WO2017148043A1 - 电动汽车动力电池组温度控制系统及方法 - Google Patents

电动汽车动力电池组温度控制系统及方法 Download PDF

Info

Publication number
WO2017148043A1
WO2017148043A1 PCT/CN2016/085896 CN2016085896W WO2017148043A1 WO 2017148043 A1 WO2017148043 A1 WO 2017148043A1 CN 2016085896 W CN2016085896 W CN 2016085896W WO 2017148043 A1 WO2017148043 A1 WO 2017148043A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
power battery
battery pack
heat exchanger
temperature control
Prior art date
Application number
PCT/CN2016/085896
Other languages
English (en)
French (fr)
Inventor
向华
Original Assignee
广东合即得能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东合即得能源科技有限公司 filed Critical 广东合即得能源科技有限公司
Publication of WO2017148043A1 publication Critical patent/WO2017148043A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of electric vehicle technology, and in particular, to an electric vehicle power battery pack temperature control system and method.
  • the specific energy, energy density and specific power the power battery per unit mass or volume is specified The energy that can be released under the conditions, the former is specific energy, the latter is energy density, the greater the internal resistance of the power battery, the smaller the energy of the discharge output, the higher the internal temperature rise, the lower the specific energy of the battery;
  • cycle life After the ambient temperature drops or rises, the cycle life of the power battery pack drops rapidly.
  • Cida Patent No. 201210007505.1 discloses a temperature control system and method, including a system for cooling and heating a power battery pack, wherein the heating system comprises: an electric water pump, a heater, a heating core; by controlling a cooling system and a heating system, It can make each power battery pack in the electric vehicle work within a suitable temperature range.
  • Chinese patent 200510020918.3 discloses an electric vehicle power battery pack temperature control system and method, including a heat exchanger for cooling circulating medium and a heating cycle The heat exchanger of the medium controls the driving device to start and stop by the electronic control unit, so that the power battery pack operates in a normal temperature range.
  • the above patents have the following drawbacks: In a cold external environment, the power battery pack needs to be heated by a vehicle heater or a vehicle air conditioner when the temperature is too low, but the vehicle heater or the vehicle air conditioner is in operation. In this case, more energy is consumed, which not only wastes the energy of the electric vehicle, but also is difficult to handle the power battery pack during the charging process of the power battery pack, or during the low-power operation, or during the startup process. Heating causes the power battery pack to be damaged due to the inability to heat it.
  • the technical problem to be solved by the present invention is to provide a temperature control system for an electric vehicle power battery pack according to the above-mentioned deficiencies in the prior art, and the temperature control system can utilize the reformer residual air of the vehicle charging system to the power battery.
  • the group performs heating, which saves the energy of the electric vehicle, and can heat the power battery pack during the charging process of the power battery pack, or the low battery operation, or during the startup process.
  • the present invention also provides a temperature control method for the temperature control system of the electric vehicle battery pack.
  • An electric vehicle power battery temperature control system including a power battery pack, a temperature control liquid pump, a first heat exchanger, an in-vehicle charging system, a second heat exchanger, an air conditioning refrigeration system and a control module; the power battery pack, the temperature control liquid pump, the first heat exchanger and the second heat exchanger are connected with a temperature control liquid circulation pipeline, and the temperature control liquid circulation pipeline Temperature control fluid
  • the on-board charging system includes a methanol water reforming hydrogen production subsystem and a fuel cell subsystem, wherein the methanol water reforming hydrogen production subsystem includes a reformer and a first electromagnetic directional valve, and the reformer is used for Hydrogen is produced by reforming hydrogen production of methanol and water, and is supplied to the fuel cell, and the residual gas generated by the reformer is directly discharged through the first electromagnetic directional valve or discharged through the first heat exchanger; Electrochemical reaction between hydrogen and oxygen in the air generates electrical energy, which is converted by the power conversion device to charge the power battery pack; the air conditioning refrigeration system is coupled with the second heat exchanger; the control module is used for control Temperature control liquid pump, vehicle charging system and air conditioning refrigeration system work; the temperature of the power battery pack is too high ⁇ , the control module controls the residual gas generated by the reformer to be directly discharged through the first electromagnetic directional valve, and controls the air conditioning refrigeration system to input the refrigerant to the second heat exchanger, taking away the heat in the temperature control liquid; When the temperature
  • the first heat exchanger and the second heat exchanger are connected in series with each other, and the temperature control liquid in the temperature control liquid circulation pipeline is driven by the temperature control liquid pump, and the circulation flows through the second exchange.
  • Heater, first heat exchanger, power battery pack and temperature control liquid pump are driven by the temperature control liquid pump, and the circulation flows through the second exchange.
  • the first heat exchanger and the second heat exchanger are connected in parallel with each other, and the electric vehicle power battery temperature control system further includes a second electromagnetic directional valve, and the control in the temperature control liquid circulation pipeline
  • the warm liquid can be circulated through the second electromagnetic reversing valve, the second heat exchanger, the power battery pack and the temperature control liquid pump, or circulated through the second electromagnetic reversing valve, driven by the temperature control liquid pump.
  • the methanol water reforming hydrogen production subsystem further comprises a third heat exchanger, the third heat exchanger is installed on a conveying pipe of the methanol water raw material, and the methanol water raw material is in the third heat exchanger.
  • the reformer is provided with a reforming chamber
  • a heating device and a hydrogen purifying device wherein the heating device supplies heat to a reforming chamber at a temperature of 350 to 570 ° C; the reforming chamber is provided with a catalyst, and methanol and water are reformed to produce hydrogen in the reforming chamber.
  • a high-temperature mixed gas mainly composed of carbon dioxide and hydrogen; the reforming chamber and the hydrogen purifying device are connected through a connecting pipe, and all or part of the connecting pipe is disposed in the reforming chamber, and can be heated by the high temperature in the reforming chamber.
