical signal, so that the optical signal at the transmitting end can be In the optical fiber transmission, the optical waveguide detector is used to convert the optical signal into an electrical signal, so that the optical signal of the receiving end can be subjected to subsequent circuit processing.
  • Optical waveguide detectors for converting optical signals into electrical signals are core components in silicon optical interconnect systems.
  • the current mainstream optical waveguide detector is a horizontal PIN (LPIN) optical waveguide detector, and the LPIN optical waveguide detector is doped in the silicon waveguide to form a PN junction in the silicon waveguide.
  • the PN junction is below the ⁇ waveguide and can be A certain electric field is generated in the ⁇ waveguide. Since the erbium can absorb the optical signal, the photo-generated carriers are generated in the ⁇ waveguide under the action of the electric field, thereby realizing the conversion of the optical signal into an electrical signal.
  • the electric field distribution inside the ⁇ waveguide of the LPIN optical waveguide detector is weak, and the transmission rate of the photogenerated carriers in the electric field is relatively low, and the bandwidth of the LPIN optical waveguide detector is relatively low.
  • the application provides an optical waveguide detector and an optical module, which can effectively increase the bandwidth of the optical waveguide detector.
  • an optical waveguide detector comprising:
  • the waveguide layer includes a silicon waveguide layer and a ⁇ waveguide layer, the ⁇ waveguide layer being located between the silicon waveguide layer and the upper cladding layer;
  • the silicon waveguide layer includes a P-type silicon highly doped region, a P-type silicon lightly doped region arranged in a second direction, An N-type silicon lightly doped region and an N-type silicon highly doped region, wherein the P-type silicon lightly doped region is between the P-type silicon highly doped region and the N-type silicon lightly doped region, N-type silicon lightly doped region between the P-type silicon lightly doped region and the N-type silicon highly doped region, the second direction being perpendicular to the first direction;
  • the ⁇ waveguide layer includes a first ⁇ high doped region and a ⁇ undoped region, the first surface of the ⁇ waveguide layer includes a surface of the first ⁇ high doped region, and the first surface is the The ⁇ waveguide layer faces away from the surface of the silicon waveguide layer in the first direction, the first ⁇ high doped region has a width greater than zero and less than or equal to half of the first surface width, the first The thickness of the germanium-doped region is greater than or equal to 5 nm and less than or equal to 200 nm;
  • a first metal via is disposed in the upper cladding, and the first metal via connects the first high doped region and the electrode layer.
  • the electrode on the germanium waveguide can form a PN junction with the opposite-pole electrode on the silicon waveguide, thereby enhancing the inside of the germanium waveguide.
  • the electric field strength increases the migration rate of the photo-generated carriers, which in turn can effectively increase the bandwidth of the optical waveguide detector.
  • the first germanium high doped region is a P-type germanium high doped region, and the first germanium high doped region is in the first a distance between a center point in a surface and a first edge of the first surface is less than or equal to a distance between the center point and a second edge of the first surface, the first edge being the first surface
  • the second direction is adjacent to an edge of the P-type silicon highly doped region, and the second edge is an edge of the first surface in the second direction close to the N-type silicon highly doped region.
  • the electric field strength in the germanium waveguide can be enhanced, and the electric field intensity in the germanium waveguide is relatively uniform.
  • the migration rate of the photo-generated carriers can be effectively increased, and the bandwidth of the optical waveguide detector can be improved.
  • the first ⁇ high doped region is on the first surface and along the first An edge that is closest to the P-type silicon highly doped region in the two directions coincides with the first edge.
  • the upper cladding layer further includes a third metal via, the third metal Transposing the P-type silicon highly doped region and the electrode layer;
  • An electrode layer connecting the first metal via and an electrode layer connecting the third metal via The electrodes have the same polarity and the same voltage.
  • the first ⁇ high doped region is an N ⁇ high doped region
  • the first ⁇ high doped region is at the a distance between a center point in a surface and a first edge of the first surface is greater than or equal to a distance between the center point and a second edge of the first surface, the first edge being the first surface
  • the second direction is adjacent to an edge of the P-type silicon highly doped region
  • the second edge is an edge of the first surface in the second direction close to the N-type silicon highly doped region.
  • the electric field strength in the germanium waveguide can be enhanced, and the electric field intensity in the germanium waveguide is relatively uniform.
  • the migration rate of the photo-generated carriers can be effectively increased, and the bandwidth of the optical waveguide detector can be improved.
  • the first ⁇ high doped region is on the first surface and along the The edge closest to the N-type silicon highly doped region in the two directions coincides with the second edge.
  • the upper cladding layer further includes a fourth metal via, the fourth metal Via connecting the N-type silicon highly doped region and the electrode layer;
  • the electrode layer connecting the first metal via and the electrode layer connecting the fourth metal via have the same polarity and the same voltage.
  • the ⁇ waveguide layer further includes a second ⁇ high doped region, the first surface further including the second ⁇ high doped region a surface of the second germanium high doped region having a width greater than zero and less than or equal to half the width of the first surface, the second germanium high doped region having a thickness greater than or equal to 5 nm and less than or equal to 200 nm;
  • the first germanium high doped region is a P-type germanium high doped region, and the second germanium high doped region is an N-type germanium high doped region;
  • a second metal via is further disposed in the upper cladding layer, and the second metal via is connected to the second germanium high doped region and the electrode layer.
  • a P-type germanium high doped region and an N-type germanium high doped region on the germanium waveguide, in other words, a P-type electrode and an N-type electrode are provided on the germanium waveguide, thereby being more effectively enhanced.
  • the electric field strength in the ⁇ waveguide further increases the migration rate of the photo-generated carriers, thereby effectively increasing the bandwidth of the optical waveguide detector.
  • a center point of the first ⁇ high doped region in the first surface and the first a distance of the first edge of a surface is less than or equal to a distance between a center point of the first ⁇ high doped region within the first surface and a second edge of the first surface;
  • a distance between a center point of the second tantalum high doping region in the first surface and a first edge of the first surface is greater than or equal to a height of the second doped region on the first surface a distance between a center point within the first surface and a second edge of the first surface;
  • the first edge is an edge of the first surface in the second direction close to the P-type silicon highly doped region
  • the second edge is the first surface is close to the first surface in the second direction
  • the edge of the N-type silicon highly doped region is an edge of the first surface in the second direction close to the P-type silicon highly doped region
  • a P-type germanium high doped region is disposed on a germanium waveguide near a P-type silicon highly doped region
  • an N-type germanium high doping is disposed on a germanium waveguide near a position of the N-type silicon highly doped region.
  • the impurity region enhances the electric field strength in the ⁇ waveguide, and also makes the electric field intensity in the ⁇ waveguide relatively uniform, thereby effectively increasing the migration rate of the photogenerated carriers and increasing the bandwidth of the optical waveguide detector.
  • the first ⁇ high doped region is on the first surface and along the An edge of the second direction that is closest to the P-type silicon high doping region coincides with the first edge
  • the second germanium high doped region is on the first surface and along the second direction The nearest edge of the N-type silicon highly doped region coincides with the second edge.
  • first tantalum high doped region and the second tantalum high doped region are not in contact with each other.
  • a metal via and a fourth metal via the third metal via connecting the P-type silicon high doping region and the electrode layer, the fourth metal via connecting the N-type silicon with high doping a region and the electrode layer;
  • the electrode layer connecting the first metal via and the electrode layer connected to the third metal via have the same polarity and the same voltage
  • the electrode layer connecting the second metal via is connected to the fourth
  • the electrode layers of the metal vias have the same polarity and the same voltage.
  • the width of the erbium undoped region is greater than or equal to 100 nm and less than or equal to 2 ⁇ m.
  • the width of the erbium-doped region refers to the maximum length of the erbium-doped region in the second direction, in other words, the width of the erbium-doped region and the ⁇ The width of the waveguide layer is uniform.
  • the width of the ⁇ waveguide layer is less than 2 ⁇ m, which ensures that a single mode waveguide is transmitted in the ⁇ waveguide, so that loss due to mode switching can be reduced.
  • the P type The silicon lightly doped region is adjacent to the N-type silicon lightly doped region.
  • the boundary between the P-type silicon lightly doped region and the N-type silicon lightly doped region may be in contact with each other or may have a gap.
  • the width of the gap is smaller than the width of the ⁇ waveguide layer.
  • the P-type a minimum distance between the highly doped region of silicon and the germanium waveguide layer is greater than or equal to 100 nm and less than or equal to 3 ⁇ m; a minimum distance between the highly doped region of the N-type silicon and the germanium waveguide layer is greater than or equal to 100 nm And less than or equal to 3 ⁇ m.
  • the width refers to the length in the second direction and the thickness refers to the length in the first direction.
  • the width of the first ⁇ high doped region refers to the length of the first ⁇ high doped region in the second direction
  • the thickness of the first ⁇ high doped region refers to the The length of the first ⁇ highly doped region in the first direction.
  • the ⁇ waveguide layer is above a position adjacent to the P-type silicon lightly doped region and the N-type silicon lightly doped region.
  • the thickness of the silicon waveguide layer and the ⁇ waveguide layer are both greater than 100 nm and less than 3 ⁇ m to ensure that light can be confined in the waveguide layer, and the device size of the optical waveguide detector is not very large. Big.
  • the doping concentration of the highly doped region is greater than 1 ⁇ 10 19 cm ⁇ 3
  • the typical doping concentration is 1 ⁇ 10 20 cm ⁇ 3
  • the doping concentration of the lightly doped region is less than 1 ⁇ 10 19 .
  • Cm -3 the typical doping concentration is 1 ⁇ 10 18 cm -3 .
  • the waveguide layer is located between the lower cladding layer and the upper cladding layer, and the refractive index of the material of the upper cladding layer and the lower cladding layer is smaller than the refractive index of the waveguide layer, thereby making the light Restricted transmission in the waveguide layer.
  • the under cladding layer is a buried oxide layer whose material is SiO 2 .
  • connection of the metal vias to the highly doped regions can be achieved using conventional processes.
  • the electrode on the germanium waveguide can form a PN junction with the opposite-pole electrode on the silicon waveguide, thereby enabling The electric field strength in the ⁇ waveguide is enhanced, and the migration rate of the photo-generated carriers is increased, thereby effectively increasing the bandwidth of the optical waveguide detector.
  • an embodiment of the present invention provides an optical module, where the optical module includes a processing circuit and the first possible implementation manner of the first aspect or the first aspect to the fourteenth possible implementation manner of the first aspect.
  • An optical waveguide detector according to any of the possible embodiments, the optical waveguide detector for converting an optical signal into an electrical signal, the processing circuit for processing the electrical signal obtained by the optical waveguide detector.
  • the electrode on the germanium waveguide can form a PN junction with the opposite-electrode electrode on the silicon waveguide, which can enhance the electric field in the germanium waveguide.
  • the strength increases the migration rate of the photo-generated carriers, thereby effectively increasing the bandwidth of the optical waveguide detector, that is, improving the efficiency of converting the optical signal into an electrical signal by the optical waveguide detector, thereby improving the processing efficiency of the optical module for the optical signal.