  • the connecting line acts as a buffer between the reforming chamber and the hydrogen purifying device, so that the temperature of the high temperature mixed gas output from the reforming chamber is the same as or close to the temperature of the hydrogen purifying device; Hydrogen is obtained at the gas producing end of the purification device, and the hydrogen is output to the fuel cell through the third heat exchanger; after the hydrogen is separated, the residual gas is directly discharged through the first electromagnetic directional valve or discharged through the first heat exchanger.
  • the heating device comprises a combustion chamber for partially producing hydrogen gas to be combusted with oxygen in the outside air to provide heat for the operation of the reformer; and water vapor generated by hydrogen and oxygen combustion in the combustion chamber.
  • the residual gas mixed with the unburned gas in the outside air is directly discharged after the first electromagnetic directional valve Or discharged after passing through the first heat exchanger.
  • the temperature control liquid circulation pipeline is provided with a plurality of temperature control channels in the power battery pack, and the plurality of temperature control channels are evenly distributed in the power battery pack.
  • the power battery pack is provided with a temperature sensor for monitoring the temperature of the power battery pack, and the signal output end is connected to the control module.
  • a temperature control method for a temperature control system of an electric vehicle power battery pack comprising the following steps:
  • the control module sets the superheated temperature value, the supercooled value and the standard temperature interval value of the power battery pack, and the upper limit value of the standard temperature interval value is lower than the superheated temperature value, and the lower limit value of the standard temperature interval value Above the subcooling value, the control module detects the temperature of the power battery pack through the temperature sensor;
  • the control module respectively performs the following control according to the temperature of the power battery pack:
  • the control module controls the residual gas generated by the reformer to be directly discharged through the first electromagnetic directional valve, and controls the air conditioning refrigeration system to input refrigeration to the second heat exchanger
  • the medium, taking away the heat in the temperature control liquid, and the temperature control liquid is driven by the temperature control liquid pump to dissipate heat for the power battery pack through the power battery pack;
  • the control module controls the air conditioning refrigeration system to stop inputting the refrigerant medium to the second heat exchanger;
  • the control module controls the air conditioning refrigeration system to close the passage of the refrigerant medium to the second heat exchanger, and controls the residual gas generated by the reformer through the first
  • the electromagnetic directional valve and the first heat exchanger are discharged, so that the heat of the residual gas is transmitted to the temperature control liquid, and the temperature control liquid is driven by the temperature control liquid pump to heat the power battery pack through the power battery pack;
  • the temperature rises to the lower limit value of the standard temperature interval value, and the control module controls the residual gas generated by the reformer to be directly discharged after passing through the first electromagnetic directional valve;
  • the control module controls the residual gas generated by the reformer to be directly discharged through the first electromagnetic directional valve, and controls the air conditioning refrigeration system to close to the second exchange
  • the heat exchanger inputs the passage of the refrigerant medium, and the power battery pack enters the natural heat dissipation/insulation state.
  • the beneficial effects of the present invention are: In a cold external environment, the present invention can utilize the in-vehicle charging system
  • the high-heat residual gas generated by the alcohol water reforming hydrogen production subsystem heats the power battery pack, which not only saves the energy of the electric vehicle, but also during the charging process of the power battery pack, or the low-power operation, or during the startup process.
  • the power battery pack can be heated to ensure good protection of the power battery pack.
  • FIG. 1 is a block diagram showing the overall structure of a preferred embodiment of the present invention.
  • FIG. 2 is a block diagram showing the overall structure of another preferred mode of the present invention.
  • FIG 3 is a schematic view showing a preferred structure of a power battery pack of the present invention.
  • the present invention is an electric vehicle power battery pack temperature control system, including a power battery pack 1, a temperature control liquid pump 2, a first heat exchanger 3, and an in-vehicle charging system 4, a second heat exchanger 5, an air conditioning refrigeration system 6 and a control module (not shown); between the power battery pack 1, the temperature control liquid pump 2, the first heat exchanger 3 and the second heat exchanger 5
  • the temperature control liquid circulation pipe 7 is connected, and the temperature control liquid circulation pipe 7 has a temperature control liquid
  • the onboard charging system 4 includes a methanol water reforming hydrogen production subsystem and a fuel cell subsystem, wherein the methanol water reforming
  • the hydrogen production subsystem includes a reformer 41 and a first electromagnetic directional valve 42 for reforming hydrogen production of methanol and water to produce hydrogen gas, and supplying it to the fuel cell 43, and the reformer 41 is produced.
  • the residual gas is directly discharged through the first electromagnetic directional valve 42 or discharged through the first heat exchanger 3; the fuel cell 43 is used for electrochemical reaction of hydrogen and oxygen in the air to generate electrical energy, and the electric energy is passed through the power conversion device. 44 after conversion, for power Group 1 charging; the air conditioning refrigeration system 6 is coupled with the second heat exchanger 5; the control module is used for controlling the working operation of the temperature control liquid pump 2, the in-vehicle charging system 4, and the air conditioning refrigeration system 6; 1 When the temperature is too high, the control module controls the residual gas generated by the reformer 41 to be directly discharged through the first electromagnetic directional valve 42, and controls the air conditioning refrigeration system 6 to input the refrigerant to the second heat exchanger 5, and take away the temperature control liquid.
  • control module controls the air conditioning refrigeration system 6 to close the passage for inputting the refrigerant medium to the second heat exchanger 5, and controls the residual gas generated by the reformer 41 to pass through the first electromagnetic