  • Figure 1 shows a schematic of a silicon-on-insulator SOI.
  • 2(a) to 2(d) are schematic views showing the basic structure of a prior art optical waveguide detector.
  • Fig. 3 is a schematic view showing the light field distribution of the waveguide structure shown in Fig. 2(d).
  • Fig. 4 is a view showing the structure of a prior art LPIN optical waveguide detector.
  • Fig. 5 is a view showing the electric field distribution of the LPIN optical waveguide detector shown in Fig. 4.
  • FIG. 6 is a block diagram showing the structure of an optical waveguide detector according to an embodiment of the invention.
  • FIG. 7 is a schematic diagram showing an electric field distribution of an optical waveguide detector according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of an optical waveguide detector according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural view of an optical waveguide detector according to still another embodiment of the present invention.
  • Fig. 10 is a view showing the electric field distribution of the optical waveguide probe shown in Fig. 9.
  • FIG. 11 shows a schematic block diagram of an optical module provided in accordance with an embodiment of the present invention.
  • silicon (Si) materials have unparalleled advantages in processing technology and manufacturing cost, and silicon-based optoelectronic integration technology emerges as the times require.
  • silicon optical interconnect devices are based on a silicon-on-insulator (SOI) platform, which realizes silicon light integration through CMOS processes such as ion implantation, etching, deposition and material growth.
  • SOI silicon-on-insulator
  • the structure of the SOI is as shown in FIG. 1.
  • the SOI is composed of a substrate silicon, a Buried Oxide (Box) (component is SiO 2 ), and a waveguide layer silicon (also referred to as a Si waveguide layer) from bottom to top.
  • a Buried Oxide (Box) component is SiO 2
  • waveguide layer silicon also referred to as a Si waveguide layer
  • the waveguide size is 400 nm x 220 nm.
  • the silicon optical interconnect system mainly integrates a modulator, a detector and some passive functional devices on a single chip, wherein the modulator converts the electrical signal into an optical signal, so that the optical signal at the transmitting end can be in the optical fiber.
  • the Detector (PD) converts the optical signal into an electrical signal, so that the optical signal at the receiving end can be processed by subsequent circuits. It should be understood that the modulator is part of the transmitting device and the detector is part of the receiving device. .
  • Detectors for converting optical signals into electrical signals are the core components in silicon optical interconnect systems, which are primarily implemented by germanium (Ge) materials, also known as Ge detectors.
  • Ge germanium
  • the basic structure of the Ge detector is shown in Figure 2. It is mainly to grow Ge material on SOI (for example, by silicon-based epitaxial growth technology), to control the thickness of Ge material by changing the growth conditions of the material, and to control by etching method. The width of the Ge material, thereby creating a Ge waveguide on the Si waveguide.
  • Ge waveguide on SOI There are various structures, including the conventional structure shown in Fig. 2(a), the stepped structure shown in Fig. 2(b), and the etched structure shown in Fig. 2(c), as shown in Fig. 2(d). The composite structure shown, or other structures, etc.
  • Fig. 3 shows the light field distribution of the composite waveguide structure shown in Fig. 2(d). It can be seen that the light field is the strongest at the center of the Ge waveguide, and the intensity of the light field at the peripheral edge of the Ge waveguide is relatively weak.
  • the Ge detector prepared by the silicon-based epitaxial growth technique has a large number of lattice defects, and then due to the dangling bonds of the Ge waveguide sidewalls, it is caused in Si/
  • the electric field at the Ge interface is large, resulting in a large dark current.
  • the current flowing on the circuit during illumination is called dark current. The larger the dark current of the detector, the larger the noise, so that the weaker optical signal cannot be demodulated.
  • the large dark current indicates that the heat generation of the detector is serious and will affect the life of the detector.
  • the current mainstream optical waveguide detector is a horizontal PIN (LPIN) optical waveguide detector, and its structure is shown in FIG. 4, and doping in the Si waveguide layer of the optical waveguide detector, P++ P+, N++, and N+ are P-type highly doped regions, P-type silicon lightly doped regions, N-type highly doped regions, and N-type silicon lightly doped regions, respectively, and highly doped regions are connected with metal vias to ensure Good ohmic contact, lightly doped regions are used to provide carriers to ensure a reasonable distribution of the electric field, thereby achieving a PN junction in the Si waveguide.
  • the electric field distribution of the PN junction of the LPIN optical waveguide detector is shown in Fig. 5.
  • the electric field distribution at the Si/Ge interface covers only about half of the Si/Ge interface, which is reduced to some extent.
  • the electric field strength at the Si/Ge interface therefore, can reduce the dark current of the detector.
  • the electric field distribution inside the Ge waveguide of the LPIN optical waveguide detector is weak, and the transmission rate of the photogenerated carriers in the electric field is relatively low. Therefore, the bandwidth of the LPIN optical waveguide detector is relatively high at the same bias voltage. Low, that is, the existing LPIN optical waveguide detector limits the bandwidth of the waveguide detector.
  • a silicon-based germanium photodetector ie, a Ge detector
  • with high bandwidth and low dark current is a requirement of current high-speed optical communication and optical interconnect systems.
  • an embodiment of the present invention provides a waveguide detector capable of effectively increasing the bandwidth of an optical waveguide detector while reducing the dark current of the optical waveguide detector.
  • FIG. 6 is a schematic structural diagram of a waveguide probe 100 according to an embodiment of the present invention, including along The lower cladding layer 1, the waveguide layer 2, the upper cladding layer 3, and the electrode layer 5 (the pad PAD shown in FIG. 6) stacked in the first direction.
  • the upper cladding layer 3 includes a metal via 4 for electrically connecting the electrode layer 5 to the waveguide layer 2.
  • the waveguide layer 2 includes a Si waveguide layer 21 and a Ge waveguide layer 22, and the Ge waveguide layer 22 is located between the upper cladding layer 3 and the Si waveguide layer 21.
  • the width of the Ge waveguide layer 22 is greater than or equal to 100 nm and less than or equal to 2 ⁇ m.
  • the Si waveguide layer 21 is generally as wide as the upper cladding layer 3 and the lower cladding layer 2, for example, the Si waveguide layer 21 has a width of 400 nm.
  • the Ge waveguide layer 22 includes a Ge undoped region 221 and a Ge highly doped region 222, it being understood that the Ge undoped region 221 absorbs optical signals and converts the optical signals into electrical signals.
  • the first surface of the Ge waveguide layer 22 (the surface of the Ge waveguide layer 22 facing away from the surface U of the Si waveguide layer 21 in the first direction as shown in FIG. 6) includes the surface of the Ge highly doped region 222, and Ge The width of the highly doped region 222 is greater than zero and less than half the width of the first surface of the Ge waveguide layer 22.
  • the Ge highly doped region 222 is connected to the pad 51 through the metal via 42 so that the Ge highly doped region 222 is connected to the power source (the power source is not shown in FIG. 6).
  • the Si waveguide layer 21 includes a P-type silicon highly doped region 211 (P++ on the Si waveguide as shown in FIG. 6) arranged in the second direction, and a P-type silicon lightly doped region 212 (Si waveguide as shown in FIG. 6) P+), N-type silicon lightly doped region 214 (N+ on the Si waveguide as shown in FIG. 6) and N-type silicon highly doped region 213 (N++ on the Si waveguide as shown in FIG. 6). As shown in FIG. 6, the boundary between the P-type silicon lightly doped region and the N-type silicon lightly doped region is located below the ⁇ waveguide layer.
  • the P-type silicon lightly doped region 212 is between the P-type silicon high doped region 211 and the N-type silicon lightly doped region 214, and the N-type silicon lightly doped region 214 is in the P-type
  • the silicon lightly doped region 212 is between the N-type silicon highly doped region 213.
  • the P-type silicon highly doped region 211 is connected to the pad 51 through the metal via 41
  • the N-type silicon highly doped region 213 is connected to the pad 52 through the metal via 43 so that the P-type silicon highly doped region 211 and N
  • the high silicon doped region 213 is connected to the power supply, it being understood that the two are connected to the two polarities of the power supply.
  • the Ge highly doped region 222 may be a P-type highly doped region or an N-type highly doped region.
  • the Ge highly doped region 222 is a P-type highly doped region, it corresponds to having a P-type electrode on the Ge waveguide layer.
  • the N-type silicon highly doped region 213 on the Si waveguide layer corresponds to an N-type electrode.
  • a PN junction is formed between the P-type electrode and the N-type electrode.
  • An electric field is formed in the Ge waveguide layer 22 as shown in FIG.
  • the Ge highly doped region 222 is an N-type highly doped region, it is equivalent to a Ge waveguide.
  • the P-type silicon highly doped region 213 on the Si waveguide layer is equivalent to a P-type electrode.
  • a PN junction is formed between the P-type electrode and the N-type electrode.
  • An electric field is also formed in the Ge waveguide layer 22.
  • the electric field distribution at the Si/Ge interface covers only about half of the Si/Ge interface, which reduces the electric field strength at the Si/Ge interface to a certain extent, thereby reducing the dark current of the detector. .
  • the embodiment of the present invention can effectively increase the bandwidth of the optical waveguide detector while maintaining a small dark current, that is, the two performance indexes of the dark current and the bandwidth of the detector can be simultaneously considered. In order to meet the basic requirements of current high-speed optical communication systems.
  • the second direction and the first direction are perpendicular to each other in the embodiment of the present invention. If the first direction is a vertical direction, the second direction is a horizontal direction.
  • the lower cladding layer 1 is, for example, the buried oxide layer Box shown in FIG.
  • the refractive index of the material of the upper cladding layer 3 is smaller than the refractive index of the waveguide layer 2
  • the refractive index of the material of the buried oxide layer 1 is smaller than the refractive index of the waveguide layer 2, so that light is confined in the waveguide layer 2.
  • the lower cladding layer 1 is above the substrate (not shown in Figure 6, corresponding to the substrate Substrate shown in Figure 1).
  • the thickness of the Si waveguide layer 21 and the Ge waveguide layer 22 is greater than 100 nm and less than 3 um to ensure that light can be confined in the waveguide layer 2, and the device size is not large.
  • the width of the Ge waveguide layer 22 is less than 2 um to ensure that a single mode waveguide is transmitted in the Ge waveguide, so that loss due to mode switching can be reduced.
  • the minimum distance between the P-type silicon high doping region 211 and the Ge waveguide layer 22 is greater than or equal to 100 nm and less than or equal to 3 ⁇ m; between the N-type silicon highly doped region 213 and the Ge waveguide layer 22 The minimum distance is greater than or equal to 100 nm and less than or equal to 3 ⁇ m to ensure that the optical loss due to the high doping region is small, and the electric field can be efficiently loaded to the PN junction, ensuring a large bandwidth of the device.