  • the directional valve 42 and the first heat exchanger 3 are discharged, and the heat of the residual gas is transmitted to the temperature control liquid.
  • the first heat exchanger 3 and the second heat exchanger 5 are In series with each other, the temperature control liquid in the temperature control liquid circulation pipe 7 is circulated and flowed through the second heat exchanger 5, the first heat exchanger 3, the power battery pack 1 and the control under the driving of the temperature control liquid pump 2. Warm liquid pump 2.
  • the first heat exchanger 3 and the second heat exchanger 5 are connected in parallel, and the electric vehicle power battery temperature control system further includes 2.
  • the electromagnetic directional valve 8 , the temperature control liquid in the temperature control liquid circulation pipe 7 can be circulated and flowed through the second electromagnetic reversing valve 8 , the second heat exchanger 5 , and the power under the driving of the temperature control liquid pump 2
  • the battery pack 1 and the temperature control liquid pump 2 are circulated through the second electromagnetic reversing valve 8, the first heat exchanger 3, the power battery pack 1, and the temperature control liquid pump 2.
  • the methanol water reforming hydrogen production subsystem further includes a third heat exchanger 45 installed on a conveying pipe of the methanol water raw material, methanol
  • the water raw material is exchanged with the high-temperature hydrogen gas output from the reformer 41 in the third heat exchanger 45, the temperature of the methanol water raw material is increased, and the hydrogen temperature is lowered
  • the reformer 41 is provided with a reforming chamber, a heating device, and a hydrogen purifying device, wherein the heating device supplies thermal energy of a temperature of 350-570 ° C to the reforming chamber
  • the reforming chamber is provided with a catalyst, and under the action of the catalyst, a methanol cracking reaction and a carbon monoxide shift reaction are generated to generate hydrogen gas and Carbon dioxide, which is a multi-component, multi-reaction gas-solid catalytic reaction system, the reaction equation is: (l) CH 3 OH ⁇ CO+2H 2 , (2)H 2 0+CO ⁇ C0 2 +H
  • the connecting line acts as a buffer between the reforming chamber and the hydrogen purifying device, so that the temperature of the high temperature mixed gas output from the reforming chamber is the same as or close to the temperature of the hydrogen purifying device; Hydrogen is obtained from the gas producing end of the hydrogen purifying device, and the hydrogen is output to the fuel cell 43 through the third heat exchanger 45. After the hydrogen is separated, the residual gas is directly discharged through the first electromagnetic directional valve 42 or through the first heat exchanger 3 After the discharge.
  • the methanol water reforming hydrogen production subsystem further includes a methanol water container 46 and a transfer pump 47 , wherein the methanol water container 46 stores a liquid methanol water raw material, and the transfer pump 47 is used for the methanol in the methanol water storage container 46.
  • the water raw material is pumped to the reformer 41 through a transfer pipe.
  • the heating device includes a combustion chamber for partially producing hydrogen gas to be combusted with oxygen in the outside air to provide heat for the operation of the reformer 41;
  • the residual gas obtained by mixing the water vapor generated by the hydrogen gas combustion and the unburned gas in the outside air is directly discharged through the first electromagnetic directional valve 42 or discharged through the first heat exchanger 3.
  • the temperature control liquid circulation pipe 7 is provided with a plurality of temperature control channels 71 in the power battery pack 1, and the plurality of temperature control channels 71 are evenly distributed in the power battery pack 1, so that the temperature control unit can be evenly distributed.
  • Each unit cell is cooled or insulated.
  • the power battery pack 1 is provided with a temperature sensor (not shown) for monitoring the temperature of the power battery pack 1, and the signal output end is connected to the control module.
  • the temperature control method of the electric vehicle power battery temperature control system includes the following steps: [0033] (1) The control module sets a superheated temperature value, a supercooled value, and a standard temperature interval value of the power battery pack, The upper limit value of the standard temperature interval value is lower than the superheat temperature value, and the lower limit value of the standard temperature interval value is higher than the supercooling value, and the control module detects the temperature of the power battery pack through the temperature sensor; for example, setting the superheating temperature value to 40 ° C, the supercooling value is set to 0 ° C, the standard temperature interval value is set to 8-32 ° C;
  • the control module respectively performs the following control according to the temperature of the power battery pack:
  • the control module controls the residual gas generated by the reformer to be directly discharged through the first electromagnetic directional valve, and controls the air conditioning refrigeration system to input refrigeration to the second heat exchanger
  • the medium, taking away the heat in the temperature control liquid, and the temperature control liquid is driven by the temperature control liquid pump to dissipate heat for the power battery pack through the power battery pack;
  • the control module controls the air conditioning refrigeration system to stop inputting the refrigerant medium to the second heat exchanger;
  • the control module controls the air conditioning refrigeration system to close the passage of the refrigerant medium to the second heat exchanger, and controls the residual gas generated by the reformer through the first
  • the electromagnetic directional valve and the first heat exchanger are discharged, so that the heat of the residual gas is transmitted to the temperature control liquid, and the temperature control liquid is driven by the temperature control liquid pump to heat the power battery pack through the power battery pack;
  • the temperature rises to the lower limit value of the standard temperature interval value, and the control module controls the residual gas generated by the reformer to be directly discharged after passing through the first electromagnetic directional valve;
  • the control module controls the residual gas generated by the reformer to be directly discharged through the first electromagnetic directional valve, and controls the air conditioning refrigeration system to turn off to the second exchange
  • the heat exchanger inputs the passage of the refrigerant medium, and the power battery pack enters the natural heat dissipation/insulation state.
  • the invention relates to an electric vehicle power battery pack temperature control system and method, which can utilize the reformer residual gas of the vehicle charging system to heat the power battery pack, saves energy of the electric vehicle, and is in the power battery pack.
  • the power battery pack can be heated. Therefore, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)

Abstract

一种电动汽车动力电池组温度控制系统及方法,动力电池组温度控制系统包括动力电池组(1)、控温液泵(2)、第一换热器(3)、车载充电系统(4)、第二换热器(5)、空调制冷系统(6)以及控制模块。车载充电系统(4)包括甲醇水重整制氢子系统,其包括重整器(41)及第一电磁方向阀(42),重整器(41)产生的余气经第一电磁方向阀(42)后直接排出或经第一换热器(3)后排出;在动力电池组(1)温度过低时,控制模块控制重整器(41)产生的余气依次经第一电磁方向阀(42)、第一换热器(3)后排出,使余气的热量传递给控温液。这样利用车载充电系统(4)的重整器余气对动力电池组(1)进行加热,节约了电动汽车的能量,并且在动力电池组(1)充电过程中,或者低电量工作时,或者启动过程中,均能及时对动力电池组进行加热。

Description

发明名称:电动汽车动力电池组温度控制系统及方法 技术领域
[0001] 本发明涉及电动汽车技术领域, 特别涉及电动汽车动力电池组温度控制系统及 方法。
背景技术
[0002] 目前, 绝大部分汽车都以汽油、 柴油为燃料, 不仅消耗了大量的石油资源, 而 且汽车尾气造成了严重的大气污染。 为应对此资源问题和环境问题, 电动汽车 的幵发变得非常重要, 电动汽车也日益成为汽车领域的发展趋势。
[0003] 在装有动力电池组的电动汽车中, 通常既要备有动力电池组的冷却系统, 又要 提供动力电池组的保湿设施, 这是因为温度对动力电池组的性能影响较大。 这 主要体现以下四个方面: 其一、 容量: 在常温附近, 温度对锂离子电池和铅酸 电池放电容量的影响没有显著的差别, 但在 o°c以下, 锂离子电池及铅酸电池的 放电容量都会快速下降, 特别是锂离子电池, 将其在低温下循环 5次后重新在室 温下测试, 容量不能恢复到初始值; 其二、 内阻: 内阻决定了动力电池组大电 流输出吋引起的电压降的大小, 当温度低于 0°C吋, 动力电池组的内阻将大幅增 力口; 其三、 比能量、 能量密度和比功率: 单位质量或体积的动力电池在规定的 条件下所能放出的能量, 前者是比能量, 后者为能量密度, 动力电池的内阻越 大, 放电输出的能量就越小, 内部温升就越高, 电池的比能量就下降; 其四、 循环寿命: 在环境温度下降或升高吋, 动力电池组的循环寿命下降得很快。
[0004] 有鉴于此, 如何对电动汽车的动力电池组进行适当的冷却或加热的温度调节, 以使得电动汽车的动力电池组工作在最佳的温度范围内, 对整个电动汽车的工 作效率和寿命而言都是至关重要的。 中国专利 201210007505.1公幵了一种温度控 制系统及方法, 包括为动力电池组冷却及加热的系统, 其中, 加热系统包括: 电动水泵、 加热器、 暖通芯体; 通过控制冷却系统及加热系统, 可使电动汽车 中各个动力电池组工作在合适的温度范围内。 中国专利 200510020918.3公幵了一 种电动车动力电池组控温系统和方法, 包括冷却循环介质的换热器及加热循环 介质的换热器, 通过电子控制单元控制驱动装置的幵启和停止, 使动力电池组 工作在正常温度范围内。
[0005] 然而, 上述专利还存在以下缺陷: 在寒冷的外部环境下, 动力电池组在温度过 低吋, 需要采用车载加热器或车载空调热气加热, 但是, 车载加热器或车载空 调在工作过程中, 均需要耗费较多的电能, 这样一来, 不仅浪费了电动汽车的 能量, 而且在动力电池组充电过程中, 或者低电量工作吋, 或者启动过程中, 均难以及吋对动力电池组进行加热, 易导致动力电池组因不能及吋加热而遭到 损坏。
技术问题
[0006] 本发明要解决的技术问题是针对上述现有技术中的不足, 提供一种电动汽车动 力电池组温度控制系统, 该温度控制系统能利用车载充电系统的重整器余气对 动力电池组进行加热, 节约了电动汽车的能量, 并且在动力电池组充电过程中 , 或者低电量工作吋, 或者启动过程中, 均能及吋对动力电池组进行加热。 为 此, 本发明还要提供一种该电动汽车动力电池组温度控制系统的温度控制方法
问题的解决方案
技术解决方案
[0007] 为解决上述第一个技术问题, 本发明的技术方案是: 一种电动汽车动力电池组 温度控制系统, 包括动力电池组、 控温液泵、 第一换热器、 车载充电系统、 第 二换热器、 空调制冷系统以及控制模块; 所述动力电池组、 控温液泵、 第一换 热器及第二换热器之间连接有控温液循环管道, 控温液循环管道内具有控温液
; 所述车载充电系统包括甲醇水重整制氢子系统及燃料电池子系统, 其中, 所 述甲醇水重整制氢子系统包括重整器及第一电磁方向阀, 所述重整器用于甲醇 和水发生重整制氢反应制得氢气, 并供应给燃料电池, 重整器产生的余气经第 一电磁方向阀后直接排出或经第一换热器后排出; 所述燃料电池用于氢气及空 气中的氧气发生电化学反应产生电能, 该电能经电力转换装置转换后, 为动力 电池组充电; 所述空调制冷系统与第二换热器相配合; 所述控制模块用于控制 控温液泵、 车载充电系统及空调制冷系统的工作运转; 在动力电池组温度过高 吋, 控制模块控制重整器产生的余气经第一电磁方向阀后直接排出, 并控制空 调制冷系统向第二换热器输入制冷介质, 带走控温液中的热量; 在动力电池组 温度过低吋, 控制模块控制空调制冷系统关闭向第二换热器输入制冷介质的通 道, 并控制重整器产生的余气依次经第一电磁方向阀、 第一换热器后排出, 使 余气的热量传递给控温液。
[0008] 优选地, 所述第一换热器与第二换热器相互串联, 所述控温液循环管道内的控 温液在控温液泵的驱动下, 循环流经于第二换热器、 第一换热器、 动力电池组 及控温液泵。