  • the P-type Si lightly doped region 212 is near the boundary of the N-type Si lightly doped region 214, and the N-type Si lightly doped region 214 is near the boundary of the P-type Si lightly doped region 212. They are all located below the Ge waveguide layer 22.
  • the P-type Si lightly doped region 212 is in contact with the N-type Si lightly doped region 214. Specifically, it is as shown in FIG. 6.
  • a gap exists between a boundary between the P-type Si lightly doped region 212 and the N-type Si lightly doped region 214, and the width of the gap is smaller than that of the Ge waveguide 22 width.
  • the Ge highly doped region 222 and the P-type highly doped region 211 are implanted with the same ions, the Ge highly doped region 222 is located on the first surface U of the Ge undoped region 221.
  • the edge position of the P-type highly doped region 211 when the Ge highly doped region 222 and the N-type highly doped region 213 are implanted with the same ions, the Ge highly doped region 222 is located on the first surface U of the Ge undoped region 221 near the N-type highly doped region 213. The edge position.
  • the Ge highly doped region 222 on the Ge waveguide layer 22 is a P-type highly doped region
  • the center point of the Ge highly doped region 222 in the first surface U is The distance of the first edge of the first surface U is less than or equal to the distance between the center point and the second edge of the first surface U, and the first edge is the first surface U in the second direction
  • the upper edge is adjacent to an edge of the P-type silicon high doped region 211
  • the second edge is an edge of the first surface U adjacent to the N-type silicon high doped region 213 in the second direction.
  • the germanium high doping region 222 is on the first surface U and is closest to the edge of the P-type silicon high doping region 211 along the second direction. Coincident with the first edge.
  • the P-type Ge highly doped region 222 is on the left edge of the Ge waveguide layer 22.
  • the direction of the electric field intensity inside the Ge undoped region 221 is in the direction between the upper left edge and the lower right edge of the Ge waveguide 221.
  • FIG. 7 shows the electric field distribution of the structure shown in FIG. 6.
  • the electric field intensity in the Ge waveguide of the embodiment of the present invention is large, so that the photo-generated load can be accelerated.
  • the transmission rate of the stream in the electric field which in turn increases the bandwidth of the detector.
  • the carrier mobility is the average migration rate of carriers (electrons or holes) under the action of a unit electric field and is an inherent property determined by the structure and materials of the device.
  • the carrier mobility if the electric field strength is increased, the carrier migration rate can be increased. If a strong electric field intensity is formed in the Ge waveguide, the migration rate of photogenerated carriers in the Ge waveguide (so-called photo-generated carriers refer to carriers due to light intensity) can be effectively improved.
  • Increasing the migration rate of photo-generated carriers can reduce the transit time used by photo-generated carriers to the two-pole collection area, thereby improving The bandwidth of the detector.
  • the electrode polarity of the electrode layer connecting the metal via 42 of the P-type Ge highly doped region 222 and the metal via 41 connecting the P-type silicon highly doped region 211 Same and the same voltage.
  • the metal via 42 of the P-type highly doped region 222 may share a pad 51 with the metal via 42 of the P-type silicon highly doped region 211.
  • the Ge highly doped region 222 on the Ge waveguide layer 22 is an N-type highly doped region
  • the center point of the Ge highly doped region 222 in the first surface U is The distance of the first edge of the first surface U is greater than or equal to the distance between the center point and the second edge of the first surface U, the first edge being the first surface in the second direction Adjacent to an edge of the P-type silicon highly doped region, the second edge is an edge of the first surface proximate to the N-type silicon highly doped region in the second direction.
  • the edge of the germanium-doped region 222 on the first surface U and closest to the N-type silicon high-doped region 213 along the second direction is The second edge coincides.
  • the N-type Ge highly doped region 222 is on the right edge of the Ge waveguide layer 22.
  • the direction of the electric field intensity inside the Ge undoped region 221 is in the direction between the upper right edge and the lower left edge of the Ge waveguide 221.
  • the electric field distribution (not shown) of the waveguide detector structure shown in FIG. 8 is similar to the electric field distribution shown in FIG. 7.
  • the embodiment of the present invention can effectively enhance the electric field strength in the Ge waveguide, thereby It can accelerate the transmission rate of photogenerated carriers in the electric field, thereby increasing the bandwidth of the detector.
  • the electrode on the germanium waveguide can form a PN junction with the opposite-pole electrode on the silicon waveguide, thereby being enhanced.
  • the electric field strength in the ⁇ waveguide increases the migration rate of the photo-generated carriers, which in turn can effectively increase the bandwidth of the optical waveguide detector. Therefore, compared with the existing LPIN waveguide detector, the present invention can effectively increase the bandwidth of the optical waveguide detector while maintaining a small dark current, and at the same time taking into account both the dark current and the bandwidth of the detector, which can meet the current performance.
  • High-speed optical communication and optical interconnection The basic requirements of the system.
  • the electrode layer of the metal via 42 connecting the N-type highly doped region 222 and the electrode layer of the metal via 42 connecting the N-type silicon highly doped region 213 have the same polarity And the voltage is the same size.
  • the metal via 42 of the N-type highly doped region 222 may share a pad 52 with the metal via 42 of the N-type high doped region 213.
  • the Ge highly doped region 222 is disposed at the edge of the Ge waveguide layer 22, which can reduce the interaction between the light field in the Ge waveguide and the highly doped material, thereby reducing the Ge waveguide. Light absorption loss.
  • the metal via 42 of the Ge highly doped region 222 may be combined with the Si waveguide layer.
  • the metal vias 41 of the P-type silicon highly doped region 211 share the same pad 51 as shown in FIG.
  • the metal via 42 of the Ge highly doped region 222 may be associated with the N-type silicon highly doped region 213 of the Si waveguide layer.
  • Metal vias 41 share the same pad 52 (shown in Figure 8). It should be understood that the metal vias 42 of the Ge-doped regions 222 may also be connected to the individual pads, which is not limited in the embodiment of the present invention.
  • the waveguide detector structure shown in FIG. 6 can be referred to as a P-type single-sided two-electrode detector structure
  • the waveguide detector structure shown in FIG. 8 can be referred to as an N-type single-sided two-electrode detector structure.
  • FIG. 9 also shows another schematic diagram of a waveguide detector provided in accordance with an embodiment of the present invention.
  • the Ge waveguide layer 22 includes two Ge highly doped regions, that is, a Ge highly doped region 222 and a Ge highly doped region 223.
  • the first surface U of the Ge waveguide layer 22 includes a surface of the Ge highly doped region 222 and a surface of the Ge highly doped region 223, and the respective widths of the Ge highly doped region 222 and the Ge highly doped region 223 are greater than zero and less than or Equal to half the width of the first surface U.
  • each of the Ge highly doped region 222 and the Ge highly doped region 223 is greater than or equal to 5 nm and less than or equal to 200 nm.
  • the Ge highly doped region 222 is in communication with the pad 51 through the metal via 42 and the N-type highly doped region 223 is in communication with the pad 52 through the metal via 44.
  • the implanted ions of the highly doped region 222 are the same as the P-type silicon high doped region 211 (ie, the P-type highly doped region 222), and the highly doped region 222 is located at the Ge waveguide layer 22 near the P. The edge of the high silicon doped region 211.
  • the implanted ions of the highly doped region 223 and the N-type silicon highly doped region 213 The same (ie, N-type highly doped region 223), the highly doped region 223 is located at the edge of the Ge waveguide layer 22 near the N-type silicon highly doped region 213.
  • the distance between the center point of the P-type Ge highly doped region 222 in the first surface U and the first edge of the first surface U is less than or equal to P-type Ge. a distance between a center point of the doped region 222 within the first surface U and a second edge of the first surface U;
  • the distance between the center point of the N-type highly doped region 223 in the first surface U and the first edge of the first surface U is greater than or equal to the N-type highly doped region 223 within the first surface U a distance between a center point and a second edge of the first surface;
  • the first edge is an edge of the first surface U near the P-type silicon highly doped region 211 in the second direction
  • the second edge is the first surface U at the second The direction is close to the edge of the N-type silicon highly doped region 213.
  • the P-type Ge highly doped region 222 is on the first surface U and is along the second direction from the edge of the P-type silicon highly doped region.
  • the first edge is coincident, and an edge of the N-type highly doped region 223 on the first surface U and closest to the N-type silicon highly doped region along the second direction and the second edge coincide.
  • the P-type Ge highly doped region 222 is located at the upper left edge of the Ge waveguide layer 22, and the N-type highly doped region 223 is located at the upper right edge of the Ge waveguide layer 22.
  • the waveguide detector structure shown in Figure 9 can be referred to as a bilateral two-electrode waveguide detector structure.
  • Fig. 10 is a view showing the electric field distribution of the double-sided two-electrode waveguide detector structure shown in Fig. 9. 7 and FIG. 10, the electric field intensity in the Ge waveguide of the double-sided two-electrode waveguide detector structure shown in FIG. 9 is larger and the distribution is more uniform, so that the migration rate of the photo-generated carriers can be more effectively improved. Thereby increasing the bandwidth of the waveguide detector.
  • the electric field distribution at the Si/Ge interface covers only about half of the Si/Ge interface, which reduces the electric field strength at the Si/Ge interface to a certain extent, thereby reducing the dark current of the detector. .
  • the embodiment of the present invention by providing a P-type germanium high doped region and an N-type germanium high doped region on the germanium waveguide, it is equivalent to providing a P-type electrode and an N-type electrode on the germanium waveguide, thereby being more effective.
  • the ground field enhances the electric field intensity in the waveguide, and at the same time, the electric field distribution in the Ge waveguide is relatively uniform, which can further increase the migration rate of the photo-generated carriers, thereby effectively increasing the bandwidth of the optical waveguide detector.
  • the electrode polarity of the electrode layer connecting the metal via 42 of the P-type Ge highly doped region 222 and the metal via 41 connecting the P-type silicon highly doped region 211 Phase Similarly, the voltages are the same; the electrode layers of the metal vias 44 connecting the N-type highly doped regions 223 and the electrode layers of the metal vias 42 connecting the N-type silicon highly doped regions 213 have the same polarity and the same voltage.
  • the metal via 42 of the P-type high doped region 222 may share a pad 51 with the metal via 41 of the P-type high doped region 211, and the N-type highly doped region 223
  • the metal via 44 can share a pad 52 with the metal via 42 of the N-type silicon highly doped region 213. It should be understood that each of the metal vias in FIG. 9 may correspond to a separate pad, which is not limited in this embodiment of the present invention.
  • the electrode on the germanium waveguide can form a PN junction with the opposite-pole electrode on the silicon waveguide, thereby being enhanced.
  • the electric field strength in the ⁇ waveguide increases the migration rate of the photo-generated carriers, which in turn can effectively increase the bandwidth of the optical waveguide detector.
  • the electric field intensity at the Si/Ge hetero interface of the waveguide detector is weak, and the dark current of the waveguide detector is small.
  • the present invention can effectively increase the bandwidth of the optical waveguide detector while maintaining a small dark current, and at the same time taking into account both the dark current and the bandwidth of the detector, which can meet the current performance.