[0009] 优选地, 所述第一换热器与第二换热器相互并联, 所述电动汽车动力电池组温 度控制系统还包括第二电磁方向阀, 所述控温液循环管道内的控温液在控温液 泵的驱动下, 可循环流经于第二电磁换向阀、 第二换热器、 动力电池组及控温 液泵, 或者循环流经于第二电磁换向阀、 第一换热器、 动力电池组及控温液泵
[0010] 优选地,所述甲醇水重整制氢子系统还包括第三换热器, 所述第三换热器安装于 甲醇水原料的输送管道上, 甲醇水原料在第三换热器中, 与重整器输出的高温 氢气进行换热, 甲醇水原料温度升高, 氢气温度降低; 所述重整器设有重整室
、 加热装置及氢气纯化装置, 所述加热装置为重整室提供 350-570°C温度的热能 ; 所述重整室内设有催化剂, 甲醇和水在重整室内发生重整制氢反应, 制得以 二氧化碳和氢气为主的高温混合气体; 所述重整室与氢气纯化装置通过连接管 路连接, 连接管路的全部或部分设置于重整室内, 能通过重整室内的高温继续 加热从重整室输出的高温混合气体; 所述连接管路作为重整室与氢气纯化装置 之间的缓冲, 使得从重整室输出的高温混合气体的温度与氢气纯化装置的温度 相同或接近; 从氢气纯化装置的产气端得到氢气, 该氢气经第三换热器后输出 至燃料电池; 分离氢气后, 余气经第一电磁方向阀后直接排出或经第一换热器 后排出。
[0011] 优选地, 所述加热装置包括燃烧腔, 该燃烧腔用于部分制得的氢气与外界空气 中的氧气燃烧, 为重整器的运行提供热量; 燃烧腔内氢气氧气燃烧产生的水汽 以及外界空气中的未燃烧气体混合而成的余气, 经第一电磁方向阀后直接排出 或经第一换热器后排出。
[0012] 优选地, 所述控温液循环管道在动力电池组中设置有若干控温通道, 该若干控 温通道均匀分布于动力电池组内。
[0013] 优选地, 所述动力电池组内设有温度传感器, 该温度感应器用于监测动力电池 组温度, 其信号输出端接到控制模块。
[0014] 为解决上述第二个技术问题, 本发明的技术方案是: 一种电动汽车动力电池组 温度控制系统的温度控制方法, 包括以下步骤:
[0015] (1) 控制模块设定动力电池组的过热温度值、 过冷数值及标准温度区间值, 该标准温度区间值的上限值低于过热温度值, 该标准温度区间值的下限值高于 过冷数值, 控制模块通过温度感应器侦测动力电池组的温度;
[0016] (2) 控制模块根据动力电池组的温度, 分别做出以下控制:
[0017] a.当动力电池组的温度高于过热数值吋, 控制模块控制重整器产生的余气经第 一电磁方向阀后直接排出, 并控制空调制冷系统向第二换热器输入制冷介质, 带走控温液中的热量, 控温液在控温液泵的驱动下, 通过动力电池组, 为动力 电池组散热; 当动力电池组的温度降低至标准温度区间值的上限值吋, 控制模 块控制空调制冷系统停止向第二换热器输入制冷介质;
[0018] b.当动力电池组的温度低于过冷数值吋, 控制模块控制空调制冷系统关闭向第 二换热器输入制冷介质的通道, 并控制重整器产生的余气依次经第一电磁方向 阀、 第一换热器后排出, 使余气的热量传递给控温液, 控温液在控温液泵的驱 动下, 通过动力电池组, 为动力电池组加热; 当动力电池组的温度上升至标准 温度区间值的下限值吋, 控制模块控制重整器产生的余气经第一电磁方向阀后 直接排出;
[0019] c.当动力电池组的温度处于标准温度区间值之内吋, 控制模块控制重整器产生 的余气经第一电磁方向阀后直接排出, 并控制空调制冷系统关闭向第二换热器 输入制冷介质的通道, 动力电池组进入自然散热 /保温状态。
发明的有益效果
有益效果
[0020] 本发明的有益效果是: 在寒冷的外部环境下, 本发明能利用车载充电系统的甲 醇水重整制氢子系统所产生的高热量余气, 为动力电池组加热, 不仅节约了电 动汽车的能量, 并且在动力电池组充电过程中, 或者低电量工作吋, 或者启动 过程中, 均能及吋对动力电池组进行加热, 使动力电池组得到良好的保护。 对附图的简要说明
附图说明
[0021] 图 1为本发明一优选方式的整体结构方框图。
[0022] 图 2为本发明另一优选方式的整体结构方框图。
[0023] 图 3为本发明动力电池组的优选结构示意图。
本发明的实施方式
[0024] 下面结合附图对本发明的结构原理和工作原理作进一步详细说明。
[0025] 如图 1和图 2所示, 本发明为一种电动汽车动力电池组温度控制系统, 包括动力 电池组 1、 控温液泵 2、 第一换热器 3、 车载充电系统 4、 第二换热器 5、 空调制冷 系统 6以及控制模块 (图中未示出) ; 所述动力电池组 1、 控温液泵 2、 第一换热 器 3及第二换热器 5之间连接有控温液循环管道 7, 控温液循环管道 7内具有控温 液; 所述车载充电系统 4包括甲醇水重整制氢子系统及燃料电池子系统, 其中, 所述甲醇水重整制氢子系统包括重整器 41及第一电磁方向阀 42, 所述重整器 41 用于甲醇和水发生重整制氢反应制得氢气, 并供应给燃料电池 43, 重整器 41产 生的余气经第一电磁方向阀 42后直接排出或经第一换热器 3后排出; 所述燃料电 池 43用于氢气及空气中的氧气发生电化学反应产生电能, 该电能经电力转换装 置 44转换后, 为动力电池组 1充电; 所述空调制冷系统 6与第二换热器 5相配合; 所述控制模块用于控制控温液泵 2、 车载充电系统 4及空调制冷系统 6的工作运转 ; 在动力电池组 1温度过高吋, 控制模块控制重整器 41产生的余气经第一电磁方 向阀 42后直接排出, 并控制空调制冷系统 6向第二换热器 5输入制冷介质, 带走 控温液中的热量; 在动力电池组 1温度过低吋, 控制模块控制空调制冷系统 6关 闭向第二换热器 5输入制冷介质的通道, 并控制重整器 41产生的余气依次经第一 电磁方向阀 42、 第一换热器 3后排出, 使余气的热量传递给控温液。
[0026] 如图 1所示, 作为本发明的一种优选方式, 所述第一换热器 3与第二换热器 5相 互串联, 所述控温液循环管道 7内的控温液在控温液泵 2的驱动下, 循环流经于 第二换热器 5、 第一换热器 3、 动力电池组 1及控温液泵 2。
[0027] 如图 2所示, 作为本发明的另一种优选方式, 所述第一换热器 3与第二换热器 5 相互并联, 所述电动汽车动力电池组温度控制系统还包括第二电磁方向阀 8, 所 述控温液循环管道 7内的控温液在控温液泵 2的驱动下, 可循环流经于第二电磁 换向阀 8、 第二换热器 5、 动力电池组 1及控温液泵 2, 或者循环流经于第二电磁 换向阀 8、 第一换热器 3、 动力电池组 1及控温液泵 2。
[0028] 如图 1和图 2所示, 所述甲醇水重整制氢子系统还包括第三换热器 45, 所述第三 换热器 45安装于甲醇水原料的输送管道上, 甲醇水原料在第三换热器 45中, 与 重整器 41输出的高温氢气进行换热, 甲醇水原料温度升高, 氢气温度降低; 所 述重整器 41设有重整室、 加热装置及氢气纯化装置, 所述加热装置为重整室提 供 350-570°C温度的热能; 所述重整室内设有催化剂, 在催化剂的作用下, 发生 甲醇裂解反应和一氧化碳的变换反应, 生成氢气和二氧化碳, 这是一个多组份 、 多反应的气固催化反应系统, 反应方程为: (l)CH 3OH→CO+2H 2、 (2)H 2 0+CO→C0 2+H 2、 (3)CH 3OH+H 20→CO 2+3H 2 , 制得以二氧化碳和氢气为主的 高温混合气体; 所述重整室与氢气纯化装置通过连接管路连接, 连接管路的全 部或部分设置于重整室内, 能通过重整室内的高温继续加热从重整室输出的高 温混合气体; 所述连接管路作为重整室与氢气纯化装置之间的缓冲, 使得从重 整室输出的高温混合气体的温度与氢气纯化装置的温度相同或接近; 从氢气纯 化装置的产气端得到氢气, 该氢气经第三换热器 45后输出至燃料电池 43; 分离 氢气后, 余气经第一电磁方向阀 42后直接排出或经第一换热器 3后排出。 所述甲 醇水重整制氢子系统还包括甲醇水容器 46及输送泵 47, 其中, 甲醇水容器 46内 储存有液态的甲醇水原料, 输送泵 47用于将甲醇水储存容器 46中的甲醇水原料 通过输送管道泵送至重整器 41。
[0029] 作为重整器的优选方式, 所述加热装置包括燃烧腔, 该燃烧腔用于部分制得的 氢气与外界空气中的氧气燃烧, 为重整器 41的运行提供热量; 燃烧腔内氢气氧 气燃烧产生的水汽以及外界空气中的未燃烧气体混合而成的余气, 经第一电磁 方向阀 42后直接排出或经第一换热器 3后排出。 [0030] 如图 3所示, 所述控温液循环管道 7在动力电池组 1中设置有若干控温通道 71, 该若干控温通道 71均匀分布于动力电池组 1内, 这样能均匀对各个单体电池进行 散热或保温。
[0031] 在上述技术方案中, 所述动力电池组 1内设有温度传感器 (图中未示出) , 该 温度感应器用于监测动力电池组 1温度, 其信号输出端接到控制模块。
[0032] 所述电动汽车动力电池组温度控制系统的温度控制方法, 包括以下步骤: [0033] (1) 控制模块设定动力电池组的过热温度值、 过冷数值及标准温度区间值, 该标准温度区间值的上限值低于过热温度值, 该标准温度区间值的下限值高于 过冷数值, 控制模块通过温度感应器侦测动力电池组的温度; 例如, 将过热温 度值设置为 40°C, 过冷数值设置为 0°C, 标准温度区间值设置为 8-32°C;
[0034] (2) 控制模块根据动力电池组的温度, 分别做出以下控制:
[0035] a.当动力电池组的温度高于过热数值吋, 控制模块控制重整器产生的余气经第 一电磁方向阀后直接排出, 并控制空调制冷系统向第二换热器输入制冷介质, 带走控温液中的热量, 控温液在控温液泵的驱动下, 通过动力电池组, 为动力 电池组散热; 当动力电池组的温度降低至标准温度区间值的上限值吋, 控制模 块控制空调制冷系统停止向第二换热器输入制冷介质;
[0036] b.当动力电池组的温度低于过冷数值吋, 控制模块控制空调制冷系统关闭向第 二换热器输入制冷介质的通道, 并控制重整器产生的余气依次经第一电磁方向 阀、 第一换热器后排出, 使余气的热量传递给控温液, 控温液在控温液泵的驱 动下, 通过动力电池组, 为动力电池组加热; 当动力电池组的温度上升至标准 温度区间值的下限值吋, 控制模块控制重整器产生的余气经第一电磁方向阀后 直接排出;
[0037] c.当动力电池组的温度处于标准温度区间值之内吋, 控制模块控制重整器产生 的余气经第一电磁方向阀后直接排出, 并控制空调制冷系统关闭向第二换热器 输入制冷介质的通道, 动力电池组进入自然散热 /保温状态。
[0038] 以上所述, 仅是本发明较佳实施方式, 凡是依据本发明的技术方案对以上的实 施方式所作的任何细微修改、 等同变化与修饰, 均属于本发明技术方案的范围 内。 工业实用性
本发明为一种电动汽车动力电池组温度控制系统及方法, 该温度控制系统能利 用车载充电系统的重整器余气对动力电池组进行加热, 节约了电动汽车的能量 , 并且在动力电池组充电过程中, 或者低电量工作吋, 或者启动过程中, 均能 及吋对动力电池组进行加热。 因此, 具有工业实用性。