  • the P-type germanium high doped region 222 and the N-type germanium high doped region 223 are not in contact with each other.
  • the P-type germanium high doped region 222 and the N-type germanium high doped region 223 may also be in contact with each other, that is, there is no gap between the two as shown in FIG. This embodiment of the present invention does not limit this.
  • the highly doped regions 211 and 213 are used to reduce the contact resistance between the metal vias 41 and 43 and the Si waveguide layer 21, and the Ge highly doped region 222 is used to reduce the metal via 42 and the Ge waveguide layer 22.
  • the contact resistance between the lightly doped regions 212 and 214 is used to provide a carrier transmission channel to ensure a reasonable distribution of the electric field.
  • the Si waveguide layer 21 includes a P-type silicon highly doped region 211 (P++), a P-type silicon lightly doped region 212 (P+), and an N-type silicon lightly doped in order from left to right.
  • the Si waveguide layer 21 includes N-type silicon high in order from left to right.
  • Doped region 213 N++
  • N-type silicon lightly doped region 214 N+
  • P-type silicon lightly doped region 212 P+
  • P-type silicon highly doped region 211 P++.
  • the material of the buried oxide layer 1 is SiO 2
  • the refractive index of the material of the upper cladding layer 3 is smaller than the refractive index of silicon, for example, the material of the upper cladding layer 3 is silicon nitride or the like, and the invention The embodiment does not limit this.
  • the doping concentration of the highly doped regions 211, 213, and 222 is greater than 1 ⁇ 10 19 cm ⁇ 3
  • the typical doping concentration is 1 ⁇ 10 20 cm ⁇ 3
  • the lightly doped regions 212 and 214 are The doping concentration is less than 1 ⁇ 10 19 cm -3
  • the typical doping concentration is 1 ⁇ 10 18 cm -3 .
  • the pad (PAD) as shown in FIG. 6 refers to the portion that energizes the metal via. Since the metal via is small, the efficiency of charging the metal via can be increased by increasing the area of the pad.
  • the single-sided two-electrode detector structure shown in FIGS. 6 and 8 and the bilateral two-electrode waveguide detector structure shown in FIG. 9 are compared with the existing LPIN structure.
  • ion implantation is required in the Ge waveguide (Fig. 6 and Fig. 8 correspond to one ion implantation, and Fig. 9 corresponds to two ion implantation).
  • the ion implantation process is relatively mature and the difficulty is relatively low.
  • the waveguide detector proposed by the embodiment of the present invention has a relatively large performance improvement compared with the existing waveguide detector, that is, the bandwidth can be improved under the premise of ensuring low dark current. It can meet the requirements of current high-speed optical communication and optical interconnection systems. Furthermore, placing the electrodes (i.e., highly doped regions) at the edges of the Ge waveguide can reduce the absorption loss of light due to the high doping region.
  • Figures 6, 8, and 9 are schematic cross-sectional views of an optical waveguide detector provided by an embodiment of the present invention.
  • the examples shown in Figures 6, 8 and 9 are intended to better assist those skilled in the art in the understanding of the embodiments of the invention, and are not intended to limit the invention.
  • a person skilled in the art will be able to make various modifications and changes in accordance with the examples of FIGS. 6, 8, and 9. The modifications or variations are also within the scope of the embodiments of the present invention.
  • the optical waveguide detector according to an embodiment of the invention refers to a Ge detector that can be monolithically integrated in a silicon optical interconnection system.
  • the waveguide detector provided by the embodiment of the invention can be applied to the field of silicon-light integrated optoelectronic devices or discrete optical devices.
  • Figure 11 shows an optical module 600 according to an embodiment of the invention, the optical module 600 comprising an optical waveguide detector 610 and a processing circuit 620, the optical waveguide detector 610 being optical waveguide as described in the above various embodiments of the present invention a detector, the optical waveguide detector 610 is configured to convert an optical signal into an electrical signal; the processing circuit 620 is configured to process the electrical energy converted by the optical waveguide detector 610 by the optical signal signal.
  • the electrode on the germanium waveguide can form a PN junction with the opposite-electrode electrode on the silicon waveguide, which can enhance the inner waveguide.
  • the electric field strength increases the migration rate of the photo-generated carriers, thereby effectively increasing the bandwidth of the optical waveguide detector, that is, improving the efficiency of converting the optical signal into an electrical signal by the optical waveguide detector, thereby improving the optical signal of the optical module. Processing efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

一种光波导探测器与光模块,包括:沿第一方向堆叠的波导层(2)、上包层(3)和电极层(5);波导层(2)包括硅波导层(21)和锗波导层(22),锗波导层(22)位于硅波导层(21)和上包层(3)之间;硅波导层(21)包括沿第二方向排列的P型硅高掺杂区(211)、P型硅轻掺杂区(212)、N型硅轻掺杂区(214)和N型硅高掺杂区(213),第二方向垂直于第一方向;锗波导层(22)包括第一锗高掺杂区(222)和锗未掺杂区(221),锗波导层(22)的第一表面(U)包括第一锗高掺杂区(222)的表面,第一表面(U)为锗波导层(22)在第一方向上背向硅波导层(21)的表面,第一锗高掺杂区(222)的宽度小于或等于第一表面(U)宽度的一半,第一锗高掺杂区(222)的厚度大于或等于5nm且小于或等于200nm;上包层包括连接第一锗高掺杂区(222)与电极层(5)的金属过孔(42)。其中实施例能够在有效提高光波导探测器的带宽。

Description

光波导探测器与光模块
本申请要求于2016年2月29日提交中国专利局、申请号为201610113602.7、发明名称为“光波导探测器与光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及半导体领域,并且更具体地,涉及一种光波导探测器与光模块。
背景技术
现阶段的硅光互连系统主要是将调制器、光波导探测器和一些无源功能性器件集成在单一芯片上,其中调制器用于将电信号转化为光信号,从而使发射端的光信号可以在光纤中传输,光波导探测器用于将光信号转化为电信号,从而可以对接收端的光信号进行后续电路处理。用于将光信号转换为电信号的光波导探测器是硅光互连系统中的核心器件。
当前主流光波导探测器为水平PIN(LPIN)光波导探测器,LPIN光波导探测器在硅波导内进行掺杂,从而在硅波导内形成PN结,该PN结在锗波导的下方,可以在锗波导内产生一定的电场。由于锗能够吸收光信号,因而在电场作用下,锗波导内产生光生载流子,从而实现将光信号转换为电信号。但是目前LPIN光波导探测器的锗波导内部的电场分布较弱,导致光生载流子在电场中的传输速率相对较低,LPIN光波导探测器的带宽相对较低。
发明内容
本申请提供一种光波导探测器与光模块,能够有效提高光波导探测器的带宽。
第一方面,提供了一种光波导探测器,包括:
沿第一方向堆叠的波导层、上包层和电极层,所述上包层位于所述波导层和所述电极层之间;
所述波导层包括硅波导层和锗波导层,所述锗波导层位于所述硅波导层和所述上包层之间;
所述硅波导层包括沿第二方向排列的P型硅高掺杂区、P型硅轻掺杂区、 N型硅轻掺杂区和N型硅高掺杂区,所述P型硅轻掺杂区在所述P型硅高掺杂区与所述N型硅轻掺杂区之间,所述N型硅轻掺杂区在所述P型硅轻掺杂区与所述N型硅高掺杂区之间,所述第二方向垂直于所述第一方向;
所述锗波导层包括第一锗高掺杂区和锗未掺杂区,所述锗波导层的第一表面包括所述第一锗高掺杂区的表面,所述第一表面为所述锗波导层在所述第一方向上背向所述硅波导层的表面,所述第一锗高掺杂区的宽度大于零且小于或等于所述第一表面宽度的一半,所述第一锗高掺杂区的厚度大于或等于5nm且小于或等于200nm;
所述上包层内设有第一金属过孔,所述第一金属过孔连接所述第一锗高掺杂区与所述电极层。
在本申请中,通过在锗波导上设置锗高掺杂区,相当于在锗波导上设置电极,锗波导上的电极可以与硅波导上异性的电极形成PN结,从而能够增强锗波导内的电场强度,提高光生载流子的迁移速率,进而能够有效提高光波导探测器的带宽。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一锗高掺杂区为P型锗高掺杂区,所述第一锗高掺杂区在所述第一表面内的中心点与所述第一表面的第一边缘的距离小于或等于所述中心点与所述第一表面的第二边缘的距离,所述第一边缘为所述第一表面在所述第二方向上靠近所述P型硅高掺杂区的边缘,所述第二边缘为所述第一表面在所述第二方向上靠近所述N型硅高掺杂区的边缘。
在本申请中,通过在锗波导上靠近P型硅高掺杂区的位置设置P型锗高掺杂区,不仅能够增强锗波导内的电场强度,也使得锗波导内的电场强度较为均匀,从而能够有效提高光生载流子的迁移速率,提高光波导探测器的带宽。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一锗高掺杂区在所述第一表面上的且沿着所述第二方向距离所述P型硅高掺杂区最近的边缘与所述第一边缘重合。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述上包层中还包括第三金属过孔,所述第三金属过孔连接所述P型硅高掺杂区与所述电极层;
连接所述第一金属过孔的电极层与连接所述第三金属过孔的电极层的 电极极性相同且电压大小相同。
结合第一方面,在第一方面的第四种可能的实现方式中,所述第一锗高掺杂区为N型锗高掺杂区,所述第一锗高掺杂区在所述第一表面内的中心点与所述第一表面的第一边缘的距离大于或等于所述中心点与所述第一表面的第二边缘的距离,所述第一边缘为所述第一表面在所述第二方向上靠近所述P型硅高掺杂区的边缘,所述第二边缘为所述第一表面在所述第二方向上靠近所述N型硅高掺杂区的边缘。
在本申请中,通过在锗波导上靠近N型硅高掺杂区的位置设置N型锗高掺杂区,不仅能够增强锗波导内的电场强度,也使得锗波导内的电场强度较为均匀,从而能够有效提高光生载流子的迁移速率,提高光波导探测器的带宽。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述第一锗高掺杂区在所述第一表面上的且沿着所述第二方向距离所述N型硅高掺杂区最近的边缘与所述第二边缘重合。
结合第一方面的第四种或第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述上包层中还包括第四金属过孔,所述第四金属过孔连接所述N型硅高掺杂区与所述电极层;
连接所述第一金属过孔的电极层与连接所述第四金属过孔的电极层的电极极性相同且电压大小相同。
结合第一方面,在第一方面的第七种可能的实现方式中,所述锗波导层还包括第二锗高掺杂区,所述第一表面还包括所述第二锗高掺杂区的表面,所述第二锗高掺杂区的宽度大于零且小于或等于所述第一表面宽度的一半,所述第二锗高掺杂区的厚度大于或等于5nm且小于或等于200nm;
所述第一锗高掺杂区为P型锗高掺杂区,所述第二锗高掺杂区为N型锗高掺杂区;
所述上包层内还设有第二金属过孔,所述第二金属过孔连接所述第二锗高掺杂区与所述电极层。
在本申请中,通过在锗波导上设置P型锗高掺杂区与N型锗高掺杂区,换句话说,在锗波导上设置P型电极与N型电极,从而能够更加有效地增强锗波导内的电场强度,进一步提高光生载流子的迁移速率,进而能够有效提高光波导探测器的带宽。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述第一锗高掺杂区在所述第一表面内的中心点与所述第一表面的第一边缘的距离小于或等于所述第一锗高掺杂区在所述第一表面内的中心点与所述第一表面的第二边缘的距离;
所述第二锗高掺杂区在所述第一表面内的中心点与所述第一表面的第一边缘的距离大于或等于与所述第二锗高掺杂区在所述第一表面内的中心点与所述第一表面的第二边缘的距离;
所述第一边缘为所述第一表面在所述第二方向上靠近所述P型硅高掺杂区的边缘,所述第二边缘为所述第一表面在所述第二方向上靠近所述N型硅高掺杂区的边缘。
在本申请中,通过在锗波导上靠近P型硅高掺杂区的位置设置P型锗高掺杂区,以及在锗波导上靠近N型硅高掺杂区的位置设置N型锗高掺杂区,在增强锗波导内的电场强度的同时,也使得锗波导内的电场强度较为均匀,从而能够有效提高光生载流子的迁移速率,提高光波导探测器的带宽。
结合第一方面的第八种可能的实现方式,在第一方面的第九种可能的实现方式中,所述第一锗高掺杂区在所述第一表面上的且沿着所述第二方向距离所述P型硅高掺杂区最近的边缘与所述第一边缘重合,所述第二锗高掺杂区在所述第一表面上的且沿着所述第二方向距离所述N型硅高掺杂区最近的边缘与所述第二边缘重合。
结合第一方面的第七种至第九种可能的实现方式中任一种可能的实现方式,在第一方面的第十种可能的实现方式中,所述第一锗高掺杂区与所述第二锗高掺杂区之间具有间隙。
应理解,所述第一锗高掺杂区与所述第二锗高掺杂区彼此之间不接触。
结合第一方面的第七种至第十种可能的实现方式中的任一种可能的实现方式,在第一方面的第十一种可能的实现方式中,所述上包层中还包括第三金属过孔与第四金属过孔,所述第三金属过孔连接所述P型硅高掺杂区与所述电极层,所述第四金属过孔连接所述N型硅高掺杂区与所述电极层;
连接所述第一金属过孔的电极层与连接所述第三金属过孔的电极层的电极极性相同且电压大小相同,连接所述第二金属过孔的电极层与连接所述第四金属过孔的电极层的电极极性相同且电压大小相同。
结合第一方面或第一方面的第一种至第十一种可能的实现方式中的任 一种可能的实现方式,在第一方面的第十二种可能的实现方式中,所述锗未掺杂区的宽度大于或等于100nm且小于或等于2μm。
应理解,所述锗未掺杂区的宽度指的是所述锗未掺杂区在所述第二方向上的最大长度,换句话说,所述锗未掺杂区的宽度与所述锗波导层的宽度一致。所述锗波导层的宽度小于2μm,能够保证锗波导内传输的是单模波导,从而可以减小由于模式转换引起的损耗。
结合第一方面或第一方面的第一种至第十二种可能的实现方式中的任一种可能的实现方式,在第一方面的第十三种可能的实现方式中,所述P型硅轻掺杂区与所述N型硅轻掺杂区相邻。
应理解,所述P型硅轻掺杂区与所述N型硅轻掺杂区相邻的边界可以相接触,也可以具有间隙。在所述P型硅轻掺杂区与所述N型硅轻掺杂区相邻的边界之间具有间隙的情况下,所述间隙的宽度小于所述锗波导层的宽度。
结合第一方面或第一方面的第一种至第十三种可能的实现方式中的任一种可能的实现方式,在第一方面的第十四种可能的实现方式中,所述P型硅高掺杂区与所述锗波导层之间的最小距离大于或等于100nm且小于或等于3μm;所述N型硅高掺杂区与所述锗波导层之间的最小距离大于或等于100nm且小于或等于3μm。
应理解,将所述P型硅高掺杂区与所述N型硅高掺杂区分别与所述锗波导层的距离设置在合理范围内,能够降低硅波导层上的高掺杂区引起的光学损耗。
在上述各个实现方式中,宽度指的是在所述第二方向上的长度,厚度指的是在所述第一方向上的长度。例如所述第一锗高掺杂区的宽度指的是所述第一锗高掺杂区在所述第二方向上的长度,所述第一锗高掺杂区的厚度指的是所述第一锗高掺杂区在所述第一方向上的长度。
在上述各个实现方式中,所述锗波导层在所述P型硅轻掺杂区与所述N型硅轻掺杂区相邻的位置的上方。
在上述各个实现方式中,所述硅波导层与所述锗波导层的厚度均大于100nm且小于3μm,以保证光能够限制在波导层中,同时使得光波导探测器的器件尺寸也不会很大。
在上述各个实现方式中,高掺杂区的掺杂浓度大于1×1019cm-3,典型掺杂浓度是1×1020cm-3;轻掺杂区的掺杂浓度小于1×1019cm-3,典型掺杂浓度 是1×1018cm-3
在上述各个实现方式中,所述波导层位于下包层与所述上包层之间,所述上包层与所述下包层的材料的折射率小于波导层的折射率,从而使光限制在波导层中传输。具体地,下包层为材料是SiO2的埋氧层。
在上述各个实现方式中,可以采用传统工艺实现所述金属过孔与高掺杂区的连接。
基于上述技术方案,在本申请中,通过在锗波导上设置锗高掺杂区,相当于在锗波导上设置电极,锗波导上的电极可以与硅波导上异性的电极形成PN结,从而能够增强锗波导内的电场强度,提高光生载流子的迁移速率,进而能够有效提高光波导探测器的带宽。
第二方面,本发明实施例提供了一种光模块,该光模块包括处理电路与如第一方面或第一方面的第一种可能实施方式至第一方面的第十四种可能实施方式中任一可能实施方式所述的光波导探测器,所述光波导探测器用于将光信号转换为电信号,所述处理电路用于处理所述光波导探测器所得的所述电信号。
在本申请中,通过在锗波导上设置锗高掺杂区,相当于在锗波导上设置电极,锗波导上的电极可以与硅波导上异性的电极形成PN结,能够增强锗波导内的电场强度,提高光生载流子的迁移速率,从而能够有效提高光波导探测器的带宽,即提高光波导探测器将光信号转化为电信号的效率,进而提高所述光模块对光信号的处理效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了绝缘体上硅SOI的示意图。
图2(a)至图2(d)示出了现有技术中光波导探测器的基本结构的示意图。
图3示出了图2(d)所示波导结构的光场分布的示意图。
图4示出了现有技术中的LPIN光波导探测器的结构示意图。
图5示出了图4所示LPIN光波导探测器的电场分布的示意图。
图6示出了根据本发明实施例提供的光波导探测器的结构示意图。
图7示出了根据本发明实施例提供的光波导探测器的电场分布的示意图。
图8示出了根据本发明另一实施例提供的光波导探测器的结构示意图。
图9示出了根据本发明再一实施例提供的光波导探测器的结构示意图。
图10示出了图9所示光波导探测器的电场分布的示意图。
图11示出了根据本发明实施例提供的光模块的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
硅(Si)材料作为微电子领域的传统材料,在加工工艺和制作成本上有着其他材料无可比拟的优势,硅基光电子集成技术应运而生。现阶段的硅光互连器件均是基于绝缘体上硅(Silicon-on-insulator,SOI)平台,通过离子注入、刻蚀、淀积和材料生长等CMOS工艺实现硅光集成。SOI的结构如图1所示,SOI自下而上由衬底硅、埋氧层(Buried Oxide,Box)(成分为SiO2)和波导层硅(也可称之为Si波导层)构成。由于SiO2的折射率比较小(约1.44),而Si的折射率很大(约3.47),因此SOI中的折射率差很大,对光的限制很强,导致其波导尺寸很小,典型的波导尺寸是400nm×220nm。