Claims

权利要求书
[权利要求 1] 电动汽车动力电池组温度控制系统, 其特征在于: 包括动力电池组、 控温液泵、 第一换热器、 车载充电系统、 第二换热器、 空调制冷系统 以及控制模块; 所述动力电池组、 控温液泵、 第一换热器及第二换热 器之间连接有控温液循环管道, 控温液循环管道内具有控温液; 所述 车载充电系统包括甲醇水重整制氢子系统及燃料电池子系统, 其中, 所述甲醇水重整制氢子系统包括重整器及第一电磁方向阀, 所述重整 器用于甲醇和水发生重整制氢反应制得氢气, 并供应给燃料电池, 重 整器产生的余气经第一电磁方向阀后直接排出或经第一换热器后排出 ; 所述燃料电池用于氢气及空气中的氧气发生电化学反应产生电能, 该电能经电力转换装置转换后, 为动力电池组充电; 所述空调制冷系 统与第二换热器相配合; 所述控制模块用于控制控温液泵、 车载充电 系统及空调制冷系统的工作运转; 在动力电池组温度过高吋, 控制模 块控制重整器产生的余气经第一电磁方向阀后直接排出, 并控制空调 制冷系统向第二换热器输入制冷介质, 带走控温液中的热量; 在动力 电池组温度过低吋, 控制模块控制空调制冷系统关闭向第二换热器输 入制冷介质的通道, 并控制重整器产生的余气依次经第一电磁方向阀 、 第一换热器后排出, 使余气的热量传递给控温液。
[权利要求 2] 根据权利要求 1所述的电动汽车动力电池组温度控制系统, 其特征在 于: 所述第一换热器与第二换热器相互串联, 所述控温液循环管道内 的控温液在控温液泵的驱动下, 循环流经于第二换热器、 第一换热器 、 动力电池组及控温液泵。
[权利要求 3] 根据权利要求 1所述的电动汽车动力电池组温度控制系统, 其特征在 于: 所述第一换热器与第二换热器相互并联, 所述电动汽车动力电池 组温度控制系统还包括第二电磁方向阀, 所述控温液循环管道内的控 温液在控温液泵的驱动下, 可循环流经于第二电磁换向阀、 第二换热 器、 动力电池组及控温液泵, 或者循环流经于第二电磁换向阀、 第一 换热器、 动力电池组及控温液泵。 根据权利要求 1所述的电动汽车动力电池组温度控制系统, 其特征在 于: 所述甲醇水重整制氢子系统还包括第三换热器, 所述第三换热器 安装于甲醇水原料的输送管道上, 甲醇水原料在第三换热器中, 与重 整器输出的高温氢气进行换热, 甲醇水原料温度升高, 氢气温度降低 ; 所述重整器设有重整室、 加热装置及氢气纯化装置, 所述加热装置 为重整室提供 350-570°C温度的热能; 所述重整室内设有催化剂, 甲 醇和水在重整室内发生重整制氢反应, 制得以二氧化碳和氢气为主的 高温混合气体; 所述重整室与氢气纯化装置通过连接管路连接, 连接 管路的全部或部分设置于重整室内, 能通过重整室内的高温继续加热 从重整室输出的高温混合气体; 所述连接管路作为重整室与氢气纯化 装置之间的缓冲, 使得从重整室输出的高温混合气体的温度与氢气纯 化装置的温度相同或接近; 从氢气纯化装置的产气端得到氢气, 该氢 气经第三换热器后输出至燃料电池; 分离氢气后, 余气经第一电磁方 向阀后直接排出或经第一换热器后排出。
根据权利要求 4所述的电动汽车动力电池组温度控制系统, 其特征在 于: 所述加热装置包括燃烧腔, 该燃烧腔用于部分制得的氢气与外界 空气中的氧气燃烧, 为重整器的运行提供热量; 燃烧腔内氢气氧气燃 烧产生的水汽以及外界空气中的未燃烧气体混合而成的余气, 经第一 电磁方向阀后直接排出或经第一换热器后排出。
根据权利要求 1所述的电动汽车动力电池组温度控制系统, 其特征在 于: 所述控温液循环管道在动力电池组中设置有若干控温通道, 该若 干控温通道均匀分布于动力电池组内。
根据权利要求 1所述的电动汽车动力电池组温度控制系统, 其特征在 于: 所述动力电池组内设有温度传感器, 该温度感应器用于监测动力 电池组温度, 其信号输出端接到控制模块。
权利要求 1-7中任意一项所述电动汽车动力电池组温度控制系统的温 度控制方法, 其特征在于, 包括以下步骤:
(1) 控制模块设定动力电池组的过热温度值、 过冷数值及标准温度 区间值, 该标准温度区间值的上限值低于过热温度值, 该标准温度区 间值的下限值高于过冷数值, 控制模块通过温度感应器侦测动力电池 组的温度;
(2) 控制模块根据动力电池组的温度, 分别做出以下控制: a.当动力电池组的温度高于过热数值吋, 控制模块控制重整器产生的 余气经第一电磁方向阀后直接排出, 并控制空调制冷系统向第二换热 器输入制冷介质, 带走控温液中的热量, 控温液在控温液泵的驱动下 , 通过动力电池组, 为动力电池组散热; 当动力电池组的温度降低至 标准温度区间值的上限值吋, 控制模块控制空调制冷系统停止向第二 换热器输入制冷介质;
b.当动力电池组的温度低于过冷数值吋, 控制模块控制空调制冷系统 关闭向第二换热器输入制冷介质的通道, 并控制重整器产生的余气依 次经第一电磁方向阀、 第一换热器后排出, 使余气的热量传递给控温 液, 控温液在控温液泵的驱动下, 通过动力电池组, 为动力电池组加 热; 当动力电池组的温度上升至标准温度区间值的下限值吋, 控制模 块控制重整器产生的余气经第一电磁方向阀后直接排出;
c.当动力电池组的温度处于标准温度区间值之内吋, 控制模块控制重 整器产生的余气经第一电磁方向阀后直接排出, 并控制空调制冷系统 关闭向第二换热器输入制冷介质的通道, 动力电池组进入自然散热 / 保温状态。
PCT/CN2016/085896 2016-03-02 2016-06-15 电动汽车动力电池组温度控制系统及方法 WO2017148043A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610117515.9A CN105655668B (zh) 2016-03-02 2016-03-02 电动汽车动力电池组温度控制系统及方法
CN201610117515.9 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017148043A1 true WO2017148043A1 (zh) 2017-09-08

Family

ID=56492988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085896 WO2017148043A1 (zh) 2016-03-02 2016-06-15 电动汽车动力电池组温度控制系统及方法

Country Status (2)