现阶段的硅光互连系统主要是将调制器、探测器和一些无源功能性器件集成在单一芯片上,其中调制器将电信号转化为光信号,从而使发射端的光信号可以在光纤中传输,探测器(Photo Detector,PD)将光信号转化为电信号,从而可以对接收端的光信号进行后续电路处理,应理解,调制器是发射端设备的一部分,探测器是接收端设备的一部分。
用于将光信号转换为电信号的探测器是硅光互连系统中的核心器件,该探测器主要是由锗(Ge)材料实现的,也称之为Ge探测器。Ge探测器的基本结构如图2所示,主要是在SOI上生长Ge材料(例如利用硅基外延生长锗技术制备),通过改变材料的生长条件控制Ge材料的厚度,利用刻蚀的方法控制Ge材料的宽度,从而在Si波导上生成Ge波导。Ge波导在SOI上的 结构有多种,包括如图2(a)所示的常规结构,如图2(b)所示的台阶状结构,如图2(c)所示的刻蚀结构,如图2(d)所示的复合结构,或者其他结构等。
在室温(300K)下,Si可探测的长波极限为1.107μm,Ge的可吸收长波极限约为1.87μm,因此,在红外通信波段(主要是1.31μm,1.490μm和1.55μm)下,Si相当于透明材料,Ge可以作为光吸收材料进行光电转化。图3示出了图2(d)所示复合波导结构的光场分布,可以看出光场在Ge波导中心位置最强,同时Ge波导四周边缘位置的光场强度比较弱。
然而,由于锗与硅之间存在晶格结构的失配,导致通过硅基外延生长锗技术制备的Ge探测器存在大量的晶格缺陷,再由于Ge波导侧壁的悬挂键,导致在Si/Ge界面处的电场较大,从而产生了较大的暗电流。应理解,光电二极管没有光照时,在半导体内部,由于热电子发射等原因也会产生自由载流子,即自由运动的电子和空穴,它们在电场的作用下也会产生电流,这种无光照时在电路上流动的电流称之为暗电流。探测器的暗电流越大,噪声就越大,从而无法解调出比较弱的光信号;此外,暗电流大说明探测器的发热比较严重,会影响探测器的寿命。
针对上述技术问题,当前主流光波导探测器(即Ge探测器)为水平PIN(LPIN)光波导探测器,其结构如图4所示,在光波导探测器的Si波导层进行掺杂,P++、P+、N++、N+分别为P型高掺杂区、P型硅轻掺杂区、N型高掺杂区、N型硅轻掺杂区,高掺杂区与金属过孔连接,以保证良好的欧姆接触,轻掺杂区用来提供载流子,以保证电场的合理分布,从而在Si波导内实现PN结。LPIN光波导探测器的PN结的电场分布如图5所示,从图中可以看出,在Si/Ge界面处的电场分布仅覆盖Si/Ge界面的一半左右,从而在一定程度上降低了Si/Ge界面处的电场强度,因此,可以减小探测器的暗电流。然而,LPIN光波导探测器的Ge波导内部的电场分布较弱,光生载流子在电场中的传输速率相对较低,因此,在相同的偏置电压下,LPIN光波导探测器的带宽相对较低,即现有LPIN光波导探测器限制了波导探测器的带宽。实现具有高带宽、低暗电流的硅基锗光电探测器(即Ge探测器)是当前高速光通信和光互连系统的要求。
针对上述技术问题,本发明实施例提供一种波导探测器,能够在降低光波导探测器的暗电流的同时,有效提高光波导探测器的带宽。
图6示出了本发明实施例提供的波导探测器100的结构示意图,包括沿 第一方向堆叠的下包层1、波导层2、上包层3和电极层5(如图6所示的焊盘PAD)。上包层3中包括金属过孔4,该金属过孔4用于实现电极层5与波导层2的电连接。
波导层2包括Si波导层21和Ge波导层22,Ge波导层22位于上包层3与Si波导层21之间。具体地,所述Ge波导层22的宽度大于或等于100nm且小于或等于2μm。所述Si波导层21通常与上包层3与下包层2等宽,例如Si波导层21宽度为400nm。
Ge波导层22包括Ge未掺杂区221和Ge高掺杂区222,应理解,Ge未掺杂区221吸收光信号,将光信号转化为电信号。Ge波导层22的第一表面(如图6所示的所述Ge波导层22在第一方向上背向所述Si波导层21的表面U)包括Ge高掺杂区222的表面,且Ge高掺杂区222的宽度大于零且小于Ge波导层22的第一表面的宽度的一半。Ge高掺杂区222通过金属过孔42与焊盘51连接,从而使得Ge高掺杂区222连接电源(图6未画出电源)。
Si波导层21包括沿第二方向排列的P型硅高掺杂区211(如图6所示的Si波导上的P++)、P型硅轻掺杂区212(如图6所示的Si波导上的P+)、N型硅轻掺杂区214(如图6所示的Si波导上的N+)和N型硅高掺杂区213(如图6所示的Si波导上的N++)。如图6所示,所述P型硅轻掺杂区与所述N型硅轻掺杂区相邻的边界位于所述锗波导层的下方。所述P型硅轻掺杂区212在所述P型硅高掺杂区211与所述N型硅轻掺杂区214之间,所述N型硅轻掺杂区214在所述P型硅轻掺杂区212与所述N型硅高掺杂区213之间。P型硅高掺杂区211通过金属过孔41与焊盘51连接,N型硅高掺杂区213通过金属过孔43与焊盘52连接,从而使得P型硅高掺杂区211与N型硅高掺杂区213连接电源,应理解,二者连接的是电源的两个极性。
可选地,在本发明实施例中,该Ge高掺杂区222可以是P型高掺杂区,也可以是N型高掺杂区。
应理解,在Ge高掺杂区222为P型高掺杂区的情况下,相当于在Ge波导层上具有一个P型电极。而Si波导层上的N型硅高掺杂区213相当于一个N型电极,图6所示结构中的电极层5接通电源后,上述P型电极与N型电极之间会形成PN结,则会在Ge波导层22内形成电场,如图7所示。类似地,在Ge高掺杂区222为N型高掺杂区的情况下,相当于在Ge波导 层上具有一个N型电极。而Si波导层上的P型硅高掺杂区213相当于一个P型电极,图6所示结构中的电极层5接通电源后,上述P型电极与N型电极之间会形成PN结,同样会在Ge波导层22内形成电场。应理解,相对于现有LPIN波导探测器,本发明实施例能够有效增强Ge波导内的电场强度,从而提高光生载流子的迁移速率,进而能够有效提高光波导探测器的带宽。应理解,提高探测器的带宽,从而能够提高探测器将光信号转化为电信号的效率。
此外,由图7可知,在Si/Ge界面处的电场分布仅覆盖Si/Ge界面的一半左右,在一定程度上降低了Si/Ge界面处的电场强度,从而可以减小探测器的暗电流。
因此,相对于现有LPIN波导探测器,本发明实施例在保持较小暗电流的同时,能够有效提高光波导探测器的带宽,即能够同时兼顾探测器的暗电流与带宽这两项性能指标,从而满足当前高速光通信系统的基本要求。
本发明实施例涉及的所述第二方向与所述第一方向互相垂直,假设第一方向为竖直方向,则第二方向为水平方向。
应理解,下包层1例如为图1所示的埋氧层Box。上包层3材料的折射率小于波导层2的折射率,埋氧层1材料的折射率小于波导层2的折射率,从而使光限制在波导层2中传输。还应理解,下包层1位于衬底之上(图6中未示出,对应于图1中所示的衬底Substrate)。
在本发明实施例中,Si波导层21和Ge波导层22的厚度大于100nm,小于3um,以保证光能够限制在波导层2中,同时器件尺寸也不会很大。
在本发明实施例中,Ge波导层22的宽度小于2um,以保证Ge波导内传输的是单模波导,从而可以减小由于模式转换引起的损耗。
在本发明实施例中,P型硅高掺杂区211与Ge波导层22之间的最小距离大于或等于100nm且小于或等于3μm;N型硅高掺杂区213与Ge波导层22之间的最小距离大于或等于100nm且小于或等于3μm,以保证由于高掺区引起的光学损耗较小,同时电场可以有效地加载到PN结,保证器件的大带宽。
在本发明实施例中,P型Si轻掺杂区212靠近N型Si轻掺杂区214的边界处,以及N型Si轻掺杂区214靠近P型Si轻掺杂区212的边界处,均位于Ge波导层22的下方。
可选地,在本发明实施例中,P型Si轻掺杂区212与N型Si轻掺杂区214相接触。具体地,如图6中所示。
可选地,在本发明实施例中,P型Si轻掺杂区212与N型Si轻掺杂区214相邻的边界之间具有间隙(GAP),且该间隙的宽度小于Ge波导22的宽度。
在本发明实施例中,当Ge高掺杂区222与P型高掺杂区211注入的是相同的离子,则Ge高掺杂区222位于Ge未掺杂区221的第一表面U上靠近P型高掺杂区211的边缘位置。当Ge高掺杂区222与N型高掺杂区213注入的是相同的离子,则Ge高掺杂区222位于Ge未掺杂区221的第一表面U上靠近N型高掺杂区213的边缘位置。
可选地,在本发明实施例中,Ge波导层22上的Ge高掺杂区222为P型高掺杂区,Ge高掺杂区222在所述第一表面U内的中心点与所述第一表面U的第一边缘的距离小于或等于所述中心点与所述第一表面U的第二边缘的距离,所述第一边缘为所述第一表面U在所述第二方向上靠近所述P型硅高掺杂区211的边缘,所述第二边缘为所述第一表面U在所述第二方向上靠近所述N型硅高掺杂区213的边缘。
可选地,在本发明实施例中,所述锗高掺杂区222在所述第一表面U上的且沿着所述第二方向距离所述P型硅高掺杂区211最近的边缘与所述第一边缘重合。
具体地,如图6所示,P型Ge高掺杂区222在Ge波导层22的左边缘。对应地,如图7所示,Ge未掺杂区221内部的电场强度的方向在Ge波导221的左上边缘到右下边缘之间的方向上。
具体地,图7示出了图6所示结构的电场分布,通过比较图5和图7所示的电场分布可知,本发明实施例的Ge波导内的电场强度较大,从而可以加速光生载流子在电场中的传输速率,进而可以提高探测器的带宽。
应理解,载流子迁移率为载流子(电子或空穴)在单位电场作用下的平均迁移速率,是由器件结构和材料所决定的固有属性。在载流子迁移率确定的情况下,如果增加电场强度,可以提高载流子的迁移速率。如果在Ge波导内形成较强的电场强度,则可以有效的提高Ge波导内光生载流子(所谓光生载流子是指由于光强引起的载流子)的迁移速率。提高光生载流子的迁移速率,就能减小光生载流子到两极收集区所用的渡越时间,从而能够提高 探测器的带宽。
可选地,在本发明实施例中,连接P型Ge高掺杂区222的金属过孔42的电极层与连接P型硅高掺杂区211的金属过孔41的电极层的电极极性相同且电压大小相同。
具体地,如图6所示,P型高掺杂区222的金属过孔42可以与P型硅高掺杂区211的金属过孔42共享一个焊盘51。
可选地,在本发明实施例中,Ge波导层22上的Ge高掺杂区222为N型高掺杂区,Ge高掺杂区222在所述第一表面U内的中心点与所述第一表面U的第一边缘的距离大于或等于所述中心点与所述第一表面U的第二边缘的距离,所述第一边缘为所述第一表面在所述第二方向上靠近所述P型硅高掺杂区的边缘,所述第二边缘为所述第一表面在所述第二方向上靠近所述N型硅高掺杂区的边缘。
可选地,在本发明实施例中,锗高掺杂区222在所述第一表面U上的且沿着所述第二方向距离所述N型硅高掺杂区213最近的边缘与所述第二边缘重合。
具体地,如图8所示,N型Ge高掺杂区222在Ge波导层22的右边缘。对应地,Ge未掺杂区221内部的电场强度的方向在Ge波导221的右上边缘到左下边缘之间的方向上。
应理解,图8所示波导探测器结构的电场分布(未示出)与图7所示的电场分布类似,相对现有LPIN结构,本发明实施例能够有效增强Ge波导内的电场强度,从而可以加速光生载流子在电场中的传输速率,进而可以提高探测器的带宽。
从图7所示的波导探测器结构的电场分布中还可知,在Si/Ge界面处的电场分布仅覆盖Si/Ge界面的一半左右,在一定程度上降低了Si/Ge界面处的电场强度,从而可以减小探测器的暗电流。
因此,在本发明实施例中,通过在锗波导上设置锗高掺杂区,相当于在锗波导上设置电极,锗波导上的电极可以与硅波导上异性的电极形成PN结,从而能够增强锗波导内的电场强度,提高光生载流子的迁移速率,进而能够有效提高光波导探测器的带宽。因此,本申请相对于现有LPIN波导探测器,在保持较小暗电流的同时,能够有效提高光波导探测器的带宽,同时兼顾探测器的暗电流与带宽这两项性能指标,能够满足当前高速光通信和光互连系 统的基本要求。
可选地,在本发明实施例中,连接N型高掺杂区222的金属过孔42的电极层与连接N型硅高掺杂区213的金属过孔42的电极层的电极极性相同且电压大小相同。
具体地,如图8所示,N型高掺杂区222的金属过孔42可以与N型硅高掺杂区213的金属过孔42共享一个焊盘52。
从图3所示的图2(d)所示复合波导结构的光场分布可知,光场在Ge波导中心位置最强,在Ge波导的四周边缘位置的光场强度比较弱。因此,在本发明实施例中,将Ge高掺杂区222设置在Ge波导层22的边缘位置,能够减少Ge波导内的光场与高掺杂材料之间的相互作用,进而能够降低Ge波导的光吸收损耗。
应理解,在本发明实施例中,当Ge波导层22上的Ge高掺杂区222为P型高掺杂区的情形下,Ge高掺杂区222的金属过孔42可以与Si波导层的P型硅高掺杂区211的金属过孔41共享同一个焊盘51,如图6所示。当Ge波导层22上的Ge高掺杂区222为N型高掺杂区的情形下,Ge高掺杂区222的金属过孔42可以与Si波导层的N型硅高掺杂区213的金属过孔41共享同一个焊盘52(如图8所示)。应理解,Ge高掺杂区222的金属过孔42也可以与独立的焊盘连接,本发明实施例对此不作限定。
图6所示的波导探测器结构可称之为P型单边双电极探测器结构,图8所示的波导探测器结构可称之为N型单边双电极探测器结构。
图9还示出了根据本发明实施例提供的波导探测器的另一结构示意图。与图6和图8所示的波导探测器的结构的区别在于,Ge波导层22包括两个Ge高掺杂区,即Ge高掺杂区222与Ge高掺杂区223。Ge波导层22的第一表面U包括Ge高掺杂区222的表面与Ge高掺杂区223的表面,且Ge高掺杂区222与Ge高掺杂区223各自的宽度大于零且小于或等于该第一表面U的宽度的一半。Ge高掺杂区222与Ge高掺杂区223各自的厚度大于或等于5nm且小于或等于200nm。Ge高掺杂区222通过金属过孔42与焊盘51连通,N型高掺杂区223通过金属过孔44与焊盘52连通。
在本发明实施例中,高掺杂区222的注入离子与P型硅高掺杂区211相同(即为P型高掺杂区222),且高掺杂区222位于Ge波导层22靠近P型硅高掺杂区211的边缘。高掺杂区223的注入离子与N型硅高掺杂区213 相同(即为N型高掺杂区223),高掺杂区223位于Ge波导层22靠近N型硅高掺杂区213的边缘。
可选地,在本发明实施例中,P型Ge高掺杂区222在所述第一表面U内的中心点与所述第一表面U的第一边缘的距离小于或等于P型Ge高掺杂区222在所述第一表面U内的中心点与所述第一表面U的第二边缘的距离;
N型高掺杂区223在所述第一表面U内的中心点与所述第一表面U的第一边缘的距离大于或等于与N型高掺杂区223在所述第一表面U内的中心点与所述第一表面的第二边缘的距离;
所述第一边缘为所述第一表面U在所述第二方向上靠近所述P型硅高掺杂区211的边缘,所述第二边缘为所述第一表面U在所述第二方向上靠近所述N型硅高掺杂区213的边缘。
可选地,在本发明实施例中,P型Ge高掺杂区222在所述第一表面U上的且沿着所述第二方向距离所述P型硅高掺杂区最近的边缘与所述第一边缘重合,N型高掺杂区223在所述第一表面U上的且沿着所述第二方向距离所述N型硅高掺杂区最近的边缘与所述第二边缘重合。
具体地,如图9所示,P型Ge高掺杂区222位于Ge波导层22的左上边缘,N型高掺杂区223位于Ge波导层22的右上边缘。
图9所示的波导探测器结构可称之为双边双电极波导探测器结构。
图10示出了图9所示的双边双电极波导探测器结构的电场分布的示意图。通过对比图7和图10可知,图9所示的双边双电极波导探测器结构的Ge波导内的电场强度更大,且分布较为均匀,从而能够更有效地提高光生载流子的迁移速率,进而提高波导探测器的带宽。此外,由图10可知,在Si/Ge界面处的电场分布仅覆盖Si/Ge界面的一半左右,在一定程度上降低了Si/Ge界面处的电场强度,从而可以减小探测器的暗电流。
因此,在本发明实施例中,通过在锗波导上设置P型锗高掺杂区与N型锗高掺杂区,相当于在锗波导上设置P型电极与N型电极,从而能够更加有效地增强锗波导内的电场强度,同时,也使得Ge波导内的电场分布较为均匀,能够进一步提高光生载流子的迁移速率,进而能够有效提高光波导探测器的带宽。
可选地,在本发明实施例中,连接P型Ge高掺杂区222的金属过孔42的电极层与连接P型硅高掺杂区211的金属过孔41的电极层的电极极性相 同且电压大小相同;连接N型高掺杂区223的金属过孔44的电极层与连接N型硅高掺杂区213的金属过孔42的电极层的电极极性相同且电压大小相同。
具体地,如图9所示,P型Ge高掺杂区222的金属过孔42可以与P型硅高掺杂区211的金属过孔41共享一个焊盘51,N型高掺杂区223的金属过孔44可以与N型硅高掺杂区213的金属过孔42共享一个焊盘52。应理解,图9中的每个金属过孔可以分别对应独立的焊盘,本发明实施例对此不作限定。
因此,在本发明实施例中,通过在锗波导上设置锗高掺杂区,相当于在锗波导上设置电极,锗波导上的电极可以与硅波导上异性的电极形成PN结,从而能够增强锗波导内的电场强度,提高光生载流子的迁移速率,进而能够有效提高光波导探测器的带宽。此外,在本发明实施例中,波导探测器的Si/Ge异质界面处的电场强度较弱,则波导探测器的暗电流较小。因此,本申请相对于现有LPIN波导探测器,在保持较小暗电流的同时,能够有效提高光波导探测器的带宽,同时兼顾探测器的暗电流与带宽这两项性能指标,能够满足当前高速光通信和光互连系统的基本要求。
可选地,在本发明实施例中,P型锗高掺杂区222与N型锗高掺杂区223之间具有间隙。具体地,如图9所示,P型锗高掺杂区222与N型锗高掺杂区223之间不接触。对应地,金属过孔42和44之间也存在间隙,该间隙不大于Ge波导层22的宽度。
应理解,在本发明实施例中,P型锗高掺杂区222与N型锗高掺杂区223之间也可以彼此相接处,即二者之间没有如图9所示的间隙,本发明实施例对此不作限定。
还应理解,高掺杂区211和213用于减少金属过孔41与43与Si波导层21之间的接触电阻,Ge高掺杂区222用于减少金属过孔42与Ge波导层22之间的接触电阻,轻掺杂区212和214用来提供载流子的传输通道,以保证电场的合理分布。
可选地,在本发明实施例中,Si波导层21从左至右依次包括P型硅高掺杂区211(P++)、P型硅轻掺杂区212(P+)、N型硅轻掺杂区214(N+)和N型硅高掺杂区213(N++)。如图6所示。
可选地,在本发明实施例中,Si波导层21从左至右依次包括N型硅高 掺杂区213(N++)、N型硅轻掺杂区214(N+)、P型硅轻掺杂区212(P+)和P型硅高掺杂区211(P++)。
应理解,在本发明实施例中,埋氧层1的材料是SiO2,上包层3的材料的折射率小于硅的折射率,例如上包层3的材料为氮化硅等,本发明实施例对此不作限定。
在本发明实施例中,高掺杂区211、213和222的掺杂浓度大于1×1019cm-3,典型掺杂浓度是1×1020cm-3;轻掺杂区212和214的掺杂浓度小于1×1019cm-3,典型掺杂浓度是1×1018cm-3
还应理解,如图6所示焊盘(PAD)是指给金属过孔加电的部分,由于金属过孔很小,因此可以通过增加焊盘的面积,提高给金属过孔充电的效率。
还应理解,在本发明实施例中,图6与图8所示的单边双电极探测器结构,以及图9所示的双边双电极波导探测器结构,相比于现有的LPIN结构的波导探测器,要在Ge波导进行离子注入(图6和图8对应一次离子注入,图9对应两次离子注入),虽然需要额外的工艺,但是离子注入的工艺相对比较成熟,难度比较低,因此,易于实现,重要的是,本发明实施例提出的波导探测器相比于现有的波导探测器,性能有相对较大的提升,即可以在保证低暗电流的前提下提高其带宽,能够很好地满足当前高速光通信和光互连系统的要求。此外,将电极(即高掺杂区)放置在Ge波导的边缘,可以减小由于高掺区引起光的吸收损耗。
还应理解,图6、8、9示出的是本发明实施例提供的光波导探测器的横截面示意图。图6、图8与图9所示例子是为了更好地帮助本领域技术人员更好地理解本发明实施例,而非将本发明限于这些具体的形式。本领域技术人员根据所给出的图6、8、9的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
本发明实施例涉及的光波导探测器指的是硅光互连系统中可以单片集成的Ge探测器。本发明实施例提供的波导探测器,可以应用于硅光集成的光电器件或者分立的光器件领域中。
图11示出了根据本发明实施例提供的光模块600,所述光模块600包括光波导探测器610与处理电路620,该光波导探测器610如本发明上述各个实施例所描述的光波导探测器,该光波导探测器610用于将光信号转换为电信号;该处理电路620用于处理该光波导探测器610由光信号转换得到的电 信号。
在本发明实施例中,通过在锗波导上设置锗高掺杂区,相当于在锗波导上设置电极,锗波导上的电极可以与硅波导上异性的电极形成PN结,能够增强锗波导内的电场强度,提高光生载流子的迁移速率,从而能够有效提高光波导探测器的带宽,即提高光波导探测器将光信号转化为电信号的效率,进而提高所述光模块对光信号的处理效率。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种光波导探测器,其特征在于,包括:
    沿第一方向堆叠的波导层、上包层和电极层,所述上包层位于所述波导层和所述电极层之间;
    所述波导层包括硅波导层和锗波导层,所述锗波导层位于所述硅波导层和所述上包层之间;
    所述硅波导层包括沿第二方向排列的P型硅高掺杂区、P型硅轻掺杂区、N型硅轻掺杂区和N型硅高掺杂区,所述P型硅轻掺杂区在所述P型硅高掺杂区与所述N型硅轻掺杂区之间,所述N型硅轻掺杂区在所述P型硅轻掺杂区与所述N型硅高掺杂区之间,所述第二方向垂直于所述第一方向;
    所述锗波导层包括第一锗高掺杂区和锗未掺杂区,所述锗波导层的第一表面包括所述第一锗高掺杂区的表面,所述第一表面为所述锗波导层在所述第一方向上背向所述硅波导层的表面,所述第一锗高掺杂区的宽度大于零且小于或等于所述第一表面宽度的一半,所述第一锗高掺杂区的厚度大于或等于5nm且小于或等于200nm;
    所述上包层包括第一金属过孔,所述第一金属过孔连接所述第一锗高掺杂区与所述电极层。
  2. 根据权利要求1所述的光波导探测器,其特征在于,所述第一锗高掺杂区为P型锗高掺杂区,所述第一锗高掺杂区在所述第一表面内的中心点与所述第一表面的第一边缘的距离小于或等于所述中心点与所述第一表面的第二边缘的距离,所述第一边缘为所述第一表面在所述第二方向上靠近所述P型硅高掺杂区的边缘,所述第二边缘为所述第一表面在所述第二方向上靠近所述N型硅高掺杂区的边缘。
  3. 根据权利要求2所述的光波导探测器,其特征在于,所述第一锗高掺杂区在所述第一表面上的且沿着所述第二方向距离所述P型硅高掺杂区最近的边缘与所述第一边缘重合。
  4. 根据权利要求1所述的光波导探测器,其特征在于,所述第一锗高掺杂区为N型锗高掺杂区,所述第一锗高掺杂区在所述第一表面内的中心点与所述第一表面的第一边缘的距离大于或等于所述中心点与所述第一表面的第二边缘的距离,所述第一边缘为所述第一表面在所述第二方向上靠近所述P型硅高掺杂区的边缘,所述第二边缘为所述第一表面在所述第二方向上 靠近所述N型硅高掺杂区的边缘。
  5. 根据权利要求4所述的光波导探测器,其特征在于,所述第一锗高掺杂区在所述第一表面上的且沿着所述第二方向距离所述N型硅高掺杂区最近的边缘与所述第二边缘重合。
  6. 根据权利要求1所述的光波导探测器,其特征在于,所述锗波导层还包括第二锗高掺杂区,所述第一表面还包括所述第二锗高掺杂区的表面,所述第二锗高掺杂区的宽度大于零且小于或等于所述第一表面宽度的一半,所述第二锗高掺杂区的厚度大于或等于5nm且小于或等于200nm;
    所述第一锗高掺杂区为P型锗高掺杂区,所述第二锗高掺杂区为N型锗高掺杂区;
    所述上包层内还设有第二金属过孔,所述第二金属过孔连接所述第二锗高掺杂区与所述电极层。
  7. 根据权利要求6所述的光波导探测器,其特征在于,所述第一锗高掺杂区在所述第一表面内的中心点与所述第一表面的第一边缘的距离小于或等于所述第一锗高掺杂区在所述第一表面内的中心点与所述第一表面的第二边缘的距离;
    所述第二锗高掺杂区在所述第一表面内的中心点与所述第一表面的第一边缘的距离大于或等于与所述第二锗高掺杂区在所述第一表面内的中心点与所述第一表面的第二边缘的距离;
    所述第一边缘为所述第一表面在所述第二方向上靠近所述P型硅高掺杂区的边缘,所述第二边缘为所述第一表面在所述第二方向上靠近所述N型硅高掺杂区的边缘。
  8. 根据权利要求7所述的光波导探测器,其特征在于,所述第一锗高掺杂区在所述第一表面上的且沿着所述第二方向距离所述P型硅高掺杂区最近的边缘与所述第一边缘重合,所述第二锗高掺杂区在所述第一表面上的且沿着所述第二方向距离所述N型硅高掺杂区最近的边缘与所述第二边缘重合。
  9. 根据权利要求6至8中任一项所述的光波导探测器,其特征在于,所述第一锗高掺杂区与所述第二锗高掺杂区之间具有间隙。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述锗未掺杂区的宽度大于或等于100nm且小于或等于2μm。
  11. 一种光模块,其特征在于,所述光模块包括处理电路与如权利要求1至10中任一项所述的光波导探测器,所述光波导探测器用于将光信号转换为电信号,所述处理电路用于处理所述光波导探测器所得的所述电信号。
PCT/CN2016/092994 2016-02-29 2016-08-03 光波导探测器与光模块 WO2017148098A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16892285.4A EP3349252B1 (en) 2016-02-29 2016-08-03 Optical waveguide detector and optical module
US16/001,653 US10446707B2 (en) 2016-02-29 2018-06-06 Optical waveguide detector and optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610113602.7 2016-02-29