Country Link
CN (1) CN105655668B (zh)
WO (1) WO2017148043A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655668B (zh) * 2016-03-02 2017-11-28 广东合即得能源科技有限公司 电动汽车动力电池组温度控制系统及方法
CN105870365A (zh) * 2016-05-29 2016-08-17 合肥国轩高科动力能源有限公司 一种风冷式电池包
CN106025312A (zh) * 2016-06-17 2016-10-12 上海合既得动氢机器有限公司 一种水氢动力交通工具及其空调系统
CN106004494A (zh) * 2016-06-17 2016-10-12 上海合既得动氢机器有限公司 一种水氢动力汽车及其空调系统
CN106183855B (zh) * 2016-07-25 2018-10-16 北京新能源汽车股份有限公司 电动汽车动力电池系统及控制方法
CN106450561A (zh) * 2016-11-08 2017-02-22 常州博能新能源有限公司 一种动力锂电池的温度控制系统
CN106410327A (zh) * 2016-11-08 2017-02-15 常州博能新能源有限公司 一种基于甲醇燃料电池与锂电池的动力系统的温控装置
CN108808158A (zh) * 2018-04-24 2018-11-13 北京长城华冠汽车科技股份有限公司 一种新能源车辆串联式热管理系统和新能源汽车
CN108832221B (zh) * 2018-04-24 2020-08-25 北京长城华冠汽车科技股份有限公司 新能源车辆串联式热管理管路的控制方法和装置
CN108598541B (zh) * 2018-05-16 2021-03-16 潍柴动力股份有限公司 一种sofc温度控制方法、温度控制系统及车辆
CN111845460B (zh) * 2020-06-24 2022-07-15 北汽福田汽车股份有限公司 混合式供电系统、运行控制方法和车辆
CN113054226B (zh) * 2021-03-10 2022-07-15 陈俊霖 一种燃料电池电源及电动车辆
CN115339354A (zh) * 2022-05-11 2022-11-15 中国第一汽车股份有限公司 一种动力电池加热保温控制方法、装置、终端及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149970A (ja) * 1998-11-05 2000-05-30 Matsushita Electric Ind Co Ltd 電気自動車用発電システム
WO2006087994A1 (ja) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. 燃料電池システム
CN103009997A (zh) * 2011-09-22 2013-04-03 宜春青山能源有限公司 电动汽车动力电池保温系统及保温方法
US20130255293A1 (en) * 2012-03-29 2013-10-03 Lg Chem, Ltd. Battery system and method for cooling the battery system
CN105084311A (zh) * 2015-09-02 2015-11-25 广东合即得能源科技有限公司 一种零碳排放的甲醇水重整制氢系统及其应用和制氢方法
CN105655668A (zh) * 2016-03-02 2016-06-08 广东合即得能源科技有限公司 电动汽车动力电池组温度控制系统及方法
CN205488417U (zh) * 2016-03-02 2016-08-17 广东合即得能源科技有限公司 电动汽车动力电池组温度控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1007390B (el) * 2010-10-07 2011-09-08 Frigoglass Βιομηχανια Ψυκτικων Θαλαμων Α.Β.Ε.Ε., Συστημα παραγωγης ενεργειας για λειτουργια ψυγειου σε εκτος δικτυου περιοχες που αποτελειται απο κυψελιδα και επεξεργαστη καυσιμου
CN102255117B (zh) * 2011-04-20 2013-09-18 江苏耀扬新能源科技有限公司 一种用于电动汽车的电池系统
FR3013269B1 (fr) * 2013-11-18 2017-05-26 Valeo Systemes Thermiques Systeme de refroidissement des batteries d'un vehicule electrique ou hybride
CN104577254B (zh) * 2014-12-23 2016-10-05 吉林大学 一种电动汽车电池组热管理系统及其工作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149970A (ja) * 1998-11-05 2000-05-30 Matsushita Electric Ind Co Ltd 電気自動車用発電システム
WO2006087994A1 (ja) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. 燃料電池システム
CN103009997A (zh) * 2011-09-22 2013-04-03 宜春青山能源有限公司 电动汽车动力电池保温系统及保温方法
US20130255293A1 (en) * 2012-03-29 2013-10-03 Lg Chem, Ltd. Battery system and method for cooling the battery system
CN105084311A (zh) * 2015-09-02 2015-11-25 广东合即得能源科技有限公司 一种零碳排放的甲醇水重整制氢系统及其应用和制氢方法
CN105655668A (zh) * 2016-03-02 2016-06-08 广东合即得能源科技有限公司 电动汽车动力电池组温度控制系统及方法
CN205488417U (zh) * 2016-03-02 2016-08-17 广东合即得能源科技有限公司 电动汽车动力电池组温度控制系统

Also Published As

Publication number Publication date
CN105655668B (zh) 2017-11-28
CN105655668A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2017148043A1 (zh) 电动汽车动力电池组温度控制系统及方法
US7523607B2 (en) System and method for reducing vehicle emissions and/or generating hydrogen
JP5129452B2 (ja) 燃料電池発電システム
US20060179819A1 (en) System and method for reducing vehicle emissions and/or generating hydrogen
CN109461952B (zh) 一种船用燃料电池热电联供系统
CN111890956A (zh) 一种燃料电池车的温差发电及低温相变冷却蓄热系统
CN206461036U (zh) 燃料电池系统及燃料电池汽车
CN208284563U (zh) 燃料电池系统
CN212230532U (zh) 一种燃料电池低温快速冷启系统及车辆
JP2004311218A (ja) 燃料電池システムの暖機装置
CN108232238B (zh) 一种燃料电池系统、控制方法以及燃料电池汽车
CN109638386B (zh) 一种汽车和供暖与动力电池加热系统及方法
KR20040097305A (ko) 연료전지 동력장치의 예열장치
CN113964340A (zh) 一种燃料电池低温快速冷启动的系统、方法及车辆
JP5516524B2 (ja) 電源システム
CN102174906B (zh) 一种汽车电涡流缓速器制动热能回收利用装置及控制方法
CN215705808U (zh) 一种燃料电池轨道交通车辆液氢综合利用系统
CN114583222A (zh) 一种基于固体氧化物燃料电池和内燃机的联合发电系统
CN112550003B (zh) 一种电动汽车增程器
CN112768725B (zh) 一种燃料电池无人机及氢动力装备温控的方法及装置
CN101604933B (zh) 氢气-碱金属热电直接转换器发电系统
CN205488417U (zh) 电动汽车动力电池组温度控制系统
Jiang et al. Design and control of thermal management system for the fuel cell vehicle in low-temperature environment
CN110803070B (zh) 一种以液氢为气源的燃料电池锂电池混合动力汽车的热管理方法
CN114678562A (zh) 一种燃料电池低温启动系统及控制方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892231

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892231

Country of ref document: EP

Kind code of ref document: A1