CN201610113602.7A CN105655417B (zh) 2016-02-29 2016-02-29 光波导探测器与光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/001,653 Continuation US10446707B2 (en) 2016-02-29 2018-06-06 Optical waveguide detector and optical module

Publications (1)

Publication Number Publication Date
WO2017148098A1 true WO2017148098A1 (zh) 2017-09-08

Family

ID=56491988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092994 WO2017148098A1 (zh) 2016-02-29 2016-08-03 光波导探测器与光模块

Country Status (4)

Country Link
US (1) US10446707B2 (zh)
EP (1) EP3349252B1 (zh)
CN (1) CN105655417B (zh)
WO (1) WO2017148098A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145289A1 (en) * 2018-01-25 2019-08-01 Murata Manufacturing Co., Ltd. Electronic products having embedded porous dielectric, related semiconductor products, and their methods of manufacture

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206686B (zh) * 2015-08-31 2017-04-19 电子科技大学 一种消除寄生电容的光波导探测器
CN105655417B (zh) * 2016-02-29 2017-07-28 华为技术有限公司 光波导探测器与光模块
CN106057927B (zh) * 2016-07-29 2018-01-19 何颖 一种光波导探测器
CN109596570A (zh) * 2018-10-24 2019-04-09 昆明理工大学 一种基于硅基光电探测器的生化传感系统
CN112099246B (zh) * 2019-06-18 2022-03-08 中国科学院半导体研究所 集成加热型锗波导热光调制器结构及其制备方法
JP7339561B2 (ja) * 2019-08-28 2023-09-06 日本電信電話株式会社 光検出器
CN111129168B (zh) * 2019-12-27 2021-07-06 武汉光谷信息光电子创新中心有限公司 一种光电探测器
CN112349803B (zh) * 2020-10-30 2022-09-09 武汉光谷信息光电子创新中心有限公司 一种锗硅光电探测器
CN112285826B (zh) * 2020-11-10 2021-12-24 中国科学院上海微系统与信息技术研究所 一种硅基多模光接收器件及其制备方法
CN112379479B (zh) * 2020-11-10 2021-12-28 中国科学院上海微系统与信息技术研究所 一种硅基光收发器件及其制备方法
CN113035982B (zh) * 2021-03-03 2022-09-02 中国电子科技集团公司第三十八研究所 全硅掺杂多结电场增强型锗光波导探测器
CN114220881B (zh) * 2021-12-14 2023-06-02 武汉光谷信息光电子创新中心有限公司 光电探测器
CN114400267B (zh) * 2021-12-30 2023-12-01 淮阴工学院 集成有双吸收区的光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295083A1 (en) * 2008-03-19 2010-11-25 Celler George K Substrates for monolithic optical circuits and electronic circuits
US8148794B2 (en) * 2004-12-24 2012-04-03 Google Inc. Photodetector in germanium on silicon
CN104380159A (zh) * 2012-07-02 2015-02-25 意法半导体股份有限公司 具有波导的集成光电子器件以及其制造工艺
CN105655417A (zh) * 2016-02-29 2016-06-08 华为技术有限公司 光波导探测器与光模块

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7453132B1 (en) * 2002-06-19 2008-11-18 Luxtera Inc. Waveguide photodetector with integrated electronics
US7613369B2 (en) 2006-04-13 2009-11-03 Luxtera, Inc. Design of CMOS integrated germanium photodiodes
JP5969811B2 (ja) * 2011-05-09 2016-08-17 アイメックImec シリコン・フォトニクスプラットフォーム上でのフォトニックデバイスの共集積化方法
US9490385B2 (en) * 2012-05-29 2016-11-08 Hewlett Packard Enterprise Development Lp Devices including independently controllable absorption region and multiplication region electric fields
US9256027B2 (en) 2012-07-02 2016-02-09 Stmicroelectronics S.R.L. Integrated optoelectronic device and system with waveguide and manufacturing process thereof
US9377581B2 (en) * 2013-05-08 2016-06-28 Mellanox Technologies Silicon Photonics Inc. Enhancing the performance of light sensors that receive light signals from an integrated waveguide
US9287432B2 (en) 2013-07-23 2016-03-15 SiFotonics Technologies Co, Ltd. Ge—Si P-I-N photodiode with reduced dark current and fabrication method thereof
WO2015187222A2 (en) * 2014-03-10 2015-12-10 Coriant Advanced Technology, LLC Germanium metal-contact-free near-ir photodetector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148794B2 (en) * 2004-12-24 2012-04-03 Google Inc. Photodetector in germanium on silicon
US20100295083A1 (en) * 2008-03-19 2010-11-25 Celler George K Substrates for monolithic optical circuits and electronic circuits
CN104380159A (zh) * 2012-07-02 2015-02-25 意法半导体股份有限公司 具有波导的集成光电子器件以及其制造工艺
CN105655417A (zh) * 2016-02-29 2016-06-08 华为技术有限公司 光波导探测器与光模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3349252A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145289A1 (en) * 2018-01-25 2019-08-01 Murata Manufacturing Co., Ltd. Electronic products having embedded porous dielectric, related semiconductor products, and their methods of manufacture
EP3518280B1 (en) * 2018-01-25 2020-11-04 Murata Manufacturing Co., Ltd. Electronic product having embedded porous dielectric and method of manufacture

Also Published As

Publication number Publication date
CN105655417A (zh) 2016-06-08
US10446707B2 (en) 2019-10-15
EP3349252A1 (en) 2018-07-18
EP3349252A4 (en) 2018-12-26
EP3349252B1 (en) 2021-12-01
US20180294365A1 (en) 2018-10-11
CN105655417B (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
WO2017148098A1 (zh) 光波导探测器与光模块
TWI738765B (zh) 半導體裝置及其製造方法
JP5232981B2 (ja) SiGeフォトダイオード
WO2022021741A1 (zh) 一种侧向结构雪崩光电探测器及其制备方法
CN108447938B (zh) 光电探测器
US9978890B1 (en) Germanium multi-directional detector
CN108010982B (zh) 波导复合式耦合型单行载流子探测器
JP2019212820A (ja) 光半導体素子及び光伝送装置
CN112038441A (zh) 一种波导耦合的硅基光电探测器及其制备方法
WO2016190346A1 (ja) 受光素子および光集積回路
CN111129168B (zh) 一种光电探测器
WO2022041550A1 (zh) 一种雪崩光电探测器及其制备方法
CA3018953C (en) Optical waveguide integrated light receiving element and method for manufacturing same
CN210136887U (zh) 一种波导型光电探测器
CN110896112A (zh) 波导集成的GeSn光电探测器及其制造方法
CN112201723A (zh) 一种波导型光电探测器及其制备方法
CN111508980B (zh) 增强收集效率的光侦测装置
CN208538885U (zh) 一种波导型光伏场效应晶体管结构的光敏器件
CN111052405B (zh) 雪崩光电二极管及其制造方法
Afzal et al. A Proposed Silicon Optical Electronic Integrated Circuit with Monolithic Integration of LED, OPFET and Receiver Circuit
JP2020170819A (ja) 光半導体素子及び光伝送装置
US20230014187A1 (en) Semiconductor photodetector, receiver, and integrated optical device
Napiah et al. Wavelength dependence of silicon avalanche photodiode fabricated by CMOS process
CN117038776A (zh) 暗电流消除的硅基锗pin探测器及半导体设备
TWI419347B (zh) 一種pin光二極體結構及其製法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016892285

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE